1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00

fix: traverse

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
This commit is contained in:
Dr. Carsten Leue
2025-11-15 12:13:37 +01:00
parent 02d0be9dad
commit ab868315d4
21 changed files with 381 additions and 140 deletions

View File

@@ -260,6 +260,8 @@ func Empty[A any]() []A {
}
// Zero returns an empty array of type A (alias for Empty).
//
//go:inline
func Zero[A any]() []A {
return Empty[A]()
}

View File

@@ -25,8 +25,10 @@ import (
)
// Of constructs a single element array
//
//go:inline
func Of[GA ~[]A, A any](value A) GA {
return GA{value}
return array.Of[GA](value)
}
func Reduce[GA ~[]A, A, B any](f func(B, A) B, initial B) func(GA) B {

View File

@@ -0,0 +1,34 @@
package generic
import (
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
// Example:
//
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[GT ~[]T, T any]() M.Monoid[GT] {
return M.MakeMonoid(array.Concat[GT], Empty[GT]())
}
// Semigroup returns a Semigroup instance for arrays.
// The Semigroup combines arrays through concatenation.
//
// Example:
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[GT ~[]T, T any]() S.Semigroup[GT] {
return S.MakeSemigroup(array.Concat[GT])
}

View File

@@ -18,7 +18,6 @@ package array
import (
"testing"
O "github.com/IBM/fp-go/v2/option"
OR "github.com/IBM/fp-go/v2/ord"
"github.com/stretchr/testify/assert"
)
@@ -103,39 +102,6 @@ func TestSortByKey(t *testing.T) {
assert.Equal(t, "Charlie", result[2].Name)
}
func TestMonadTraverse(t *testing.T) {
result := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 3, 5},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.Some([]int{2, 6, 10}), result)
// Test with None case
result2 := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 2, 3},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.None[[]int](), result2)
}
func TestUniqByKey(t *testing.T) {
type Person struct {
Name string

View File

@@ -16,27 +16,12 @@
package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
func concat[T any](left, right []T) []T {
// some performance checks
ll := len(left)
if ll == 0 {
return right
}
lr := len(right)
if lr == 0 {
return left
}
// need to copy
buf := make([]T, ll+lr)
copy(buf[copy(buf, left):], right)
return buf
}
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
@@ -45,8 +30,10 @@ func concat[T any](left, right []T) []T {
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[T any]() M.Monoid[[]T] {
return M.MakeMonoid(concat[T], Empty[T]())
return G.Monoid[[]T]()
}
// Semigroup returns a Semigroup instance for arrays.
@@ -56,8 +43,10 @@ func Monoid[T any]() M.Monoid[[]T] {
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[T any]() S.Semigroup[[]T] {
return S.MakeSemigroup(concat[T])
return G.Semigroup[[]T]()
}
func addLen[A any](count int, data []A) int {

View File

@@ -16,10 +16,18 @@
package array
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
)
func MonadSequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
ma []HKTA) HKTRA {
return array.MonadSequence(fof, m.Empty(), m.Concat, ma)
}
// Sequence takes an array where elements are HKT<A> (higher kinded type) and,
// using an applicative of that HKT, returns an HKT of []A.
//
@@ -55,16 +63,11 @@ import (
// option.MonadAp[[]int, int],
// )
// result := seq(opts) // Some([1, 2, 3])
func Sequence[A, HKTA, HKTRA, HKTFRA any](
_of func([]A) HKTRA,
_map func(HKTRA, func([]A) func(A) []A) HKTFRA,
_ap func(HKTFRA, HKTA) HKTRA,
func Sequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
) func([]HKTA) HKTRA {
ca := F.Curry2(Append[A])
empty := _of(Empty[A]())
return Reduce(func(fas HKTRA, fa HKTA) HKTRA {
return _ap(_map(fas, ca), fa)
}, empty)
return array.Sequence[[]HKTA](fof, m.Empty(), m.Concat)
}
// ArrayOption returns a function to convert a sequence of options into an option of a sequence.
@@ -86,10 +89,10 @@ func Sequence[A, HKTA, HKTRA, HKTFRA any](
// option.Some(3),
// }
// result2 := array.ArrayOption[int]()(opts2) // None
func ArrayOption[A any]() func([]Option[A]) Option[[]A] {
return Sequence(
O.Of[[]A],
O.MonadMap[[]A, func(A) []A],
O.MonadAp[[]A, A],
func ArrayOption[A any](ma []Option[A]) Option[[]A] {
return MonadSequence(
O.Map(Of[A]),
O.ApplicativeMonoid(Monoid[A]()),
ma,
)
}

