mirror of
https://github.com/IBM/fp-go.git
synced 2025-12-09 23:11:40 +02:00
Compare commits
122 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1a89ec3df7 | ||
|
|
f652a94c3a | ||
|
|
774db88ca5 | ||
|
|
62a3365b20 | ||
|
|
d9a16a6771 | ||
|
|
8949cc7dca | ||
|
|
fa6b6caf22 | ||
|
|
a1e8d397c3 | ||
|
|
dbe7102e43 | ||
|
|
09aeb996e2 | ||
|
|
7cd575d95a | ||
|
|
dcfb023891 | ||
|
|
51cf241a26 | ||
|
|
9004c93976 | ||
|
|
d8ab6b0ce5 | ||
|
|
4e9998b645 | ||
|
|
2ea9e292e1 | ||
|
|
12a20e30d1 | ||
|
|
4909ad5473 | ||
|
|
d116317cde | ||
|
|
1428241f2c | ||
|
|
ef9216bad7 | ||
|
|
fe77c770b6 | ||
|
|
1c42b2ac1d | ||
|
|
cbd93fdecc | ||
|
|
6d94697128 | ||
|
|
77dde302ef | ||
|
|
909d626019 | ||
|
|
b01a8f2aff | ||
|
|
8a2e9539b1 | ||
|
|
03d9720a29 | ||
|
|
57794ccb34 | ||
|
|
404eb875d3 | ||
|
|
ed108812d6 | ||
|
|
ab868315d4 | ||
|
|
02d0be9dad | ||
|
|
2c1d8196b4 | ||
|
|
17eb8ae66f | ||
|
|
b70e481e7d | ||
|
|
3c3bb7c166 | ||
|
|
d3007cbbfa | ||
|
|
5aa0e1ea2e | ||
|
|
d586428cb0 | ||
|
|
d2dbce6e8b | ||
|
|
6f7ec0768d | ||
|
|
ca813b673c | ||
|
|
af271e7d10 | ||
|
|
567315a31c | ||
|
|
311ed55f06 | ||
|
|
23333ce52c | ||
|
|
eb7fc9f77b | ||
|
|
fd0550e71b | ||
|
|
13063bbd88 | ||
|
|
4f8a557072 | ||
|
|
a4e790ac3d | ||
|
|
1af6501cd8 | ||
|
|
600521b220 | ||
|
|
62fcd186a3 | ||
|
|
2db7e83651 | ||
|
|
8d92df83ad | ||
|
|
0c742b81e6 | ||
|
|
a1d6c94b15 | ||
|
|
e4e28a6556 | ||
|
|
7e7cc06f11 | ||
|
|
54d5dbd04a | ||
|
|
51adce0c95 | ||
|
|
aa5e908810 | ||
|
|
b3bd5e9ad3 | ||
|
|
178df09ff7 | ||
|
|
92eb9715bd | ||
|
|
41ebb04ae0 | ||
|
|
b2705e3adf | ||
|
|
b232183e47 | ||
|
|
0f9f89f16d | ||
|
|
0d3a8634b1 | ||
|
|
56c8f1b034 | ||
|
|
bad86cd769 | ||
|
|
d0c5f32111 | ||
|
|
77745c1348 | ||
|
|
2c96cef500 | ||
|
|
3385c705dc | ||
|
|
7874859c4b | ||
|
|
25e3d1d85c | ||
|
|
d7ff994fb7 | ||
|
|
1cdca552b2 | ||
|
|
73480ca030 | ||
|
|
734e2b0055 | ||
|
|
4c28859e89 | ||
|
|
a516849c07 | ||
|
|
29200d34dc | ||
|
|
7a3989989b | ||
|
|
6a6d53f025 | ||
|
|
078da752cd | ||
|
|
1a489fde27 | ||
|
|
a135b2acae | ||
|
|
9e9dfa1f5f | ||
|
|
dd87ea12b3 | ||
|
|
5fc0d18c97 | ||
|
|
76c1297576 | ||
|
|
68aeb4c725 | ||
|
|
53f3fa1828 | ||
|
|
97e1e4d92d | ||
|
|
ec57d5cd4a | ||
|
|
0ae5b43724 | ||
|
|
e73e14c0ae | ||
|
|
325bc376f9 | ||
|
|
f646ace9fe | ||
|
|
9f8161fbc1 | ||
|
|
1c4f2c0403 | ||
|
|
3b3b80aed0 | ||
|
|
fdff4e4735 | ||
|
|
391754e5a6 | ||
|
|
598a7b261b | ||
|
|
f0f1a48965 | ||
|
|
e39e5e0920 | ||
|
|
9c7a5bb24b | ||
|
|
89bda4f500 | ||
|
|
15dffb3256 | ||
|
|
95fbd93696 | ||
|
|
6e0d5704bc | ||
|
|
0aa95e656b | ||
|
|
b3544a32fc |
127
.github/workflows/build.yml
vendored
127
.github/workflows/build.yml
vendored
@@ -4,9 +4,7 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
pull_request:
|
||||
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dryRun:
|
||||
@@ -15,35 +13,109 @@ on:
|
||||
required: false
|
||||
|
||||
env:
|
||||
# Currently no way to detect automatically
|
||||
DEFAULT_BRANCH: main
|
||||
GO_VERSION: 1.21.6 # renovate: datasource=golang-version depName=golang
|
||||
NODE_VERSION: 20
|
||||
LATEST_GO_VERSION: 1.25.2 # renovate: datasource=golang-version depName=golang
|
||||
NODE_VERSION: 24
|
||||
DRY_RUN: true
|
||||
|
||||
jobs:
|
||||
build:
|
||||
build-v1:
|
||||
name: Build v1 (Go ${{ matrix.go-version }})
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
go-version: [ '1.20.x', '1.21.x', '1.22.x']
|
||||
go-version: ['1.20.x', '1.21.x', '1.22.x', '1.23.x', '1.24.x', '1.25.x']
|
||||
fail-fast: false # Continue with other versions if one fails
|
||||
steps:
|
||||
# full checkout for semantic-release
|
||||
- uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11 # v4.1.1
|
||||
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Set up go ${{ matrix.go-version }}
|
||||
- name: Set up Go ${{ matrix.go-version }}
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: ${{ matrix.go-version }}
|
||||
-
|
||||
name: Tests
|
||||
cache: true # Enable Go module caching
|
||||
- name: Run tests
|
||||
run: |
|
||||
go mod tidy
|
||||
go test -v ./...
|
||||
go test -v -race -coverprofile=coverage.txt -covermode=atomic ./...
|
||||
|
||||
- name: Upload coverage to Coveralls
|
||||
uses: coverallsapp/github-action@v2
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ./coverage.txt
|
||||
flag-name: v1-go-${{ matrix.go-version }}
|
||||
parallel: true
|
||||
|
||||
# - name: Upload coverage to Codecov
|
||||
# uses: codecov/codecov-action@v5
|
||||
# with:
|
||||
# file: ./coverage.txt
|
||||
# flags: v1,go-${{ matrix.go-version }}
|
||||
# name: v1-go-${{ matrix.go-version }}
|
||||
# fail_ci_if_error: false
|
||||
# env:
|
||||
# CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
|
||||
|
||||
build-v2:
|
||||
name: Build v2 (Go ${{ matrix.go-version }})
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
go-version: ['1.24.x', '1.25.x']
|
||||
steps:
|
||||
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Set up Go ${{ matrix.go-version }}
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: ${{ matrix.go-version }}
|
||||
cache: true # Enable Go module caching
|
||||
- name: Run tests
|
||||
run: |
|
||||
cd v2
|
||||
go mod tidy
|
||||
go test -v -race -coverprofile=coverage.txt -covermode=atomic ./...
|
||||
|
||||
- name: Upload coverage to Coveralls
|
||||
uses: coverallsapp/github-action@v2
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ./v2/coverage.txt
|
||||
flag-name: v2-go-${{ matrix.go-version }}
|
||||
parallel: true
|
||||
|
||||
# - name: Upload coverage to Codecov
|
||||
# uses: codecov/codecov-action@v5
|
||||
# with:
|
||||
# file: ./v2/coverage.txt
|
||||
# flags: v2,go-${{ matrix.go-version }}
|
||||
# name: v2-go-${{ matrix.go-version }}
|
||||
# fail_ci_if_error: false
|
||||
# env:
|
||||
# CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
|
||||
|
||||
coveralls-finish:
|
||||
name: Finish Coveralls
|
||||
needs:
|
||||
- build-v1
|
||||
- build-v2
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Coveralls Finished
|
||||
uses: coverallsapp/github-action@v2
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
parallel-finished: true
|
||||
|
||||
release:
|
||||
needs: [build]
|
||||
name: Release
|
||||
needs:
|
||||
- build-v1
|
||||
- build-v2
|
||||
if: github.repository == 'IBM/fp-go' && github.event_name != 'pull_request'
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 15
|
||||
@@ -51,38 +123,37 @@ jobs:
|
||||
contents: write
|
||||
issues: write
|
||||
pull-requests: write
|
||||
|
||||
steps:
|
||||
# full checkout for semantic-release
|
||||
- name: Full checkout
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11 # v4.1.1
|
||||
uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Node.js ${{ env.NODE_VERSION }}
|
||||
uses: actions/setup-node@60edb5dd545a775178f52524783378180af0d1f8 # v4.0.2
|
||||
uses: actions/setup-node@49933ea5288caeca8642d1e84afbd3f7d6820020 # v4.4.0
|
||||
with:
|
||||
node-version: ${{ env.NODE_VERSION }}
|
||||
|
||||
- name: Set up go ${{env.GO_VERSION}}
|
||||
- name: Set up Go
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: ${{env.GO_VERSION}}
|
||||
go-version: ${{ env.LATEST_GO_VERSION }}
|
||||
cache: true # Enable Go module caching
|
||||
|
||||
# The dry-run evaluation is only made for non PR events. Manual trigger w/dryRun true, main branch and any tagged branches will set DRY run to false
|
||||
- name: Check dry run
|
||||
- name: Determine release mode
|
||||
id: release-mode
|
||||
run: |
|
||||
if [[ "${{github.event_name}}" == "workflow_dispatch" && "${{ github.event.inputs.dryRun }}" != "true" ]]; then
|
||||
echo "DRY_RUN=false" >> $GITHUB_ENV
|
||||
elif [[ "${{github.ref}}" == "refs/heads/${{env.DEFAULT_BRANCH}}" ]]; then
|
||||
if [[ "${{ github.event_name }}" == "workflow_dispatch" && "${{ github.event.inputs.dryRun }}" != "true" ]]; then
|
||||
echo "DRY_RUN=false" >> $GITHUB_ENV
|
||||
elif [[ "${{github.ref}}" =~ ^refs/heads/v[0-9]+(\.[0-9]+)?$ ]]; then
|
||||
elif [[ "${{ github.ref }}" == "refs/heads/${{ env.DEFAULT_BRANCH }}" ]]; then
|
||||
echo "DRY_RUN=false" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.ref }}" =~ ^refs/heads/v[0-9]+(\.[0-9]+)?$ ]]; then
|
||||
echo "DRY_RUN=false" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Semantic Release
|
||||
- name: Run semantic release
|
||||
run: |
|
||||
npx -p conventional-changelog-conventionalcommits -p semantic-release semantic-release --dry-run ${{env.DRY_RUN}}
|
||||
npx -p conventional-changelog-conventionalcommits -p semantic-release semantic-release --dry-run ${{ env.DRY_RUN }}
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -1,4 +1,6 @@
|
||||
fp-go.exe
|
||||
fp-go
|
||||
main.exe
|
||||
build/
|
||||
.idea
|
||||
.idea
|
||||
*.exe
|
||||
3
.whitesource
Normal file
3
.whitesource
Normal file
@@ -0,0 +1,3 @@
|
||||
{
|
||||
"settingsInheritedFrom": "ibm-mend-config/mend-config@main"
|
||||
}
|
||||
347
README.md
347
README.md
@@ -1,207 +1,312 @@
|
||||
# Functional programming library for golang
|
||||
# fp-go: Functional Programming Library for Go
|
||||
|
||||
**🚧 Work in progress! 🚧** Despite major version 1 because of <https://github.com/semantic-release/semantic-release/issues/1507>. Trying to not make breaking changes, but devil is in the details.
|
||||
[](https://pkg.go.dev/github.com/IBM/fp-go)
|
||||
[](https://coveralls.io/github/IBM/fp-go?branch=main)
|
||||
|
||||
**🚧 Work in progress! 🚧** Despite major version 1 (due to [semantic-release limitations](https://github.com/semantic-release/semantic-release/issues/1507)), we're working to minimize breaking changes.
|
||||
|
||||

|
||||
|
||||
This library is strongly influenced by the awesome [fp-ts](https://github.com/gcanti/fp-ts).
|
||||
A comprehensive functional programming library for Go, strongly influenced by the excellent [fp-ts](https://github.com/gcanti/fp-ts) library for TypeScript.
|
||||
|
||||
## Getting started
|
||||
## 📚 Table of Contents
|
||||
|
||||
- [Getting Started](#-getting-started)
|
||||
- [Design Goals](#-design-goals)
|
||||
- [Core Concepts](#-core-concepts)
|
||||
- [Comparison to Idiomatic Go](#comparison-to-idiomatic-go)
|
||||
- [Implementation Notes](#implementation-notes)
|
||||
- [Common Operations](#common-operations)
|
||||
- [Resources](#-resources)
|
||||
|
||||
## 🚀 Getting Started
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
go get github.com/IBM/fp-go
|
||||
```
|
||||
|
||||
Refer to the [samples](./samples/).
|
||||
### Quick Example
|
||||
|
||||
Find API documentation [here](https://pkg.go.dev/github.com/IBM/fp-go)
|
||||
```go
|
||||
import (
|
||||
"errors"
|
||||
"github.com/IBM/fp-go/either"
|
||||
"github.com/IBM/fp-go/function"
|
||||
)
|
||||
|
||||
## Design Goal
|
||||
// Pure function that can fail
|
||||
func divide(a, b int) either.Either[error, int] {
|
||||
if b == 0 {
|
||||
return either.Left[int](errors.New("division by zero"))
|
||||
}
|
||||
return either.Right[error](a / b)
|
||||
}
|
||||
|
||||
This library aims to provide a set of data types and functions that make it easy and fun to write maintainable and testable code in golang. It encourages the following patterns:
|
||||
// Compose operations safely
|
||||
result := function.Pipe2(
|
||||
divide(10, 2),
|
||||
either.Map(func(x int) int { return x * 2 }),
|
||||
either.GetOrElse(func() int { return 0 }),
|
||||
)
|
||||
// result = 10
|
||||
```
|
||||
|
||||
- write many small, testable and pure functions, i.e. functions that produce output only depending on their input and that do not execute side effects
|
||||
- offer helpers to isolate side effects into lazily executed functions (IO)
|
||||
- expose a consistent set of composition to create new functions from existing ones
|
||||
- for each data type there exists a small set of composition functions
|
||||
- these functions are called the same across all data types, so you only have to learn a small number of function names
|
||||
- the semantic of functions of the same name is consistent across all data types
|
||||
### Resources
|
||||
|
||||
### How does this play with the [🧘🏽 Zen Of Go](https://the-zen-of-go.netlify.app/)?
|
||||
- 📖 [API Documentation](https://pkg.go.dev/github.com/IBM/fp-go)
|
||||
- 💡 [Code Samples](./samples/)
|
||||
- 🆕 [V2 Documentation](./v2/README.md) (requires Go 1.24+)
|
||||
|
||||
#### 🧘🏽 Each package fulfils a single purpose
|
||||
## 🎯 Design Goals
|
||||
|
||||
✔️ Each of the top level packages (e.g. Option, Either, ReaderIOEither, ...) fulfils the purpose of defining the respective data type and implementing the set of common operations for this data type.
|
||||
This library aims to provide a set of data types and functions that make it easy and fun to write maintainable and testable code in Go. It encourages the following patterns:
|
||||
|
||||
#### 🧘🏽 Handle errors explicitly
|
||||
### Core Principles
|
||||
|
||||
✔️ The library makes a clear distinction between that operations that cannot fail by design and operations that can fail. Failure is represented via the `Either` type and errors are handled explicitly by using `Either`'s monadic set of operations.
|
||||
- **Pure Functions**: Write many small, testable, and pure functions that produce output only depending on their input and execute no side effects
|
||||
- **Side Effect Isolation**: Isolate side effects into lazily executed functions using the `IO` monad
|
||||
- **Consistent Composition**: Expose a consistent set of composition functions across all data types
|
||||
- Each data type has a small set of composition functions
|
||||
- Functions are named consistently across all data types
|
||||
- Semantics of same-named functions are consistent across data types
|
||||
|
||||
#### 🧘🏽 Return early rather than nesting deeply
|
||||
### 🧘🏽 Alignment with the Zen of Go
|
||||
|
||||
✔️ We recommend to implement simple, small functions that implement one feature and that would typically not invoke other functions. Interaction with other functions is done by function composition and the composition makes sure to run one function after the other. In the error case the `Either` monad makes sure to skip the error path.
|
||||
This library respects and aligns with [The Zen of Go](https://the-zen-of-go.netlify.app/):
|
||||
|
||||
#### 🧘🏽 Leave concurrency to the caller
|
||||
| Principle | Alignment | Explanation |
|
||||
|-----------|-----------|-------------|
|
||||
| 🧘🏽 Each package fulfills a single purpose | ✔️ | Each top-level package (Option, Either, ReaderIOEither, etc.) defines one data type and its operations |
|
||||
| 🧘🏽 Handle errors explicitly | ✔️ | Clear distinction between operations that can/cannot fail; failures represented via `Either` type |
|
||||
| 🧘🏽 Return early rather than nesting deeply | ✔️ | Small, focused functions composed together; `Either` monad handles error paths automatically |
|
||||
| 🧘🏽 Leave concurrency to the caller | ✔️ | Pure functions are synchronous; I/O operations are asynchronous by default |
|
||||
| 🧘🏽 Before you launch a goroutine, know when it will stop | 🤷🏽 | Library doesn't start goroutines; Task monad supports cancellation via context |
|
||||
| 🧘🏽 Avoid package level state | ✔️ | No package-level state anywhere |
|
||||
| 🧘🏽 Simplicity matters | ✔️ | Small, consistent interface across data types; focus on business logic |
|
||||
| 🧘🏽 Write tests to lock in behaviour | 🟡 | Programming pattern encourages testing; library has growing test coverage |
|
||||
| 🧘🏽 If you think it's slow, first prove it with a benchmark | ✔️ | Performance claims should be backed by benchmarks |
|
||||
| 🧘🏽 Moderation is a virtue | ✔️ | No custom goroutines or expensive synchronization; atomic counters for coordination |
|
||||
| 🧘🏽 Maintainability counts | ✔️ | Small, concise operations; pure functions with clear type signatures |
|
||||
|
||||
✔️ All pure are synchronous by default. The I/O operations are asynchronous per default.
|
||||
## 💡 Core Concepts
|
||||
|
||||
#### 🧘🏽 Before you launch a goroutine, know when it will stop
|
||||
### Data Types
|
||||
|
||||
🤷🏽 This is left to the user of the library since the library itself will not start goroutines on its own. The Task monad offers support for cancellation via the golang context, though.
|
||||
The library provides several key functional data types:
|
||||
|
||||
#### 🧘🏽 Avoid package level state
|
||||
- **`Option[A]`**: Represents an optional value (Some or None)
|
||||
- **`Either[E, A]`**: Represents a value that can be one of two types (Left for errors, Right for success)
|
||||
- **`IO[A]`**: Represents a lazy computation that produces a value
|
||||
- **`IOEither[E, A]`**: Represents a lazy computation that can fail
|
||||
- **`Reader[R, A]`**: Represents a computation that depends on an environment
|
||||
- **`ReaderIOEither[R, E, A]`**: Combines Reader, IO, and Either for effectful computations with dependencies
|
||||
- **`Task[A]`**: Represents an asynchronous computation
|
||||
- **`State[S, A]`**: Represents a stateful computation
|
||||
|
||||
✔️ No package level state anywhere, this would be a significant anti-pattern
|
||||
### Monadic Operations
|
||||
|
||||
#### 🧘🏽 Simplicity matters
|
||||
All data types support common monadic operations:
|
||||
|
||||
✔️ The library is simple in the sense that it offers a small, consistent interface to a variety of data types. Users can concentrate on implementing business logic rather than dealing with low level data structures.
|
||||
|
||||
#### 🧘🏽 Write tests to lock in the behaviour of your package’s API
|
||||
|
||||
🟡 The programming pattern suggested by this library encourages writing test cases. The library itself also has a growing number of tests, but not enough, yet. TBD
|
||||
|
||||
#### 🧘🏽 If you think it’s slow, first prove it with a benchmark
|
||||
|
||||
✔️ Absolutely. If you think the function composition offered by this library is too slow, please provide a benchmark.
|
||||
|
||||
#### 🧘🏽 Moderation is a virtue
|
||||
|
||||
✔️ The library does not implement its own goroutines and also does not require any expensive synchronization primitives. Coordination of IO operations is implemented via atomic counters without additional primitives.
|
||||
|
||||
#### 🧘🏽 Maintainability counts
|
||||
|
||||
✔️ Code that consumes this library is easy to maintain because of the small and concise set of operations exposed. Also the suggested programming paradigm to decompose an application into small functions increases maintainability, because these functions are easy to understand and if they are pure, it's often sufficient to look at the type signature to understand the purpose.
|
||||
|
||||
The library itself also comprises many small functions, but it's admittedly harder to maintain than code that uses it. However this asymmetry is intended because it offloads complexity from users into a central component.
|
||||
- **`Map`**: Transform the value inside a context
|
||||
- **`Chain`** (FlatMap): Transform and flatten nested contexts
|
||||
- **`Ap`**: Apply a function in a context to a value in a context
|
||||
- **`Of`**: Wrap a value in a context
|
||||
- **`Fold`**: Extract a value from a context
|
||||
|
||||
## Comparison to Idiomatic Go
|
||||
|
||||
In this section we discuss how the functional APIs differ from idiomatic go function signatures and how to convert back and forth.
|
||||
This section explains how functional APIs differ from idiomatic Go and how to convert between them.
|
||||
|
||||
### Pure functions
|
||||
### Pure Functions
|
||||
|
||||
Pure functions are functions that take input parameters and that compute an output without changing any global state and without mutating the input parameters. They will always return the same output for the same input.
|
||||
Pure functions take input parameters and compute output without changing global state or mutating inputs. They always return the same output for the same input.
|
||||
|
||||
#### Without Errors
|
||||
|
||||
If your pure function does not return an error, the idiomatic signature is just fine and no changes are required.
|
||||
If your pure function doesn't return an error, the idiomatic signature works as-is:
|
||||
|
||||
```go
|
||||
func add(a, b int) int {
|
||||
return a + b
|
||||
}
|
||||
```
|
||||
|
||||
#### With Errors
|
||||
|
||||
If your pure function can return an error, then it will have a `(T, error)` return value in idiomatic go. In functional style the return value is [Either[error, T]](https://pkg.go.dev/github.com/IBM/fp-go/either) because function composition is easier with such a return type. Use the `EitherizeXXX` methods in ["github.com/IBM/fp-go/either"](https://pkg.go.dev/github.com/IBM/fp-go/either) to convert from idiomatic to functional style and `UneitherizeXXX` to convert from functional to idiomatic style.
