mirror of
https://github.com/alecthomas/chroma.git
synced 2025-02-11 13:25:37 +02:00
50 lines
1.5 KiB
Plaintext
50 lines
1.5 KiB
Plaintext
import 'dart:async';
|
|
import 'dart:html';
|
|
import 'dart:math' show Random;
|
|
|
|
// We changed 5 lines of code to make this sample nicer on
|
|
// the web (so that the execution waits for animation frame,
|
|
// the number gets updated in the DOM, and the program ends
|
|
// after 500 iterations).
|
|
|
|
main() async {
|
|
print('Compute π using the Monte Carlo method.');
|
|
var output = querySelector("#output");
|
|
await for (var estimate in computePi().take(500)) {
|
|
print('π ≅ $estimate');
|
|
output.text = estimate.toStringAsFixed(5);
|
|
await window.animationFrame;
|
|
}
|
|
}
|
|
|
|
/// Generates a stream of increasingly accurate estimates of π.
|
|
Stream<double> computePi({int batch: 100000}) async* {
|
|
var total = 0;
|
|
var count = 0;
|
|
while (true) {
|
|
var points = generateRandom().take(batch);
|
|
var inside = points.where((p) => p.isInsideUnitCircle);
|
|
total += batch;
|
|
count += inside.length;
|
|
var ratio = count / total;
|
|
// Area of a circle is A = π⋅r², therefore π = A/r².
|
|
// So, when given random points with x ∈ <0,1>,
|
|
// y ∈ <0,1>, the ratio of those inside a unit circle
|
|
// should approach π / 4. Therefore, the value of π
|
|
// should be:
|
|
yield ratio * 4;
|
|
}
|
|
}
|
|
|
|
Iterable<Point> generateRandom([int seed]) sync* {
|
|
final random = new Random(seed);
|
|
while (true) {
|
|
yield new Point(random.nextDouble(), random.nextDouble());
|
|
}
|
|
}
|
|
|
|
class Point {
|
|
final double x, y;
|
|
const Point(this.x, this.y);
|
|
bool get isInsideUnitCircle => x * x + y * y <= 1;
|
|
} |