1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-06-17 00:07:49 +02:00
Files
fp-go/array/array.go

332 lines
8.2 KiB
Go
Raw Normal View History

// Copyright (c) 2023 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package array
import (
G "github.com/IBM/fp-go/array/generic"
F "github.com/IBM/fp-go/function"
"github.com/IBM/fp-go/internal/array"
M "github.com/IBM/fp-go/monoid"
O "github.com/IBM/fp-go/option"
"github.com/IBM/fp-go/tuple"
)
// From constructs an array from a set of variadic arguments
func From[A any](data ...A) []A {
return G.From[[]A](data...)
}
// MakeBy returns a `Array` of length `n` with element `i` initialized with `f(i)`.
func MakeBy[F ~func(int) A, A any](n int, f F) []A {
return G.MakeBy[[]A](n, f)
}
// Replicate creates a `Array` containing a value repeated the specified number of times.
func Replicate[A any](n int, a A) []A {
return G.Replicate[[]A](n, a)
}
func MonadMap[A, B any](as []A, f func(a A) B) []B {
return G.MonadMap[[]A, []B](as, f)
}
func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
count := len(as)
bs := make([]B, count)
for i := count - 1; i >= 0; i-- {
bs[i] = f(&as[i])
}
return bs
}
func Map[A, B any](f func(a A) B) func([]A) []B {
return F.Bind2nd(MonadMap[A, B], f)
}
func MapRef[A, B any](f func(a *A) B) func([]A) []B {
return F.Bind2nd(MonadMapRef[A, B], f)
}
func filterRef[A any](fa []A, pred func(a *A) bool) []A {
var result []A
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, a)
}
}
return result
}
func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
var result []B
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, f(&a))
}
}
return result
}
// Filter returns a new array with all elements from the original array that match a predicate
func Filter[A any](pred func(A) bool) func([]A) []A {
return G.Filter[[]A](pred)
}
// FilterWithIndex returns a new array with all elements from the original array that match a predicate
func FilterWithIndex[A any](pred func(int, A) bool) func([]A) []A {
return G.FilterWithIndex[[]A](pred)
}
func FilterRef[A any](pred func(*A) bool) func([]A) []A {
return F.Bind2nd(filterRef[A], pred)
}
func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
return G.MonadFilterMap[[]A, []B](fa, f)
}
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) O.Option[B]) []B {
return G.MonadFilterMapWithIndex[[]A, []B](fa, f)
}
// FilterMap maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
func FilterMap[A, B any](f func(A) O.Option[B]) func([]A) []B {
return G.FilterMap[[]A, []B](f)
}
// FilterMapWithIndex maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
func FilterMapWithIndex[A, B any](f func(int, A) O.Option[B]) func([]A) []B {
return G.FilterMapWithIndex[[]A, []B](f)
}
// FilterChain maps an array with an iterating function that returns an [O.Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
func FilterChain[A, B any](f func(A) O.Option[[]B]) func([]A) []B {
return G.FilterChain[[]A](f)
}
func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B {
return func(fa []A) []B {
return filterMapRef(fa, pred, f)
}
}
func reduceRef[A, B any](fa []A, f func(B, *A) B, initial B) B {
current := initial
count := len(fa)
for i := 0; i < count; i++ {
current = f(current, &fa[i])
}
return current
}
func Reduce[A, B any](f func(B, A) B, initial B) func([]A) B {
return G.Reduce[[]A](f, initial)
}
func ReduceWithIndex[A, B any](f func(int, B, A) B, initial B) func([]A) B {
return G.ReduceWithIndex[[]A](f, initial)
}
func ReduceRight[A, B any](f func(A, B) B, initial B) func([]A) B {
return G.ReduceRight[[]A](f, initial)
}
func ReduceRightWithIndex[A, B any](f func(int, A, B) B, initial B) func([]A) B {
return G.ReduceRightWithIndex[[]A](f, initial)
}