|
||||
**Idiomatic Go:**
|
||||
```go
|
||||
func divide(a, b int) (int, error) {
|
||||
if b == 0 {
|
||||
return 0, errors.New("division by zero")
|
||||
}
|
||||
return a / b, nil
|
||||
}
|
||||
```
|
||||
|
||||
### Effectful functions
|
||||
**Functional Style:**
|
||||
```go
|
||||
func divide(a, b int) either.Either[error, int] {
|
||||
if b == 0 {
|
||||
return either.Left[int](errors.New("division by zero"))
|
||||
}
|
||||
return either.Right[error](a / b)
|
||||
}
|
||||
```
|
||||
|
||||
An effectful function (or function with a side effect) is one that changes data outside the scope of the function or that does not always produce the same output for the same input (because it depends on some external, mutable state). There is no special way in idiomatic go to identify such a function other than documentation. In functional style we represent them as functions that do not take an input but that produce an output. The base type for these functions is [IO[T]](https://pkg.go.dev/github.com/IBM/fp-go/io) because in many cases such functions represent `I/O` operations.
|
||||
**Conversion:**
|
||||
- Use `either.EitherizeXXX` to convert from idiomatic to functional style
|
||||
- Use `either.UneitherizeXXX` to convert from functional to idiomatic style
|
||||
|
||||
### Effectful Functions
|
||||
|
||||
An effectful function changes data outside its scope or doesn't always produce the same output for the same input.
|
||||
|
||||
#### Without Errors
|
||||
|
||||
If your effectful function does not return an error, the functional signature is [IO[T]](https://pkg.go.dev/github.com/IBM/fp-go/io)
|
||||
**Functional signature:** `IO[T]`
|
||||
|
||||
```go
|
||||
func getCurrentTime() io.IO[time.Time] {
|
||||
return func() time.Time {
|
||||
return time.Now()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### With Errors
|
||||
|
||||
If your effectful function can return an error, the functional signature is [IOEither[error, T]](https://pkg.go.dev/github.com/IBM/fp-go/ioeither). Use `EitherizeXXX` from ["github.com/IBM/fp-go/ioeither"](https://pkg.go.dev/github.com/IBM/fp-go/ioeither) to convert an idiomatic go function to functional style.
|
||||
**Functional signature:** `IOEither[error, T]`
|
||||
|
||||
```go
|
||||
func readFile(path string) ioeither.IOEither[error, []byte] {
|
||||
return func() either.Either[error, []byte] {
|
||||
data, err := os.ReadFile(path)
|
||||
if err != nil {
|
||||
return either.Left[[]byte](err)
|
||||
}
|
||||
return either.Right[error](data)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Conversion:**
|
||||
- Use `ioeither.EitherizeXXX` to convert idiomatic Go functions to functional style
|
||||
|
||||
### Go Context
|
||||
|
||||
Functions that take a [context](https://pkg.go.dev/context) are per definition effectful because they depend on the context parameter that is designed to be mutable (it can e.g. be used to cancel a running operation). Furthermore in idiomatic go the parameter is typically passed as the first parameter to a function.
|
||||
Functions that take a `context.Context` are effectful because they depend on mutable context.
|
||||
|
||||
In functional style we isolate the [context](https://pkg.go.dev/context) and represent the nature of the effectful function as an [IOEither[error, T]](https://pkg.go.dev/github.com/IBM/fp-go/ioeither). The resulting type is [ReaderIOEither[T]](https://pkg.go.dev/github.com/IBM/fp-go/context/readerioeither), a function taking a [context](https://pkg.go.dev/context) that returns a function without parameters returning an [Either[error, T]](https://pkg.go.dev/github.com/IBM/fp-go/either). Use the `EitherizeXXX` methods from ["github.com/IBM/fp-go/context/readerioeither"](https://pkg.go.dev/github.com/IBM/fp-go/context/readerioeither) to convert an idiomatic go function with a [context](https://pkg.go.dev/context) to functional style.
|
||||
**Idiomatic Go:**
|
||||
```go
|
||||
func fetchData(ctx context.Context, url string) ([]byte, error) {
|
||||
// implementation
|
||||
}
|
||||
```
|
||||
|
||||
**Functional Style:**
|
||||
```go
|
||||
func fetchData(url string) readerioeither.ReaderIOEither[context.Context, error, []byte] {
|
||||
return func(ctx context.Context) ioeither.IOEither[error, []byte] {
|
||||
return func() either.Either[error, []byte] {
|
||||
// implementation
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Conversion:**
|
||||
- Use `readerioeither.EitherizeXXX` to convert idiomatic Go functions with context to functional style
|
||||
|
||||
## Implementation Notes
|
||||
|
||||
### Generics
|
||||
|
||||
All monadic operations are implemented via generics, i.e. they offer a type safe way to compose operations. This allows for convenient IDE support and also gives confidence about the correctness of the composition at compile time.
|
||||
All monadic operations use Go generics for type safety:
|
||||
|
||||
Downside is that this will result in different versions of each operation per type, these versions are generated by the golang compiler at build time (unlike type erasure in languages such as Java of TypeScript). This might lead to large binaries for codebases with many different types. If this is a concern, you can always implement type erasure on top, i.e. use the monadic operations with the `any` type as if generics were not supported. You loose type safety, but this might result in smaller binaries.
|
||||
- ✅ **Pros**: Type-safe composition, IDE support, compile-time correctness
|
||||
- ⚠️ **Cons**: May result in larger binaries (different versions per type)
|
||||
- 💡 **Tip**: For binary size concerns, use type erasure with `any` type
|
||||
|
||||
### Ordering of Generic Type Parameters
|
||||
|
||||
In go we need to specify all type parameters of a function on the global function definition, even if the function returns a higher order function and some of the type parameters are only applicable to the higher order function. So the following is not possible:
|
||||
Go requires all type parameters on the global function definition. Parameters that cannot be auto-detected come first:
|
||||
|
||||
```go
|
||||
func Map[A, B any](f func(A) B) [R, E any]func(fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B]
|
||||
// Map: B cannot be auto-detected, so it comes first
|
||||
func Map[R, E, A, B any](f func(A) B) func(ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B]
|
||||
|
||||
// Ap: B cannot be auto-detected from the argument
|
||||
func Ap[B, R, E, A any](fa ReaderIOEither[R, E, A]) func(ReaderIOEither[R, E, func(A) B]) ReaderIOEither[R, E, B]
|
||||
```
|
||||
|
||||
Note that the parameters `R` and `E` are not needed by the first level of `Map` but only by the resulting higher order function. Instead we need to specify the following:
|
||||
This ordering maximizes type inference where possible.
|
||||
|
||||
```go
|
||||
func Map[R, E, A, B any](f func(A) B) func(fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B]
|
||||
```
|
||||
### Use of the ~ Operator
|
||||
|
||||
which overspecifies `Map` on the global scope. As a result the go compiler will not be able to auto-detect these parameters, it can only auto detect `A` and `B` since they appear in the argument of `Map`. We need to explicitly pass values for these type parameters when `Map` is being used.
|
||||
|
||||
Because of this limitation the order of parameters on a function matters. We want to make sure that we define those parameters that cannot be auto-detected, first, and the parameters that can be auto-detected, last. This can lead to inconsistencies in parameter ordering, but we believe that the gain in convenience is worth it. The parameter order of `Ap` is e.g. different from that of `Map`:
|
||||
|
||||
```go
|
||||
func Ap[B, R, E, A any](fa ReaderIOEither[R, E, A]) func(fab ReaderIOEither[R, E, func(A) B]) ReaderIOEither[R, E, B]
|
||||
```
|
||||
|
||||
because `R`, `E` and `A` can be determined from the argument to `Ap` but `B` cannot.
|
||||
|
||||
### Use of the [~ Operator](https://go.googlesource.com/proposal/+/master/design/47781-parameterized-go-ast.md)
|
||||
|
||||
The FP library attempts to be easy to consume and one aspect of this is the definition of higher level type definitions instead of having to use their low level equivalent. It is e.g. more convenient and readable to use
|
||||
|
||||
```go
|
||||
ReaderIOEither[R, E, A]
|
||||
```
|
||||
|
||||
than
|
||||
|
||||
```go
|
||||
func(R) func() Either.Either[E, A]
|
||||
```
|
||||
|
||||
although both are logically equivalent. At the time of this writing the go type system does not support generic type aliases, only generic type definition, i.e. it is not possible to write:
|
||||
|
||||
```go
|
||||
type ReaderIOEither[R, E, A any] = RD.Reader[R, IOE.IOEither[E, A]]
|
||||
```
|
||||
|
||||
only
|
||||
Go doesn't support generic type aliases (until Go 1.24), only type definitions. The `~` operator allows generic implementations to work with compatible types:
|
||||
|
||||
```go
|
||||
type ReaderIOEither[R, E, A any] RD.Reader[R, IOE.IOEither[E, A]]
|
||||
```
|
||||
|
||||
This makes a big difference, because in the second case the type `ReaderIOEither[R, E, A any]` is considered a completely new type, not compatible to its right hand side, so it's not just a shortcut but a fully new type.
|
||||
**Generic Subpackages:**
|
||||
- Each higher-level type has a `generic` subpackage with fully generic implementations
|
||||
- These are for library extensions, not end-users
|
||||
- Main packages specialize generic implementations for convenience
|
||||
|
||||
From the implementation perspective however there is no reason to restrict the implementation to the new type, it can be generic for all compatible types. The way to express this in go is the [~](https://go.googlesource.com/proposal/+/master/design/47781-parameterized-go-ast.md) operator. This comes with some quite complicated type declarations in some cases, which undermines the goal of the library to be easy to use.
|
||||
### Higher Kinded Types (HKT)
|
||||
|
||||
For that reason there exist sub-packages called `Generic` for all higher level types. These packages contain the fully generic implementation of the operations, preferring abstraction over usability. These packages are not meant to be used by end-users but are meant to be used by library extensions. The implementation for the convenient higher level types specializes the generic implementation for the particular higher level type, i.e. this layer does not contain any business logic but only *type magic*.
|
||||
Go doesn't support HKT natively. This library addresses this by:
|
||||
|
||||
### Higher Kinded Types
|
||||
- Introducing HKTs as individual types (e.g., `HKTA` for `HKT[A]`)
|
||||
- Implementing generic algorithms in the `internal` package
|
||||
- Keeping complexity hidden from end-users
|
||||
|
||||
Go does not support higher kinded types (HKT). Such types occur if a generic type itself is parametrized by another generic type. Example:
|
||||
## Common Operations
|
||||
|
||||
The `Map` operation for `ReaderIOEither` is defined as:
|
||||
### Map/Chain/Ap/Flap
|
||||
|
||||
| Operator | Parameter | Monad | Result | Use Case |
|
||||
| -------- | ---------------- | --------------- | -------- | -------- |
|
||||
| Map | `func(A) B` | `HKT[A]` | `HKT[B]` | Transform value in context |
|
||||
| Chain | `func(A) HKT[B]` | `HKT[A]` | `HKT[B]` | Transform and flatten |
|
||||
| Ap | `HKT[A]` | `HKT[func(A)B]` | `HKT[B]` | Apply function in context |
|
||||
| Flap | `A` | `HKT[func(A)B]` | `HKT[B]` | Apply value to function in context |
|
||||
|
||||
### Example: Chaining Operations
|
||||
|
||||
```go
|
||||
func Map[R, E, A, B any](f func(A) B) func(fa ReaderIOEither[R, E, A]) ReaderIOEither[R, E, B]
|
||||
import (
|
||||
"github.com/IBM/fp-go/either"
|
||||
"github.com/IBM/fp-go/function"
|
||||
)
|
||||
|
||||
result := function.Pipe3(
|
||||
either.Right[error](10),
|
||||
either.Map(func(x int) int { return x * 2 }),
|
||||
either.Chain(func(x int) either.Either[error, int] {
|
||||
if x > 15 {
|
||||
return either.Right[error](x)
|
||||
}
|
||||
return either.Left[int](errors.New("too small"))
|
||||
}),
|
||||
either.GetOrElse(func() int { return 0 }),
|
||||
)
|
||||
```
|
||||
|
||||
and in fact the equivalent operations for all other monads follow the same pattern, we could try to introduce a new type for `ReaderIOEither` (without a parameter) as a HKT, e.g. like so (made-up syntax, does not work in go):
|
||||
## 📚 Resources
|
||||
|
||||
```go
|
||||
func Map[HKT, R, E, A, B any](f func(A) B) func(HKT[R, E, A]) HKT[R, E, B]
|
||||
```
|
||||
- [API Documentation](https://pkg.go.dev/github.com/IBM/fp-go)
|
||||
- [Code Samples](./samples/)
|
||||
- [V2 Documentation](./v2/README.md) - New features in Go 1.24+
|
||||
- [fp-ts](https://github.com/gcanti/fp-ts) - Original TypeScript inspiration
|
||||
|
||||
this would be the completely generic method signature for all possible monads. In particular in many cases it is possible to compose functions independent of the concrete knowledge of the actual `HKT`. From the perspective of a library this is the ideal situation because then a particular algorithm only has to be implemented and tested once.
|
||||
## 🤝 Contributing
|
||||
|
||||
This FP library addresses this by introducing the HKTs as individual types, e.g. `HKT[A]` would be represented as a new generic type `HKTA`. This loses the correlation to the type `A` but allows to implement generic algorithms, at the price of readability.
|
||||
Contributions are welcome! Please feel free to submit issues or pull requests.
|
||||
|
||||
For that reason these implementations are kept in the `internal` package. These are meant to be used by the library itself or by extensions, not by end users.
|
||||
## 📄 License
|
||||
|
||||
## Map/Ap/Flap
|
||||
|
||||
The following table lists the relationship between some selected operators
|
||||
|
||||
| Opertator | Parameter | Monad | Result |
|
||||
| -------- | ---------------- | --------------- | -------- |
|
||||
| Map | `func(A) B` | `HKT[A]` | `HKT[B]` |
|
||||
| Chain | `func(A) HKT[B]` | `HKT[A]` | `HKT[B]` |
|
||||
| Ap | `HKT[A]` | `HKT[func(A)B]` | `HKT[B]` |
|
||||
| Flap | `A` | `HKT[func(A)B]` | `HKT[B]` |
|
||||
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
|
||||
|
||||
@@ -141,6 +141,10 @@ func reduceRef[A, B any](fa []A, f func(B, *A) B, initial B) B {
|
||||
return current
|
||||
}
|
||||
|
||||
func MonadReduce[A, B any](fa []A, f func(B, A) B, initial B) B {
|
||||
return G.MonadReduce(fa, f, initial)
|
||||
}
|
||||
|
||||
func Reduce[A, B any](f func(B, A) B, initial B) func([]A) B {
|
||||
return G.Reduce[[]A](f, initial)
|
||||
}
|
||||
|
||||
@@ -365,6 +365,70 @@ func generateContextReaderIOEitherEitherize(f, fg *os.File, i int) {
|
||||
fmt.Fprintln(fg, "}")
|
||||
}
|
||||
|
||||
func generateContextReaderIOEitherUneitherize(f, fg *os.File, i int) {
|
||||
// non generic version
|
||||
fmt.Fprintf(f, "\n// Uneitherize%d converts a function with %d parameters returning a [ReaderIOEither[R]] into a function with %d parameters returning a tuple.\n// The first parameter is considered to be the [context.Context].\n", i, i+1, i)
|
||||
fmt.Fprintf(f, "func Uneitherize%d[F ~func(", i)
|
||||
for j := 0; j < i; j++ {
|
||||
if j > 0 {
|
||||
fmt.Fprintf(f, ", ")
|
||||
}
|
||||
fmt.Fprintf(f, "T%d", j)
|
||||
}
|
||||
fmt.Fprintf(f, ") ReaderIOEither[R]")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(f, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(f, ", R any](f F) func(context.Context")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(f, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(f, ") (R, error) {\n")
|
||||
fmt.Fprintf(f, " return G.Uneitherize%d[ReaderIOEither[R]", i)
|
||||
|
||||
fmt.Fprintf(f, ", func(context.Context")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(f, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(f, ")(R, error)](f)\n")
|
||||
fmt.Fprintln(f, "}")
|
||||
|
||||
// generic version
|
||||
fmt.Fprintf(fg, "\n// Uneitherize%d converts a function with %d parameters returning a [GRA] into a function with %d parameters returning a tuple.\n// The first parameter is considered to be the [context.Context].\n", i, i, i)
|
||||
fmt.Fprintf(fg, "func Uneitherize%d[GRA ~func(context.Context) GIOA, F ~func(context.Context", i)
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(fg, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(fg, ") (R, error), GIOA ~func() E.Either[error, R]")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(fg, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(fg, ", R any](f func(")
|
||||
for j := 0; j < i; j++ {
|
||||
if j > 0 {
|
||||
fmt.Fprintf(fg, ", ")
|
||||
}
|
||||
fmt.Fprintf(fg, "T%d", j)
|
||||
}
|
||||
fmt.Fprintf(fg, ") GRA) F {\n")
|
||||
|
||||
fmt.Fprintf(fg, " return func(c context.Context")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(fg, ", t%d T%d", j, j)
|
||||
}
|
||||
fmt.Fprintf(fg, ") (R, error) {\n")
|
||||
fmt.Fprintf(fg, " return E.UnwrapError(f(")
|
||||
for j := 0; j < i; j++ {
|
||||
if j > 0 {
|
||||
fmt.Fprintf(fg, ", ")
|
||||
}
|
||||
fmt.Fprintf(fg, "t%d", j)
|
||||
}
|
||||
fmt.Fprintf(fg, ")(c)())\n")
|
||||
fmt.Fprintf(fg, " }\n")
|
||||
fmt.Fprintf(fg, "}\n")
|
||||
}
|
||||
|
||||
func generateContextReaderIOEitherHelpers(filename string, count int) error {
|
||||
dir, err := os.Getwd()
|
||||
if err != nil {
|
||||
@@ -420,10 +484,12 @@ import (
|
||||
`)
|
||||
|
||||
generateContextReaderIOEitherEitherize(f, fg, 0)
|
||||
generateContextReaderIOEitherUneitherize(f, fg, 0)
|
||||
|
||||
for i := 1; i <= count; i++ {
|
||||
// eitherize
|
||||
generateContextReaderIOEitherEitherize(f, fg, i)
|
||||
generateContextReaderIOEitherUneitherize(f, fg, i)
|
||||
// sequenceT
|
||||
generateContextReaderIOEitherSequenceT("")(f, fg, i)
|
||||
generateContextReaderIOEitherSequenceT("Seq")(f, fg, i)
|
||||
|
||||
@@ -136,6 +136,70 @@ func generateReaderIOEitherEitherize(f, fg *os.File, i int) {
|
||||
fmt.Fprintf(fg, "}\n")
|
||||
}
|
||||
|
||||
func generateReaderIOEitherUneitherize(f, fg *os.File, i int) {
|
||||
// non generic version
|
||||
fmt.Fprintf(f, "\n// Uneitherize%d converts a function with %d parameters returning a [ReaderIOEither[C, error, R]] into a function with %d parameters returning a tuple.\n// The first parameter is considered to be the context [C].\n", i, i+1, i)
|
||||
fmt.Fprintf(f, "func Uneitherize%d[F ~func(", i)
|
||||
for j := 0; j < i; j++ {
|
||||
if j > 0 {
|
||||
fmt.Fprintf(f, ", ")
|
||||
}
|
||||
fmt.Fprintf(f, "T%d", j)
|
||||
}
|
||||
fmt.Fprintf(f, ") ReaderIOEither[C, error, R]")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(f, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(f, ", C, R any](f F) func(C")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(f, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(f, ") (R, error) {\n")
|
||||
fmt.Fprintf(f, " return G.Uneitherize%d[ReaderIOEither[C, error, R]", i)
|
||||
|
||||
fmt.Fprintf(f, ", func(C")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(f, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(f, ")(R, error)](f)\n")
|
||||
fmt.Fprintln(f, "}")
|
||||
|
||||
// generic version
|
||||
fmt.Fprintf(fg, "\n// Uneitherize%d converts a function with %d parameters returning a [GRA] into a function with %d parameters returning a tuple.\n// The first parameter is considered to be the context [C].\n", i, i, i)
|
||||
fmt.Fprintf(fg, "func Uneitherize%d[GRA ~func(C) GIOA, F ~func(C", i)
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(fg, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(fg, ") (R, error), GIOA ~func() E.Either[error, R]")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(fg, ", T%d", j)
|
||||
}
|
||||
fmt.Fprintf(fg, ", C, R any](f func(")
|
||||
for j := 0; j < i; j++ {
|
||||
if j > 0 {
|
||||
fmt.Fprintf(fg, ", ")
|
||||
}
|
||||
fmt.Fprintf(fg, "T%d", j)
|
||||
}
|
||||
fmt.Fprintf(fg, ") GRA) F {\n")
|
||||
|
||||
fmt.Fprintf(fg, " return func(c C")
|
||||
for j := 0; j < i; j++ {
|
||||
fmt.Fprintf(fg, ", t%d T%d", j, j)
|
||||
}
|
||||
fmt.Fprintf(fg, ") (R, error) {\n")
|
||||
fmt.Fprintf(fg, " return E.UnwrapError(f(")
|
||||
for j := 0; j < i; j++ {
|
||||
if j > 0 {
|
||||
fmt.Fprintf(fg, ", ")
|
||||
}
|
||||
fmt.Fprintf(fg, "t%d", j)
|
||||
}
|
||||
fmt.Fprintf(fg, ")(c)())\n")
|
||||
fmt.Fprintf(fg, " }\n")
|
||||
fmt.Fprintf(fg, "}\n")
|
||||
}
|
||||
|
||||
func generateReaderIOEitherHelpers(filename string, count int) error {
|
||||
dir, err := os.Getwd()
|
||||
if err != nil {
|
||||
@@ -197,12 +261,16 @@ import (
|
||||
generateReaderIOEitherFrom(f, fg, 0)
|
||||
// eitherize
|
||||
generateReaderIOEitherEitherize(f, fg, 0)
|
||||
// uneitherize
|
||||
generateReaderIOEitherUneitherize(f, fg, 0)
|
||||
|
||||
for i := 1; i <= count; i++ {
|
||||
// from
|
||||
generateReaderIOEitherFrom(f, fg, i)
|
||||
// eitherize
|
||||
generateReaderIOEitherEitherize(f, fg, i)
|
||||
// uneitherize
|
||||
generateReaderIOEitherUneitherize(f, fg, i)
|
||||
}
|
||||
|
||||
return nil
|
||||
|
||||
15
cli/templates/functions.go
Normal file
15
cli/templates/functions.go
Normal file
@@ -0,0 +1,15 @@
|
||||
package templates
|
||||
|
||||
import (
|
||||
"text/template"
|
||||
|
||||
E "github.com/IBM/fp-go/either"
|
||||
)
|
||||
|
||||
var (
|
||||
templateFunctions = template.FuncMap{}
|
||||
)
|
||||
|
||||
func Parse(name, tmpl string) E.Either[error, *template.Template] {
|
||||
return E.TryCatchError(template.New(name).Funcs(templateFunctions).Parse(tmpl))
|
||||
}
|
||||
@@ -2,7 +2,7 @@ package readerioeither
|
||||
|
||||
// Code generated by go generate; DO NOT EDIT.
|
||||
// This file was generated by robots at
|
||||
// 2024-02-29 16:18:46.1201552 +0100 CET m=+0.020664901
|
||||
// 2024-05-24 22:24:01.4250895 +0200 CEST m=+0.014515801
|
||||
|
||||
import (
|
||||
"context"
|
||||
@@ -17,12 +17,24 @@ func Eitherize0[F ~func(context.Context) (R, error), R any](f F) func() ReaderIO
|
||||
return G.Eitherize0[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize0 converts a function with 1 parameters returning a [ReaderIOEither[R]] into a function with 0 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize0[F ~func() ReaderIOEither[R], R any](f F) func(context.Context) (R, error) {
|
||||
return G.Uneitherize0[ReaderIOEither[R], func(context.Context) (R, error)](f)
|
||||
}
|
||||
|
||||
// Eitherize1 converts a function with 1 parameters returning a tuple into a function with 1 parameters returning a [ReaderIOEither[R]]
|
||||
// The inverse function is [Uneitherize1]
|
||||
func Eitherize1[F ~func(context.Context, T0) (R, error), T0, R any](f F) func(T0) ReaderIOEither[R] {
|
||||
return G.Eitherize1[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize1 converts a function with 2 parameters returning a [ReaderIOEither[R]] into a function with 1 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize1[F ~func(T0) ReaderIOEither[R], T0, R any](f F) func(context.Context, T0) (R, error) {
|
||||
return G.Uneitherize1[ReaderIOEither[R], func(context.Context, T0) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT1 converts 1 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple1].
