1
0
mirror of https://github.com/alecthomas/chroma.git synced 2025-02-19 19:00:13 +02:00

Split Regexp lexer into its own file.

This commit is contained in:
Alec Thomas 2017-09-20 20:15:35 +10:00
parent a5637e60b2
commit 44b23f97b4
2 changed files with 250 additions and 245 deletions

245
lexer.go
View File

@ -2,11 +2,6 @@ package chroma
import (
"fmt"
"regexp"
"strings"
"sync"
"github.com/dlclark/regexp2"
)
var (
@ -117,243 +112,3 @@ func (l Lexers) Less(i, j int) bool { return l[i].Config().Name < l[j].Config().
type Analyser interface {
AnalyseText(text string) float32
}
type Rule struct {
Pattern string
Type Emitter
Mutator Mutator
}
// An Emitter takes group matches and returns tokens.
type Emitter interface {
// Emit tokens for the given regex groups.
Emit(groups []string, lexer Lexer, out func(*Token))
}
// EmitterFunc is a function that is an Emitter.
type EmitterFunc func(groups []string, lexer Lexer, out func(*Token))
// Emit tokens for groups.
func (e EmitterFunc) Emit(groups []string, lexer Lexer, out func(*Token)) { e(groups, lexer, out) }
// ByGroups emits a token for each matching group in the rule's regex.
func ByGroups(emitters ...Emitter) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer, out func(*Token)) {
// NOTE: If this line panics, there is a mismatch with groups. Uncomment the following line to debug.
// fmt.Printf("%s %#v\n", emitters, groups[1:])
for i, group := range groups[1:] {
emitters[i].Emit([]string{group}, lexer, out)
}
return
})
}
// Using returns an Emitter that uses a given Lexer for parsing and emitting.
func Using(lexer Lexer, options *TokeniseOptions) Emitter {
return EmitterFunc(func(groups []string, _ Lexer, out func(*Token)) {
if err := lexer.Tokenise(options, groups[0], out); err != nil {
panic(err)
}
})
}
// UsingSelf is like Using, but uses the current Lexer.
func UsingSelf(state string) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer, out func(*Token)) {
if err := lexer.Tokenise(&TokeniseOptions{State: state}, groups[0], out); err != nil {
panic(err)
}
})
}
// Words creates a regex that matches any of the given literal words.
func Words(prefix, suffix string, words ...string) string {
for i, word := range words {
words[i] = regexp.QuoteMeta(word)
}
return prefix + `(` + strings.Join(words, `|`) + `)` + suffix
}
// Rules maps from state to a sequence of Rules.
type Rules map[string][]Rule
// MustNewLexer creates a new Lexer or panics.
func MustNewLexer(config *Config, rules Rules) *RegexLexer {
lexer, err := NewLexer(config, rules)
if err != nil {
panic(err)
}
return lexer
}
// NewLexer creates a new regex-based Lexer.
//
// "rules" is a state machine transitition map. Each key is a state. Values are sets of rules
// that match input, optionally modify lexer state, and output tokens.
func NewLexer(config *Config, rules Rules) (*RegexLexer, error) {
if config == nil {
config = &Config{}
}
if _, ok := rules["root"]; !ok {
return nil, fmt.Errorf("no \"root\" state")
}
compiledRules := map[string][]CompiledRule{}
for state, rules := range rules {
for _, rule := range rules {
flags := ""
if !config.NotMultiline {
flags += "m"
}
if config.CaseInsensitive {
flags += "i"
}
if config.DotAll {
flags += "s"
}
compiledRules[state] = append(compiledRules[state], CompiledRule{Rule: rule, flags: flags})