func ReduceRef[A, B any](f func(B, *A) B, initial B) func([]A) B {
return func(as []A) B {
return reduceRef(as, f, initial)
}
}
func Append[A any](as []A, a A) []A {
return G.Append(as, a)
}
func IsEmpty[A any](as []A) bool {
return G.IsEmpty(as)
}
func IsNonEmpty[A any](as []A) bool {
return len(as) > 0
}
func Empty[A any]() []A {
return G.Empty[[]A]()
}
func Zero[A any]() []A {
return Empty[A]()
}
// Of constructs a single element array
func Of[A any](a A) []A {
return G.Of[[]A](a)
}
func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
return G.MonadChain[[]A, []B](fa, f)
}
func Chain[A, B any](f func(A) []B) func([]A) []B {
return G.Chain[[]A, []B](f)
}
func MonadAp[B, A any](fab []func(A) B, fa []A) []B {
return G.MonadAp[[]B](fab, fa)
}
func Ap[B, A any](fa []A) func([]func(A) B) []B {
return G.Ap[[]B, []func(A) B](fa)
}
func Match[A, B any](onEmpty func() B, onNonEmpty func([]A) B) func([]A) B {
return G.Match[[]A](onEmpty, onNonEmpty)
}
func MatchLeft[A, B any](onEmpty func() B, onNonEmpty func(A, []A) B) func([]A) B {
return G.MatchLeft[[]A](onEmpty, onNonEmpty)
}
func Tail[A any](as []A) O.Option[[]A] {
return G.Tail(as)
}
func Head[A any](as []A) O.Option[A] {
return G.Head(as)
}
func First[A any](as []A) O.Option[A] {
return G.First(as)
}
func Last[A any](as []A) O.Option[A] {
return G.Last(as)
}
func PrependAll[A any](middle A) func([]A) []A {
return func(as []A) []A {
count := len(as)
dst := count * 2
result := make([]A, dst)
for i := count - 1; i >= 0; i-- {
dst--
result[dst] = as[i]
dst--
result[dst] = middle
}
return result
}
}
func Intersperse[A any](middle A) func([]A) []A {
prepend := PrependAll(middle)
return func(as []A) []A {
if IsEmpty(as) {
return as
}
return prepend(as)[1:]
}
}
func Intercalate[A any](m M.Monoid[A]) func(A) func([]A) A {
concatAll := ConcatAll[A](m)
return func(middle A) func([]A) A {
return Match(m.Empty, F.Flow2(Intersperse(middle), concatAll))
}
}
func Flatten[A any](mma [][]A) []A {
return G.Flatten(mma)
}
func Slice[A any](low, high int) func(as []A) []A {
return array.Slice[[]A](low, high)
}
func Lookup[A any](idx int) func([]A) O.Option[A] {
return G.Lookup[[]A](idx)
}
func UpsertAt[A any](a A) func([]A) []A {
return G.UpsertAt[[]A](a)
}
func Size[A any](as []A) int {
return G.Size(as)
}
func MonadPartition[A any](as []A, pred func(A) bool) tuple.Tuple2[[]A, []A] {
return G.MonadPartition(as, pred)
}
// Partition creates two new arrays out of one, the left result contains the elements
// for which the predicate returns false, the right one those for which the predicate returns true
func Partition[A any](pred func(A) bool) func([]A) tuple.Tuple2[[]A, []A] {
return G.Partition[[]A](pred)
}
// IsNil checks if the array is set to nil
func IsNil[A any](as []A) bool {
return array.IsNil(as)
}
// IsNonNil checks if the array is set to nil
func IsNonNil[A any](as []A) bool {
return array.IsNonNil(as)
}
// ConstNil returns a nil array
func ConstNil[A any]() []A {
return array.ConstNil[[]A]()
}
func SliceRight[A any](start int) func([]A) []A {
return G.SliceRight[[]A](start)
}
func Copy[A any](b []A) []A {
return G.Copy(b)
}
// FoldMap maps and folds an array. Map the Array passing each value to the iterating function. Then fold the results using the provided Monoid.
func FoldMap[A, B any](m M.Monoid[B]) func(func(A) B) func([]A) B {
return G.FoldMap[[]A](m)
}
// Fold folds the array using the provided Monoid.
func Fold[A any](m M.Monoid[A]) func([]A) A {
return G.Fold[[]A](m)
}
func Push[A any](a A) func([]A) []A {
return G.Push[[]A](a)
}
func MonadFlap[B, A any](fab []func(A) B, a A) []B {
return G.MonadFlap[func(A) B, []func(A) B, []B, A, B](fab, a)
}
func Flap[B, A any](a A) func([]func(A) B) []B {
return G.Flap[func(A) B, []func(A) B, []B, A, B](a)
}