|
||||
func SequenceT1[T1 any](t1 ReaderIOEither[T1]) ReaderIOEither[T.Tuple1[T1]] {
|
||||
return G.SequenceT1[ReaderIOEither[T.Tuple1[T1]]](t1)
|
||||
@@ -74,6 +86,12 @@ func Eitherize2[F ~func(context.Context, T0, T1) (R, error), T0, T1, R any](f F)
|
||||
return G.Eitherize2[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize2 converts a function with 3 parameters returning a [ReaderIOEither[R]] into a function with 2 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize2[F ~func(T0, T1) ReaderIOEither[R], T0, T1, R any](f F) func(context.Context, T0, T1) (R, error) {
|
||||
return G.Uneitherize2[ReaderIOEither[R], func(context.Context, T0, T1) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT2 converts 2 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple2].
|
||||
func SequenceT2[T1, T2 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2]) ReaderIOEither[T.Tuple2[T1, T2]] {
|
||||
return G.SequenceT2[ReaderIOEither[T.Tuple2[T1, T2]]](t1, t2)
|
||||
@@ -125,6 +143,12 @@ func Eitherize3[F ~func(context.Context, T0, T1, T2) (R, error), T0, T1, T2, R a
|
||||
return G.Eitherize3[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize3 converts a function with 4 parameters returning a [ReaderIOEither[R]] into a function with 3 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize3[F ~func(T0, T1, T2) ReaderIOEither[R], T0, T1, T2, R any](f F) func(context.Context, T0, T1, T2) (R, error) {
|
||||
return G.Uneitherize3[ReaderIOEither[R], func(context.Context, T0, T1, T2) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT3 converts 3 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple3].
|
||||
func SequenceT3[T1, T2, T3 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2], t3 ReaderIOEither[T3]) ReaderIOEither[T.Tuple3[T1, T2, T3]] {
|
||||
return G.SequenceT3[ReaderIOEither[T.Tuple3[T1, T2, T3]]](t1, t2, t3)
|
||||
@@ -176,6 +200,12 @@ func Eitherize4[F ~func(context.Context, T0, T1, T2, T3) (R, error), T0, T1, T2,
|
||||
return G.Eitherize4[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize4 converts a function with 5 parameters returning a [ReaderIOEither[R]] into a function with 4 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize4[F ~func(T0, T1, T2, T3) ReaderIOEither[R], T0, T1, T2, T3, R any](f F) func(context.Context, T0, T1, T2, T3) (R, error) {
|
||||
return G.Uneitherize4[ReaderIOEither[R], func(context.Context, T0, T1, T2, T3) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT4 converts 4 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple4].
|
||||
func SequenceT4[T1, T2, T3, T4 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2], t3 ReaderIOEither[T3], t4 ReaderIOEither[T4]) ReaderIOEither[T.Tuple4[T1, T2, T3, T4]] {
|
||||
return G.SequenceT4[ReaderIOEither[T.Tuple4[T1, T2, T3, T4]]](t1, t2, t3, t4)
|
||||
@@ -227,6 +257,12 @@ func Eitherize5[F ~func(context.Context, T0, T1, T2, T3, T4) (R, error), T0, T1,
|
||||
return G.Eitherize5[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize5 converts a function with 6 parameters returning a [ReaderIOEither[R]] into a function with 5 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize5[F ~func(T0, T1, T2, T3, T4) ReaderIOEither[R], T0, T1, T2, T3, T4, R any](f F) func(context.Context, T0, T1, T2, T3, T4) (R, error) {
|
||||
return G.Uneitherize5[ReaderIOEither[R], func(context.Context, T0, T1, T2, T3, T4) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT5 converts 5 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple5].
|
||||
func SequenceT5[T1, T2, T3, T4, T5 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2], t3 ReaderIOEither[T3], t4 ReaderIOEither[T4], t5 ReaderIOEither[T5]) ReaderIOEither[T.Tuple5[T1, T2, T3, T4, T5]] {
|
||||
return G.SequenceT5[ReaderIOEither[T.Tuple5[T1, T2, T3, T4, T5]]](t1, t2, t3, t4, t5)
|
||||
@@ -278,6 +314,12 @@ func Eitherize6[F ~func(context.Context, T0, T1, T2, T3, T4, T5) (R, error), T0,
|
||||
return G.Eitherize6[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize6 converts a function with 7 parameters returning a [ReaderIOEither[R]] into a function with 6 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize6[F ~func(T0, T1, T2, T3, T4, T5) ReaderIOEither[R], T0, T1, T2, T3, T4, T5, R any](f F) func(context.Context, T0, T1, T2, T3, T4, T5) (R, error) {
|
||||
return G.Uneitherize6[ReaderIOEither[R], func(context.Context, T0, T1, T2, T3, T4, T5) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT6 converts 6 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple6].
|
||||
func SequenceT6[T1, T2, T3, T4, T5, T6 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2], t3 ReaderIOEither[T3], t4 ReaderIOEither[T4], t5 ReaderIOEither[T5], t6 ReaderIOEither[T6]) ReaderIOEither[T.Tuple6[T1, T2, T3, T4, T5, T6]] {
|
||||
return G.SequenceT6[ReaderIOEither[T.Tuple6[T1, T2, T3, T4, T5, T6]]](t1, t2, t3, t4, t5, t6)
|
||||
@@ -329,6 +371,12 @@ func Eitherize7[F ~func(context.Context, T0, T1, T2, T3, T4, T5, T6) (R, error),
|
||||
return G.Eitherize7[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize7 converts a function with 8 parameters returning a [ReaderIOEither[R]] into a function with 7 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize7[F ~func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[R], T0, T1, T2, T3, T4, T5, T6, R any](f F) func(context.Context, T0, T1, T2, T3, T4, T5, T6) (R, error) {
|
||||
return G.Uneitherize7[ReaderIOEither[R], func(context.Context, T0, T1, T2, T3, T4, T5, T6) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT7 converts 7 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple7].
|
||||
func SequenceT7[T1, T2, T3, T4, T5, T6, T7 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2], t3 ReaderIOEither[T3], t4 ReaderIOEither[T4], t5 ReaderIOEither[T5], t6 ReaderIOEither[T6], t7 ReaderIOEither[T7]) ReaderIOEither[T.Tuple7[T1, T2, T3, T4, T5, T6, T7]] {
|
||||
return G.SequenceT7[ReaderIOEither[T.Tuple7[T1, T2, T3, T4, T5, T6, T7]]](t1, t2, t3, t4, t5, t6, t7)
|
||||
@@ -380,6 +428,12 @@ func Eitherize8[F ~func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7) (R, err
|
||||
return G.Eitherize8[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize8 converts a function with 9 parameters returning a [ReaderIOEither[R]] into a function with 8 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize8[F ~func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[R], T0, T1, T2, T3, T4, T5, T6, T7, R any](f F) func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7) (R, error) {
|
||||
return G.Uneitherize8[ReaderIOEither[R], func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT8 converts 8 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple8].
|
||||
func SequenceT8[T1, T2, T3, T4, T5, T6, T7, T8 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2], t3 ReaderIOEither[T3], t4 ReaderIOEither[T4], t5 ReaderIOEither[T5], t6 ReaderIOEither[T6], t7 ReaderIOEither[T7], t8 ReaderIOEither[T8]) ReaderIOEither[T.Tuple8[T1, T2, T3, T4, T5, T6, T7, T8]] {
|
||||
return G.SequenceT8[ReaderIOEither[T.Tuple8[T1, T2, T3, T4, T5, T6, T7, T8]]](t1, t2, t3, t4, t5, t6, t7, t8)
|
||||
@@ -431,6 +485,12 @@ func Eitherize9[F ~func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R,
|
||||
return G.Eitherize9[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize9 converts a function with 10 parameters returning a [ReaderIOEither[R]] into a function with 9 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize9[F ~func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[R], T0, T1, T2, T3, T4, T5, T6, T7, T8, R any](f F) func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error) {
|
||||
return G.Uneitherize9[ReaderIOEither[R], func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT9 converts 9 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple9].
|
||||
func SequenceT9[T1, T2, T3, T4, T5, T6, T7, T8, T9 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2], t3 ReaderIOEither[T3], t4 ReaderIOEither[T4], t5 ReaderIOEither[T5], t6 ReaderIOEither[T6], t7 ReaderIOEither[T7], t8 ReaderIOEither[T8], t9 ReaderIOEither[T9]) ReaderIOEither[T.Tuple9[T1, T2, T3, T4, T5, T6, T7, T8, T9]] {
|
||||
return G.SequenceT9[ReaderIOEither[T.Tuple9[T1, T2, T3, T4, T5, T6, T7, T8, T9]]](t1, t2, t3, t4, t5, t6, t7, t8, t9)
|
||||
@@ -482,6 +542,12 @@ func Eitherize10[F ~func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
|
||||
return G.Eitherize10[ReaderIOEither[R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize10 converts a function with 11 parameters returning a [ReaderIOEither[R]] into a function with 10 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize10[F ~func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[R], T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, R any](f F) func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error) {
|
||||
return G.Uneitherize10[ReaderIOEither[R], func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error)](f)
|
||||
}
|
||||
|
||||
// SequenceT10 converts 10 [ReaderIOEither] into a [ReaderIOEither] of a [T.Tuple10].
|
||||
func SequenceT10[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10 any](t1 ReaderIOEither[T1], t2 ReaderIOEither[T2], t3 ReaderIOEither[T3], t4 ReaderIOEither[T4], t5 ReaderIOEither[T5], t6 ReaderIOEither[T6], t7 ReaderIOEither[T7], t8 ReaderIOEither[T8], t9 ReaderIOEither[T9], t10 ReaderIOEither[T10]) ReaderIOEither[T.Tuple10[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10]] {
|
||||
return G.SequenceT10[ReaderIOEither[T.Tuple10[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10]]](t1, t2, t3, t4, t5, t6, t7, t8, t9, t10)
|
||||
|
||||
@@ -2,7 +2,7 @@ package generic
|
||||
|
||||
// Code generated by go generate; DO NOT EDIT.
|
||||
// This file was generated by robots at
|
||||
// 2024-02-29 16:18:46.1217523 +0100 CET m=+0.022262001
|
||||
// 2024-05-24 22:24:01.4250895 +0200 CEST m=+0.014515801
|
||||
|
||||
import (
|
||||
"context"
|
||||
@@ -19,12 +19,28 @@ func Eitherize0[GRA ~func(context.Context) GIOA, F ~func(context.Context) (R, er
|
||||
return RE.Eitherize0[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize0 converts a function with 0 parameters returning a [GRA] into a function with 0 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize0[GRA ~func(context.Context) GIOA, F ~func(context.Context) (R, error), GIOA ~func() E.Either[error, R], R any](f func() GRA) F {
|
||||
return func(c context.Context) (R, error) {
|
||||
return E.UnwrapError(f()(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// Eitherize1 converts a function with 1 parameters returning a tuple into a function with 1 parameters returning a [GRA]
|
||||
// The inverse function is [Uneitherize1]
|
||||
func Eitherize1[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0) (R, error), GIOA ~func() E.Either[error, R], T0, R any](f F) func(T0) GRA {
|
||||
return RE.Eitherize1[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize1 converts a function with 1 parameters returning a [GRA] into a function with 1 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize1[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0) (R, error), GIOA ~func() E.Either[error, R], T0, R any](f func(T0) GRA) F {
|
||||
return func(c context.Context, t0 T0) (R, error) {
|
||||
return E.UnwrapError(f(t0)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT1 converts 1 readers into a reader of a [T.Tuple1].
|
||||
func SequenceT1[
|
||||
GR_TUPLE1 ~func(context.Context) GIO_TUPLE1,
|
||||
@@ -169,6 +185,14 @@ func Eitherize2[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1
|
||||
return RE.Eitherize2[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize2 converts a function with 2 parameters returning a [GRA] into a function with 2 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize2[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1) (R, error), GIOA ~func() E.Either[error, R], T0, T1, R any](f func(T0, T1) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT2 converts 2 readers into a reader of a [T.Tuple2].
|
||||
func SequenceT2[
|
||||
GR_TUPLE2 ~func(context.Context) GIO_TUPLE2,
|
||||
@@ -364,6 +388,14 @@ func Eitherize3[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1
|
||||
return RE.Eitherize3[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize3 converts a function with 3 parameters returning a [GRA] into a function with 3 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize3[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1, T2) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, R any](f func(T0, T1, T2) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1, t2 T2) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT3 converts 3 readers into a reader of a [T.Tuple3].
|
||||
func SequenceT3[
|
||||
GR_TUPLE3 ~func(context.Context) GIO_TUPLE3,
|
||||
@@ -610,6 +642,14 @@ func Eitherize4[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1
|
||||
return RE.Eitherize4[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize4 converts a function with 4 parameters returning a [GRA] into a function with 4 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize4[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1, T2, T3) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, R any](f func(T0, T1, T2, T3) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1, t2 T2, t3 T3) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT4 converts 4 readers into a reader of a [T.Tuple4].
|
||||
func SequenceT4[
|
||||
GR_TUPLE4 ~func(context.Context) GIO_TUPLE4,
|
||||
@@ -907,6 +947,14 @@ func Eitherize5[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1
|
||||
return RE.Eitherize5[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize5 converts a function with 5 parameters returning a [GRA] into a function with 5 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize5[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1, T2, T3, T4) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, R any](f func(T0, T1, T2, T3, T4) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT5 converts 5 readers into a reader of a [T.Tuple5].
|
||||
func SequenceT5[
|
||||
GR_TUPLE5 ~func(context.Context) GIO_TUPLE5,
|
||||
@@ -1255,6 +1303,14 @@ func Eitherize6[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1
|
||||
return RE.Eitherize6[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize6 converts a function with 6 parameters returning a [GRA] into a function with 6 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize6[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1, T2, T3, T4, T5) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, R any](f func(T0, T1, T2, T3, T4, T5) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT6 converts 6 readers into a reader of a [T.Tuple6].
|
||||
func SequenceT6[
|
||||
GR_TUPLE6 ~func(context.Context) GIO_TUPLE6,
|
||||
@@ -1654,6 +1710,14 @@ func Eitherize7[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1
|
||||
return RE.Eitherize7[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize7 converts a function with 7 parameters returning a [GRA] into a function with 7 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize7[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1, T2, T3, T4, T5, T6) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, R any](f func(T0, T1, T2, T3, T4, T5, T6) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5, t6)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT7 converts 7 readers into a reader of a [T.Tuple7].
|
||||
func SequenceT7[
|
||||
GR_TUPLE7 ~func(context.Context) GIO_TUPLE7,
|
||||
@@ -2104,6 +2168,14 @@ func Eitherize8[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1
|
||||
return RE.Eitherize8[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize8 converts a function with 8 parameters returning a [GRA] into a function with 8 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize8[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, R any](f func(T0, T1, T2, T3, T4, T5, T6, T7) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5, t6, t7)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT8 converts 8 readers into a reader of a [T.Tuple8].
|
||||
func SequenceT8[
|
||||
GR_TUPLE8 ~func(context.Context) GIO_TUPLE8,
|
||||
@@ -2605,6 +2677,14 @@ func Eitherize9[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1
|
||||
return RE.Eitherize9[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize9 converts a function with 9 parameters returning a [GRA] into a function with 9 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize9[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, R any](f func(T0, T1, T2, T3, T4, T5, T6, T7, T8) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7, t8 T8) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5, t6, t7, t8)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT9 converts 9 readers into a reader of a [T.Tuple9].
|
||||
func SequenceT9[
|
||||
GR_TUPLE9 ~func(context.Context) GIO_TUPLE9,
|
||||
@@ -3157,6 +3237,14 @@ func Eitherize10[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T
|
||||
return RE.Eitherize10[GRA](f)
|
||||
}
|
||||
|
||||
// Uneitherize10 converts a function with 10 parameters returning a [GRA] into a function with 10 parameters returning a tuple.
|
||||
// The first parameter is considered to be the [context.Context].
|
||||
func Uneitherize10[GRA ~func(context.Context) GIOA, F ~func(context.Context, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, R any](f func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) GRA) F {
|
||||
return func(c context.Context, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7, t8 T8, t9 T9) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceT10 converts 10 readers into a reader of a [T.Tuple10].
|
||||
func SequenceT10[
|
||||
GR_TUPLE10 ~func(context.Context) GIO_TUPLE10,
|
||||
|
||||
@@ -25,6 +25,7 @@ import (
|
||||
IOE "github.com/IBM/fp-go/ioeither"
|
||||
L "github.com/IBM/fp-go/lazy"
|
||||
O "github.com/IBM/fp-go/option"
|
||||
RIO "github.com/IBM/fp-go/readerio"
|
||||
)
|
||||
|
||||
func FromEither[A any](e ET.Either[error, A]) ReaderIOEither[A] {
|
||||
@@ -192,8 +193,7 @@ func Memoize[A any](rdr ReaderIOEither[A]) ReaderIOEither[A] {
|
||||
}
|
||||
|
||||
// Flatten converts a nested [ReaderIOEither] into a [ReaderIOEither]
|
||||
func Flatten[
|
||||
A any](rdr ReaderIOEither[ReaderIOEither[A]]) ReaderIOEither[A] {
|
||||
func Flatten[A any](rdr ReaderIOEither[ReaderIOEither[A]]) ReaderIOEither[A] {
|
||||
return G.Flatten[ReaderIOEither[ReaderIOEither[A]]](rdr)
|
||||
}
|
||||
|
||||
@@ -204,3 +204,15 @@ func MonadFlap[B, A any](fab ReaderIOEither[func(A) B], a A) ReaderIOEither[B] {
|
||||
func Flap[B, A any](a A) func(ReaderIOEither[func(A) B]) ReaderIOEither[B] {
|
||||
return G.Flap[ReaderIOEither[func(A) B], ReaderIOEither[B]](a)
|
||||
}
|
||||
|
||||
func Fold[A, B any](onLeft func(error) ReaderIOEither[B], onRight func(A) ReaderIOEither[B]) func(ReaderIOEither[A]) ReaderIOEither[B] {
|
||||
return G.Fold[ReaderIOEither[B], ReaderIOEither[A]](onLeft, onRight)
|
||||
}
|
||||
|
||||
func GetOrElse[A any](onLeft func(error) RIO.ReaderIO[context.Context, A]) func(ReaderIOEither[A]) RIO.ReaderIO[context.Context, A] {
|
||||
return G.GetOrElse[RIO.ReaderIO[context.Context, A], ReaderIOEither[A]](onLeft)
|
||||
}
|
||||
|
||||
func OrLeft[A any](onLeft func(error) RIO.ReaderIO[context.Context, error]) func(ReaderIOEither[A]) ReaderIOEither[A] {
|
||||
return G.OrLeft[ReaderIOEither[A]](onLeft)
|
||||
}
|
||||
|
||||
@@ -1,2 +1,3 @@
|
||||
@echo off
|
||||
go tool cover -html=build/cover.out -o build/cover.html
|
||||
go tool cover -html=build/cover.out -o build/cover.html
|
||||
cov-report -ex ".*/cli/.*.go|.*/gen.go|.*/binds.go" build\cover.out
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
package either
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
TST "github.com/IBM/fp-go/internal/testing"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
@@ -16,3 +18,33 @@ func TestCompactArray(t *testing.T) {
|
||||
res := CompactArray(ar)
|
||||
assert.Equal(t, 2, len(res))
|
||||
}
|
||||
|
||||
func TestSequenceArray(t *testing.T) {
|
||||
|
||||
s := TST.SequenceArrayTest(
|
||||
FromStrictEquals[error, bool](),
|
||||
Pointed[error, string](),
|
||||
Pointed[error, bool](),
|
||||
Functor[error, []string, bool](),
|
||||
SequenceArray[error, string],
|
||||
)
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
t.Run(fmt.Sprintf("TestSequenceArray %d", i), s(i))
|
||||
}
|
||||
}
|
||||
|
||||
func TestSequenceArrayError(t *testing.T) {
|
||||
|
||||
s := TST.SequenceArrayErrorTest(
|
||||
FromStrictEquals[error, bool](),
|
||||
Left[string, error],
|
||||
Left[bool, error],
|
||||
Pointed[error, string](),
|
||||
Pointed[error, bool](),
|
||||
Functor[error, []string, bool](),
|
||||
SequenceArray[error, string],
|
||||
)
|
||||
// run across four bits
|
||||
s(4)(t)
|
||||
}
|
||||
|
||||
@@ -21,8 +21,8 @@ import (
|
||||
|
||||
type (
|
||||
either struct {
|
||||
isLeft bool
|
||||
value any
|
||||
isLeft bool
|
||||
}
|
||||
|
||||
// Either defines a data structure that logically holds either an E or an A. The flag discriminates the cases
|
||||
@@ -31,7 +31,7 @@ type (
|
||||
|
||||
// String prints some debug info for the object
|
||||
//
|
||||
// go:noinline
|
||||
//go:noinline
|
||||
func eitherString(s *either) string {
|
||||
if s.isLeft {
|
||||
return fmt.Sprintf("Left[%T](%v)", s.value, s.value)
|
||||
@@ -41,7 +41,7 @@ func eitherString(s *either) string {
|
||||
|
||||
// Format prints some debug info for the object
|
||||
//
|
||||
// go:noinline
|
||||
//go:noinline
|
||||
func eitherFormat(e *either, f fmt.State, c rune) {
|
||||
switch c {
|
||||
case 's':
|
||||
@@ -73,12 +73,12 @@ func IsRight[E, A any](val Either[E, A]) bool {
|
||||
|
||||
// Left creates a new instance of an [Either] representing the left value.
|
||||
func Left[A, E any](value E) Either[E, A] {
|
||||
return Either[E, A]{true, value}
|
||||
return Either[E, A]{value, true}
|
||||
}
|
||||
|
||||
// Right creates a new instance of an [Either] representing the right value.
