1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-01-26 03:52:01 +02:00
vcmi/lib/rmg/CZonePlacer.cpp
2022-12-24 21:56:29 +04:00

590 lines
18 KiB
C++

/*
* CZonePlacer.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#include "StdInc.h"
#include "../CRandomGenerator.h"
#include "CZonePlacer.h"
#include "../mapping/CMap.h"
#include "../mapping/CMapEditManager.h"
#include "CMapGenOptions.h"
#include "RmgMap.h"
#include "Zone.h"
#include "Functions.h"
VCMI_LIB_NAMESPACE_BEGIN
class CRandomGenerator;
CZonePlacer::CZonePlacer(RmgMap & map)
: width(0), height(0), scaleX(0), scaleY(0), mapSize(0), gravityConstant(0), stiffnessConstant(0),
map(map)
{
}
CZonePlacer::~CZonePlacer()
{
}
int3 CZonePlacer::cords (const float3 f) const
{
return int3((si32)std::max(0.f, (f.x * map.map().width)-1), (si32)std::max(0.f, (f.y * map.map().height-1)), f.z);
}
float CZonePlacer::getDistance (float distance) const
{
return (distance ? distance * distance : 1e-6f);
}
void CZonePlacer::placeZones(CRandomGenerator * rand)
{
logGlobal->info("Starting zone placement");
width = map.getMapGenOptions().getWidth();
height = map.getMapGenOptions().getHeight();
auto zones = map.getZones();
vstd::erase_if(zones, [](const std::pair<TRmgTemplateZoneId, std::shared_ptr<Zone>> & pr)
{
return pr.second->getType() == ETemplateZoneType::WATER;
});
bool underground = map.getMapGenOptions().getHasTwoLevels();
/*
gravity-based algorithm
let's assume we try to fit N circular zones with radius = size on a map
*/
gravityConstant = 4e-3f;
stiffnessConstant = 4e-3f;
TZoneVector zonesVector(zones.begin(), zones.end());
assert (zonesVector.size());
RandomGeneratorUtil::randomShuffle(zonesVector, *rand);
//0. set zone sizes and surface / underground level
prepareZones(zones, zonesVector, underground, rand);
//gravity-based algorithm. connected zones attract, intersecting zones and map boundaries push back
//remember best solution
float bestTotalDistance = 1e10;
float bestTotalOverlap = 1e10;
std::map<std::shared_ptr<Zone>, float3> bestSolution;
TForceVector forces;
TForceVector totalForces; // both attraction and pushback, overcomplicated?
TDistanceVector distances;
TDistanceVector overlaps;
const int MAX_ITERATIONS = 100;
for (int i = 0; i < MAX_ITERATIONS; ++i) //until zones reach their desired size and fill the map tightly
{
//1. attract connected zones
attractConnectedZones(zones, forces, distances);
for (auto zone : forces)
{
zone.first->setCenter (zone.first->getCenter() + zone.second);
totalForces[zone.first] = zone.second; //override
}
//2. separate overlapping zones
separateOverlappingZones(zones, forces, overlaps);
for (auto zone : forces)
{
zone.first->setCenter (zone.first->getCenter() + zone.second);
totalForces[zone.first] += zone.second; //accumulate
}
//3. now perform drastic movement of zone that is completely not linked
moveOneZone(zones, totalForces, distances, overlaps);
//4. NOW after everything was moved, re-evaluate zone positions
attractConnectedZones(zones, forces, distances);
separateOverlappingZones(zones, forces, overlaps);
float totalDistance = 0;
float totalOverlap = 0;
for (auto zone : distances) //find most misplaced zone
{
totalDistance += zone.second;
float overlap = overlaps[zone.first];
totalOverlap += overlap;
}
//check fitness function
bool improvement = false;
if (bestTotalDistance > 0 && bestTotalOverlap > 0)
{
if (totalDistance * totalOverlap < bestTotalDistance * bestTotalOverlap) //multiplication is better for auto-scaling, but stops working if one factor is 0
improvement = true;
}
else
{
if (totalDistance + totalOverlap < bestTotalDistance + bestTotalOverlap)
improvement = true;
}
logGlobal->trace("Total distance between zones after this iteration: %2.4f, Total overlap: %2.4f, Improved: %s", totalDistance, totalOverlap , improvement);
//save best solution
if (improvement)
{
bestTotalDistance = totalDistance;
bestTotalOverlap = totalOverlap;
for (auto zone : zones)
bestSolution[zone.second] = zone.second->getCenter();
}
}
logGlobal->trace("Best fitness reached: total distance %2.4f, total overlap %2.4f", bestTotalDistance, bestTotalOverlap);
for (auto zone : zones) //finalize zone positions
{
zone.second->setPos (cords (bestSolution[zone.second]));
logGlobal->trace("Placed zone %d at relative position %s and coordinates %s", zone.first, zone.second->getCenter().toString(), zone.second->getPos().toString());
}
}
void CZonePlacer::prepareZones(TZoneMap &zones, TZoneVector &zonesVector, const bool underground, CRandomGenerator * rand)
{
std::vector<float> totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map
const float radius = 0.4f;
const float pi2 = 6.28f;
int zonesOnLevel[2] = { 0, 0 };
//even distribution for surface / underground zones. Surface zones always have priority.