View File

@@ -24,8 +24,7 @@ import (
)
func TestSequenceOption(t *testing.T) {
seq := ArrayOption[int]()
assert.Equal(t, O.Of([]int{1, 3}), seq([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), seq([]O.Option[int]{O.Of(1), O.None[int]()}))
assert.Equal(t, O.Of([]int{1, 3}), ArrayOption([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), ArrayOption([]O.Option[int]{O.Of(1), O.None[int]()}))
}

View File

@@ -80,3 +80,25 @@ func MonadTraverse[A, B, HKTB, HKTAB, HKTRB any](
return array.MonadTraverse(fof, fmap, fap, ta, f)
}
//go:inline
func TraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
f func(int, A) HKTB) func([]A) HKTRB {
return array.TraverseWithIndex[[]A](fof, fmap, fap, f)
}
//go:inline
func MonadTraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta []A,
f func(int, A) HKTB) HKTRB {
return array.MonadTraverseWithIndex(fof, fmap, fap, ta, f)
}

View File

@@ -312,7 +312,7 @@ func TestMonadChainFirstLeft(t *testing.T) {
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
capturedError = e
return Right[int](999) // This Right value is ignored
return Right(999) // This Right value is ignored
},
)
actualResult := result(ctx)()
@@ -324,7 +324,7 @@ func TestMonadChainFirstLeft(t *testing.T) {
t.Run("Right value passes through", func(t *testing.T) {
sideEffectCalled := false
result := MonadChainFirstLeft(
Right[int](42),
Right(42),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("should not be called"))
@@ -343,7 +343,7 @@ func TestMonadChainFirstLeft(t *testing.T) {
func(e error) ReaderIOResult[int] {
effectCount++
// Try to return Right, but original Left should still be returned
return Right[int](999)
return Right(999)
},
)
actualResult := result(ctx)()
@@ -378,7 +378,7 @@ func TestChainFirstLeft(t *testing.T) {
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Right[int](42) // This Right is ignored
return Right(42) // This Right is ignored
})
result := F.Pipe1(
Left[int](originalErr),
@@ -394,10 +394,10 @@ func TestChainFirstLeft(t *testing.T) {
called := false
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
called = true
return Right[int](0)
return Right(0)
})
result := F.Pipe1(
Right[int](100),
Right(100),
chainFn,
)
assert.False(t, called)
@@ -409,7 +409,7 @@ func TestChainFirstLeft(t *testing.T) {
originalErr := fmt.Errorf("original")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
// Try to return Right, but original Left should still be returned
return Right[int](999)
return Right(999)
})
result := F.Pipe1(

View File

@@ -16,8 +16,8 @@
package readerioresult
import (
"github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
"github.com/IBM/fp-go/v2/internal/record"
)
@@ -29,7 +29,7 @@ import (
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -46,7 +46,7 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -135,22 +135,20 @@ func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArraySeq[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
@@ -230,22 +228,20 @@ func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayPar[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}

View File

@@ -15,6 +15,10 @@
package array
func Of[GA ~[]A, A any](a A) GA {
return GA{a}
}
func Slice[GA ~[]A, A any](low, high int) func(as GA) GA {
return func(as GA) GA {
length := len(as)
@@ -140,7 +144,7 @@ func UpsertAt[GA ~[]A, A any](a A) func(GA) GA {
func MonadMap[GA ~[]A, GB ~[]B, A, B any](as GA, f func(a A) B) GB {
count := len(as)
bs := make(GB, count)
for i := count - 1; i >= 0; i-- {
for i := range count {
bs[i] = f(as[i])
}
return bs
@@ -155,7 +159,7 @@ func Map[GA ~[]A, GB ~[]B, A, B any](f func(a A) B) func(GA) GB {
func MonadMapWithIndex[GA ~[]A, GB ~[]B, A, B any](as GA, f func(idx int, a A) B) GB {
count := len(as)
bs := make(GB, count)
for i := count - 1; i >= 0; i-- {
for i := range count {
bs[i] = f(i, as[i])
}
return bs
@@ -164,3 +168,19 @@ func MonadMapWithIndex[GA ~[]A, GB ~[]B, A, B any](as GA, f func(idx int, a A) B
func ConstNil[GA ~[]A, A any]() GA {
return (GA)(nil)
}
func Concat[GT ~[]T, T any](left, right GT) GT {
// some performance checks
ll := len(left)
if ll == 0 {
return right
}
lr := len(right)
if lr == 0 {
return left
}
// need to copy
buf := make(GT, ll+lr)
copy(buf[copy(buf, left):], right)
return buf
}