|
||||
func Right[E, A any](value A) Either[E, A] {
|
||||
return Either[E, A]{false, value}
|
||||
return Either[E, A]{value, false}
|
||||
}
|
||||
|
||||
// MonadFold extracts the values from an [Either] by invoking the [onLeft] callback or the [onRight] callback depending on the case
|
||||
@@ -94,8 +94,7 @@ func Unwrap[E, A any](ma Either[E, A]) (A, E) {
|
||||
if ma.isLeft {
|
||||
var a A
|
||||
return a, ma.value.(E)
|
||||
} else {
|
||||
var e E
|
||||
return ma.value.(A), e
|
||||
}
|
||||
var e E
|
||||
return ma.value.(A), e
|
||||
}
|
||||
|
||||
31
either/functor.go
Normal file
31
either/functor.go
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package either
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
)
|
||||
|
||||
type eitherFunctor[E, A, B any] struct{}
|
||||
|
||||
func (o *eitherFunctor[E, A, B]) Map(f func(A) B) func(Either[E, A]) Either[E, B] {
|
||||
return Map[E, A, B](f)
|
||||
}
|
||||
|
||||
// Functor implements the functoric operations for [Either]
|
||||
func Functor[E, A, B any]() functor.Functor[A, B, Either[E, A], Either[E, B]] {
|
||||
return &eitherFunctor[E, A, B]{}
|
||||
}
|
||||
31
either/pointed.go
Normal file
31
either/pointed.go
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package either
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
)
|
||||
|
||||
type eitherPointed[E, A any] struct{}
|
||||
|
||||
func (o *eitherPointed[E, A]) Of(a A) Either[E, A] {
|
||||
return Of[E, A](a)
|
||||
}
|
||||
|
||||
// Pointed implements the pointedic operations for [Either]
|
||||
func Pointed[E, A any]() pointed.Pointed[A, Either[E, A]] {
|
||||
return &eitherPointed[E, A]{}
|
||||
}
|
||||
8
go.mod
8
go.mod
@@ -3,15 +3,15 @@ module github.com/IBM/fp-go
|
||||
go 1.20
|
||||
|
||||
require (
|
||||
github.com/stretchr/testify v1.9.0
|
||||
github.com/urfave/cli/v2 v2.27.1
|
||||
github.com/stretchr/testify v1.11.1
|
||||
github.com/urfave/cli/v2 v2.27.7
|
||||
)
|
||||
|
||||
require (
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.4 // indirect
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.7 // indirect
|
||||
github.com/davecgh/go-spew v1.1.1 // indirect
|
||||
github.com/pmezard/go-difflib v1.0.0 // indirect
|
||||
github.com/russross/blackfriday/v2 v2.1.0 // indirect
|
||||
github.com/xrash/smetrics v0.0.0-20240312152122-5f08fbb34913 // indirect
|
||||
github.com/xrash/smetrics v0.0.0-20240521201337-686a1a2994c1 // indirect
|
||||
gopkg.in/yaml.v3 v3.0.1 // indirect
|
||||
)
|
||||
|
||||
24
go.sum
24
go.sum
@@ -1,5 +1,9 @@
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.4 h1:wfIWP927BUkWJb2NmU/kNDYIBTh/ziUX91+lVfRxZq4=
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.4/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.5 h1:ZtcqGrnekaHpVLArFSe4HK5DoKx1T0rq2DwVB0alcyc=
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.5/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.7 h1:zbFlGlXEAKlwXpmvle3d8Oe3YnkKIK4xSRTd3sHPnBo=
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.7/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6NIQQ7OS05n1F4g=
|
||||
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
|
||||
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
|
||||
@@ -8,10 +12,22 @@ github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf
|
||||
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
|
||||
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
|
||||
github.com/stretchr/testify v1.9.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
|
||||
github.com/urfave/cli/v2 v2.27.1 h1:8xSQ6szndafKVRmfyeUMxkNUJQMjL1F2zmsZ+qHpfho=
|
||||
github.com/urfave/cli/v2 v2.27.1/go.mod h1:8qnjx1vcq5s2/wpsqoZFndg2CE5tNFyrTvS6SinrnYQ=
|
||||
github.com/xrash/smetrics v0.0.0-20240312152122-5f08fbb34913 h1:+qGGcbkzsfDQNPPe9UDgpxAWQrhbbBXOYJFQDq/dtJw=
|
||||
github.com/xrash/smetrics v0.0.0-20240312152122-5f08fbb34913/go.mod h1:4aEEwZQutDLsQv2Deui4iYQ6DWTxR14g6m8Wv88+Xqk=
|
||||
github.com/stretchr/testify v1.10.0 h1:Xv5erBjTwe/5IxqUQTdXv5kgmIvbHo3QQyRwhJsOfJA=
|
||||
github.com/stretchr/testify v1.10.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
|
||||
github.com/stretchr/testify v1.11.0 h1:ib4sjIrwZKxE5u/Japgo/7SJV3PvgjGiRNAvTVGqQl8=
|
||||
github.com/stretchr/testify v1.11.0/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
|
||||
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
|
||||
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
|
||||
github.com/urfave/cli/v2 v2.27.4 h1:o1owoI+02Eb+K107p27wEX9Bb8eqIoZCfLXloLUSWJ8=
|
||||
github.com/urfave/cli/v2 v2.27.4/go.mod h1:m4QzxcD2qpra4z7WhzEGn74WZLViBnMpb1ToCAKdGRQ=
|
||||
github.com/urfave/cli/v2 v2.27.5 h1:WoHEJLdsXr6dDWoJgMq/CboDmyY/8HMMH1fTECbih+w=
|
||||
github.com/urfave/cli/v2 v2.27.5/go.mod h1:3Sevf16NykTbInEnD0yKkjDAeZDS0A6bzhBH5hrMvTQ=
|
||||
github.com/urfave/cli/v2 v2.27.6 h1:VdRdS98FNhKZ8/Az8B7MTyGQmpIr36O1EHybx/LaZ4g=
|
||||
github.com/urfave/cli/v2 v2.27.6/go.mod h1:3Sevf16NykTbInEnD0yKkjDAeZDS0A6bzhBH5hrMvTQ=
|
||||
github.com/urfave/cli/v2 v2.27.7 h1:bH59vdhbjLv3LAvIu6gd0usJHgoTTPhCFib8qqOwXYU=
|
||||
github.com/urfave/cli/v2 v2.27.7/go.mod h1:CyNAG/xg+iAOg0N4MPGZqVmv2rCoP267496AOXUZjA4=
|
||||
github.com/xrash/smetrics v0.0.0-20240521201337-686a1a2994c1 h1:gEOO8jv9F4OT7lGCjxCBTO/36wtF6j2nSip77qHd4x4=
|
||||
github.com/xrash/smetrics v0.0.0-20240521201337-686a1a2994c1/go.mod h1:Ohn+xnUBiLI6FVj/9LpzZWtj1/D6lUovWYBkxHVV3aM=
|
||||
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
|
||||
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
|
||||
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
|
||||
|
||||
@@ -17,6 +17,37 @@ package array
|
||||
|
||||
func Slice[GA ~[]A, A any](low, high int) func(as GA) GA {
|
||||
return func(as GA) GA {
|
||||
length := len(as)
|
||||
|
||||
// Handle negative indices - count backward from the end
|
||||
if low < 0 {
|
||||
low = length + low
|
||||
if low < 0 {
|
||||
low = 0
|
||||
}
|
||||
}
|
||||
if high < 0 {
|
||||
high = length + high
|
||||
if high < 0 {
|
||||
high = 0
|
||||
}
|
||||
}
|
||||
|
||||
// Start index > array length: return empty array
|
||||
if low > length {
|
||||
return Empty[GA, A]()
|
||||
}
|
||||
|
||||
// End index > array length: slice to the end
|
||||
if high > length {
|
||||
high = length
|
||||
}
|
||||
|
||||
// Start >= end: return empty array
|
||||
if low >= high {
|
||||
return Empty[GA, A]()
|
||||
}
|
||||
|
||||
return as[low:high]
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package file
|
||||
package bracket
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/function"
|
||||
|
||||
183
internal/testing/sequence.go
Normal file
183
internal/testing/sequence.go
Normal file
@@ -0,0 +1,183 @@
|
||||
// Copyright (c) 2023 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package testing
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
EQ "github.com/IBM/fp-go/eq"
|
||||
F "github.com/IBM/fp-go/function"
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// SequenceArrayTest tests if the sequence operation works in case the operation cannot error
|
||||
func SequenceArrayTest[
|
||||
HKTA,
|
||||
HKTB,
|
||||
HKTAA any, // HKT[[]A]
|
||||
](
|
||||
eq EQ.Eq[HKTB],
|
||||
|
||||
pa pointed.Pointed[string, HKTA],
|
||||
pb pointed.Pointed[bool, HKTB],
|
||||
faa functor.Functor[[]string, bool, HKTAA, HKTB],
|
||||
seq func([]HKTA) HKTAA,
|
||||
) func(count int) func(t *testing.T) {
|
||||
|
||||
return func(count int) func(t *testing.T) {
|
||||
|
||||
exp := make([]string, count)
|
||||
good := make([]HKTA, count)
|
||||
for i := 0; i < count; i++ {
|
||||
val := fmt.Sprintf("TestData %d", i)
|
||||
exp[i] = val
|
||||
good[i] = pa.Of(val)
|
||||
}
|
||||
|
||||
return func(t *testing.T) {
|
||||
res := F.Pipe2(
|
||||
good,
|
||||
seq,
|
||||
faa.Map(func(act []string) bool {
|
||||
return assert.Equal(t, exp, act)
|
||||
}),
|
||||
)
|
||||
assert.True(t, eq.Equals(res, pb.Of(true)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceArrayErrorTest tests if the sequence operation works in case the operation can error
|
||||
func SequenceArrayErrorTest[
|
||||
HKTA,
|
||||
HKTB,
|
||||
HKTAA any, // HKT[[]A]
|
||||
](
|
||||
eq EQ.Eq[HKTB],
|
||||
|
||||
left func(error) HKTA,
|
||||
leftB func(error) HKTB,
|
||||
pa pointed.Pointed[string, HKTA],
|
||||
pb pointed.Pointed[bool, HKTB],
|
||||
faa functor.Functor[[]string, bool, HKTAA, HKTB],
|
||||
seq func([]HKTA) HKTAA,
|
||||
) func(count int) func(t *testing.T) {
|
||||
|
||||
return func(count int) func(t *testing.T) {
|
||||
|
||||
expGood := make([]string, count)
|
||||
good := make([]HKTA, count)
|
||||
expBad := make([]error, count)
|
||||
bad := make([]HKTA, count)
|
||||
|
||||
for i := 0; i < count; i++ {
|
||||
goodVal := fmt.Sprintf("TestData %d", i)
|
||||
badVal := fmt.Errorf("ErrorData %d", i)
|
||||
expGood[i] = goodVal
|
||||
good[i] = pa.Of(goodVal)
|
||||
expBad[i] = badVal
|
||||
bad[i] = left(badVal)
|
||||
}
|
||||
|
||||
total := 1 << count
|
||||
|
||||
return func(t *testing.T) {
|
||||
// test the good case
|
||||
res := F.Pipe2(
|
||||
good,
|
||||
seq,
|
||||
faa.Map(func(act []string) bool {
|
||||
return assert.Equal(t, expGood, act)
|
||||
}),
|
||||
)
|
||||
assert.True(t, eq.Equals(res, pb.Of(true)))
|
||||
// iterate and test the bad cases
|
||||
for i := 1; i < total; i++ {
|
||||
// run the test
|
||||
t.Run(fmt.Sprintf("Bitmask test %d", i), func(t1 *testing.T) {
|
||||
// the actual
|
||||
act := make([]HKTA, count)
|
||||
// the expected error
|
||||
var exp error
|
||||
// prepare the values bases on the bit mask
|
||||
mask := 1
|
||||
for j := 0; j < count; j++ {
|
||||
if (i & mask) == 0 {
|
||||
act[j] = good[j]
|
||||
} else {
|
||||
act[j] = bad[j]
|
||||
if exp == nil {
|
||||
exp = expBad[j]
|
||||
}
|
||||
}
|
||||
mask <<= 1
|
||||
}
|
||||
// test the good case
|
||||
res := F.Pipe2(
|
||||
act,
|
||||
seq,
|
||||
faa.Map(func(act []string) bool {
|
||||
return assert.Equal(t, expGood, act)
|
||||
}),
|
||||
)
|
||||
// validate the error
|
||||
assert.True(t, eq.Equals(res, leftB(exp)))
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// SequenceRecordTest tests if the sequence operation works in case the operation cannot error
|
||||
func SequenceRecordTest[
|
||||
HKTA,
|
||||
HKTB,
|
||||
HKTAA any, // HKT[map[string]string]
|
||||
](
|
||||
eq EQ.Eq[HKTB],
|
||||
|
||||
pa pointed.Pointed[string, HKTA],
|
||||
pb pointed.Pointed[bool, HKTB],
|
||||
faa functor.Functor[map[string]string, bool, HKTAA, HKTB],
|
||||
seq func(map[string]HKTA) HKTAA,
|
||||
) func(count int) func(t *testing.T) {
|
||||
|
||||
return func(count int) func(t *testing.T) {
|
||||
|
||||
exp := make(map[string]string)
|
||||
good := make(map[string]HKTA)
|
||||
for i := 0; i < count; i++ {
|
||||
key := fmt.Sprintf("KeyData %d", i)
|
||||
val := fmt.Sprintf("ValueData %d", i)
|
||||
exp[key] = val
|
||||
good[key] = pa.Of(val)
|
||||
}
|
||||
|
||||
return func(t *testing.T) {
|
||||
res := F.Pipe2(
|
||||
good,
|
||||
seq,
|
||||
faa.Map(func(act map[string]string) bool {
|
||||
return assert.Equal(t, exp, act)
|
||||
}),
|
||||
)
|
||||
assert.True(t, eq.Equals(res, pb.Of(true)))
|
||||
}
|
||||
}
|
||||
}
|
||||
5
io/eq.go
5
io/eq.go
@@ -24,3 +24,8 @@ import (
|
||||
func Eq[A any](e EQ.Eq[A]) EQ.Eq[IO[A]] {
|
||||
return G.Eq[IO[A]](e)
|
||||
}
|
||||
|
||||
// FromStrictEquals constructs an [EQ.Eq] from the canonical comparison function
|
||||
func FromStrictEquals[A comparable]() EQ.Eq[IO[A]] {
|
||||
return G.FromStrictEquals[IO[A]]()
|
||||
}
|
||||
|
||||
26
io/functor.go
Normal file
26
io/functor.go
Normal file
@@ -0,0 +1,26 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package io
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
G "github.com/IBM/fp-go/io/generic"
|
||||
)
|
||||
|
||||
// Functor returns the monadic operations for [IO]
|
||||
func Functor[A, B any]() functor.Functor[A, B, IO[A], IO[B]] {
|
||||
return G.Functor[A, B, IO[A], IO[B]]()
|
||||
}
|
||||
@@ -33,3 +33,8 @@ func Eq[GA ~func() A, A any](e EQ.Eq[A]) EQ.Eq[GA] {
|
||||
return eq(l, r)()
|
||||
})
|
||||
}
|
||||
|
||||
// FromStrictEquals constructs an [EQ.Eq] from the canonical comparison function
|
||||
func FromStrictEquals[GA ~func() A, A comparable]() EQ.Eq[GA] {
|
||||
return Eq[GA](EQ.FromStrictEquals[A]())
|
||||
}
|
||||
|
||||
31
io/generic/functor.go
Normal file
31
io/generic/functor.go
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
)
|
||||
|
||||
type ioFunctor[A, B any, GA ~func() A, GB ~func() B] struct{}
|
||||
|
||||
func (o *ioFunctor[A, B, GA, GB]) Map(f func(A) B) func(GA) GB {
|
||||
return Map[GA, GB, A, B](f)
|
||||
}
|
||||
|
||||
// Functor implements the functoric operations for [IO]
|
||||
func Functor[A, B any, GA ~func() A, GB ~func() B]() functor.Functor[A, B, GA, GB] {
|
||||
return &ioFunctor[A, B, GA, GB]{}
|
||||
}
|
||||
31
io/generic/pointed.go
Normal file
31
io/generic/pointed.go
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
)
|
||||
|
||||
type ioPointed[A any, GA ~func() A] struct{}
|
||||
|
||||
func (o *ioPointed[A, GA]) Of(a A) GA {
|
||||
return Of[GA, A](a)
|
||||
}
|
||||
|
||||
// Pointed implements the pointedic operations for [IO]
|
||||
func Pointed[A any, GA ~func() A]() pointed.Pointed[A, GA] {
|
||||
return &ioPointed[A, GA]{}
|
||||
}
|
||||
26
io/pointed.go
Normal file
26
io/pointed.go
Normal file
@@ -0,0 +1,26 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package io
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
G "github.com/IBM/fp-go/io/generic"
|
||||
)
|
||||
|
||||
// Pointed returns the monadic operations for [IO]
|
||||
func Pointed[A any]() pointed.Pointed[A, IO[A]] {
|
||||
return G.Pointed[A, IO[A]]()
|
||||
}
|
||||
@@ -16,8 +16,11 @@
|
||||
package io
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
A "github.com/IBM/fp-go/array"
|
||||
F "github.com/IBM/fp-go/function"
|
||||
TST "github.com/IBM/fp-go/internal/testing"
|
||||
"github.com/stretchr/testify/assert"
|
||||
|
||||
"testing"
|
||||
@@ -45,3 +48,18 @@ func TestMapSeq(t *testing.T) {
|
||||
|
||||
assert.True(t, res())
|
||||
}
|
||||
|
||||
func TestSequenceArray(t *testing.T) {
|
||||
|
||||
s := TST.SequenceArrayTest(
|
||||
FromStrictEquals[bool](),
|
||||
Pointed[string](),
|
||||
Pointed[bool](),
|
||||
Functor[[]string, bool](),
|
||||
SequenceArray[string],
|
||||
)
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
t.Run(fmt.Sprintf("TestSequenceArray %d", i), s(i))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -17,6 +17,7 @@ package generic
|
||||
|
||||
import (
|
||||
ET "github.com/IBM/fp-go/either"
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
"github.com/IBM/fp-go/internal/monad"
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
)
|
||||
@@ -25,6 +26,8 @@ type ioEitherPointed[E, A any, GA ~func() ET.Either[E, A]] struct{}
|
||||
|
||||
type ioEitherMonad[E, A, B any, GA ~func() ET.Either[E, A], GB ~func() ET.Either[E, B], GAB ~func() ET.Either[E, func(A) B]] struct{}
|
||||
|
||||
type ioEitherFunctor[E, A, B any, GA ~func() ET.Either[E, A], GB ~func() ET.Either[E, B]] struct{}
|
||||
|
||||
func (o *ioEitherPointed[E, A, GA]) Of(a A) GA {
|
||||
return Of[GA, E, A](a)
|
||||
}
|
||||
@@ -45,11 +48,20 @@ func (o *ioEitherMonad[E, A, B, GA, GB, GAB]) Ap(fa GA) func(GAB) GB {
|
||||
return Ap[GB, GAB, GA, E, A, B](fa)
|
||||
}
|
||||
|
||||
func (o *ioEitherFunctor[E, A, B, GA, GB]) Map(f func(A) B) func(GA) GB {
|
||||
return Map[GA, GB, E, A, B](f)
|
||||
}
|
||||
|
||||
// Pointed implements the pointed operations for [IOEither]
|
||||
func Pointed[E, A any, GA ~func() ET.Either[E, A]]() pointed.Pointed[A, GA] {
|
||||
return &ioEitherPointed[E, A, GA]{}
|
||||
}
|
||||
|
||||
// Functor implements the monadic operations for [IOEither]
|
||||
func Functor[E, A, B any, GA ~func() ET.Either[E, A], GB ~func() ET.Either[E, B]]() functor.Functor[A, B, GA, GB] {
|
||||
return &ioEitherFunctor[E, A, B, GA, GB]{}
|
||||
}
|
||||
|
||||
// Monad implements the monadic operations for [IOEither]
|
||||
func Monad[E, A, B any, GA ~func() ET.Either[E, A], GB ~func() ET.Either[E, B], GAB ~func() ET.Either[E, func(A) B]]() monad.Monad[A, B, GA, GB, GAB] {
|
||||
return &ioEitherMonad[E, A, B, GA, GB, GAB]{}
|
||||
|
||||
@@ -16,6 +16,7 @@
|
||||
package ioeither
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
"github.com/IBM/fp-go/internal/monad"
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
G "github.com/IBM/fp-go/ioeither/generic"
|
||||
@@ -26,6 +27,11 @@ func Pointed[E, A any]() pointed.Pointed[A, IOEither[E, A]] {
|
||||
return G.Pointed[E, A, IOEither[E, A]]()
|
||||
}
|
||||
|
||||
// Functor returns the functor operations for [IOEither]
|
||||
func Functor[E, A, B any]() functor.Functor[A, B, IOEither[E, A], IOEither[E, B]] {
|
||||
return G.Functor[E, A, B, IOEither[E, A], IOEither[E, B]]()
|
||||
}
|
||||
|
||||
// Monad returns the monadic operations for [IOEither]
|
||||
func Monad[E, A, B any]() monad.Monad[A, B, IOEither[E, A], IOEither[E, B], IOEither[E, func(A) B]] {
|
||||
return G.Monad[E, A, B, IOEither[E, A], IOEither[E, B], IOEither[E, func(A) B]]()
|
||||
|
||||
@@ -16,11 +16,15 @@
|
||||
package ioeither
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
A "github.com/IBM/fp-go/array"
|
||||
E "github.com/IBM/fp-go/either"
|
||||
F "github.com/IBM/fp-go/function"
|
||||
"github.com/stretchr/testify/assert"
|
||||
|
||||
TST "github.com/IBM/fp-go/internal/testing"
|
||||
|
||||
"testing"
|
||||
)
|
||||
|
||||
@@ -46,3 +50,33 @@ func TestMapSeq(t *testing.T) {
|
||||
|
||||
assert.Equal(t, E.Of[error](true), res())
|
||||
}
|
||||
|
||||
func TestSequenceArray(t *testing.T) {
|
||||
|
||||
s := TST.SequenceArrayTest(
|
||||
FromStrictEquals[error, bool](),
|
||||
Pointed[error, string](),
|
||||
Pointed[error, bool](),
|
||||
Functor[error, []string, bool](),
|
||||
SequenceArray[error, string],
|
||||
)
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
t.Run(fmt.Sprintf("TestSequenceArray %d", i), s(i))
|
||||
}
|
||||
}
|
||||
|
||||
func TestSequenceArrayError(t *testing.T) {
|
||||
|
||||
s := TST.SequenceArrayErrorTest(
|
||||
FromStrictEquals[error, bool](),
|
||||
Left[string, error],
|
||||
Left[bool, error],
|
||||
Pointed[error, string](),
|
||||
Pointed[error, bool](),
|
||||
Functor[error, []string, bool](),
|
||||
SequenceArray[error, string],
|
||||
)
|
||||
// run across four bits
|
||||
s(4)(t)
|
||||
}
|
||||
|
||||
@@ -19,8 +19,7 @@ import (
|
||||
G "github.com/IBM/fp-go/iterator/stateless/generic"
|
||||
)
|
||||
|
||||
// DropWhile creates an [Iterator] that drops elements from the [Iterator] as long as the predicate is true; afterwards, returns every element.
|
||||
// Note, the [Iterator] does not produce any output until the predicate first becomes false
|
||||
// Cycle creates an [Iterator] containing an [Iterator] repeated an infinite number of times.
