package echo import ( "bytes" "net/http" ) type ( // Router is the registry of all registered routes for an `Echo` instance for // request matching and URL path parameter parsing. Router struct { tree *node routes map[string]*Route echo *Echo } node struct { kind kind label byte prefix string parent *node staticChildren children originalPath string methods *routeMethods paramChild *node anyChild *node paramsCount int // isLeaf indicates that node does not have child routes isLeaf bool // isHandler indicates that node has at least one handler registered to it isHandler bool } kind uint8 children []*node routeMethod struct { ppath string pnames []string handler HandlerFunc } routeMethods struct { connect *routeMethod delete *routeMethod get *routeMethod head *routeMethod options *routeMethod patch *routeMethod post *routeMethod propfind *routeMethod put *routeMethod trace *routeMethod report *routeMethod allowHeader string } ) const ( staticKind kind = iota paramKind anyKind paramLabel = byte(':') anyLabel = byte('*') ) func (m *routeMethods) isHandler() bool { return m.connect != nil || m.delete != nil || m.get != nil || m.head != nil || m.options != nil || m.patch != nil || m.post != nil || m.propfind != nil || m.put != nil || m.trace != nil || m.report != nil } func (m *routeMethods) updateAllowHeader() { buf := new(bytes.Buffer) buf.WriteString(http.MethodOptions) if m.connect != nil { buf.WriteString(", ") buf.WriteString(http.MethodConnect) } if m.delete != nil { buf.WriteString(", ") buf.WriteString(http.MethodDelete) } if m.get != nil { buf.WriteString(", ") buf.WriteString(http.MethodGet) } if m.head != nil { buf.WriteString(", ") buf.WriteString(http.MethodHead) } if m.patch != nil { buf.WriteString(", ") buf.WriteString(http.MethodPatch) } if m.post != nil { buf.WriteString(", ") buf.WriteString(http.MethodPost) } if m.propfind != nil { buf.WriteString(", PROPFIND") } if m.put != nil { buf.WriteString(", ") buf.WriteString(http.MethodPut) } if m.trace != nil { buf.WriteString(", ") buf.WriteString(http.MethodTrace) } if m.report != nil { buf.WriteString(", REPORT") } m.allowHeader = buf.String() } // NewRouter returns a new Router instance. func NewRouter(e *Echo) *Router { return &Router{ tree: &node{ methods: new(routeMethods), }, routes: map[string]*Route{}, echo: e, } } // Add registers a new route for method and path with matching handler. func (r *Router) Add(method, path string, h HandlerFunc) { // Validate path if path == "" { path = "/" } if path[0] != '/' { path = "/" + path } pnames := []string{} // Param names ppath := path // Pristine path if h == nil && r.echo.Logger != nil { // FIXME: in future we should return error r.echo.Logger.Errorf("Adding route without handler function: %v:%v", method, path) } for i, lcpIndex := 0, len(path); i < lcpIndex; i++ { if path[i] == ':' { if i > 0 && path[i-1] == '\\' { path = path[:i-1] + path[i:] i-- lcpIndex-- continue } j := i + 1 r.insert(method, path[:i], staticKind, routeMethod{}) for ; i < lcpIndex && path[i] != '/'; i++ { } pnames = append(pnames, path[j:i]) path = path[:j] + path[i:] i, lcpIndex = j, len(path) if i == lcpIndex { // path node is last fragment of route path. ie. `/users/:id` r.insert(method, path[:i], paramKind, routeMethod{ppath, pnames, h}) } else { r.insert(method, path[:i], paramKind, routeMethod{}) } } else if path[i] == '*' { r.insert(method, path[:i], staticKind, routeMethod{}) pnames = append(pnames, "*") r.insert(method, path[:i+1], anyKind, routeMethod{ppath, pnames, h}) } } r.insert(method, path, staticKind, routeMethod{ppath, pnames, h}) } func (r *Router) insert(method, path string, t kind, rm routeMethod) { // Adjust max param paramLen := len(rm.pnames) if *r.echo.maxParam < paramLen { *r.echo.maxParam = paramLen } currentNode := r.tree // Current node as root if currentNode == nil { panic("echo: invalid method") } search := path for { searchLen := len(search) prefixLen := len(currentNode.prefix) lcpLen := 0 // LCP - Longest Common Prefix (https://en.wikipedia.org/wiki/LCP_array) max := prefixLen