View File

@@ -19,6 +19,72 @@ import (
F "github.com/IBM/fp-go/v2/function"
)
func MonadSequenceSegment[HKTB, HKTRB any](
fof func(HKTB) HKTRB,
empty HKTRB,
concat func(HKTRB, HKTRB) HKTRB,
fbs []HKTB,
start, end int,
) HKTRB {
switch end - start {
case 0:
return empty
case 1:
return fof(fbs[start])
default:
mid := (start + end) / 2
return concat(
MonadSequenceSegment(fof, empty, concat, fbs, start, mid),
MonadSequenceSegment(fof, empty, concat, fbs, mid, end),
)
}
}
func SequenceSegment[HKTB, HKTRB any](
fof func(HKTB) HKTRB,
empty HKTRB,
concat func(HKTRB, HKTRB) HKTRB,
) func([]HKTB) HKTRB {
concat_f := func(left, right func([]HKTB) HKTRB) func([]HKTB) HKTRB {
return func(fbs []HKTB) HKTRB {
return concat(left(fbs), right(fbs))
}
}
empty_f := F.Constant1[[]HKTB](empty)
at := func(idx int) func([]HKTB) HKTRB {
return func(fbs []HKTB) HKTRB {
return fof(fbs[idx])
}
}
var divide func(start, end int) func([]HKTB) HKTRB
divide = func(start, end int) func([]HKTB) HKTRB {
switch end - start {
case 0:
return empty_f
case 1:
return at(start)
default:
mid := (start + end) / 2
left := divide(start, mid)
right := divide(mid, end)
return concat_f(left, right)
}
}
// TODO this could be cached by length
get_divide := func(len int) func([]HKTB) HKTRB {
return divide(0, len)
}
return func(fbs []HKTB) HKTRB {
return get_divide(len(fbs))(fbs)
}
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
@@ -79,6 +145,34 @@ func TraverseWithIndex[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
}
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
func MonadSequence[GA ~[]HKTA, HKTA, HKTRA any](
fof func(HKTA) HKTRA,
empty HKTRA,
concat func(HKTRA, HKTRA) HKTRA,
ta GA) HKTRA {
return MonadSequenceSegment(fof, empty, concat, ta, 0, len(ta))
}
func Sequence[GA ~[]HKTA, HKTA, HKTRA any](
fof func(HKTA) HKTRA,
empty HKTRA,
concat func(HKTRA, HKTRA) HKTRA,
) func(GA) HKTRA {
return func(ma GA) HKTRA {
return MonadSequence(fof, empty, concat, ma)
}
}
func MonadTraverseReduce[GA ~[]A, GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,

View File

@@ -2,6 +2,7 @@ package iter
import (
F "github.com/IBM/fp-go/v2/function"
M "github.com/IBM/fp-go/v2/monoid"
)
func MonadReduceWithIndex[GA ~func(yield func(A) bool), A, B any](fa GA, f func(int, B, A) B, initial B) B {
@@ -59,3 +60,41 @@ func Prepend[GA ~func(yield func(A) bool), A any](head A) func(GA) GA {
func Empty[GA ~func(yield func(A) bool), A any]() GA {
return func(_ func(A) bool) {}
}
func ToArray[GA ~func(yield func(A) bool), GB ~[]A, A any](fa GA) GB {
bs := make(GB, 0)
for a := range fa {
bs = append(bs, a)
}
return bs
}
func MonadMapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f func(A) B) GB {
bs := make(GB, 0)
for a := range fa {
bs = append(bs, f(a))
}
return bs
}
func MapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f func(A) B) func(GA) GB {
return F.Bind2nd(MonadMapToArray[GA, GB], f)
}
func MonadMapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f func(int, A) B) GB {
bs := make(GB, 0)
var i int
for a := range fa {
bs = append(bs, f(i, a))
i += 1
}
return bs
}
func MapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f func(int, A) B) func(GA) GB {
return F.Bind2nd(MonadMapToArrayWithIndex[GA, GB], f)
}
func Monoid[GA ~func(yield func(A) bool), A any]() M.Monoid[GA] {
return M.MakeMonoid(Concat[GA], Empty[GA]())
}