}
}
return &RegexLexer{
config: config,
rules: compiledRules,
}, nil
}
// A CompiledRule is a Rule with a pre-compiled regex.
//
// Note that regular expressions are lazily compiled on first use of the lexer.
type CompiledRule struct {
Rule
Regexp *regexp2.Regexp
flags string
}
type CompiledRules map[string][]CompiledRule
type LexerState struct {
Text []rune
Pos int
Rules map[string][]CompiledRule
Stack []string
State string
Rule int
// Group matches.
Groups []string
// Custum context for mutators.
MutatorContext map[interface{}]interface{}
}
func (l *LexerState) Set(key interface{}, value interface{}) {
l.MutatorContext[key] = value
}
func (l *LexerState) Get(key interface{}) interface{} {
return l.MutatorContext[key]
}
type RegexLexer struct {
config *Config
analyser func(text string) float32
mu sync.Mutex
compiled bool
rules map[string][]CompiledRule
}
// SetAnalyser sets the analyser function used to perform content inspection.
func (r *RegexLexer) SetAnalyser(analyser func(text string) float32) *RegexLexer {
r.analyser = analyser
return r
}
func (r *RegexLexer) AnalyseText(text string) float32 {
if r.analyser != nil {
return r.analyser(text)
}
return 0.0
}
func (r *RegexLexer) Config() *Config {
return r.config
}
// Regex compilation is deferred until the lexer is used. This is to avoid significant init() time costs.
func (r *RegexLexer) maybeCompile() (err error) {
r.mu.Lock()
defer r.mu.Unlock()
if r.compiled {
return nil
}
for state, rules := range r.rules {
for i, rule := range rules {
if rule.Regexp == nil {
rule.Regexp, err = regexp2.Compile("^(?"+rule.flags+")(?:"+rule.Pattern+")", 0)
if err != nil {
return fmt.Errorf("failed to compile rule %s.%d: %s", state, i, err)
}
}
rules[i] = rule
}
}
r.compiled = true
return nil
}
func (r *RegexLexer) Tokenise(options *TokeniseOptions, text string, out func(*Token)) error {
if err := r.maybeCompile(); err != nil {
return err
}
if options == nil {
options = defaultOptions
}
state := &LexerState{
Text: []rune(text),
Stack: []string{options.State},
Rules: r.rules,
MutatorContext: map[interface{}]interface{}{},
}
for state.Pos < len(state.Text) && len(state.Stack) > 0 {
state.State = state.Stack[len(state.Stack)-1]
ruleIndex, rule, groups := matchRules(state.Text[state.Pos:], state.Rules[state.State])
// No match.
if groups == nil {
out(&Token{Error, string(state.Text[state.Pos : state.Pos+1])})
state.Pos++
continue
}
state.Rule = ruleIndex
state.Groups = groups
state.Pos += len(groups[0])
if rule.Mutator != nil {
if err := rule.Mutator.Mutate(state); err != nil {
return err
}
}
if rule.Type != nil {
rule.Type.Emit(state.Groups, r, out)
}
}
out(&Token{Type: EOF})
return nil
}
// Tokenise text using lexer, returning tokens as a slice.
func Tokenise(lexer Lexer, options *TokeniseOptions, text string) ([]*Token, error) {
out := []*Token{}
return out, lexer.Tokenise(options, text, func(token *Token) { out = append(out, token) })
}
func matchRules(text []rune, rules []CompiledRule) (int, CompiledRule, []string) {
for i, rule := range rules {
match, err := rule.Regexp.FindRunesMatch(text)
if match != nil && err == nil {
groups := []string{}
for _, g := range match.Groups() {
groups = append(groups, g.String())
}
return i, rule, groups
}
}
return 0, CompiledRule{}, nil
}