if searchLen < max { max = searchLen } for ; lcpLen < max && search[lcpLen] == currentNode.prefix[lcpLen]; lcpLen++ { } if lcpLen == 0 { // At root node currentNode.label = search[0] currentNode.prefix = search if rm.handler != nil { currentNode.kind = t currentNode.addMethod(method, &rm) currentNode.paramsCount = len(rm.pnames) currentNode.originalPath = rm.ppath } currentNode.isLeaf = currentNode.staticChildren == nil && currentNode.paramChild == nil && currentNode.anyChild == nil } else if lcpLen < prefixLen { // Split node n := newNode( currentNode.kind, currentNode.prefix[lcpLen:], currentNode, currentNode.staticChildren, currentNode.originalPath, currentNode.methods, currentNode.paramsCount, currentNode.paramChild, currentNode.anyChild, ) // Update parent path for all children to new node for _, child := range currentNode.staticChildren { child.parent = n } if currentNode.paramChild != nil { currentNode.paramChild.parent = n } if currentNode.anyChild != nil { currentNode.anyChild.parent = n } // Reset parent node currentNode.kind = staticKind currentNode.label = currentNode.prefix[0] currentNode.prefix = currentNode.prefix[:lcpLen] currentNode.staticChildren = nil currentNode.originalPath = "" currentNode.methods = new(routeMethods) currentNode.paramsCount = 0 currentNode.paramChild = nil currentNode.anyChild = nil currentNode.isLeaf = false currentNode.isHandler = false // Only Static children could reach here currentNode.addStaticChild(n) if lcpLen == searchLen { // At parent node currentNode.kind = t if rm.handler != nil { currentNode.addMethod(method, &rm) currentNode.paramsCount = len(rm.pnames) currentNode.originalPath = rm.ppath } } else { // Create child node n = newNode(t, search[lcpLen:], currentNode, nil, "", new(routeMethods), 0, nil, nil) if rm.handler != nil { n.addMethod(method, &rm) n.paramsCount = len(rm.pnames) n.originalPath = rm.ppath } // Only Static children could reach here currentNode.addStaticChild(n) } currentNode.isLeaf = currentNode.staticChildren == nil && currentNode.paramChild == nil && currentNode.anyChild == nil } else if lcpLen < searchLen { search = search[lcpLen:] c := currentNode.findChildWithLabel(search[0]) if c != nil { // Go deeper currentNode = c continue } // Create child node n := newNode(t, search, currentNode, nil, rm.ppath, new(routeMethods), 0, nil, nil) if rm.handler != nil { n.addMethod(method, &rm) n.paramsCount = len(rm.pnames) } switch t { case staticKind: currentNode.addStaticChild(n) case paramKind: currentNode.paramChild = n case anyKind: currentNode.anyChild = n } currentNode.isLeaf = currentNode.staticChildren == nil && currentNode.paramChild == nil && currentNode.anyChild == nil } else { // Node already exists if rm.handler != nil { currentNode.addMethod(method, &rm) currentNode.paramsCount = len(rm.pnames) currentNode.originalPath = rm.ppath } } return } } func newNode(t kind, pre string, p *node, sc children, originalPath string, mh *routeMethods, paramsCount int, paramChildren, anyChildren *node) *node { return &node{ kind: t, label: pre[0], prefix: pre, parent: p, staticChildren: sc, originalPath: originalPath, methods: mh, paramsCount: paramsCount, paramChild: paramChildren, anyChild: anyChildren, isLeaf: sc == nil && paramChildren == nil && anyChildren == nil, isHandler: mh.isHandler(), } } func (n *node) addStaticChild(c *node) { n.staticChildren = append(n.staticChildren, c) } func (n *node) findStaticChild(l byte) *node { for _, c := range n.staticChildren { if c.label == l { return c } } return nil } func (n *node) findChildWithLabel(l byte) *node { if c := n.findStaticChild(l); c != nil { return c } if l == paramLabel { return n.paramChild } if l == anyLabel { return n.anyChild } return nil } func (n *node) addMethod(method string, h *routeMethod) { switch method { case http.MethodConnect: n.methods.connect = h case http.MethodDelete: n.methods.delete = h case http.MethodGet: n.methods.get = h case http.MethodHead: n.methods.head = h case http.MethodOptions: n.methods.options = h case http.MethodPatch: n.methods.patch = h case http.MethodPost: n.methods.post = h case PROPFIND: n.methods.propfind = h case http.MethodPut: n.methods.put = h case http.MethodTrace: n.methods.trace = h case REPORT: n.methods.report = h } n.methods.updateAllowHeader() n.isHandler = true } func (n *node) findMethod(method string) *routeMethod { switch method { case http.MethodConnect: return n.methods.connect case http.MethodDelete: return n.methods.delete case http.MethodGet: return n.methods.get case http.MethodHead: return n.methods.head case http.MethodOptions: return n.methods.options case http.MethodPatch: return n.methods.patch case http.MethodPost: return n.methods.post case PROPFIND: return n.methods.propfind case http.MethodPut: return n.methods.put case http.MethodTrace: return n.methods.trace case REPORT: return n.methods.report default: return nil } } func optionsMethodHandler(allowMethods string) func(c Context) error { return func(c Context) error { // Note: we are not handling most of the CORS headers here. CORS is handled by CORS middleware // 'OPTIONS' method RFC: https://httpwg.org/specs/rfc7231.html#OPTIONS // 'Allow' header RFC: https://datatracker.ietf.org/doc/html/rfc7231#section-7.4.1 c.Response().Header().Add(HeaderAllow, allowMethods) return c.NoContent(http.StatusNoContent) } } // Find lookup a handler registered for method and path. It also parses URL for path // parameters and load them into context. // // For performance: // // - Get context from `Echo#AcquireContext()` // - Reset it `Context#Reset()` // - Return it `Echo#ReleaseContext()`. func (r *Router) Find(method, path string, c Context) { ctx := c.(*context) ctx.path = path currentNode := r.tree // Current node as root var ( previousBestMatchNode *node matchedRouteMethod *routeMethod // search stores the remaining path to check for match. By each iteration we move from start of path to end of the path // and search value gets shorter and shorter. search = path searchIndex = 0 paramIndex int // Param counter paramValues = ctx.pvalues // Use the internal slice so the interface can keep the illusion of a dynamic slice ) // Backtracking is needed when a dead end (leaf node) is reached in the router tree. // To backtrack the current node will be changed to the parent node and the next kind for the // router logic will be returned based on fromKind or kind of the dead end node (static > param > any). // For example if there is no static node match we should check parent next sibling by kind (param). // Backtracking itself does not check if there is a next sibling, this is done by the router logic. backtrackToNextNodeKind := func(fromKind kind) (nextNodeKind kind, valid bool) { previous := currentNode currentNode = previous.parent valid = currentNode != nil // Next node type by priority if previous.kind == anyKind { nextNodeKind = staticKind } else { nextNodeKind = previous.kind + 1 } if fromKind == staticKind { // when backtracking is done from static kind block we did not change search so nothing to restore return } // restore search to value it was before we move to current node we are backtracking from. if previous.kind == staticKind { searchIndex -= len(previous.prefix) } else { paramIndex-- // for param/any node.prefix value is always `:` so we can not deduce searchIndex from that and must use pValue // for that index as it would also contain part of path we cut off before moving into node we are backtracking from searchIndex -= len(paramValues[paramIndex]) paramValues[paramIndex] = "" } search = path[searchIndex:] return } // Router tree is implemented by longest common prefix array (LCP array) https://en.wikipedia.org/wiki/LCP_array // Tree search is implemented as for loop where one loop iteration is divided into 3 separate blocks // Each of these blocks checks specific kind of node (static/param/any). Order of blocks reflex their priority in routing. // Search order/priority is: static > param > any. // // Note: backtracking in tree is implemented by replacing/switching currentNode to previous node // and hoping to (goto statement) next