View File

@@ -17,6 +17,8 @@ package iter
import (
F "github.com/IBM/fp-go/v2/function"
INTA "github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
)
/*
@@ -27,14 +29,65 @@ HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
func MonadTraverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
func MonadTraverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKT_B, HKT_GB_GB, HKT_GB any](
fmap_b func(HKT_B, func(B) GB) HKT_GB,
fof_gb func(GB) HKT_GB,
fmap_gb func(HKT_GB, func(GB) func(GB) GB) HKT_GB_GB,
fap_gb func(HKT_GB_GB, HKT_GB) HKT_GB,
ta GA,
f func(A) HKTB) HKTRB {
return MonadTraverseReduce(fof, fmap, fap, ta, f, MonadAppend[GB, B], Empty[GB]())
f func(A) HKT_B) HKT_GB {
fof := F.Bind2nd(fmap_b, Of[GB])
empty := fof_gb(Empty[GB]())
cb := F.Curry2(Concat[GB])
concat_gb := F.Bind2nd(fmap_gb, cb)
concat := func(first HKT_GB, second HKT_GB) HKT_GB {
return fap_gb(concat_gb(first), second)
}
// convert to an array
hktb := MonadMapToArray[GA, []HKT_B](ta, f)
return INTA.MonadSequenceSegment(fof, empty, concat, hktb, 0, len(hktb))
}
func Traverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKT_B, HKT_GB_GB, HKT_GB any](
fmap_b func(func(B) GB) func(HKT_B) HKT_GB,
fof_gb func(GB) HKT_GB,
fmap_gb func(func(GB) func(GB) GB) func(HKT_GB) HKT_GB_GB,
fap_gb func(HKT_GB_GB, HKT_GB) HKT_GB,
f func(A) HKT_B) func(GA) HKT_GB {
fof := fmap_b(Of[GB])
empty := fof_gb(Empty[GB]())
cb := F.Curry2(Concat[GB])
concat_gb := fmap_gb(cb)
concat := func(first, second HKT_GB) HKT_GB {
return fap_gb(concat_gb(first), second)
}
return func(ma GA) HKT_GB {
// return INTA.SequenceSegment(fof, empty, concat)(MapToArray[GA, []HKT_B](f)(ma))
hktb := MonadMapToArray[GA, []HKT_B](ma, f)
return INTA.MonadSequenceSegment(fof, empty, concat, hktb, 0, len(hktb))
}
}
func MonadSequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
ta GA) HKTRA {
// convert to an array
hktb := ToArray[GA, []HKTA](ta)
return INTA.MonadSequenceSegment(fof, m.Empty(), m.Concat, hktb, 0, len(hktb))
}
/*
@@ -45,37 +98,35 @@ HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
func MonadTraverseWithIndex[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
func MonadTraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
fof func(HKTB) HKTRB,
m M.Monoid[HKTRB],
ta GA,
f func(int, A) HKTB) HKTRB {
return MonadTraverseReduceWithIndex(fof, fmap, fap, ta, f, MonadAppend[GB, B], Empty[GB]())
// convert to an array
hktb := MonadMapToArrayWithIndex[GA, []HKTB](ta, f)
return INTA.MonadSequenceSegment(fof, m.Empty(), m.Concat, hktb, 0, len(hktb))
}
func Traverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
func Sequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA]) func(GA) HKTRA {
f func(A) HKTB) func(GA) HKTRB {
return func(ma GA) HKTRB {
return MonadTraverse(fof, fmap, fap, ma, f)
return func(ma GA) HKTRA {
return MonadSequence(fof, m, ma)
}
}
func TraverseWithIndex[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
func TraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
fof func(HKTB) HKTRB,
m M.Monoid[HKTRB],
f func(int, A) HKTB) func(GA) HKTRB {
return func(ma GA) HKTRB {
return MonadTraverseWithIndex(fof, fmap, fap, ma, f)
return MonadTraverseWithIndex(fof, m, ma, f)
}
}

View File

@@ -63,9 +63,11 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
func TraverseIter[A, B any](f Kleisli[A, B]) Kleisli[Seq[A], Seq[B]] {
return INTI.Traverse[Seq[A]](
Map[B],
Of[Seq[B]],
Map[Seq[B], func(B) Seq[B]],
Ap[Seq[B], B],
Map[Seq[B]],
MonadAp[Seq[B]],
f,
)

View File

@@ -885,3 +885,13 @@ func MonadZip[A, B any](fb Seq[B], fa Seq[A]) Seq2[A, B] {
func Zip[A, B any](fa Seq[A]) func(Seq[B]) Seq2[A, B] {
return F.Bind2nd(MonadZip[A, B], fa)
}
//go:inline
func MonadMapToArray[A, B any](fa Seq[A], f func(A) B) []B {
return G.MonadMapToArray[Seq[A], []B](fa, f)
}
//go:inline
func MapToArray[A, B any](f func(A) B) func(Seq[A]) []B {
return G.MapToArray[Seq[A], []B](f)
}