TZoneVector zonesToPlace;
std::map<TRmgTemplateZoneId, int> levels;
//first pass - determine fixed surface for zones
for (auto zone : zonesVector)
{
if (!underground) //this step is ignored
zonesToPlace.push_back(zone);
else //place players depending on their factions
{
if (boost::optional<int> owner = zone.second->getOwner())
{
auto player = PlayerColor(*owner - 1);
auto playerSettings = map.getMapGenOptions().getPlayersSettings();
si32 faction = CMapGenOptions::CPlayerSettings::RANDOM_TOWN;
if (vstd::contains(playerSettings, player))
faction = playerSettings[player].getStartingTown();
else
logGlobal->error("Can't find info for player %d (starting zone)", player.getNum());
if (faction == CMapGenOptions::CPlayerSettings::RANDOM_TOWN) //TODO: check this after a town has already been randomized
zonesToPlace.push_back(zone);
else
{
auto & tt = (*VLC->townh)[faction]->nativeTerrain;
if(tt == Terrain::DIRT)
{
//any / random
zonesToPlace.push_back(zone);
}
else
{
const auto & terrainType = VLC->terrainTypeHandler->terrains()[tt];
if(terrainType.isUnderground() && !terrainType.isSurface())
{
//underground only
zonesOnLevel[1]++;
levels[zone.first] = 1;
}
else
{
//surface
zonesOnLevel[0]++;
levels[zone.first] = 0;
}
}
}
}
else //no starting zone or no underground altogether
{
zonesToPlace.push_back(zone);
}
}
}
for (auto zone : zonesToPlace)
{
if (underground) //only then consider underground zones
{
int level = 0;
if (zonesOnLevel[1] < zonesOnLevel[0]) //only if there are less underground zones
level = 1;
else
level = 0;
levels[zone.first] = level;
zonesOnLevel[level]++;
}
else
levels[zone.first] = 0;
}
for (auto zone : zonesVector)
{
int level = levels[zone.first];
totalSize[level] += (zone.second->getSize() * zone.second->getSize());
float randomAngle = static_cast<float>(rand->nextDouble(0, pi2));
zone.second->setCenter(float3(0.5f + std::sin(randomAngle) * radius, 0.5f + std::cos(randomAngle) * radius, level)); //place zones around circle
}
/*
prescale zones
formula: sum((prescaler*n)^2)*pi = WH
prescaler = sqrt((WH)/(sum(n^2)*pi))
*/
std::vector<float> prescaler = { 0, 0 };
for (int i = 0; i < 2; i++)
prescaler[i] = sqrt((width * height) / (totalSize[i] * 3.14f));
mapSize = static_cast<float>(sqrt(width * height));
for (auto zone : zones)
{
zone.second->setSize((int)(zone.second->getSize() * prescaler[zone.second->getCenter().z]));
}
}
void CZonePlacer::attractConnectedZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &distances)
{
for (auto zone : zones)
{
float3 forceVector(0, 0, 0);
float3 pos = zone.second->getCenter();
float totalDistance = 0;
for (auto con : zone.second->getConnections())
{
auto otherZone = zones[con];
float3 otherZoneCenter = otherZone->getCenter();
float distance = static_cast<float>(pos.dist2d(otherZoneCenter));
float minDistance = 0;
if (pos.z != otherZoneCenter.z)
minDistance = 0; //zones on different levels can overlap completely
else
minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize; //scale down to (0,1) coordinates
if (distance > minDistance)
{
//WARNING: compiler used to 'optimize' that line so it never actually worked
float overlapMultiplier = (pos.z == otherZoneCenter.z) ? (minDistance / distance) : 1.0f;
forceVector += ((otherZoneCenter - pos)* overlapMultiplier / getDistance(distance)) * gravityConstant; //positive value
totalDistance += (distance - minDistance);
}
}
distances[zone.second] = totalDistance;
forceVector.z = 0; //operator - doesn't preserve z coordinate :/
forces[zone.second] = forceVector;
}
}
void CZonePlacer::separateOverlappingZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &overlaps)
{
for (auto zone : zones)
{
float3 forceVector(0, 0, 0);
float3 pos = zone.second->getCenter();
float overlap = 0;
//separate overlapping zones
for (auto otherZone : zones)
{
float3 otherZoneCenter = otherZone.second->getCenter();
//zones on different levels don't push away
if (zone == otherZone || pos.z != otherZoneCenter.z)
continue;
float distance = static_cast<float>(pos.dist2d(otherZoneCenter));
float minDistance = (zone.second->getSize() + otherZone.second->getSize()) / mapSize;
if (distance < minDistance)
{
