1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-08-10 22:31:32 +02:00

fix: use endomorphism

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
This commit is contained in:
Dr. Carsten Leue
2023-12-17 12:34:15 +01:00
parent 5caabf478c
commit 5fcd0b1595
9 changed files with 133 additions and 17 deletions

View File

@@ -0,0 +1,51 @@
// Copyright (c) 2023 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package generic
import (
F "github.com/IBM/fp-go/function"
M "github.com/IBM/fp-go/monoid"
S "github.com/IBM/fp-go/semigroup"
)
// Of converts any function to an [Endomorphism]
func Of[ENDO ~func(A) A, F ~func(A) A, A any](f F) ENDO {
return func(a A) A {
return f(a)
}
}
func Identity[ENDO ~func(A) A, A any]() ENDO {
return func(a A) A {
return a
}
}
func Compose[ENDO ~func(A) A, A any](f1, f2 ENDO) ENDO {
return func(a A) A {
return F.Pipe2(a, f1, f2)
}
}
// Semigroup for the Endomorphism where the `concat` operation is the usual function composition.
func Semigroup[ENDO ~func(A) A, A any]() S.Semigroup[ENDO] {
return S.MakeSemigroup(Compose[ENDO])
}
// Monoid for the Endomorphism where the `concat` operation is the usual function composition.
func Monoid[ENDO ~func(A) A, A any]() M.Monoid[ENDO] {
return M.MakeMonoid(Compose[ENDO], Identity[ENDO]())
}

View File

@@ -16,17 +16,30 @@
package endomorphism
import (
F "github.com/IBM/fp-go/function"
G "github.com/IBM/fp-go/endomorphism/generic"
M "github.com/IBM/fp-go/monoid"
S "github.com/IBM/fp-go/semigroup"
)
// Endomorphism is a function that
type Endomorphism[A any] func(A) A
// Of converts any function to an [Endomorphism]
func Of[F ~func(A) A, A any](f F) Endomorphism[A] {
return G.Of[Endomorphism[A]](f)
}
// Identity returns the identity [Endomorphism]
func Identity[A any]() Endomorphism[A] {
return G.Identity[Endomorphism[A]]()
}
// Semigroup for the Endomorphism where the `concat` operation is the usual function composition.
func Semigroup[A any]() S.Semigroup[func(A) A] {
return S.MakeSemigroup(F.Flow2[func(A) A, func(A) A])
func Semigroup[A any]() S.Semigroup[Endomorphism[A]] {
return G.Semigroup[Endomorphism[A]]()
}
// Monoid for the Endomorphism where the `concat` operation is the usual function composition.
func Monoid[A any]() M.Monoid[func(A) A] {
return M.MakeMonoid(F.Flow2[func(A) A, func(A) A], F.Identity[A])
func Monoid[A any]() M.Monoid[Endomorphism[A]] {
return G.Monoid[Endomorphism[A]]()
}