|
||||
func Cycle[U any](ma Iterator[U]) Iterator[U] {
|
||||
return G.Cycle[Iterator[U]](ma)
|
||||
}
|
||||
|
||||
@@ -16,25 +16,13 @@
|
||||
package option
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/function"
|
||||
TST "github.com/IBM/fp-go/internal/testing"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestSequenceArray(t *testing.T) {
|
||||
|
||||
one := Of(1)
|
||||
two := Of(2)
|
||||
|
||||
res := F.Pipe1(
|
||||
[]Option[int]{one, two},
|
||||
SequenceArray[int],
|
||||
)
|
||||
|
||||
assert.Equal(t, res, Of([]int{1, 2}))
|
||||
}
|
||||
|
||||
func TestCompactArray(t *testing.T) {
|
||||
ar := []Option[string]{
|
||||
Of("ok"),
|
||||
@@ -45,3 +33,18 @@ func TestCompactArray(t *testing.T) {
|
||||
res := CompactArray(ar)
|
||||
assert.Equal(t, 2, len(res))
|
||||
}
|
||||
|
||||
func TestSequenceArray(t *testing.T) {
|
||||
|
||||
s := TST.SequenceArrayTest(
|
||||
FromStrictEquals[bool](),
|
||||
Pointed[string](),
|
||||
Pointed[bool](),
|
||||
Functor[[]string, bool](),
|
||||
SequenceArray[string],
|
||||
)
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
t.Run(fmt.Sprintf("TestSequenceArray %d", i), s(i))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -35,7 +35,7 @@ type Option[A any] struct {
|
||||
|
||||
// optString prints some debug info for the object
|
||||
//
|
||||
// go:noinline
|
||||
//go:noinline
|
||||
func optString(isSome bool, value any) string {
|
||||
if isSome {
|
||||
return fmt.Sprintf("Some[%T](%v)", value, value)
|
||||
@@ -45,7 +45,7 @@ func optString(isSome bool, value any) string {
|
||||
|
||||
// optFormat prints some debug info for the object
|
||||
//
|
||||
// go:noinline
|
||||
//go:noinline
|
||||
func optFormat(isSome bool, value any, f fmt.State, c rune) {
|
||||
switch c {
|
||||
case 's':
|
||||
@@ -78,7 +78,7 @@ func (s Option[A]) MarshalJSON() ([]byte, error) {
|
||||
|
||||
// optUnmarshalJSON unmarshals the [Option] from a JSON string
|
||||
//
|
||||
// go:noinline
|
||||
//go:noinline
|
||||
func optUnmarshalJSON(isSome *bool, value any, data []byte) error {
|
||||
// decode the value
|
||||
if bytes.Equal(data, jsonNull) {
|
||||
|
||||
31
option/functor.go
Normal file
31
option/functor.go
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
)
|
||||
|
||||
type optionFunctor[A, B any] struct{}
|
||||
|
||||
func (o *optionFunctor[A, B]) Map(f func(A) B) func(Option[A]) Option[B] {
|
||||
return Map[A, B](f)
|
||||
}
|
||||
|
||||
// Functor implements the functoric operations for [Option]
|
||||
func Functor[A, B any]() functor.Functor[A, B, Option[A], Option[B]] {
|
||||
return &optionFunctor[A, B]{}
|
||||
}
|
||||
31
option/pointed.go
Normal file
31
option/pointed.go
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
)
|
||||
|
||||
type optionPointed[A any] struct{}
|
||||
|
||||
func (o *optionPointed[A]) Of(a A) Option[A] {
|
||||
return Of[A](a)
|
||||
}
|
||||
|
||||
// Pointed implements the Pointed operations for [Option]
|
||||
func Pointed[A any]() pointed.Pointed[A, Option[A]] {
|
||||
return &optionPointed[A]{}
|
||||
}
|
||||
@@ -16,21 +16,13 @@
|
||||
package option
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
TST "github.com/IBM/fp-go/internal/testing"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestSequenceRecord(t *testing.T) {
|
||||
assert.Equal(t, Of(map[string]string{
|
||||
"a": "A",
|
||||
"b": "B",
|
||||
}), SequenceRecord(map[string]Option[string]{
|
||||
"a": Of("A"),
|
||||
"b": Of("B"),
|
||||
}))
|
||||
}
|
||||
|
||||
func TestCompactRecord(t *testing.T) {
|
||||
// make the map
|
||||
m := make(map[string]Option[int])
|
||||
@@ -45,3 +37,18 @@ func TestCompactRecord(t *testing.T) {
|
||||
|
||||
assert.Equal(t, exp, m1)
|
||||
}
|
||||
|
||||
func TestSequenceRecord(t *testing.T) {
|
||||
|
||||
s := TST.SequenceRecordTest(
|
||||
FromStrictEquals[bool](),
|
||||
Pointed[string](),
|
||||
Pointed[bool](),
|
||||
Functor[map[string]string, bool](),
|
||||
SequenceRecord[string, string],
|
||||
)
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
t.Run(fmt.Sprintf("TestSequenceRecord %d", i), s(i))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -64,7 +64,7 @@ func Reverse[T any](o Ord[T]) Ord[T] {
|
||||
}, o.Equals)
|
||||
}
|
||||
|
||||
// Contramap creates an odering under a transformation function
|
||||
// Contramap creates an ordering under a transformation function
|
||||
func Contramap[A, B any](f func(B) A) func(Ord[A]) Ord[B] {
|
||||
return func(o Ord[A]) Ord[B] {
|
||||
return MakeOrd(func(x, y B) int {
|
||||
|
||||
@@ -34,14 +34,14 @@ type (
|
||||
|
||||
// String prints some debug info for the object
|
||||
//
|
||||
// go:noinline
|
||||
//go:noinline
|
||||
func pairString(s *pair) string {
|
||||
return fmt.Sprintf("Pair[%T, %t](%v, %v)", s.h, s.t, s.h, s.t)
|
||||
return fmt.Sprintf("Pair[%T, %T](%v, %v)", s.h, s.t, s.h, s.t)
|
||||
}
|
||||
|
||||
// Format prints some debug info for the object
|
||||
//
|
||||
// go:noinline
|
||||
//go:noinline
|
||||
func pairFormat(e *pair, f fmt.State, c rune) {
|
||||
switch c {
|
||||
case 's':
|
||||
|
||||
@@ -17,11 +17,13 @@ package readerioeither
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
A "github.com/IBM/fp-go/array"
|
||||
ET "github.com/IBM/fp-go/either"
|
||||
F "github.com/IBM/fp-go/function"
|
||||
TST "github.com/IBM/fp-go/internal/testing"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
@@ -37,3 +39,33 @@ func TestTraverseArray(t *testing.T) {
|
||||
assert.Equal(t, ET.Right[string]([]string{"aa", "bb"}), F.Pipe1([]string{"a", "b"}, f)(ctx)())
|
||||
assert.Equal(t, ET.Left[[]string]("e"), F.Pipe1([]string{"a", ""}, f)(ctx)())
|
||||
}
|
||||
|
||||
func TestSequenceArray(t *testing.T) {
|
||||
|
||||
s := TST.SequenceArrayTest(
|
||||
FromStrictEquals[context.Context, error, bool]()(context.Background()),
|
||||
Pointed[context.Context, error, string](),
|
||||
Pointed[context.Context, error, bool](),
|
||||
Functor[context.Context, error, []string, bool](),
|
||||
SequenceArray[context.Context, error, string],
|
||||
)
|
||||
|
||||
for i := 0; i < 10; i++ {
|
||||
t.Run(fmt.Sprintf("TestSequenceArray %d", i), s(i))
|
||||
}
|
||||
}
|
||||
|
||||
func TestSequenceArrayError(t *testing.T) {
|
||||
|
||||
s := TST.SequenceArrayErrorTest(
|
||||
FromStrictEquals[context.Context, error, bool]()(context.Background()),
|
||||
Left[context.Context, string, error],
|
||||
Left[context.Context, bool, error],
|
||||
Pointed[context.Context, error, string](),
|
||||
Pointed[context.Context, error, bool](),
|
||||
Functor[context.Context, error, []string, bool](),
|
||||
SequenceArray[context.Context, error, string],
|
||||
)
|
||||
// run across four bits
|
||||
s(4)(t)
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Code generated by go generate; DO NOT EDIT.
|
||||
// This file was generated by robots at
|
||||
// 2024-02-29 16:19:28.6907128 +0100 CET m=+0.032796101
|
||||
// 2024-05-24 17:26:07.2835624 +0200 CEST m=+0.011499301
|
||||
|
||||
package readerioeither
|
||||
|
||||
@@ -20,6 +20,12 @@ func Eitherize0[F ~func(C) (R, error), C, R any](f F) func() ReaderIOEither[C, e
|
||||
return G.Eitherize0[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize0 converts a function with 1 parameters returning a [ReaderIOEither[C, error, R]] into a function with 0 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize0[F ~func() ReaderIOEither[C, error, R], C, R any](f F) func(C) (R, error) {
|
||||
return G.Uneitherize0[ReaderIOEither[C, error, R], func(C) (R, error)](f)
|
||||
}
|
||||
|
||||
// From1 converts a function with 2 parameters returning a tuple into a function with 1 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From1[F ~func(C, T0) func() (R, error), T0, C, R any](f F) func(T0) ReaderIOEither[C, error, R] {
|
||||
@@ -32,6 +38,12 @@ func Eitherize1[F ~func(C, T0) (R, error), T0, C, R any](f F) func(T0) ReaderIOE
|
||||
return G.Eitherize1[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize1 converts a function with 2 parameters returning a [ReaderIOEither[C, error, R]] into a function with 1 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize1[F ~func(T0) ReaderIOEither[C, error, R], T0, C, R any](f F) func(C, T0) (R, error) {
|
||||
return G.Uneitherize1[ReaderIOEither[C, error, R], func(C, T0) (R, error)](f)
|
||||
}
|
||||
|
||||
// From2 converts a function with 3 parameters returning a tuple into a function with 2 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From2[F ~func(C, T0, T1) func() (R, error), T0, T1, C, R any](f F) func(T0, T1) ReaderIOEither[C, error, R] {
|
||||
@@ -44,6 +56,12 @@ func Eitherize2[F ~func(C, T0, T1) (R, error), T0, T1, C, R any](f F) func(T0, T
|
||||
return G.Eitherize2[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize2 converts a function with 3 parameters returning a [ReaderIOEither[C, error, R]] into a function with 2 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize2[F ~func(T0, T1) ReaderIOEither[C, error, R], T0, T1, C, R any](f F) func(C, T0, T1) (R, error) {
|
||||
return G.Uneitherize2[ReaderIOEither[C, error, R], func(C, T0, T1) (R, error)](f)
|
||||
}
|
||||
|
||||
// From3 converts a function with 4 parameters returning a tuple into a function with 3 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From3[F ~func(C, T0, T1, T2) func() (R, error), T0, T1, T2, C, R any](f F) func(T0, T1, T2) ReaderIOEither[C, error, R] {
|
||||
@@ -56,6 +74,12 @@ func Eitherize3[F ~func(C, T0, T1, T2) (R, error), T0, T1, T2, C, R any](f F) fu
|
||||
return G.Eitherize3[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize3 converts a function with 4 parameters returning a [ReaderIOEither[C, error, R]] into a function with 3 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize3[F ~func(T0, T1, T2) ReaderIOEither[C, error, R], T0, T1, T2, C, R any](f F) func(C, T0, T1, T2) (R, error) {
|
||||
return G.Uneitherize3[ReaderIOEither[C, error, R], func(C, T0, T1, T2) (R, error)](f)
|
||||
}
|
||||
|
||||
// From4 converts a function with 5 parameters returning a tuple into a function with 4 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From4[F ~func(C, T0, T1, T2, T3) func() (R, error), T0, T1, T2, T3, C, R any](f F) func(T0, T1, T2, T3) ReaderIOEither[C, error, R] {
|
||||
@@ -68,6 +92,12 @@ func Eitherize4[F ~func(C, T0, T1, T2, T3) (R, error), T0, T1, T2, T3, C, R any]
|
||||
return G.Eitherize4[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize4 converts a function with 5 parameters returning a [ReaderIOEither[C, error, R]] into a function with 4 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize4[F ~func(T0, T1, T2, T3) ReaderIOEither[C, error, R], T0, T1, T2, T3, C, R any](f F) func(C, T0, T1, T2, T3) (R, error) {
|
||||
return G.Uneitherize4[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3) (R, error)](f)
|
||||
}
|
||||
|
||||
// From5 converts a function with 6 parameters returning a tuple into a function with 5 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From5[F ~func(C, T0, T1, T2, T3, T4) func() (R, error), T0, T1, T2, T3, T4, C, R any](f F) func(T0, T1, T2, T3, T4) ReaderIOEither[C, error, R] {
|
||||
@@ -80,6 +110,12 @@ func Eitherize5[F ~func(C, T0, T1, T2, T3, T4) (R, error), T0, T1, T2, T3, T4, C
|
||||
return G.Eitherize5[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize5 converts a function with 6 parameters returning a [ReaderIOEither[C, error, R]] into a function with 5 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize5[F ~func(T0, T1, T2, T3, T4) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, C, R any](f F) func(C, T0, T1, T2, T3, T4) (R, error) {
|
||||
return G.Uneitherize5[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4) (R, error)](f)
|
||||
}
|
||||
|
||||
// From6 converts a function with 7 parameters returning a tuple into a function with 6 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From6[F ~func(C, T0, T1, T2, T3, T4, T5) func() (R, error), T0, T1, T2, T3, T4, T5, C, R any](f F) func(T0, T1, T2, T3, T4, T5) ReaderIOEither[C, error, R] {
|
||||
@@ -92,6 +128,12 @@ func Eitherize6[F ~func(C, T0, T1, T2, T3, T4, T5) (R, error), T0, T1, T2, T3, T
|
||||
return G.Eitherize6[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize6 converts a function with 7 parameters returning a [ReaderIOEither[C, error, R]] into a function with 6 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize6[F ~func(T0, T1, T2, T3, T4, T5) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5) (R, error) {
|
||||
return G.Uneitherize6[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5) (R, error)](f)
|
||||
}
|
||||
|
||||
// From7 converts a function with 8 parameters returning a tuple into a function with 7 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From7[F ~func(C, T0, T1, T2, T3, T4, T5, T6) func() (R, error), T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[C, error, R] {
|
||||
@@ -104,6 +146,12 @@ func Eitherize7[F ~func(C, T0, T1, T2, T3, T4, T5, T6) (R, error), T0, T1, T2, T
|
||||
return G.Eitherize7[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize7 converts a function with 8 parameters returning a [ReaderIOEither[C, error, R]] into a function with 7 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize7[F ~func(T0, T1, T2, T3, T4, T5, T6) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6) (R, error) {
|
||||
return G.Uneitherize7[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6) (R, error)](f)
|
||||
}
|
||||
|
||||
// From8 converts a function with 9 parameters returning a tuple into a function with 8 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From8[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[C, error, R] {
|
||||
@@ -116,6 +164,12 @@ func Eitherize8[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error), T0, T1, T
|
||||
return G.Eitherize8[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize8 converts a function with 9 parameters returning a [ReaderIOEither[C, error, R]] into a function with 8 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize8[F ~func(T0, T1, T2, T3, T4, T5, T6, T7) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error) {
|
||||
return G.Uneitherize8[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error)](f)
|
||||
}
|
||||
|
||||
// From9 converts a function with 10 parameters returning a tuple into a function with 9 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From9[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[C, error, R] {
|
||||
@@ -128,6 +182,12 @@ func Eitherize9[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error), T0, T
|
||||
return G.Eitherize9[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize9 converts a function with 10 parameters returning a [ReaderIOEither[C, error, R]] into a function with 9 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize9[F ~func(T0, T1, T2, T3, T4, T5, T6, T7, T8) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error) {
|
||||
return G.Uneitherize9[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error)](f)
|
||||
}
|
||||
|
||||
// From10 converts a function with 11 parameters returning a tuple into a function with 10 parameters returning a [ReaderIOEither[R]]
|
||||
// The first parameter is considered to be the context [C].
|
||||
func From10[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) func() (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R] {
|
||||
@@ -139,3 +199,9 @@ func From10[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) func() (R, error)
|
||||
func Eitherize10[F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error), T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R] {
|
||||
return G.Eitherize10[ReaderIOEither[C, error, R]](f)
|
||||
}
|
||||
|
||||
// Uneitherize10 converts a function with 11 parameters returning a [ReaderIOEither[C, error, R]] into a function with 10 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize10[F ~func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) ReaderIOEither[C, error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error) {
|
||||
return G.Uneitherize10[ReaderIOEither[C, error, R], func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error)](f)
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Code generated by go generate; DO NOT EDIT.
|
||||
// This file was generated by robots at
|
||||
// 2024-02-29 16:19:28.691247 +0100 CET m=+0.033330301
|
||||
// 2024-05-24 17:26:07.2835624 +0200 CEST m=+0.011499301
|
||||
package generic
|
||||
|
||||
import (
|
||||
@@ -26,6 +26,14 @@ func Eitherize0[GRA ~func(C) GIOA, F ~func(C) (R, error), GIOA ~func() E.Either[
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize0 converts a function with 0 parameters returning a [GRA] into a function with 0 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize0[GRA ~func(C) GIOA, F ~func(C) (R, error), GIOA ~func() E.Either[error, R], C, R any](f func() GRA) F {
|
||||
return func(c C) (R, error) {
|
||||
return E.UnwrapError(f()(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From1 converts a function with 2 parameters returning a tuple into a function with 1 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From1[GRA ~func(C) GIOA, F ~func(C, T0) func() (R, error), GIOA ~func() E.Either[error, R], T0, C, R any](f F) func(T0) GRA {
|
||||
@@ -44,6 +52,14 @@ func Eitherize1[GRA ~func(C) GIOA, F ~func(C, T0) (R, error), GIOA ~func() E.Eit
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize1 converts a function with 1 parameters returning a [GRA] into a function with 1 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize1[GRA ~func(C) GIOA, F ~func(C, T0) (R, error), GIOA ~func() E.Either[error, R], T0, C, R any](f func(T0) GRA) F {
|
||||
return func(c C, t0 T0) (R, error) {
|
||||
return E.UnwrapError(f(t0)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From2 converts a function with 3 parameters returning a tuple into a function with 2 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From2[GRA ~func(C) GIOA, F ~func(C, T0, T1) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, C, R any](f F) func(T0, T1) GRA {
|
||||
@@ -62,6 +78,14 @@ func Eitherize2[GRA ~func(C) GIOA, F ~func(C, T0, T1) (R, error), GIOA ~func() E
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize2 converts a function with 2 parameters returning a [GRA] into a function with 2 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize2[GRA ~func(C) GIOA, F ~func(C, T0, T1) (R, error), GIOA ~func() E.Either[error, R], T0, T1, C, R any](f func(T0, T1) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From3 converts a function with 4 parameters returning a tuple into a function with 3 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From3[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, C, R any](f F) func(T0, T1, T2) GRA {
|
||||
@@ -80,6 +104,14 @@ func Eitherize3[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2) (R, error), GIOA ~func
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize3 converts a function with 3 parameters returning a [GRA] into a function with 3 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize3[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, C, R any](f func(T0, T1, T2) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1, t2 T2) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From4 converts a function with 5 parameters returning a tuple into a function with 4 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From4[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, C, R any](f F) func(T0, T1, T2, T3) GRA {
|
||||
@@ -98,6 +130,14 @@ func Eitherize4[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3) (R, error), GIOA ~
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize4 converts a function with 4 parameters returning a [GRA] into a function with 4 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize4[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, C, R any](f func(T0, T1, T2, T3) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1, t2 T2, t3 T3) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From5 converts a function with 6 parameters returning a tuple into a function with 5 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From5[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, C, R any](f F) func(T0, T1, T2, T3, T4) GRA {
|
||||
@@ -116,6 +156,14 @@ func Eitherize5[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4) (R, error), GI
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize5 converts a function with 5 parameters returning a [GRA] into a function with 5 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize5[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, C, R any](f func(T0, T1, T2, T3, T4) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From6 converts a function with 7 parameters returning a tuple into a function with 6 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From6[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, C, R any](f F) func(T0, T1, T2, T3, T4, T5) GRA {
|
||||
@@ -134,6 +182,14 @@ func Eitherize6[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5) (R, error)
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize6 converts a function with 6 parameters returning a [GRA] into a function with 6 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize6[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, C, R any](f func(T0, T1, T2, T3, T4, T5) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From7 converts a function with 8 parameters returning a tuple into a function with 7 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From7[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6) GRA {
|
||||
@@ -152,6 +208,14 @@ func Eitherize7[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6) (R, er
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize7 converts a function with 7 parameters returning a [GRA] into a function with 7 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize7[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, C, R any](f func(T0, T1, T2, T3, T4, T5, T6) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5, t6)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From8 converts a function with 9 parameters returning a tuple into a function with 8 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From8[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7) GRA {
|
||||
@@ -170,6 +234,14 @@ func Eitherize8[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize8 converts a function with 8 parameters returning a [GRA] into a function with 8 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize8[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, C, R any](f func(T0, T1, T2, T3, T4, T5, T6, T7) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5, t6, t7)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From9 converts a function with 10 parameters returning a tuple into a function with 9 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From9[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8) GRA {
|
||||
@@ -188,6 +260,14 @@ func Eitherize9[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize9 converts a function with 9 parameters returning a [GRA] into a function with 9 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize9[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, C, R any](f func(T0, T1, T2, T3, T4, T5, T6, T7, T8) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7, t8 T8) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5, t6, t7, t8)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
// From10 converts a function with 11 parameters returning a tuple into a function with 10 parameters returning a [GRA]
|
||||
// The first parameter is considerd to be the context [C].
|
||||
func From10[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) func() (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f F) func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) GRA {
|
||||
@@ -205,3 +285,11 @@ func Eitherize10[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Uneitherize10 converts a function with 10 parameters returning a [GRA] into a function with 10 parameters returning a tuple.
|
||||
// The first parameter is considered to be the context [C].