forceVector -= (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3f))) / getDistance(distance)) * stiffnessConstant; //negative value
overlap += (minDistance - distance); //overlapping of small zones hurts us more
}
}
//move zones away from boundaries
//do not scale boundary distance - zones tend to get squashed
float size = zone.second->getSize() / mapSize;
auto pushAwayFromBoundary = [&forceVector, pos, size, &overlap, this](float x, float y)
{
float3 boundary = float3(x, y, pos.z);
float distance = static_cast<float>(pos.dist2d(boundary));
overlap += std::max<float>(0, distance - size); //check if we're closer to map boundary than value of zone size
forceVector -= (boundary - pos) * (size - distance) / this->getDistance(distance) * this->stiffnessConstant; //negative value
};
if (pos.x < size)
{
pushAwayFromBoundary(0, pos.y);
}
if (pos.x > 1 - size)
{
pushAwayFromBoundary(1, pos.y);
}
if (pos.y < size)
{
pushAwayFromBoundary(pos.x, 0);
}
if (pos.y > 1 - size)
{
pushAwayFromBoundary(pos.x, 1);
}
overlaps[zone.second] = overlap;
forceVector.z = 0; //operator - doesn't preserve z coordinate :/
forces[zone.second] = forceVector;
}
}
void CZonePlacer::moveOneZone(TZoneMap &zones, TForceVector &totalForces, TDistanceVector &distances, TDistanceVector &overlaps)
{
float maxRatio = 0;
const int maxDistanceMovementRatio = static_cast<int>(zones.size() * zones.size()); //experimental - the more zones, the greater total distance expected
std::shared_ptr<Zone> misplacedZone;
float totalDistance = 0;
float totalOverlap = 0;
for (auto zone : distances) //find most misplaced zone
{
totalDistance += zone.second;
float overlap = overlaps[zone.first];
totalOverlap += overlap;
float ratio = (zone.second + overlap) / (float)totalForces[zone.first].mag(); //if distance to actual movement is long, the zone is misplaced
if (ratio > maxRatio)
{
maxRatio = ratio;
misplacedZone = zone.first;
}
}
logGlobal->trace("Worst misplacement/movement ratio: %3.2f", maxRatio);
if (maxRatio > maxDistanceMovementRatio && misplacedZone)
{
std::shared_ptr<Zone> targetZone;
float3 ourCenter = misplacedZone->getCenter();
if (totalDistance > totalOverlap)
{
//find most distant zone that should be attracted and move inside it
float maxDistance = 0;
for (auto con : misplacedZone->getConnections())
{
auto otherZone = zones[con];
float distance = static_cast<float>(otherZone->getCenter().dist2dSQ(ourCenter));
if (distance > maxDistance)
{
maxDistance = distance;
targetZone = otherZone;
}
}
if (targetZone) //TODO: consider refactoring duplicated code
{
float3 vec = targetZone->getCenter() - ourCenter;
float newDistanceBetweenZones = (std::max(misplacedZone->getSize(), targetZone->getSize())) / mapSize;
logGlobal->trace("Trying to move zone %d %s towards %d %s. Old distance %f", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), maxDistance);
logGlobal->trace("direction is %s", vec.toString());
misplacedZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size
logGlobal->trace("New distance %f", targetZone->getCenter().dist2d(misplacedZone->getCenter()));
}
}
else
{
float maxOverlap = 0;
for (auto otherZone : zones)
{
float3 otherZoneCenter = otherZone.second->getCenter();
if (otherZone.second == misplacedZone || otherZoneCenter.z != ourCenter.z)
continue;
float distance = static_cast<float>(otherZoneCenter.dist2dSQ(ourCenter));
if (distance > maxOverlap)
{
maxOverlap = distance;
targetZone = otherZone.second;
}
}
if (targetZone)
{
float3 vec = ourCenter - targetZone->getCenter();
float newDistanceBetweenZones = (misplacedZone->getSize() + targetZone->getSize()) / mapSize;
logGlobal->trace("Trying to move zone %d %s away from %d %s. Old distance %f", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), maxOverlap);
logGlobal->trace("direction is %s", vec.toString());
misplacedZone->setCenter(targetZone->getCenter() + vec.unitVector() * newDistanceBetweenZones); //zones should now be just separated
logGlobal->trace("New distance %f", targetZone->getCenter().dist2d(misplacedZone->getCenter()));
}
}
}
}
float CZonePlacer::metric (const int3 &A, const int3 &B) const
{
/*
Matlab code
dx = abs(A(1) - B(1)); %distance must be symmetric
dy = abs(A(2) - B(2));
d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ...
