1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-12-14 10:12:59 +02:00
vcmi/lib/ResourceSet.h
Xilmi 37c0972a50 New and restored functionality
Added a new div-function to resource-sets. It allows to calculate the amount of times one resource set, for example income, has to be accumulated in order to reach another resource-set, for example required resource. It will return INT_MAX if it's impossible.

Restored the "<" operator-function and made it actually work like it's supposed to.
2024-07-19 15:16:05 +02:00

247 lines
5.8 KiB
C++

/*
* ResourceSet.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
#include "GameConstants.h"
VCMI_LIB_NAMESPACE_BEGIN
using TResource = int32_t;
using TResourceCap = int64_t; //to avoid overflow when adding integers. Signed values are easier to control.
class JsonNode;
class JsonSerializeFormat;
class ResourceSet;
//class to be representing a vector of resource
class ResourceSet
{
private:
std::array<TResource, GameConstants::RESOURCE_QUANTITY> container = {};
public:
// read resources set from json. Format example: { "gold": 500, "wood":5 }
DLL_LINKAGE ResourceSet(const JsonNode & node);
DLL_LINKAGE ResourceSet();
#define scalarOperator(OPSIGN) \
ResourceSet& operator OPSIGN ## =(const TResource &rhs) \
{ \
for(auto i = 0; i < container.size(); i++) \
container.at(i) OPSIGN ## = rhs; \
\
return *this; \
}
#define vectorOperator(OPSIGN) \
ResourceSet& operator OPSIGN ## =(const ResourceSet &rhs) \
{ \
for(auto i = 0; i < container.size(); i++) \
container.at(i) OPSIGN ## = rhs[i]; \
\
return *this; \
}
#define twoOperands(OPSIGN, RHS_TYPE) \
friend ResourceSet operator OPSIGN(ResourceSet lhs, const RHS_TYPE &rhs) \
{ \
lhs OPSIGN ## = rhs; \
return lhs; \
}
scalarOperator(+)
scalarOperator(-)
scalarOperator(*)
scalarOperator(/)
vectorOperator(+)
vectorOperator(-)
twoOperands(+, TResource)
twoOperands(-, TResource)
twoOperands(*, TResource)
twoOperands(/, TResource)
twoOperands(+, ResourceSet)
twoOperands(-, ResourceSet)
#undef scalarOperator
#undef vectorOperator
#undef twoOperands
using const_reference = decltype(container)::const_reference;
using value_type = decltype(container)::value_type;
using const_iterator = decltype(container)::const_iterator;
using iterator = decltype(container)::iterator;
// Array-like interface
TResource & operator[](GameResID index)
{
return operator[](index.getNum());
}
const TResource & operator[](GameResID index) const
{
return operator[](index.getNum());
}
TResource & operator[](size_t index)
{
return container.at(index);
}
const TResource & operator[](size_t index) const
{
return container.at(index);
}
bool empty () const
{
for(const auto & res : *this)
if(res)
return false;
return true;
}
// C++ range-based for support
auto begin () -> decltype (container.begin())
{
return container.begin();
}
auto end () -> decltype (container.end())
{
return container.end();
}
auto begin () const -> decltype (container.cbegin())
{
return container.cbegin();
}
auto end () const -> decltype (container.cend())
{
return container.cend();
}
auto size () const -> decltype (container.size())
{
return container.size();
}
//to be used for calculations of type "how many units of sth can I afford?"
int operator/(const ResourceSet &rhs)
{
int ret = INT_MAX;
for(int i = 0; i < container.size(); i++)
if(rhs[i])
vstd::amin(ret, container.at(i) / rhs[i]);
return ret;
}
int div(const ResourceSet& income) {
int ret = 0; // Initialize to 0 because we want the maximum number of accumulations
for (size_t i = 0; i < container.size(); ++i) {
if (container.at(i) > 0) { // We only care about fulfilling positive needs
if (income[i] == 0) {
// If income is 0 and we need a positive amount, it's impossible to fulfill
return INT_MAX;
}
else {
// Calculate the number of times we need to accumulate income to fulfill the need
float divisionResult = static_cast<float>(container.at(i)) / static_cast<float>(income[i]);
int ceiledResult = static_cast<int>(std::ceil(divisionResult));
ret = std::max(ret, ceiledResult);
}
}
}
return ret;
}
ResourceSet & operator=(const TResource &rhs)
{
for(int & i : container)
i = rhs;
return *this;
}
ResourceSet operator-() const
{
ResourceSet ret;
for(int i = 0; i < container.size(); i++)
ret[i] = -container.at(i);
return ret;
}
bool operator==(const ResourceSet &rhs) const
{
return this->container == rhs.container;
}
// WARNING: comparison operators are used for "can afford" relation: a <= b means that foreach i a[i] <= b[i]
// that doesn't work the other way: a > b doesn't mean that a cannot be afforded with b, it's still b can afford a
bool operator<(const ResourceSet &rhs)
{
for(int i = 0; i < size(); i++)
if (this->container.at(i) < rhs[i])
return true;
return false;
}
template <typename Handler> void serialize(Handler &h)
{
h & container;
}
DLL_LINKAGE void serializeJson(JsonSerializeFormat & handler, const std::string & fieldName);
DLL_LINKAGE void amax(const TResourceCap &val); //performs vstd::amax on each element
DLL_LINKAGE void amin(const TResourceCap &val); //performs vstd::amin on each element
DLL_LINKAGE void positive(); //values below 0 are set to 0 - upgrade cost can't be negative, for example
DLL_LINKAGE bool nonZero() const; //returns true if at least one value is non-zero;
DLL_LINKAGE bool canAfford(const ResourceSet &price) const;
DLL_LINKAGE bool canBeAfforded(const ResourceSet &res) const;
DLL_LINKAGE TResourceCap marketValue() const;
DLL_LINKAGE std::string toString() const;
//special iterator of iterating over non-zero resources in set
class DLL_LINKAGE nziterator
{
struct ResEntry
{
GameResID resType;
TResourceCap resVal;
} cur;
const ResourceSet &rs;
void advance();
public:
nziterator(const ResourceSet &RS);
bool valid() const;
nziterator operator++();
nziterator operator++(int);
const ResEntry& operator*() const;
const ResEntry* operator->() const;
};
};
using TResources = ResourceSet;
VCMI_LIB_NAMESPACE_END