block by priority to check if it is the match. for { prefixLen := 0 // Prefix length lcpLen := 0 // LCP (longest common prefix) length if currentNode.kind == staticKind { searchLen := len(search) prefixLen = len(currentNode.prefix) // LCP - Longest Common Prefix (https://en.wikipedia.org/wiki/LCP_array) max := prefixLen if searchLen < max { max = searchLen } for ; lcpLen < max && search[lcpLen] == currentNode.prefix[lcpLen]; lcpLen++ { } } if lcpLen != prefixLen { // No matching prefix, let's backtrack to the first possible alternative node of the decision path nk, ok := backtrackToNextNodeKind(staticKind) if !ok { return // No other possibilities on the decision path } else if nk == paramKind { goto Param // NOTE: this case (backtracking from static node to previous any node) can not happen by current any matching logic. Any node is end of search currently //} else if nk == anyKind { // goto Any } else { // Not found (this should never be possible for static node we are looking currently) break } } // The full prefix has matched, remove the prefix from the remaining search search = search[lcpLen:] searchIndex = searchIndex + lcpLen // Finish routing if no remaining search and we are on a node with handler and matching method type if search == "" && currentNode.isHandler { // check if current node has handler registered for http method we are looking for. we store currentNode as // best matching in case we do no find no more routes matching this path+method if previousBestMatchNode == nil { previousBestMatchNode = currentNode } if h := currentNode.findMethod(method); h != nil { matchedRouteMethod = h break } } // Static node if search != "" { if child := currentNode.findStaticChild(search[0]); child != nil { currentNode = child continue } } Param: // Param node if child := currentNode.paramChild; search != "" && child != nil { currentNode = child i := 0 l := len(search) if currentNode.isLeaf { // when param node does not have any children then param node should act similarly to any node - consider all remaining search as match i = l } else { for ; i < l && search[i] != '/'; i++ { } } paramValues[paramIndex] = search[:i] paramIndex++ search = search[i:] searchIndex = searchIndex + i continue } Any: // Any node if child := currentNode.anyChild; child != nil { // If any node is found, use remaining path for paramValues currentNode = child paramValues[currentNode.paramsCount-1] = search // update indexes/search in case we need to backtrack when no handler match is found paramIndex++ searchIndex += +len(search) search = "" // check if current node has handler registered for http method we are looking for. we store currentNode as // best matching in case we do no find no more routes matching this path+method if previousBestMatchNode == nil { previousBestMatchNode = currentNode } if h := currentNode.findMethod(method); h != nil { matchedRouteMethod = h break } } // Let's backtrack to the first possible alternative node of the decision path nk, ok := backtrackToNextNodeKind(anyKind) if !ok { break // No other possibilities on the decision path } else if nk == paramKind { goto Param } else if nk == anyKind { goto Any } else { // Not found break } } if currentNode == nil && previousBestMatchNode == nil { return // nothing matched at all } var rPath string var rPNames []string if matchedRouteMethod != nil { ctx.handler = matchedRouteMethod.handler rPath = matchedRouteMethod.ppath rPNames = matchedRouteMethod.pnames } else { // use previous match as basis. although we have no matching handler we have path match. // so we can send http.StatusMethodNotAllowed (405) instead of http.StatusNotFound (404) currentNode = previousBestMatchNode rPath = currentNode.originalPath rPNames = nil // no params here ctx.handler = NotFoundHandler if currentNode.isHandler { ctx.Set(ContextKeyHeaderAllow, currentNode.methods.allowHeader) ctx.handler = MethodNotAllowedHandler if method == http.MethodOptions { ctx.handler = optionsMethodHandler(currentNode.methods.allowHeader) } } } ctx.path = rPath ctx.pnames = rPNames }