0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy;
*/
float dx = abs(A.x - B.x) * scaleX;
float dy = abs(A.y - B.y) * scaleY;
//Horner scheme
return dx * (1.0f + dx * (0.1f + dx * 0.01f)) + dy * (1.618f + dy * (-0.1618f + dy * 0.01618f));
}
void CZonePlacer::assignZones(CRandomGenerator * rand)
{
logGlobal->info("Starting zone colouring");
auto width = map.getMapGenOptions().getWidth();
auto height = map.getMapGenOptions().getHeight();
//scale to Medium map to ensure smooth results
scaleX = 72.f / width;
scaleY = 72.f / height;
auto zones = map.getZones();
vstd::erase_if(zones, [](const std::pair<TRmgTemplateZoneId, std::shared_ptr<Zone>> & pr)
{
return pr.second->getType() == ETemplateZoneType::WATER;
});
typedef std::pair<std::shared_ptr<Zone>, float> Dpair;
std::vector <Dpair> distances;
distances.reserve(zones.size());
//now place zones correctly and assign tiles to each zone
auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
{
//bigger zones have smaller distance
return lhs.second / lhs.first->getSize() < rhs.second / rhs.first->getSize();
};
auto moveZoneToCenterOfMass = [](std::shared_ptr<Zone> zone) -> void
{
int3 total(0, 0, 0);
auto tiles = zone->area().getTiles();
for (auto tile : tiles)
{
total += tile;
}
int size = static_cast<int>(tiles.size());
assert(size);
zone->setPos(int3(total.x / size, total.y / size, total.z / size));
};
int levels = map.map().levels();
/*
1. Create Voronoi diagram
2. find current center of mass for each zone. Move zone to that center to balance zones sizes
*/
int3 pos;
for(pos.z = 0; pos.z < levels; pos.z++)
{
for(pos.x = 0; pos.x < width; pos.x++)
{
for(pos.y = 0; pos.y < height; pos.y++)
{
distances.clear();
for(auto zone : zones)
{
if (zone.second->getPos().z == pos.z)
distances.push_back(std::make_pair(zone.second, (float)pos.dist2dSQ(zone.second->getPos())));
else
distances.push_back(std::make_pair(zone.second, std::numeric_limits<float>::max()));
}
boost::min_element(distances, compareByDistance)->first->area().add(pos); //closest tile belongs to zone
}
}
}
for (auto zone : zones)
{
if(zone.second->area().empty())
throw rmgException("Empty zone is generated, probably RMG template is inappropriate for map size");
moveZoneToCenterOfMass(zone.second);
}
//assign actual tiles to each zone using nonlinear norm for fine edges
for (auto zone : zones)
zone.second->clearTiles(); //now populate them again
for (pos.z = 0; pos.z < levels; pos.z++)
{
for (pos.x = 0; pos.x < width; pos.x++)
{
for (pos.y = 0; pos.y < height; pos.y++)
{
distances.clear();
for (auto zone : zones)
{
if (zone.second->getPos().z == pos.z)
distances.push_back (std::make_pair(zone.second, metric(pos, zone.second->getPos())));
else
distances.push_back (std::make_pair(zone.second, std::numeric_limits<float>::max()));
}
auto zone = boost::min_element(distances, compareByDistance)->first; //closest tile belongs to zone
zone->area().add(pos);
map.setZoneID(pos, zone->getId());
}
}
}
//set position (town position) to center of mass of irregular zone
for (auto zone : zones)
{
moveZoneToCenterOfMass(zone.second);
//TODO: similiar for islands
#define CREATE_FULL_UNDERGROUND true //consider linking this with water amount
if (zone.second->isUnderground())
{
if (!CREATE_FULL_UNDERGROUND)
{
auto discardTiles = collectDistantTiles(*zone.second, zone.second->getSize() + 1.f);
for(auto& t : discardTiles)
zone.second->area().erase(t);
}
//make sure that terrain inside zone is not a rock
//FIXME: reorder actions?
paintZoneTerrain(*zone.second, *rand, map, Terrain::SUBTERRANEAN);
}
}
logGlobal->info("Finished zone colouring");
}
VCMI_LIB_NAMESPACE_END