View File

@@ -33,5 +33,5 @@ import (
//
//go:inline
func Monoid[T any]() M.Monoid[Seq[T]] {
return M.MakeMonoid(G.Concat[Seq[T]], Empty[T]())
return G.Monoid[Seq[T]]()
}

View File

@@ -42,6 +42,8 @@ func ApplySemigroup[A any](s S.Semigroup[A]) S.Semigroup[Option[A]] {
// optMonoid := ApplicativeMonoid(intMonoid)
// result := optMonoid.Concat(Some(2), Some(3)) // Some(5)
// result := optMonoid.Empty() // Some(0)
//
//go:inline
func ApplicativeMonoid[A any](m M.Monoid[A]) M.Monoid[Option[A]] {
return M.ApplicativeMonoid(Of[A], MonadMap[A, func(A) A], MonadAp[A, A], m)
}

View File

@@ -55,11 +55,22 @@ import (
// result := TraverseIter(parse)(invalidStrings)
// // result is None because "invalid" cannot be parsed
func TraverseIter[A, B any](f Kleisli[A, B]) Kleisli[Seq[A], Seq[B]] {
return INTI.Traverse[Seq[A]](
Map[B],
Of[Seq[B]],
Map[Seq[B], func(B) Seq[B]],
Ap[Seq[B]],
Map[Seq[B]],
MonadAp[Seq[B]],
f,
)
}
func SequenceIter[A any](as Seq[Option[A]]) Option[Seq[A]] {
return INTI.MonadSequence(
Map(INTI.Of[Seq[A]]),
ApplicativeMonoid(INTI.Monoid[Seq[A]]()),
as,
)
}

View File

@@ -17,7 +17,7 @@ package reader
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
G "github.com/IBM/fp-go/v2/reader/generic"
)
// MonadTraverseArray transforms each element of an array using a function that returns a Reader,
@@ -38,13 +38,7 @@ import (
// r := reader.MonadTraverseArray(numbers, addPrefix)
// result := r(Config{Prefix: "num"}) // ["num1", "num2", "num3"]
func MonadTraverseArray[R, A, B any](ma []A, f Kleisli[R, A, B]) Reader[R, []B] {
return array.MonadTraverse(
Of[R, []B],
Map[R, []B, func(B) []B],
Ap[[]B, R, B],
ma,
f,
)
return G.MonadTraverseArray[Reader[R, B], Reader[R, []B], []A](ma, f)
}
// TraverseArray transforms each element of an array using a function that returns a Reader,
@@ -63,12 +57,7 @@ func MonadTraverseArray[R, A, B any](ma []A, f Kleisli[R, A, B]) Reader[R, []B]
// r := transform([]int{1, 2, 3})
// result := r(Config{Multiplier: 10}) // [10, 20, 30]
func TraverseArray[R, A, B any](f Kleisli[R, A, B]) func([]A) Reader[R, []B] {
return array.Traverse[[]A](
Of[R, []B],
Map[R, []B, func(B) []B],
Ap[[]B, R, B],
f,
)
return G.TraverseArray[Reader[R, B], Reader[R, []B], []A](f)
}
// TraverseArrayWithIndex transforms each element of an array using a function that takes
@@ -89,12 +78,7 @@ func TraverseArray[R, A, B any](f Kleisli[R, A, B]) func([]A) Reader[R, []B] {
// r := transform([]string{"a", "b", "c"})
// result := r(Config{Prefix: "item"}) // ["item[0]:a", "item[1]:b", "item[2]:c"]
func TraverseArrayWithIndex[R, A, B any](f func(int, A) Reader[R, B]) func([]A) Reader[R, []B] {
return array.TraverseWithIndex[[]A](
Of[R, []B],
Map[R, []B, func(B) []B],
Ap[[]B, R, B],
f,
)
return G.TraverseArrayWithIndex[Reader[R, B], Reader[R, []B], []A](f)
}
// SequenceArray converts an array of Readers into a single Reader containing an array.

View File

@@ -0,0 +1,15 @@
package generic
import (
M "github.com/IBM/fp-go/v2/monoid"
)
//go:inline
func ApplicativeMonoid[GA ~func(R) A, R, A any](m M.Monoid[A]) M.Monoid[GA] {
return M.ApplicativeMonoid(
Of[GA, R, A],
MonadMap[GA, func(R) func(A) A],
MonadAp[GA, GA, func(R) func(A) A],
m,
)
}