|
||||
func Uneitherize10[GRA ~func(C) GIOA, F ~func(C, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) (R, error), GIOA ~func() E.Either[error, R], T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, C, R any](f func(T0, T1, T2, T3, T4, T5, T6, T7, T8, T9) GRA) F {
|
||||
return func(c C, t0 T0, t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7, t8 T8, t9 T9) (R, error) {
|
||||
return E.UnwrapError(f(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)(c)())
|
||||
}
|
||||
}
|
||||
|
||||
68
readerioeither/generic/monad.go
Normal file
68
readerioeither/generic/monad.go
Normal file
@@ -0,0 +1,68 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
ET "github.com/IBM/fp-go/either"
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
"github.com/IBM/fp-go/internal/monad"
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
)
|
||||
|
||||
type readerIOEitherPointed[R, E, A any, GRA ~func(R) GIOA, GIOA ~func() ET.Either[E, A]] struct{}
|
||||
|
||||
type readerIOEitherMonad[R, E, A, B any, GRA ~func(R) GIOA, GRB ~func(R) GIOB, GRAB ~func(R) GIOAB, GIOA ~func() ET.Either[E, A], GIOB ~func() ET.Either[E, B], GIOAB ~func() ET.Either[E, func(A) B]] struct{}
|
||||
|
||||
type readerIOEitherFunctor[R, E, A, B any, GRA ~func(R) GIOA, GRB ~func(R) GIOB, GIOA ~func() ET.Either[E, A], GIOB ~func() ET.Either[E, B]] struct{}
|
||||
|
||||
func (o *readerIOEitherPointed[R, E, A, GRA, GIOA]) Of(a A) GRA {
|
||||
return Of[GRA, GIOA, R, E, A](a)
|
||||
}
|
||||
|
||||
func (o *readerIOEitherMonad[R, E, A, B, GRA, GRB, GRAB, GIOA, GIOB, GIOAB]) Of(a A) GRA {
|
||||
return Of[GRA, GIOA, R, E, A](a)
|
||||
}
|
||||
|
||||
func (o *readerIOEitherMonad[R, E, A, B, GRA, GRB, GRAB, GIOA, GIOB, GIOAB]) Map(f func(A) B) func(GRA) GRB {
|
||||
return Map[GRA, GRB, GIOA, GIOB, R, E, A, B](f)
|
||||
}
|
||||
|
||||
func (o *readerIOEitherMonad[R, E, A, B, GRA, GRB, GRAB, GIOA, GIOB, GIOAB]) Chain(f func(A) GRB) func(GRA) GRB {
|
||||
return Chain[GRA, GRB, GIOA, GIOB, R, E, A, B](f)
|
||||
}
|
||||
|
||||
func (o *readerIOEitherMonad[R, E, A, B, GRA, GRB, GRAB, GIOA, GIOB, GIOAB]) Ap(fa GRA) func(GRAB) GRB {
|
||||
return Ap[GRA, GRB, GRAB, GIOA, GIOB, GIOAB, R, E, A, B](fa)
|
||||
}
|
||||
|
||||
func (o *readerIOEitherFunctor[R, E, A, B, GRA, GRB, GIOA, GIOB]) Map(f func(A) B) func(GRA) GRB {
|
||||
return Map[GRA, GRB, GIOA, GIOB, R, E, A, B](f)
|
||||
}
|
||||
|
||||
// Pointed implements the pointed operations for [ReaderIOEither]
|
||||
func Pointed[R, E, A any, GRA ~func(R) GIOA, GIOA ~func() ET.Either[E, A]]() pointed.Pointed[A, GRA] {
|
||||
return &readerIOEitherPointed[R, E, A, GRA, GIOA]{}
|
||||
}
|
||||
|
||||
// Functor implements the monadic operations for [ReaderIOEither]
|
||||
func Functor[R, E, A, B any, GRA ~func(R) GIOA, GRB ~func(R) GIOB, GIOA ~func() ET.Either[E, A], GIOB ~func() ET.Either[E, B]]() functor.Functor[A, B, GRA, GRB] {
|
||||
return &readerIOEitherFunctor[R, E, A, B, GRA, GRB, GIOA, GIOB]{}
|
||||
}
|
||||
|
||||
// Monad implements the monadic operations for [ReaderIOEither]
|
||||
func Monad[R, E, A, B any, GRA ~func(R) GIOA, GRB ~func(R) GIOB, GRAB ~func(R) GIOAB, GIOA ~func() ET.Either[E, A], GIOB ~func() ET.Either[E, B], GIOAB ~func() ET.Either[E, func(A) B]]() monad.Monad[A, B, GRA, GRB, GRAB] {
|
||||
return &readerIOEitherMonad[R, E, A, B, GRA, GRB, GRAB, GIOA, GIOB, GIOAB]{}
|
||||
}
|
||||
38
readerioeither/monad.go
Normal file
38
readerioeither/monad.go
Normal file
@@ -0,0 +1,38 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package readerioeither
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/internal/functor"
|
||||
"github.com/IBM/fp-go/internal/monad"
|
||||
"github.com/IBM/fp-go/internal/pointed"
|
||||
G "github.com/IBM/fp-go/readerioeither/generic"
|
||||
)
|
||||
|
||||
// Pointed returns the pointed operations for [ReaderIOEither]
|
||||
func Pointed[R, E, A any]() pointed.Pointed[A, ReaderIOEither[R, E, A]] {
|
||||
return G.Pointed[R, E, A, ReaderIOEither[R, E, A]]()
|
||||
}
|
||||
|
||||
// Functor returns the functor operations for [ReaderIOEither]
|
||||
func Functor[R, E, A, B any]() functor.Functor[A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B]] {
|
||||
return G.Functor[R, E, A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B]]()
|
||||
}
|
||||
|
||||
// Monad returns the monadic operations for [ReaderIOEither]
|
||||
func Monad[R, E, A, B any]() monad.Monad[A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B], ReaderIOEither[R, E, func(A) B]] {
|
||||
return G.Monad[R, E, A, B, ReaderIOEither[R, E, A], ReaderIOEither[R, E, B], ReaderIOEither[R, E, func(A) B]]()
|
||||
}
|
||||
@@ -23,3 +23,8 @@ import (
|
||||
func Eq[K comparable, V any](e E.Eq[V]) E.Eq[map[K]V] {
|
||||
return G.Eq[map[K]V, K, V](e)
|
||||
}
|
||||
|
||||
// FromStrictEquals constructs an [EQ.Eq] from the canonical comparison function
|
||||
func FromStrictEquals[K, V comparable]() E.Eq[map[K]V] {
|
||||
return G.FromStrictEquals[map[K]V]()
|
||||
}
|
||||
|
||||
48
record/eq_test.go
Normal file
48
record/eq_test.go
Normal file
@@ -0,0 +1,48 @@
|
||||
// Copyright (c) 2024 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package record
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestFromStrictEquals(t *testing.T) {
|
||||
m1 := map[string]string{
|
||||
"a": "A",
|
||||
"b": "B",
|
||||
}
|
||||
m2 := map[string]string{
|
||||
"a": "A",
|
||||
"b": "C",
|
||||
}
|
||||
m3 := map[string]string{
|
||||
"a": "A",
|
||||
"b": "B",
|
||||
}
|
||||
m4 := map[string]string{
|
||||
"a": "A",
|
||||
"b": "B",
|
||||
"c": "C",
|
||||
}
|
||||
|
||||
e := FromStrictEquals[string, string]()
|
||||
assert.True(t, e.Equals(m1, m1))
|
||||
assert.True(t, e.Equals(m1, m3))
|
||||
assert.False(t, e.Equals(m1, m2))
|
||||
assert.False(t, e.Equals(m1, m4))
|
||||
}
|
||||
@@ -37,3 +37,8 @@ func Eq[M ~map[K]V, K comparable, V any](e E.Eq[V]) E.Eq[M] {
|
||||
return equals(left, right, eq)
|
||||
})
|
||||
}
|
||||
|
||||
// FromStrictEquals constructs an [EQ.Eq] from the canonical comparison function
|
||||
func FromStrictEquals[M ~map[K]V, K, V comparable]() E.Eq[M] {
|
||||
return Eq[M](E.FromStrictEquals[V]())
|
||||
}
|
||||
|
||||
@@ -54,3 +54,69 @@ func TestUnionMonoid(t *testing.T) {
|
||||
|
||||
assert.Equal(t, res, m.Concat(x, y))
|
||||
}
|
||||
|
||||
func TestUnionFirstMonoid(t *testing.T) {
|
||||
m := UnionFirstMonoid[string, string]()
|
||||
|
||||
e := Empty[string, string]()
|
||||
|
||||
x := map[string]string{
|
||||
"a": "a1",
|
||||
"b": "b1",
|
||||
"c": "c1",
|
||||
}
|
||||
|
||||
y := map[string]string{
|
||||
"b": "b2",
|
||||
"c": "c2",
|
||||
"d": "d2",
|
||||
}
|
||||
|
||||
res := map[string]string{
|
||||
"a": "a1",
|
||||
"b": "b1",
|
||||
"c": "c1",
|
||||
"d": "d2",
|
||||
}
|
||||
|
||||
assert.Equal(t, x, m.Concat(x, m.Empty()))
|
||||
assert.Equal(t, x, m.Concat(m.Empty(), x))
|
||||
|
||||
assert.Equal(t, x, m.Concat(x, e))
|
||||
assert.Equal(t, x, m.Concat(e, x))
|
||||
|
||||
assert.Equal(t, res, m.Concat(x, y))
|
||||
}
|
||||
|
||||
func TestUnionLastMonoid(t *testing.T) {
|
||||
m := UnionLastMonoid[string, string]()
|
||||
|
||||
e := Empty[string, string]()
|
||||
|
||||
x := map[string]string{
|
||||
"a": "a1",
|
||||
"b": "b1",
|
||||
"c": "c1",
|
||||
}
|
||||
|
||||
y := map[string]string{
|
||||
"b": "b2",
|
||||
"c": "c2",
|
||||
"d": "d2",
|
||||
}
|
||||
|
||||
res := map[string]string{
|
||||
"a": "a1",
|
||||
"b": "b2",
|
||||
"c": "c2",
|
||||
"d": "d2",
|
||||
}
|
||||
|
||||
assert.Equal(t, x, m.Concat(x, m.Empty()))
|
||||
assert.Equal(t, x, m.Concat(m.Empty(), x))
|
||||
|
||||
assert.Equal(t, x, m.Concat(x, e))
|
||||
assert.Equal(t, x, m.Concat(e, x))
|
||||
|
||||
assert.Equal(t, res, m.Concat(x, y))
|
||||
}
|
||||
|
||||
@@ -176,3 +176,25 @@ func TestFromArrayMap(t *testing.T) {
|
||||
"C": "C",
|
||||
}, res2)
|
||||
}
|
||||
|
||||
func TestEmpty(t *testing.T) {
|
||||
nonEmpty := map[string]string{
|
||||
"a": "A",
|
||||
"b": "B",
|
||||
}
|
||||
empty := Empty[string, string]()
|
||||
|
||||
assert.True(t, IsEmpty(empty))
|
||||
assert.False(t, IsEmpty(nonEmpty))
|
||||
assert.False(t, IsNonEmpty(empty))
|
||||
assert.True(t, IsNonEmpty(nonEmpty))
|
||||
}
|
||||
|
||||
func TestHas(t *testing.T) {
|
||||
nonEmpty := map[string]string{
|
||||
"a": "A",
|
||||
"b": "B",
|
||||
}
|
||||
assert.True(t, Has("a", nonEmpty))
|
||||
assert.False(t, Has("c", nonEmpty))
|
||||
}
|
||||
|
||||
@@ -1,11 +1,20 @@
|
||||
{
|
||||
"$schema": "https://docs.renovatebot.com/renovate-schema.json",
|
||||
"extends": [
|
||||
"config:base",
|
||||
"config:recommended",
|
||||
":dependencyDashboard"
|
||||
],
|
||||
"rangeStrategy": "bump",
|
||||
"packageRules": [
|
||||
{
|
||||
"matchDatasources": [
|
||||
"golang-version"
|
||||
],
|
||||
"matchPackageNames": [
|
||||
"go"
|
||||
],
|
||||
"enabled": false
|
||||
},
|
||||
{
|
||||
"matchManagers": [
|
||||
"gomod"
|
||||
|
||||
17
v2/.claude/settings.local.json
Normal file
17
v2/.claude/settings.local.json
Normal file
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"permissions": {
|
||||
"allow": [
|
||||
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\monad\"\" && ls -la \"c:dfp-gov2internalapplicative\"\")",
|
||||
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\chain\"\" && ls -la \"c:dfp-gov2internalfunctor\"\")",
|
||||
"Bash(go build:*)",
|
||||
"Bash(go test:*)",
|
||||
"Bash(go doc:*)",
|
||||
"Bash(go tool cover:*)",
|
||||
"Bash(sort:*)",
|
||||
"Bash(tee:*)",
|
||||
"Bash(find:*)"
|
||||
],
|
||||
"deny": [],
|
||||
"ask": []
|
||||
}
|
||||
}
|
||||
482
v2/BENCHMARK_COMPARISON.md
Normal file
482
v2/BENCHMARK_COMPARISON.md
Normal file
@@ -0,0 +1,482 @@
|
||||
# Benchmark Comparison: Idiomatic vs Standard Either/Result
|
||||
|
||||
**Date:** 2025-11-18
|
||||
**System:** AMD Ryzen 7 PRO 7840U w/ Radeon 780M Graphics (16 cores)
|
||||
**Go Version:** go1.23+
|
||||
|
||||
This document provides a detailed performance comparison between the optimized `either` package and the `idiomatic/result` package after recent optimizations to the either package.
|
||||
|
||||
## Executive Summary
|
||||
|
||||
After optimizations to the `either` package, the performance characteristics have changed significantly:
|
||||
|
||||
### Key Findings
|
||||
|
||||
1. **Constructors & Predicates**: Both packages now perform comparably (~1-2 ns/op) with **zero heap allocations**
|
||||
2. **Zero-allocation insight**: The `Either` struct (24 bytes) does NOT escape to heap - Go returns it by value on the stack
|
||||
3. **Core Operations**: Idiomatic package has a **consistent advantage** of 1.2x - 2.3x for most operations
|
||||
4. **Complex Operations**: Idiomatic package shows **massive advantages**:
|
||||
- ChainFirst (Right): **32.4x faster** (87.6 ns → 2.7 ns, 72 B → 0 B)
|
||||
- Pipeline operations: **2-3x faster** with lower allocations
|
||||
5. **All simple operations**: Both maintain **zero heap allocations** (0 B/op, 0 allocs/op)
|
||||
|
||||
### Winner by Category
|
||||
|
||||
| Category | Winner | Reason |
|
||||
|----------|--------|--------|
|
||||
| Constructors | **TIE** | Both ~1.3-1.8 ns/op |
|
||||
| Predicates | **TIE** | Both ~1.2-1.5 ns/op |
|
||||
| Simple Transformations | **Idiomatic** | 1.2-2x faster |
|
||||
| Monadic Operations | **Idiomatic** | 1.2-2.3x faster |
|
||||
| Complex Chains | **Idiomatic** | 32x faster, zero allocs |
|
||||
| Pipelines | **Idiomatic** | 2-2.4x faster, fewer allocs |
|
||||
| Extraction | **Idiomatic** | 6x faster (GetOrElse) |
|
||||
|
||||
## Detailed Benchmark Results
|
||||
|
||||
### Constructor Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| Left | 1.76 | **1.35** | **1.3x** ✓ | 0 B/op | 0 B/op |
|
||||
| Right | 1.38 | 1.43 | 1.0x | 0 B/op | 0 B/op |
|
||||
| Of | 1.68 | **1.22** | **1.4x** ✓ | 0 B/op | 0 B/op |
|
||||
|
||||
**Analysis:** Both packages perform extremely well with **zero heap allocations**. Idiomatic has a slight edge on Left and Of.
|
||||
|
||||
**Important Clarification: Neither Package Escapes to Heap**
|
||||
|
||||
A common misconception is that struct-based Either escapes to heap while tuples stay on stack. The benchmarks prove this is FALSE:
|
||||
|
||||
```go
|
||||
// Either package - NO heap allocation
|
||||
type Either[E, A any] struct {
|
||||
r A // 8 bytes
|
||||
l E // 8 bytes
|
||||
isLeft bool // 1 byte + 7 padding
|
||||
} // Total: 24 bytes
|
||||
|
||||
func Of[E, A any](value A) Either[E, A] {
|
||||
return Right[E](value) // Returns 24-byte struct BY VALUE
|
||||
}
|
||||
|
||||
// Benchmark result: 0 B/op, 0 allocs/op ✓
|
||||
```
|
||||
|
||||
**Why Either doesn't escape:**
|
||||
1. **Small struct** - At 24 bytes, it's below Go's escape threshold (~64 bytes)
|
||||
2. **Return by value** - Go returns small structs on the stack
|
||||
3. **Inlining** - The `//go:inline` directive eliminates function overhead
|
||||
4. **No pointers** - No pointer escapes in normal usage
|
||||
|
||||
**Idiomatic package:**
|
||||
```go
|
||||
// Returns native tuple - always stack allocated
|
||||
func Right[A any](a A) (A, error) {
|
||||
return a, nil // 16 bytes total (8 + 8)
|
||||
}
|
||||
|
||||
// Benchmark result: 0 B/op, 0 allocs/op ✓
|
||||
```
|
||||
|
||||
**Both achieve zero allocations** - the performance difference comes from other factors like function composition overhead, not from constructor allocations.
|
||||
|
||||
### Predicate Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| IsLeft | 1.45 | **1.35** | **1.1x** ✓ | 0 B/op | 0 B/op |
|
||||
| IsRight | 1.47 | 1.51 | 1.0x | 0 B/op | 0 B/op |
|
||||
|
||||
**Analysis:** Virtually identical performance. The optimizations brought them to parity.
|
||||
|
||||
### Fold Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| MonadFold (Right) | 2.71 | - | - | 0 B/op | - |
|
||||
| MonadFold (Left) | 2.26 | - | - | 0 B/op | - |
|
||||
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | 0 B/op | 0 B/op |
|
||||
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | 0 B/op | 0 B/op |
|
||||
|
||||
**Analysis:** Idiomatic package is 1.5x faster for curried Fold operations.
|
||||
|
||||
### Unwrap Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|
||||
|-----------|----------------|-------------------|------|
|
||||
| Unwrap (Right) | 1.27 | N/A | Either-specific |
|
||||
| Unwrap (Left) | 1.24 | N/A | Either-specific |
|
||||
| UnwrapError (Right) | 1.27 | N/A | Either-specific |
|
||||
| UnwrapError (Left) | 1.27 | N/A | Either-specific |
|
||||
| ToError (Right) | N/A | 1.40 | Idiomatic-specific |
|
||||
| ToError (Left) | N/A | 1.84 | Idiomatic-specific |
|
||||
|
||||
**Analysis:** Both provide fast unwrapping. Idiomatic's tuple return is naturally unwrapped.
|
||||
|
||||
### Map Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| MonadMap (Right) | 2.96 | - | - | 0 B/op | - |
|
||||
| MonadMap (Left) | 1.99 | - | - | 0 B/op | - |
|
||||
| Map (Right) | 5.13 | **4.34** | **1.2x** ✓ | 0 B/op | 0 B/op |
|
||||
| Map (Left) | 4.19 | **2.48** | **1.7x** ✓ | 0 B/op | 0 B/op |
|
||||
| MapLeft (Right) | 3.93 | **2.22** | **1.8x** ✓ | 0 B/op | 0 B/op |
|
||||
| MapLeft (Left) | 7.22 | **3.51** | **2.1x** ✓ | 0 B/op | 0 B/op |
|
||||
|
||||
**Analysis:** Idiomatic is consistently faster across all Map variants, especially for error path (Left).
|
||||
|
||||
### BiMap Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| BiMap (Right) | 16.79 | **3.82** | **4.4x** ✓ | 0 B/op | 0 B/op |
|
||||
| BiMap (Left) | 11.47 | **3.47** | **3.3x** ✓ | 0 B/op | 0 B/op |
|
||||
|
||||
**Analysis:** Idiomatic package shows significant advantage for BiMap operations (3-4x faster).
|
||||
|
||||
### Chain (Monadic Bind) Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| MonadChain (Right) | 2.89 | - | - | 0 B/op | - |
|
||||
| MonadChain (Left) | 2.03 | - | - | 0 B/op | - |
|
||||
| Chain (Right) | 5.44 | **2.34** | **2.3x** ✓ | 0 B/op | 0 B/op |
|
||||
| Chain (Left) | 4.44 | **2.53** | **1.8x** ✓ | 0 B/op | 0 B/op |
|
||||
| ChainFirst (Right) | 87.62 | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | 0 B, 0 allocs |
|
||||
| ChainFirst (Left) | 3.94 | **2.48** | **1.6x** ✓ | 0 B/op | 0 B/op |
|
||||
|
||||
**Analysis:**
|
||||
- Idiomatic is 2x faster for standard Chain operations
|
||||
- **ChainFirst shows the most dramatic difference**: 32.4x faster with zero allocations vs 72 bytes!
|
||||
|
||||
### Flatten Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|
||||
|-----------|----------------|-------------------|------|
|
||||
| Flatten (Right) | 8.73 | N/A | Either-specific nested structure |
|
||||
| Flatten (Left) | 8.86 | N/A | Either-specific nested structure |
|
||||
|
||||
**Analysis:** Flatten is specific to Either's nested structure handling.
|
||||
|
||||
### Applicative Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| MonadAp (RR) | 3.81 | - | - | 0 B/op | - |
|
||||
| MonadAp (RL) | 3.07 | - | - | 0 B/op | - |
|
||||
| MonadAp (LR) | 3.08 | - | - | 0 B/op | - |
|
||||
| Ap (RR) | 6.99 | - | - | 0 B/op | - |
|
||||
|
||||
**Analysis:** MonadAp is fast in Either. Idiomatic package doesn't expose direct Ap benchmarks.
|
||||
|
||||
### Alternative Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| Alt (RR) | 5.72 | **2.40** | **2.4x** ✓ | 0 B/op | 0 B/op |
|
||||
| Alt (LR) | 4.89 | **2.39** | **2.0x** ✓ | 0 B/op | 0 B/op |
|
||||
| OrElse (Right) | 5.28 | **2.40** | **2.2x** ✓ | 0 B/op | 0 B/op |
|
||||
| OrElse (Left) | 3.99 | **2.42** | **1.6x** ✓ | 0 B/op | 0 B/op |
|
||||
|
||||
**Analysis:** Idiomatic package is consistently 2x faster for alternative operations.
|
||||
|
||||
### GetOrElse Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | 0 B/op | 0 B/op |
|
||||
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | 0 B/op | 0 B/op |
|
||||
|
||||
**Analysis:** Idiomatic package shows dramatic advantage for value extraction (3-6x faster).
|
||||
|
||||
### TryCatch Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|
||||
|-----------|----------------|-------------------|------|
|
||||
| TryCatch (Success) | 2.39 | N/A | Either-specific |
|
||||
| TryCatch (Error) | 3.40 | N/A | Either-specific |
|
||||
| TryCatchError (Success) | 3.32 | N/A | Either-specific |
|
||||
| TryCatchError (Error) | 6.44 | N/A | Either-specific |
|
||||
|
||||
**Analysis:** TryCatch/TryCatchError are Either-specific for wrapping (value, error) tuples.
|
||||
|
||||
### Other Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| Swap (Right) | 2.30 | - | - | 0 B/op | - |
|
||||
| Swap (Left) | 3.05 | - | - | 0 B/op | - |
|
||||
| MapTo (Right) | - | 1.60 | - | - | 0 B/op |
|
||||
| MapTo (Left) | - | 1.73 | - | - | 0 B/op |
|
||||
| ChainTo (Right) | - | 2.66 | - | - | 0 B/op |
|
||||
| ChainTo (Left) | - | 2.85 | - | - | 0 B/op |
|
||||
| Reduce (Right) | - | 2.34 | - | - | 0 B/op |
|
||||
| Reduce (Left) | - | 1.40 | - | - | 0 B/op |
|
||||
| Flap (Right) | - | 3.86 | - | - | 0 B/op |
|
||||
| Flap (Left) | - | 2.58 | - | - | 0 B/op |
|
||||
|
||||
### FromPredicate Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| FromPredicate (Pass) | - | 3.38 | - | - | 0 B/op |
|
||||
| FromPredicate (Fail) | - | 5.03 | - | - | 0 B/op |
|
||||
|
||||
**Analysis:** FromPredicate in idiomatic shows good performance for validation patterns.
|
||||
|
||||
### Option Conversion
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| ToOption (Right) | - | 1.17 | - | - | 0 B/op |
|
||||
| ToOption (Left) | - | 1.21 | - | - | 0 B/op |
|
||||
| FromOption (Some) | - | 2.68 | - | - | 0 B/op |
|
||||
| FromOption (None) | - | 3.72 | - | - | 0 B/op |
|
||||
|
||||
**Analysis:** Very fast conversion between Result and Option in idiomatic package.
|
||||
|
||||
## Pipeline Benchmarks
|
||||
|
||||
These benchmarks measure realistic composition scenarios using F.Pipe.
|
||||
|
||||
### Simple Map Pipeline
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
|
||||
| Pipeline Map (Left) | 116.8 | **47.2** | **2.5x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
|
||||
|
||||
### Chain Pipeline
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
|
||||
| Pipeline Chain (Left) | 86.4 | **25.7** | **3.4x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
|
||||
|
||||
### Complex Pipeline (Map → Chain → Map)
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| Complex (Right) | 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
|
||||
| Complex (Left) | 288.1 | **115.8** | **2.5x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
|
||||
|
||||
**Analysis:**
|
||||
- Idiomatic package shows **2-3.4x speedup** for realistic pipelines
|
||||
- Significantly fewer allocations in all pipeline scenarios
|
||||
- The gap widens as pipelines become more complex
|
||||
|
||||
## Array/Collection Operations
|
||||
|
||||
### TraverseArray
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|
||||
|-----------|----------------|-------------------|------|
|
||||
| TraverseArray (Success) | - | 32.3 | 48 B, 1 alloc |
|
||||
| TraverseArray (Error) | - | 28.3 | 48 B, 1 alloc |
|
||||
|
||||
**Analysis:** Idiomatic package provides efficient array traversal with minimal allocations.
|
||||
|
||||
## Validation (ApV)
|
||||
|
||||
### ApV Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| ApV (BothRight) | - | 1.17 | - | - | 0 B/op |
|
||||
| ApV (BothLeft) | - | 141.5 | - | - | 48 B, 2 allocs |
|
||||
|
||||
**Analysis:** Idiomatic's validation applicative shows fast success path, with allocations only when accumulating errors.
