1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-12-26 22:57:00 +02:00
vcmi/lib/rmg/CZonePlacer.cpp

237 lines
6.2 KiB
C++

/*
* CZonePlacer.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#include "StdInc.h"
#include "../CRandomGenerator.h"
#include "CZonePlacer.h"
#include "CRmgTemplateZone.h"
#include "CZoneGraphGenerator.h"
class CRandomGenerator;
CPlacedZone::CPlacedZone(const CRmgTemplateZone * zone) : zone(zone)
{
}
CZonePlacer::CZonePlacer(CMapGenerator * Gen) : gen(Gen)
{
}
CZonePlacer::~CZonePlacer()
{
}
int3 CZonePlacer::cords (const float3 f) const
{
return int3(std::max(0.f, (f.x * gen->map->width)-1), std::max(0.f, (f.y * gen->map->height-1)), f.z);
}
void CZonePlacer::placeZones(shared_ptr<CMapGenOptions> mapGenOptions, CRandomGenerator * rand)
{
//some relaxation-simmulated annealing algorithm
const int iterations = 100;
float temperature = 1e-2;;
const float temperatureModifier = 0.99;
logGlobal->infoStream() << "Starting zone placement";
int width = mapGenOptions->getWidth();
int height = mapGenOptions->getHeight();
auto zones = gen->getZones();
//TODO: consider underground zones
/*
let's assume we try to fit N circular zones with radius = size on a map
formula: sum((prescaler*n)^2)*pi = WH
prescaler = sqrt((WH)/(sum(n^2)*pi))
*/
float totalSize = 0;
for (auto zone : zones)
{
totalSize += (zone.second->getSize() * zone.second->getSize());
zone.second->setCenter (float3(rand->nextDouble(0.2,0.8), rand->nextDouble(0.2,0.8), 0)); //start away from borders
}
//prescale zones
float prescaler = sqrt ((width * height) / (totalSize * 3.14f));
float mapSize = sqrt (width * height);
for (auto zone : zones)
{
zone.second->setSize (zone.second->getSize() * prescaler);
}
//gravity-based algorithm. connected zones attract, intersceting zones and map boundaries push back
auto getDistance = [](float distance) -> float
{
return (distance ? distance * distance : 1e-6);
};
std::map <CRmgTemplateZone *, float3> forces;
for (int i = 0; i < iterations; ++i)
{
for (auto zone : zones)
{
float3 forceVector(0,0,0);
float3 pos = zone.second->getCenter();
//attract connected zones
for (auto con : zone.second->getConnections())
{
auto otherZone = zones[con];
float distance = pos.dist2d (otherZone->getCenter());
float minDistance = (zone.second->getSize() + otherZone->getSize())/mapSize; //scale down to (0,1) coordinates
if (distance > minDistance)
{
forceVector += (otherZone->getCenter() - pos) / getDistance(distance); //positive value
}
}
//separate overlaping zones
for (auto otherZone : zones)
{
if (zone == otherZone)
continue;
float distance = pos.dist2d (otherZone.second->getCenter());
float minDistance = (zone.second->getSize() + otherZone.second->getSize())/mapSize;
if (distance < minDistance)
{
forceVector -= (otherZone.second->getCenter() - pos) / getDistance(distance); //negative value
}
}
//move zones away from boundaries
float3 boundary(0,0,pos.z);
float size = zone.second->getSize() / mapSize;
if (pos.x < size)
{
boundary = float3 (0, pos.y, pos.z);
float distance = pos.dist2d(boundary);
forceVector -= (boundary - pos) / getDistance(distance); //negative value
}
if (pos.x > 1-size)
{
boundary = float3 (1, pos.y, pos.z);
float distance = pos.dist2d(boundary);
forceVector -= (boundary - pos) / getDistance(distance); //negative value
}
if (pos.y < size)
{
boundary = float3 (pos.x, 0, pos.z);
float distance = pos.dist2d(boundary);
forceVector -= (boundary - pos) / getDistance(distance); //negative value
}
if (pos.y > 1-size)
{
boundary = float3 (pos.x, 1, pos.z);
float distance = pos.dist2d(boundary);
forceVector -= (boundary - pos) / getDistance(distance); //negative value
}
forces[zone.second] = forceVector;
}
//update positions
for (auto zone : forces)
{
zone.first->setCenter (zone.first->getCenter() + zone.second * temperature);
}
temperature *= temperatureModifier; //decrease temperature (needed?)
}
for (auto zone : zones) //finalize zone positions
{
zone.second->setPos(cords(zone.second->getCenter()));
logGlobal->infoStream() << boost::format ("Placed zone %d at relative position %s and coordinates %s") % zone.first % zone.second->getCenter() % zone.second->getPos();
}
}
float CZonePlacer::metric (const int3 &A, const int3 &B) const
{
/*
Matlab code
dx = abs(A(1) - B(1)); %distance must be symmetric
dy = abs(A(2) - B(2));
d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ...
0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy;
*/
float dx = abs(A.x - B.x) * scaleX;
float dy = abs(A.y - B.y) * scaleY;
//Horner scheme
return dx * (1 + dx * (0.1 + dx * 0.01)) + dy * (1.618 + dy * (-0.1618 + dy * 0.01618));
}
void CZonePlacer::assignZones(shared_ptr<CMapGenOptions> mapGenOptions)
{
logGlobal->infoStream() << "Starting zone colouring";
auto width = mapGenOptions->getWidth();
auto height = mapGenOptions->getHeight();
//scale to Medium map to ensure smooth results
scaleX = 72.f / width;
scaleY = 72.f / height;
auto zones = gen->getZones();
typedef std::pair<CRmgTemplateZone *, float> Dpair;
std::vector <Dpair> distances;
distances.reserve(zones.size());
auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
{
return lhs.second < rhs.second;
};
int levels = gen->map->twoLevel ? 2 : 1;
for (int i=0; i<width; i++)
{
for(int j=0; j<height; j++)
{
for (int k = 0; k < levels; k++)
{
distances.clear();
int3 pos(i, j, k);
for (auto zone : zones)
{
distances.push_back (std::make_pair(zone.second, metric(pos, zone.second->getPos())));
}
boost::sort (distances, compareByDistance);
distances.front().first->addTile(pos); //closest tile belongs to zone
}
}
}
//set position to center of mass
for (auto zone : zones)
{
int3 total(0,0,0);
auto tiles = zone.second->getTileInfo();
for (auto tile : tiles)
{
total += tile;
}
int size = tiles.size();
zone.second->setPos (int3(total.x/size, total.y/size, total.z/size));
}
logGlobal->infoStream() << "Finished zone colouring";
}