250
regexp.go Normal file
View File

@ -0,0 +1,250 @@
package chroma
import (
"fmt"
"regexp"
"strings"
"sync"
"github.com/dlclark/regexp2"
)
type Rule struct {
Pattern string
Type Emitter
Mutator Mutator
}
// An Emitter takes group matches and returns tokens.
type Emitter interface {
// Emit tokens for the given regex groups.
Emit(groups []string, lexer Lexer, out func(*Token))
}
// EmitterFunc is a function that is an Emitter.
type EmitterFunc func(groups []string, lexer Lexer, out func(*Token))
// Emit tokens for groups.
func (e EmitterFunc) Emit(groups []string, lexer Lexer, out func(*Token)) { e(groups, lexer, out) }
// ByGroups emits a token for each matching group in the rule's regex.
func ByGroups(emitters ...Emitter) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer, out func(*Token)) {
// NOTE: If this line panics, there is a mismatch with groups. Uncomment the following line to debug.
// fmt.Printf("%s %#v\n", emitters, groups[1:])
for i, group := range groups[1:] {
emitters[i].Emit([]string{group}, lexer, out)
}
return
})
}
// Using returns an Emitter that uses a given Lexer for parsing and emitting.
func Using(lexer Lexer, options *TokeniseOptions) Emitter {
return EmitterFunc(func(groups []string, _ Lexer, out func(*Token)) {
if err := lexer.Tokenise(options, groups[0], out); err != nil {
panic(err)
}
})
}
// UsingSelf is like Using, but uses the current Lexer.
func UsingSelf(state string) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer, out func(*Token)) {
if err := lexer.Tokenise(&TokeniseOptions{State: state}, groups[0], out); err != nil {
panic(err)
}
})
}
// Words creates a regex that matches any of the given literal words.
func Words(prefix, suffix string, words ...string) string {
for i, word := range words {
words[i] = regexp.QuoteMeta(word)
}
return prefix + `(` + strings.Join(words, `|`) + `)` + suffix
}
// Tokenise text using lexer, returning tokens as a slice.
func Tokenise(lexer Lexer, options *TokeniseOptions, text string) ([]*Token, error) {
out := []*Token{}
return out, lexer.Tokenise(options, text, func(token *Token) { out = append(out, token) })
}
// Rules maps from state to a sequence of Rules.
type Rules map[string][]Rule
// MustNewLexer creates a new Lexer or panics.
func MustNewLexer(config *Config, rules Rules) *RegexLexer {
lexer, err := NewLexer(config, rules)
if err != nil {
panic(err)
}
return lexer
}
// NewLexer creates a new regex-based Lexer.
//
// "rules" is a state machine transitition map. Each key is a state. Values are sets of rules
// that match input, optionally modify lexer state, and output tokens.
func NewLexer(config *Config, rules Rules) (*RegexLexer, error) {
if config == nil {
config = &Config{}
}
if _, ok := rules["root"]; !ok {
return nil, fmt.Errorf("no \"root\" state")
}
compiledRules := map[string][]CompiledRule{}
for state, rules := range rules {
for _, rule := range rules {
flags := ""
if !config.NotMultiline {
flags += "m"
}
if config.CaseInsensitive {
flags += "i"
}
if config.DotAll {
flags += "s"
}
compiledRules[state] = append(compiledRules[state], CompiledRule{Rule: rule, flags: flags})
}
}
return &RegexLexer{
config: config,
rules: compiledRules,
}, nil
}
// A CompiledRule is a Rule with a pre-compiled regex.
//
// Note that regular expressions are lazily compiled on first use of the lexer.
type CompiledRule struct {
Rule
Regexp *regexp2.Regexp
flags string
}
type CompiledRules map[string][]CompiledRule
type LexerState struct {
Text []rune
Pos int
Rules map[string][]CompiledRule
Stack []string
State string
Rule int
// Group matches.
Groups []string
// Custum context for mutators.
MutatorContext map[interface{}]interface{}
}
func (l *LexerState) Set(key interface{}, value interface{}) {
l.MutatorContext[key] = value
}
func (l *LexerState) Get(key interface{}) interface{} {
return l.MutatorContext[key]
}
type RegexLexer struct {
config *Config
analyser func(text string) float32
mu sync.Mutex
compiled bool
rules map[string][]CompiledRule
}
// SetAnalyser sets the analyser function used to perform content inspection.
func (r *RegexLexer) SetAnalyser(analyser func(text string) float32) *RegexLexer {
r.analyser = analyser
return r
}
func (r *RegexLexer) AnalyseText(text string) float32 {
if r.analyser != nil {
return r.analyser(text)
}
return 0.0
}
func (r *RegexLexer) Config() *Config {
return r.config
}
// Regex compilation is deferred until the lexer is used. This is to avoid significant init() time costs.
func (r *RegexLexer) maybeCompile() (err error) {
r.mu.Lock()
defer r.mu.Unlock()
if r.compiled {
return nil
}
for state, rules := range r.rules {
for i, rule := range rules {
if rule.Regexp == nil {
rule.Regexp, err = regexp2.Compile("^(?"+rule.flags+")(?:"+rule.Pattern+")", 0)
if err != nil {
return fmt.Errorf("failed to compile rule %s.%d: %s", state, i, err)
}
}
rules[i] = rule
}
}
r.compiled = true
return nil
}
func (r *RegexLexer) Tokenise(options *TokeniseOptions, text string, out func(*Token)) error {
if err := r.maybeCompile(); err != nil {
return err
}
if options == nil {
options = defaultOptions
}
state := &LexerState{
Text: []rune(text),
Stack: []string{options.State},
Rules: r.rules,
MutatorContext: map[interface{}]interface{}{},
}
for state.Pos < len(state.Text) && len(state.Stack) > 0 {
state.State = state.Stack[len(state.Stack)-1]
ruleIndex, rule, groups := matchRules(state.Text[state.Pos:], state.Rules[state.State])
// No match.
if groups == nil {
out(&Token{Error, string(state.Text[state.Pos : state.Pos+1])})
state.Pos++
continue
}
state.Rule = ruleIndex
state.Groups = groups
state.Pos += len(groups[0])
if rule.Mutator != nil {
if err := rule.Mutator.Mutate(state); err != nil {
return err
}
}
if rule.Type != nil {
rule.Type.Emit(state.Groups, r, out)
}
}
out(&Token{Type: EOF})
return nil
}
func matchRules(text []rune, rules []CompiledRule) (int, CompiledRule, []string) {
for i, rule := range rules {
match, err := rule.Regexp.FindRunesMatch(text)
if match != nil && err == nil {
groups := []string{}
for _, g := range match.Groups() {
groups = append(groups, g.String())
}
return i, rule, groups
}
}
return 0, CompiledRule{}, nil
}