1
0
mirror of https://github.com/alecthomas/chroma.git synced 2025-02-11 13:25:37 +02:00
chroma/lexers/testdata/dart.actual
2018-04-02 18:39:22 +10:00

50 lines
1.5 KiB
Plaintext

import 'dart:async';
import 'dart:html';
import 'dart:math' show Random;
// We changed 5 lines of code to make this sample nicer on
// the web (so that the execution waits for animation frame,
// the number gets updated in the DOM, and the program ends
// after 500 iterations).
main() async {
print('Compute π using the Monte Carlo method.');
var output = querySelector("#output");
await for (var estimate in computePi().take(500)) {
print('π ≅ $estimate');
output.text = estimate.toStringAsFixed(5);
await window.animationFrame;
}
}
/// Generates a stream of increasingly accurate estimates of π.
Stream<double> computePi({int batch: 100000}) async* {
var total = 0;
var count = 0;
while (true) {
var points = generateRandom().take(batch);
var inside = points.where((p) => p.isInsideUnitCircle);
total += batch;
count += inside.length;
var ratio = count / total;
// Area of a circle is A = π⋅r², therefore π = A/r².
// So, when given random points with x ∈ <0,1>,
// y ∈ <0,1>, the ratio of those inside a unit circle
// should approach π / 4. Therefore, the value of π
// should be:
yield ratio * 4;
}
}
Iterable<Point> generateRandom([int seed]) sync* {
final random = new Random(seed);
while (true) {
yield new Point(random.nextDouble(), random.nextDouble());
}
}
class Point {
final double x, y;
const Point(this.x, this.y);
bool get isInsideUnitCircle => x * x + y * y <= 1;
}