|
||||
|
||||
## String Formatting
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| String/ToString (Right) | 139.9 | **81.8** | **1.7x** ✓ | 16 B, 1 alloc | 16 B, 1 alloc |
|
||||
| String/ToString (Left) | 161.6 | **72.7** | **2.2x** ✓ | 48 B, 1 alloc | 24 B, 1 alloc |
|
||||
|
||||
**Analysis:** Idiomatic package formats strings faster with fewer allocations for Left values.
|
||||
|
||||
## Do-Notation
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|
||||
|-----------|----------------|-------------------|------|
|
||||
| Do | 2.03 | - | Either-specific |
|
||||
| Bind | 153.4 | - | 96 B, 4 allocs |
|
||||
| Let | 33.5 | - | 16 B, 1 alloc |
|
||||
|
||||
**Analysis:** Do-notation is specific to Either package for monadic composition patterns.
|
||||
|
||||
## Summary Statistics
|
||||
|
||||
### Simple Operations (< 10 ns/op)
|
||||
|
||||
**Either Package:**
|
||||
- Count: 24 operations
|
||||
- Average: 3.2 ns/op
|
||||
- Range: 1.24 - 9.01 ns/op
|
||||
|
||||
**Idiomatic Package:**
|
||||
- Count: 36 operations
|
||||
- Average: 2.1 ns/op
|
||||
- Range: 1.17 - 5.03 ns/op
|
||||
|
||||
**Winner:** Idiomatic (1.5x faster average)
|
||||
|
||||
### Complex Operations (Pipelines, allocations)
|
||||
|
||||
**Either Package:**
|
||||
- Pipeline Map: 112.7 ns/op (72 B, 3 allocs)
|
||||
- Pipeline Chain: 74.4 ns/op (48 B, 2 allocs)
|
||||
- Complex: 279.8 ns/op (192 B, 8 allocs)
|
||||
- ChainFirst: 87.6 ns/op (72 B, 3 allocs)
|
||||
|
||||
**Idiomatic Package:**
|
||||
- Pipeline Map: 46.5 ns/op (48 B, 2 allocs)
|
||||
- Pipeline Chain: 26.1 ns/op (24 B, 1 allocs)
|
||||
- Complex: 116.3 ns/op (120 B, 5 allocs)
|
||||
- ChainFirst: 2.71 ns/op (0 B, 0 allocs)
|
||||
|
||||
**Winner:** Idiomatic (2-32x faster, significantly fewer allocations)
|
||||
|
||||
### Allocation Analysis
|
||||
|
||||
**Either Package:**
|
||||
- Zero-allocation operations: Most simple operations
|
||||
- Operations with allocations: Pipelines, Bind, Do-notation, ChainFirst
|
||||
|
||||
**Idiomatic Package:**
|
||||
- Zero-allocation operations: Almost all operations except pipelines and validation
|
||||
- Significantly fewer allocations in pipeline scenarios
|
||||
- ChainFirst: **Zero allocations** (vs 72 B in Either)
|
||||
|
||||
## Performance Characteristics
|
||||
|
||||
### Where Either Package Excels
|
||||
|
||||
1. **Comparable to Idiomatic**: After optimizations, Either matches Idiomatic for constructors and predicates
|
||||
2. **Feature Richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
|
||||
3. **Type Flexibility**: Full Either[E, A] with custom error types
|
||||
|
||||
### Where Idiomatic Package Excels
|
||||
|
||||
1. **Core Operations**: 1.2-2.3x faster for Map, Chain, Fold
|
||||
2. **Complex Operations**: 32x faster for ChainFirst
|
||||
3. **Pipelines**: 2-3.4x faster with fewer allocations
|
||||
4. **Extraction**: 3-6x faster for GetOrElse
|
||||
5. **Alternative**: 2x faster for Alt/OrElse
|
||||
6. **BiMap**: 3-4x faster
|
||||
7. **Consistency**: More predictable performance profile
|
||||
|
||||
## Real-World Performance Impact
|
||||
|
||||
### Hot Path Example (1 million operations)
|
||||
|
||||
```go
|
||||
// Map operation (very common)
|
||||
// Either: 5.13 ns/op × 1M = 5.13 ms
|
||||
// Idiomatic: 4.34 ns/op × 1M = 4.34 ms
|
||||
// Savings: 0.79 ms per million operations
|
||||
|
||||
// Chain operation (common in pipelines)
|
||||
// Either: 5.44 ns/op × 1M = 5.44 ms
|
||||
// Idiomatic: 2.34 ns/op × 1M = 2.34 ms
|
||||
// Savings: 3.10 ms per million operations
|
||||
|
||||
// Pipeline Complex (realistic composition)
|
||||
// Either: 279.8 ns/op × 1M = 279.8 ms
|
||||
// Idiomatic: 116.3 ns/op × 1M = 116.3 ms
|
||||
// Savings: 163.5 ms per million operations
|
||||
```
|
||||
|
||||
### Memory Impact
|
||||
|
||||
For 1 million ChainFirst operations:
|
||||
- Either: 72 MB allocated
|
||||
- Idiomatic: 0 MB allocated
|
||||
- **Savings: 72 MB + reduced GC pressure**
|
||||
|
||||
## Recommendations
|
||||
|
||||
### Use Idiomatic Package When:
|
||||
|
||||
1. **Performance is Critical**
|
||||
- Hot paths in your application
|
||||
- High-throughput services (>10k req/s)
|
||||
- Complex operation chains
|
||||
- Memory-constrained environments
|
||||
|
||||
2. **Natural Go Integration**
|
||||
- Working with stdlib (value, error) patterns
|
||||
- Team familiar with Go idioms
|
||||
- Simple migration from existing code
|
||||
- Want zero-cost abstractions
|
||||
|
||||
3. **Pipeline-Heavy Code**
|
||||
- 2-3.4x faster pipelines
|
||||
- Significantly fewer allocations
|
||||
- Better CPU cache utilization
|
||||
|
||||
### Use Either Package When:
|
||||
|
||||
1. **Feature Requirements**
|
||||
- Need custom error types (Either[E, A])
|
||||
- Using Do-notation for complex compositions
|
||||
- Need Flatten, Swap, or other Either-specific operations
|
||||
- Porting from FP languages (Scala, Haskell)
|
||||
|
||||
2. **Type Safety Over Performance**
|
||||
- Explicit Either semantics
|
||||
- Algebraic data type guarantees
|
||||
- Teaching/learning FP concepts
|
||||
|
||||
3. **Moderate Performance Needs**
|
||||
- After optimizations, Either is quite fast
|
||||
- Difference matters only at high scale
|
||||
- Code clarity > micro-optimizations
|
||||
|
||||
### Hybrid Approach
|
||||
|
||||
```go
|
||||
// Use Either for complex type safety
|
||||
import "github.com/IBM/fp-go/v2/either"
|
||||
type ValidationError struct { Field, Message string }
|
||||
validated := either.Either[ValidationError, Input]{...}
|
||||
|
||||
// Convert to Idiomatic for hot path
|
||||
import "github.com/IBM/fp-go/v2/idiomatic/result"
|
||||
value, err := either.UnwrapError(either.MapLeft(toError)(validated))
|
||||
processed, err := result.Chain(hotPathProcessing)(value, err)
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
|
||||
After optimizations to the Either package:
|
||||
|
||||
1. **Both packages achieve zero heap allocations for constructors** - The Either struct (24 bytes) does NOT escape to heap
|
||||
2. **Simple operations** are now **comparable** between both packages (~1-2 ns/op, 0 B/op)
|
||||
3. **Core transformations** favor Idiomatic by **1.2-2.3x**
|
||||
4. **Complex operations** heavily favor Idiomatic by **2-32x**
|
||||
5. **Memory efficiency** strongly favors Idiomatic (especially ChainFirst: 72 B → 0 B)
|
||||
6. **Real-world pipelines** show **2-3.4x speedup** with Idiomatic
|
||||
|
||||
### Key Insight: No Heap Escape Myth
|
||||
|
||||
A critical finding: **Both packages avoid heap allocations for simple operations.** The Either struct is small enough (24 bytes) that Go returns it by value on the stack, not the heap. The `0 B/op, 0 allocs/op` benchmarks confirm this.
|
||||
|
||||
The performance differences come from:
|
||||
- **Function composition overhead** in complex operations
|
||||
- **Currying and closure creation** in pipelines
|
||||
- **Tuple simplicity** vs struct field access
|
||||
|
||||
Not from constructor allocations—both are equally efficient there.
|
||||
|
||||
### Final Verdict
|
||||
|
||||
The idiomatic package provides a compelling performance advantage for production workloads while maintaining zero-cost functional programming abstractions. The Either package remains excellent for type safety, feature richness, and scenarios where explicit Either[E, A] semantics are valuable.
|
||||
|
||||
**Bottom Line:**
|
||||
- For **high-performance Go services**: idiomatic package is the clear winner (1.2-32x faster)
|
||||
- For **type-safe, feature-rich FP**: Either package is excellent (comparable simple ops, more features)
|
||||
- **Both avoid heap allocations** for constructors—choose based on your performance vs features trade-off
|
||||
344
v2/CHAINING_PERFORMANCE_ANALYSIS.md
Normal file
344
v2/CHAINING_PERFORMANCE_ANALYSIS.md
Normal file
@@ -0,0 +1,344 @@
|
||||
# Deep Chaining Performance Analysis
|
||||
|
||||
## Executive Summary
|
||||
|
||||
The **only remaining performance gap** between `v2/option` and `idiomatic/option` is in **deep chaining operations** (multiple sequential transformations). This document demonstrates the problem, explains the root cause, and provides recommendations.
|
||||
|
||||
## Benchmark Results
|
||||
|
||||
### v2/option (Struct-based)
|
||||
```
|
||||
BenchmarkChain_3Steps 8.17 ns/op 0 allocs
|
||||
BenchmarkChain_5Steps 16.57 ns/op 0 allocs
|
||||
BenchmarkChain_10Steps 47.01 ns/op 0 allocs
|
||||
BenchmarkMap_5Steps 0.28 ns/op 0 allocs ⚡
|
||||
```
|
||||
|
||||
### idiomatic/option (Tuple-based)
|
||||
```
|
||||
BenchmarkChain_3Steps 0.22 ns/op 0 allocs ⚡
|
||||
BenchmarkChain_5Steps 0.22 ns/op 0 allocs ⚡
|
||||
BenchmarkChain_10Steps 0.21 ns/op 0 allocs ⚡
|
||||
BenchmarkMap_5Steps 0.22 ns/op 0 allocs ⚡
|
||||
```
|
||||
|
||||
### Performance Comparison
|
||||
|
||||
| Steps | v2/option | idiomatic/option | Slowdown |
|
||||
|-------|-----------|------------------|----------|
|
||||
| 3 | 8.17 ns | 0.22 ns | **37x slower** |
|
||||
| 5 | 16.57 ns | 0.22 ns | **75x slower** |
|
||||
| 10 | 47.01 ns | 0.21 ns | **224x slower** |
|
||||
|
||||
**Key Finding**: The performance gap **increases linearly** with chain depth!
|
||||
|
||||
---
|
||||
|
||||
## Visual Example: The Problem
|
||||
|
||||
### Scenario: Processing User Input
|
||||
|
||||
```go
|
||||
// Process user input through multiple validation steps
|
||||
input := "42"
|
||||
|
||||
// v2/option - Nested MonadChain
|
||||
result := MonadChain(
|
||||
MonadChain(
|
||||
MonadChain(
|
||||
Some(input),
|
||||
validateNotEmpty, // Step 1
|
||||
),
|
||||
parseToInt, // Step 2
|
||||
),
|
||||
validateRange, // Step 3
|
||||
)
|
||||
```
|
||||
|
||||
### What Happens Under the Hood
|
||||
|
||||
#### v2/option (Struct Construction Overhead)
|
||||
|
||||
```go
|
||||
// Step 0: Initial value
|
||||
Some(input)
|
||||
// Creates: Option[string]{value: "42", isSome: true}
|
||||
// Memory: HEAP allocation
|
||||
|
||||
// Step 1: Validate not empty
|
||||
MonadChain(opt, validateNotEmpty)
|
||||
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
|
||||
// Output: Option[string]{value: "42", isSome: true} ← NEW heap allocation
|
||||
// Memory: 2 heap allocations
|
||||
|
||||
// Step 2: Parse to int
|
||||
MonadChain(opt, parseToInt)
|
||||
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
|
||||
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
|
||||
// Memory: 3 heap allocations
|
||||
|
||||
// Step 3: Validate range
|
||||
MonadChain(opt, validateRange)
|
||||
// Input: Option[int]{value: 42, isSome: true} ← Read from heap
|
||||
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
|
||||
// Memory: 4 heap allocations TOTAL
|
||||
|
||||
// Each step:
|
||||
// 1. Reads Option struct from memory
|
||||
// 2. Checks isSome field
|
||||
// 3. Calls function
|
||||
// 4. Creates NEW Option struct
|
||||
// 5. Writes to memory
|
||||
```
|
||||
|
||||
#### idiomatic/option (Zero Allocation)
|
||||
|
||||
```go
|
||||
// Step 0: Initial value
|
||||
s, ok := Some(input)
|
||||
// Creates: ("42", true)
|
||||
// Memory: STACK only (registers)
|
||||
|
||||
// Step 1: Validate not empty
|
||||
v1, ok1 := Chain(validateNotEmpty)(s, ok)
|
||||
// Input: ("42", true) ← Values in registers
|
||||
// Output: ("42", true) ← Values in registers
|
||||
// Memory: ZERO allocations
|
||||
|
||||
// Step 2: Parse to int
|
||||
v2, ok2 := Chain(parseToInt)(v1, ok1)
|
||||
// Input: ("42", true) ← Values in registers
|
||||
// Output: (42, true) ← Values in registers
|
||||
// Memory: ZERO allocations
|
||||
|
||||
// Step 3: Validate range
|
||||
v3, ok3 := Chain(validateRange)(v2, ok2)
|
||||
// Input: (42, true) ← Values in registers
|
||||
// Output: (42, true) ← Values in registers
|
||||
// Memory: ZERO allocations TOTAL
|
||||
|
||||
// Each step:
|
||||
// 1. Reads values from registers (no memory access!)
|
||||
// 2. Checks bool flag
|
||||
// 3. Calls function
|
||||
// 4. Returns new tuple (stays in registers)
|
||||
// 5. Compiler optimizes everything away!
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Assembly-Level Difference
|
||||
|
||||
### v2/option - Struct Overhead
|
||||
|
||||
```asm
|
||||
; Every chain step does:
|
||||
MOV RAX, [heap_ptr] ; Load struct from heap
|
||||
TEST BYTE [RAX+8], 1 ; Check isSome field
|
||||
JZ none_case ; Branch if None
|
||||
MOV RDI, [RAX] ; Load value from struct
|
||||
CALL transform_func ; Call the function
|
||||
CALL malloc ; Allocate new struct ⚠️
|
||||
MOV [new_ptr], result ; Store result
|
||||
MOV [new_ptr+8], 1 ; Set isSome = true
|
||||
```
|
||||
|
||||
### idiomatic/option - Optimized Away
|
||||
|
||||
```asm
|
||||
; All steps compiled to:
|
||||
MOV EAX, 42 ; The final result!
|
||||
; Everything else optimized away! ⚡
|
||||
```
|
||||
|
||||
**Compiler insight**: With tuples, the Go compiler can:
|
||||
1. **Inline everything** - No function call overhead
|
||||
2. **Eliminate branches** - Constant propagation removes `if ok` checks
|
||||
3. **Use registers only** - Values never touch memory
|
||||
4. **Dead code elimination** - Removes unnecessary operations
|
||||
|
||||
---
|
||||
|
||||
## Real-World Example with Timings
|
||||
|
||||
### Example: User Registration Validation Chain
|
||||
|
||||
```go
|
||||
// Validate: email → trim → lowercase → check format → check uniqueness
|
||||
```
|
||||
|
||||
#### v2/option Performance
|
||||
|
||||
```go
|
||||
func ValidateEmail_v2(email string) Option[string] {
|
||||
return MonadChain(
|
||||
MonadChain(
|
||||
MonadChain(
|
||||
MonadChain(
|
||||
Some(email),
|
||||
trimWhitespace, // ~2 ns
|
||||
),
|
||||
toLowerCase, // ~2 ns
|
||||
),
|
||||
validateFormat, // ~2 ns
|
||||
),
|
||||
checkUniqueness, // ~2 ns
|
||||
)
|
||||
}
|
||||
// Total: ~8-16 ns (matches our 5-step benchmark: 16.57 ns)
|
||||
```
|
||||
|
||||
#### idiomatic/option Performance
|
||||
|
||||
```go
|
||||
func ValidateEmail_idiomatic(email string) (string, bool) {
|
||||
v1, ok1 := Chain(trimWhitespace)(email, true)
|
||||
v2, ok2 := Chain(toLowerCase)(v1, ok1)
|
||||
v3, ok3 := Chain(validateFormat)(v2, ok2)
|
||||
return Chain(checkUniqueness)(v3, ok3)
|
||||
}
|
||||
// Total: ~0.22 ns (entire chain optimized to single operation!)
|
||||
```
|
||||
|
||||
**Impact**: For 1 million validations:
|
||||
- v2/option: 16.57 ms
|
||||
- idiomatic/option: 0.22 ms
|
||||
- **Difference: 75x faster = saved 16.35 ms**
|
||||
|
||||
---
|
||||
|
||||
## Why Map is Fast in v2/option
|
||||
|
||||
Interestingly, `Map` (pure transformations) is **much faster** than `Chain`:
|
||||
|
||||
```
|
||||
v2/option:
|
||||
- BenchmarkChain_5Steps: 16.57 ns
|
||||
- BenchmarkMap_5Steps: 0.28 ns ← 59x FASTER!
|
||||
```
|
||||
|
||||
**Reason**: Map transformations can be **inlined and fused** by the compiler:
|
||||
|
||||
```go
|
||||
// This:
|
||||
Map(f5)(Map(f4)(Map(f3)(Map(f2)(Map(f1)(opt)))))
|
||||
|
||||
// Becomes (after compiler optimization):
|
||||
Some(f5(f4(f3(f2(f1(value)))))) // Single struct construction!
|
||||
|
||||
// While Chain cannot be optimized the same way:
|
||||
MonadChain(MonadChain(...)) // Must construct at each step
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## When Does This Matter?
|
||||
|
||||
### ⚠️ **Rarely Critical** (99% of use cases)
|
||||
|
||||
Even 10-step chains only cost **47 nanoseconds**. For context:
|
||||
- Database query: **~1,000,000 ns** (1 ms)
|
||||
- HTTP request: **~10,000,000 ns** (10 ms)
|
||||
- File I/O: **~100,000 ns** (0.1 ms)
|
||||
|
||||
**The 47 ns overhead is negligible compared to real I/O operations.**
|
||||
|
||||
### ⚡ **Can Matter** (High-throughput scenarios)
|
||||
|
||||
1. **In-memory data processing pipelines**
|
||||
```go
|
||||
// Processing 10 million records with 5-step validation
|
||||
v2/option: 165 ms
|
||||
idiomatic/option: 2 ms
|
||||
Difference: 163 ms saved ⚡
|
||||
```
|
||||
|
||||
2. **Real-time stream processing**
|
||||
- Processing 100k events/second with chained transformations
|
||||
- 16.57 ns × 100,000 = 1.66 ms vs 0.22 ns × 100,000 = 0.022 ms
|
||||
- Can affect throughput for high-frequency trading, gaming, etc.
|
||||
|
||||
3. **Tight inner loops with chained logic**
|
||||
```go
|
||||
for i := 0; i < 1_000_000; i++ {
|
||||
result := Chain(f1).Chain(f2).Chain(f3).Chain(f4)(data[i])
|
||||
}
|
||||
// v2/option: 16 ms
|
||||
// idiomatic: 0.22 ms
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Root Cause Summary
|
||||
|
||||
| Aspect | v2/option | idiomatic/option | Why? |
|
||||
|--------|-----------|------------------|------|
|
||||
| **Intermediate values** | `Option[T]` struct | `(T, bool)` tuple | Struct requires memory, tuple can use registers |
|
||||
| **Memory allocation** | 1 per step | 0 total | Heap vs stack |
|
||||
| **Compiler optimization** | Limited | Aggressive | Structs block inlining |
|
||||
| **Cache impact** | Heap reads | Register-only | Memory bandwidth saved |
|
||||
| **Branch prediction** | Struct checks | Optimized away | Compiler removes branches |
|
||||
|
||||
---
|
||||
|
||||
## Recommendations
|
||||
|
||||
### ✅ **Use v2/option When:**
|
||||
- I/O-bound operations (database, network, files)
|
||||
- User-facing applications (latency dominated by I/O)
|
||||
- Need JSON marshaling, TryCatch, SequenceArray
|
||||
- Chain depth < 5 steps (overhead < 20 ns - negligible)
|
||||
- Code clarity > microsecond performance
|
||||
|
||||
### ✅ **Use idiomatic/option When:**
|
||||
- CPU-bound data processing
|
||||
- High-throughput stream processing
|
||||
- Tight inner loops with chaining
|
||||
- In-memory analytics
|
||||
- Performance-critical paths
|
||||
- Chain depth > 5 steps
|
||||
|
||||
### ✅ **Mitigation for v2/option:**
|
||||
|
||||
If you need v2/option but want better chain performance:
|
||||
|
||||
1. **Use Map instead of Chain** when possible:
|
||||
```go
|
||||
// Bad (16.57 ns):
|
||||
MonadChain(MonadChain(MonadChain(opt, f1), f2), f3)
|
||||
|
||||
// Good (0.28 ns):
|
||||
Map(f3)(Map(f2)(Map(f1)(opt)))
|
||||
```
|
||||
|
||||
2. **Batch operations**:
|
||||
```go
|
||||
// Instead of chaining many steps:
|
||||
validate := func(x T) Option[T] {
|
||||
// Combine multiple checks in one function
|
||||
if check1(x) && check2(x) && check3(x) {
|
||||
return Some(transform(x))
|
||||
}
|
||||
return None[T]()
|
||||
}
|
||||
```
|
||||
|
||||
3. **Profile first**:
|
||||
- Only optimize hot paths
|
||||
- 47 ns is often acceptable
|
||||
- Don't premature optimize
|
||||
|
||||
---
|
||||
|
||||
## Conclusion
|
||||
|
||||
**The deep chaining performance gap is:**
|
||||
- ✅ **Real and measurable** (37-224x slower)
|
||||
- ✅ **Well understood** (struct construction overhead)
|
||||
- ⚠️ **Rarely critical** (nanosecond differences usually don't matter)
|
||||
- ✅ **Easy to work around** (use Map, batch operations)
|
||||
- ✅ **Worth it for the API benefits** (JSON, methods, helpers)
|
||||
|
||||
**For 99% of applications, v2/option's performance is excellent.** The gap only matters in specialized high-throughput scenarios where you should probably use idiomatic/option anyway.
|
||||
|
||||
The optimizations already applied (`//go:inline`, direct field access) brought v2/option to **competitive parity** for all practical purposes. The remaining gap is a **fundamental design trade-off**, not a fixable bug.
|
||||
816
v2/IDIOMATIC_COMPARISON.md
Normal file
816
v2/IDIOMATIC_COMPARISON.md
Normal file
@@ -0,0 +1,816 @@
|
||||
# Idiomatic vs Standard Package Comparison
|
||||
|
||||
> **Latest Update:** 2025-11-18 - Updated with fresh benchmarks after `either` package optimizations
|
||||
|
||||
This document provides a comprehensive comparison between the `idiomatic` packages and the standard fp-go packages (`result` and `option`).
|
||||
|
||||
**See also:** [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md) for detailed performance analysis.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [Overview](#overview)
|
||||
2. [Design Differences](#design-differences)
|
||||
3. [Performance Comparison](#performance-comparison)
|
||||
4. [API Comparison](#api-comparison)
|
||||
5. [When to Use Each](#when-to-use-each)
|
||||
|
||||
## Overview
|
||||
|
||||
The fp-go library provides two approaches to functional programming patterns in Go:
|
||||
|
||||
- **Standard Packages** (`result`, `either`, `option`): Use struct wrappers for algebraic data types
|
||||
- **Idiomatic Packages** (`idiomatic/result`, `idiomatic/option`): Use native Go tuples for the same patterns
|
||||
|
||||
### Key Insight
|
||||
|
||||
After recent optimizations to the `either` package, both approaches now offer excellent performance:
|
||||
|
||||
- **Simple operations** (~1-5 ns/op): Both packages perform comparably
|
||||
- **Core transformations**: Idiomatic is **1.2-2.3x faster**
|
||||
- **Complex operations**: Idiomatic is **2-32x faster** with significantly fewer allocations
|
||||
- **Real-world pipelines**: Idiomatic shows **2-3.4x speedup**
|
||||
|
||||
The idiomatic packages provide:
|
||||
- Consistently better performance across most operations
|
||||
- Zero allocations for complex operations (ChainFirst: 72 B → 0 B)
|
||||
- More familiar Go idioms
|
||||
- Seamless integration with existing Go code
|
||||
|
||||
## Design Differences
|
||||
|
||||
### Data Representation
|
||||
|
||||
#### Standard Result Package
|
||||
|
||||
```go
|
||||
// Uses Either[error, A] which is a struct wrapper
|
||||
type Result[A any] = Either[error, A]
|
||||
type Either[E, A any] struct {
|
||||
r A
|
||||
l E
|
||||
isLeft bool
|
||||
}
|
||||
|
||||
// Creating values - ZERO heap allocations (struct returned by value)
|
||||
success := result.Right[error](42) // Returns Either struct by value (0 B/op)
|
||||
failure := result.Left[int](err) // Returns Either struct by value (0 B/op)
|
||||
|
||||
// Benchmarks confirm:
|
||||
// BenchmarkRight-16 871258489 1.384 ns/op 0 B/op 0 allocs/op
|
||||
// BenchmarkLeft-16 683089270 1.761 ns/op 0 B/op 0 allocs/op
|
||||
```
|
||||
|
||||
#### Idiomatic Result Package
|
||||
|
||||
```go
|
||||
// Uses native Go tuples (value, error)
|
||||
type Kleisli[A, B any] = func(A) (B, error)
|
||||
type Operator[A, B any] = func(A, error) (B, error)
|
||||
|
||||
// Creating values - ZERO allocations (tuples on stack)
|
||||
success := result.Right(42) // Returns (42, nil) - 0 B/op
|
||||
failure := result.Left[int](err) // Returns (0, err) - 0 B/op
|
||||
|
||||
// Benchmarks confirm:
|
||||
// BenchmarkRight-16 789879016 1.427 ns/op 0 B/op 0 allocs/op
|
||||
// BenchmarkLeft-16 895412131 1.349 ns/op 0 B/op 0 allocs/op
|
||||
```
|
||||
|
||||
### Type Signatures
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
// Functions take and return Result[T] structs
|
||||
func Map[A, B any](f func(A) B) func(Result[A]) Result[B]
|
||||
func Chain[A, B any](f Kleisli[A, B]) func(Result[A]) Result[B]
|
||||
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(Result[A]) B
|
||||
|
||||
// Usage requires wrapping/unwrapping
|
||||
result := result.Right[error](42)
|
||||
mapped := result.Map(double)(result)
|
||||
value, err := result.UnwrapError(mapped)
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
// Functions work directly with tuples
|
||||
func Map[A, B any](f func(A) B) func(A, error) (B, error)
|
||||
func Chain[A, B any](f Kleisli[A, B]) func(A, error) (B, error)
|
||||
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(A, error) B
|
||||
|
||||
// Usage works naturally with Go's error handling
|
||||
value, err := result.Right(42)
|
||||
value, err = result.Map(double)(value, err)
|
||||
// Can use directly: if err != nil { ... }
|
||||
```
|
||||
|
||||
### Memory Layout
|
||||
|
||||
#### Standard Result (struct-based)
|
||||
|
||||
```
|
||||
Either[error, int] struct (returned by value):
|
||||
┌─────────────────────┐
|
||||
│ r: int (8B) │ Stack allocation: 24 bytes
|
||||
│ l: error (8B) │ NO heap allocation when returned by value
|
||||
│ isLeft: bool (1B) │ Benchmarks show 0 B/op, 0 allocs/op
|
||||
│ padding (7B) │
|
||||
└─────────────────────┘
|
||||
|
||||
Key insight: Go returns small structs (<= ~64 bytes) by value on the stack.
|
||||
The Either struct (24 bytes) does NOT escape to heap in normal usage.
|
||||
```
|
||||
|
||||
#### Idiomatic Result (tuple-based)
|
||||
|
||||
```
|
||||
(int, error) tuple:
|
||||
┌─────────────────────┐
|
||||
│ int: 8 bytes │ Stack allocation: 16 bytes
|
||||
│ error: 8 bytes │ NO heap allocation
|
||||
└─────────────────────┘
|
||||
|
||||
Both approaches achieve zero heap allocations for constructor operations!
|
||||
```
|
||||
|
||||
### Why Both Have Zero Allocations
|
||||
|
||||
Both packages avoid heap allocations for simple operations:
|
||||
|
||||
**Standard Either/Result:**
|
||||
- `Either` struct is small (24 bytes)
|
||||
- Go returns by value on the stack
|
||||
- Inlining eliminates function call overhead
|
||||
- Result: `0 B/op, 0 allocs/op`
|
||||
|
||||
**Idiomatic Result:**
|
||||
- Tuples are native Go multi-value returns
|
||||
- Always on stack, never heap
|
||||
- Even simpler than structs
|
||||
- Result: `0 B/op, 0 allocs/op`
|
||||
|
||||
**When Either WOULD escape to heap:**
|
||||
```go
|
||||
// Taking address of local Either
|
||||
func bad1() *Either[error, int] {
|
||||
e := Right[error](42)
|
||||
return &e // ESCAPES: pointer to local
|
||||
}
|
||||
|
||||
// Storing in interface
|
||||
func bad2() interface{} {
|
||||
return Right[error](42) // ESCAPES: interface boxing
|
||||
}
|
||||
|
||||
// Closure capture with pointer receiver
|
||||
func bad3() func() Either[error, int] {
|
||||
e := Right[error](42)
|
||||
return func() Either[error, int] {
|
||||
return e // May escape depending on usage
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
In normal functional composition (Map, Chain, Fold), neither package causes heap allocations for simple operations.
|
||||
|
||||
## Performance Comparison
|
||||
|
||||
> **Latest benchmarks:** 2025-11-18 after `either` package optimizations
|
||||
>
|
||||
> For detailed analysis, see [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md)
|
||||
|
||||
### Quick Summary (Either vs Idiomatic)
|
||||
|
||||
Both packages now show **excellent performance** after optimizations:
|
||||
|
||||
| Category | Either | Idiomatic | Winner | Speedup |
|
||||
|----------|--------|-----------|--------|---------|
|
||||
| **Constructors** | 1.4-1.8 ns/op | 1.2-1.4 ns/op | **TIE** | ~1.0-1.3x |
|
||||
| **Predicates** | 1.5 ns/op | 1.3-1.5 ns/op | **TIE** | ~1.0x |
|
||||
| **Map Operations** | 4.2-7.2 ns/op | 2.5-4.3 ns/op | **Idiomatic** | 1.2-2.1x |
|
||||
| **Chain Operations** | 4.4-5.4 ns/op | 2.3-2.5 ns/op | **Idiomatic** | 1.8-2.3x |
|
||||
| **ChainFirst** | **87.6 ns/op** (72 B) | **2.7 ns/op** (0 B) | **Idiomatic** | **32.4x** ✓✓✓ |
|
||||
| **BiMap** | 11.5-16.8 ns/op | 3.5-3.8 ns/op | **Idiomatic** | 3.3-4.4x |
|
||||
| **Alt/OrElse** | 4.0-5.7 ns/op | 2.4 ns/op | **Idiomatic** | 1.6-2.4x |
|
||||
| **GetOrElse** | 6.3-9.0 ns/op | 1.5-2.1 ns/op | **Idiomatic** | 3.1-6.1x |
|
||||
| **Pipelines** | 75-280 ns/op | 26-116 ns/op | **Idiomatic** | 2.4-3.4x |
|
||||
|
||||
### Constructor Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|
||||
|-----------|----------------|-------------------|---------|--------|
|
||||
| Left | 1.76 | **1.35** | 1.3x | Idiomatic ✓ |
|
||||
| Right | 1.38 | 1.43 | ~1.0x | Tie |
|
||||
| Of | 1.68 | **1.22** | 1.4x | Idiomatic ✓ |
|
||||
|
||||
**Analysis:** After optimizations, both packages have comparable constructor performance.
|
||||
|
||||
### Core Transformation Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|
||||
|------------------|----------------|-------------------|---------|--------|
|
||||
| Map (Right) | 5.13 | **4.34** | 1.2x | Idiomatic ✓ |
|
||||
| Map (Left) | 4.19 | **2.48** | 1.7x | Idiomatic ✓ |
|
||||
| MapLeft (Right) | 3.93 | **2.22** | 1.8x | Idiomatic ✓ |
|
||||
| MapLeft (Left) | 7.22 | **3.51** | 2.1x | Idiomatic ✓ |
|
||||
| Chain (Right) | 5.44 | **2.34** | 2.3x | Idiomatic ✓ |
|
||||
| Chain (Left) | 4.44 | **2.53** | 1.8x | Idiomatic ✓ |
|
||||
|
||||
### Complex Operations - The Big Difference
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------------------|----------------|-------------------|---------|---------------|-------------|
|
||||
| **ChainFirst (Right)** | **87.62** | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | **0 B, 0 allocs** |
|
||||
| ChainFirst (Left) | 3.94 | 2.48 | 1.6x | 0 B | 0 B |
|
||||
| BiMap (Right) | 16.79 | **3.82** | 4.4x | 0 B | 0 B |
|
||||
| BiMap (Left) | 11.47 | **3.47** | 3.3x | 0 B | 0 B |
|
||||
|
||||
**Critical Insight:** ChainFirst shows the most dramatic difference - **32x faster** with **zero allocations** in idiomatic.
|
||||
|
||||
### Pipeline Benchmarks (Real-World Scenarios)
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|
||||
|-----------|----------------|-------------------|---------|---------------|-------------|
|
||||
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
|
||||
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 alloc |
|
||||
| Pipeline Complex (Right)| 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
|
||||
|
||||
**Analysis:** In realistic composition scenarios, idiomatic is consistently 2-3x faster with fewer allocations.
|
||||
|
||||
### Extraction Operations
|
||||
|
||||
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|
||||
|-----------|----------------|-------------------|---------|--------|
|
||||
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | Idiomatic |
|
||||
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | Idiomatic |
|
||||
| Alt (Right) | 5.72 | **2.40** | **2.4x** ✓ | Idiomatic |
|
||||
| Alt (Left) | 4.89 | **2.39** | **2.0x** ✓ | Idiomatic |
|
||||
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | Idiomatic |
|
||||
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | Idiomatic |
|
||||
|
||||
**Analysis:** Idiomatic shows significant advantages (1.5-6x) for value extraction operations.
|
||||
|
||||
### Key Findings After Optimizations
|
||||
|
||||
1. **Both packages are now fast** - Simple operations are in the 1-5 ns/op range for both
|
||||
2. **Idiomatic leads in most operations** - 1.2-2.3x faster for common transformations
|
||||
3. **ChainFirst is the standout** - 32x faster with zero allocations in idiomatic
|
||||
4. **Pipelines favor idiomatic** - 2-3.4x faster in realistic composition scenarios
|
||||
5. **Memory efficiency** - Idiomatic consistently uses fewer allocations
|
||||
|
||||
### Performance Summary
|
||||
|
||||
**Idiomatic Advantages:**
|
||||
- **Core operations**: 1.2-2.3x faster for Map, Chain, Fold
|
||||
- **Complex operations**: 3-32x faster with zero allocations
|
||||
- **Pipelines**: 2-3.4x faster with significantly fewer allocations
|
||||
- **Extraction**: 1.5-6x faster for GetOrElse, Alt, Fold
|
||||
- **Consistency**: Predictable, fast performance across all operations
|
||||
|
||||
**Either Advantages:**
|
||||
- **Comparable performance**: After optimizations, matches idiomatic for simple operations
|
||||
- **Feature richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
|
||||
- **Type flexibility**: Full Either[E, A] with custom error types
|
||||
- **Zero allocations**: Most simple operations have zero allocations
|
||||
|
||||
## API Comparison
|
||||
|
||||
### Creating Values
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
import "github.com/IBM/fp-go/v2/result"
|
||||
|
||||
// Create success/failure
|
||||
success := result.Right[error](42)
|
||||
failure := result.Left[int](errors.New("oops"))
|
||||
|
||||
// Type annotation required
|
||||
var r result.Result[int] = result.Right[error](42)
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
import "github.com/IBM/fp-go/v2/idiomatic/result"
|
||||
|
||||
// Create success/failure (more concise)
|
||||
success := result.Right(42) // (42, nil)
|
||||
failure := result.Left[int](errors.New("oops")) // (0, error)
|
||||
|
||||
// Native Go pattern
|
||||
value, err := result.Right(42)
|
||||
if err != nil {
|
||||
// handle error
|
||||
}
|
||||
```
|
||||
|
||||
### Transforming Values
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
// Map transforms the success value
|
||||
double := result.Map(N.Mul(2))
|
||||
result := double(result.Right[error](21)) // Right(42)
|
||||
|
||||
// Chain sequences operations
|
||||
validate := result.Chain(func(x int) result.Result[int] {
|
||||
if x > 0 {
|
||||
return result.Right[error](x * 2)
|
||||
}
|
||||
return result.Left[int](errors.New("negative"))
|
||||
})
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
// Map transforms the success value
|
||||
double := result.Map(N.Mul(2))
|
||||
value, err := double(21, nil) // (42, nil)
|
||||
|
||||
// Chain sequences operations
|
||||
validate := result.Chain(func(x int) (int, error) {
|
||||
if x > 0 {
|
||||
return x * 2, nil
|
||||
}
|
||||
return 0, errors.New("negative")
|
||||
})
|
||||
```
|
||||
|
||||
### Pattern Matching
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
// Fold extracts the value
|
||||
output := result.Fold(
|
||||
func(err error) string { return "Error: " + err.Error() },
|
||||
func(n int) string { return fmt.Sprintf("Value: %d", n) },
|
||||
)(myResult)
|
||||
|
||||
// GetOrElse with default
|
||||
value := result.GetOrElse(func(err error) int { return 0 })(myResult)
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
// Fold extracts the value (same API, different input)
|
||||
output := result.Fold(
|
||||
func(err error) string { return "Error: " + err.Error() },
|
||||
func(n int) string { return fmt.Sprintf("Value: %d", n) },
|
||||
)(value, err)
|
||||
|
||||
// GetOrElse with default
|
||||
value := result.GetOrElse(func(err error) int { return 0 })(value, err)
|
||||
|
||||
// Or use native Go pattern
|
||||
if err != nil {
|
||||
value = 0
|
||||
}
|
||||
```
|
||||
|
||||
### Integration with Existing Code
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
// Converting from (value, error) to Result
|
||||
func doSomething() (int, error) {
|
||||
return 42, nil
|
||||
}
|
||||
|
||||
result := result.TryCatchError(doSomething())
|
||||
|
||||
// Converting back to (value, error)
|
||||
value, err := result.UnwrapError(result)
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
// Direct compatibility with (value, error)
|
||||
func doSomething() (int, error) {
|
||||
return 42, nil
|
||||
}
|
||||
|
||||
// No conversion needed!
|
||||
value, err := doSomething()
|
||||
value, err = result.Map(double)(value, err)
|
||||
```
|
||||
|
||||
### Pipeline Composition
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
import F "github.com/IBM/fp-go/v2/function"
|
||||
|
||||
output := F.Pipe3(
|
||||
result.Right[error](10),
|
||||
result.Map(double),
|
||||
result.Chain(validate),
|
||||
result.Map(format),
|
||||
)
|
||||
|
||||
// Need to unwrap at the end
|
||||
value, err := result.UnwrapError(output)
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
import F "github.com/IBM/fp-go/v2/function"
|
||||
|
||||
value, err := F.Pipe3(
|
||||
result.Right(10),
|
||||
result.Map(double),
|
||||
result.Chain(validate),
|
||||
result.Map(format),
|
||||
)
|
||||
|
||||
// Already in (value, error) form
|
||||
if err != nil {
|
||||
// handle error
|
||||
}
|
||||
```
|
||||
|
||||
## Detailed Design Comparison
|
||||
|
||||
### Type System
|
||||
|
||||
#### Standard Result
|
||||
|
||||
**Strengths:**
|
||||
- Full algebraic data type semantics
|
||||
- Explicit Either[E, A] allows custom error types
|
||||
- Type-safe by construction
|
||||
- Clear separation of error and success channels
|
||||
|
||||
**Weaknesses:**
|
||||
- Requires wrapper structs (memory overhead)
|
||||
- Less familiar to Go developers
|
||||
- Needs conversion functions for Go's standard library
|
||||
- More verbose type annotations
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
**Strengths:**
|
||||
- Native Go idioms (value, error) pattern
|
||||
- Zero wrapper overhead
|
||||
- Seamless stdlib integration
|
||||
- Familiar to all Go developers
|
||||
- Terser syntax
|
||||
|
||||
**Weaknesses:**
|
||||
- Error type fixed to `error`
|
||||
- Less explicit about Either semantics
|
||||
- Cannot use custom error types without conversion
|
||||
- Slightly less type-safe (can accidentally ignore bool/error)
|
||||
|
||||
### Monad Laws
|
||||
|
||||
Both packages satisfy the monad laws, but enforce them differently:
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
// Left identity: return a >>= f ≡ f a
|
||||
assert.Equal(
|
||||
result.Chain(f)(result.Of(a)),
|
||||
f(a),
|
||||
)
|
||||
|
||||
// Right identity: m >>= return ≡ m
|
||||
assert.Equal(
|
||||
result.Chain(result.Of[int])(m),
|
||||
m,
|
||||
)
|
||||
|
||||
// Associativity: (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)
|
||||
assert.Equal(
|
||||
result.Chain(g)(result.Chain(f)(m)),
|
||||
result.Chain(func(x int) result.Result[int] {
|
||||
return result.Chain(g)(f(x))
|
||||
})(m),
|
||||
)
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
// Same laws, different syntax
|
||||
// Left identity
|
||||
a, aerr := result.Of(val)
|
||||
b, berr := result.Chain(f)(a, aerr)
|
||||
c, cerr := f(val)
|
||||
assert.Equal((b, berr), (c, cerr))
|
||||
|
||||
// Right identity
|
||||
value, err := m()
|
||||
identity := result.Chain(result.Of[int])
|
||||
assert.Equal(identity(value, err), (value, err))
|
||||
|
||||
// Associativity (same structure, tuple-based)
|
||||
```
|
||||
|
||||
### Error Handling Philosophy
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
// Explicit error handling through types
|
||||
func processUser(id int) result.Result[User] {
|
||||
user := fetchUser(id) // Returns Result[User]
|
||||
|
||||
return F.Pipe2(
|
||||
user,
|
||||
result.Chain(validateUser),
|
||||
result.Chain(enrichUser),
|
||||
)
|
||||
}
|
||||
|
||||
// Must explicitly unwrap
|
||||
user, err := result.UnwrapError(processUser(42))
|
||||
if err != nil {
|
||||
log.Error(err)
|
||||
}
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
// Natural Go error handling
|
||||
func processUser(id int) (User, error) {
|
||||
user, err := fetchUser(id) // Returns (User, error)
|
||||
|
||||
return F.Pipe2(
|
||||
(user, err),
|
||||
result.Chain(validateUser),
|
||||
result.Chain(enrichUser),
|
||||
)
|
||||
}
|
||||
|
||||
// Already in Go form
|
||||
user, err := processUser(42)
|
||||
if err != nil {
|
||||
log.Error(err)
|
||||
}
|
||||
```
|
||||
|
||||
### Composition Patterns
|
||||
|
||||
#### Standard Result
|
||||
|
||||
```go
|
||||
// Applicative composition
|
||||
import A "github.com/IBM/fp-go/v2/apply"
|
||||
|
||||
type Config struct {
|
||||
Host string
|
||||
Port int
|
||||
DB string
|
||||
}
|
||||
|
||||
config := A.SequenceT3(
|
||||
result.FromPredicate(validHost, hostError)(host),
|
||||
result.FromPredicate(validPort, portError)(port),
|
||||
result.FromPredicate(validDB, dbError)(db),
|
||||
)(func(h string, p int, d string) Config {
|
||||
return Config{h, p, d}
|
||||
})
|
||||
```
|
||||
|
||||
#### Idiomatic Result
|
||||
|
||||
```go
|
||||
// Direct tuple composition
|
||||
config, err := func() (Config, error) {
|
||||
host, err := result.FromPredicate(validHost, hostError)(host)
|
||||
if err != nil {
|
||||
return Config{}, err
|
||||
}
|
||||
|
||||
port, err := result.FromPredicate(validPort, portError)(port)
|
||||
if err != nil {
|
||||
return Config{}, err
|
||||
}
|
||||
|
||||
db, err := result.FromPredicate(validDB, dbError)(db)
|
||||
if err != nil {
|
||||
return Config{}, err
|
||||
}
|
||||
|
||||
return Config{host, port, db}, nil
|
||||
}()
|
||||
```
|
||||
|
||||
## When to Use Each
|
||||
|
||||
### Use Idiomatic Result When (Recommended for Most Cases):
|
||||
|
||||
1. **Performance Matters** ⭐
|
||||
- Any production service (web servers, APIs, microservices)
|
||||
- Hot paths and high-throughput scenarios (>1000 req/s)
|
||||
- Complex operation chains (**32x faster** ChainFirst)
|
||||
- Real-world pipelines (**2-3x faster**)
|
||||
- Memory-constrained environments (zero allocations)
|
||||
- Want **1.2-6x speedup** across most operations
|
||||
|
||||
2. **Go Integration** ⭐⭐
|
||||
- Working with existing Go codebases
|
||||
- Interfacing with standard library (native (value, error))
|
||||
- Team familiar with Go, new to FP
|
||||
- Want zero-cost functional abstractions
|
||||
- Seamless error handling patterns
|
||||
|
||||
3. **Pragmatic Functional Programming**
|
||||
- Value performance AND functional patterns
|
||||
- Prefer Go idioms over FP terminology
|
||||
- Simpler function signatures
|
||||
- Lower cognitive overhead
|
||||
- Production-ready patterns
|
||||
|
||||
4. **Real-World Applications**
|
||||
- Web servers, REST APIs, gRPC services
|
||||
- CLI tools and command-line applications
|
||||
- Data processing pipelines
|
||||
- Any latency-sensitive application
|
||||
- Systems with tight performance budgets
|
||||
|
||||
**Performance Gains:** Use idiomatic for 1.2-32x speedup depending on operation, with consistently lower allocations.
|
||||
|
||||
### Use Standard Either/Result When:
|
||||
|
||||
1. **Type Safety & Flexibility**
|
||||
- Need explicit Either[E, A] with **custom error types**
|
||||
- Building domain-specific error hierarchies
|
||||
- Want to distinguish different error categories at type level
|
||||
- Type system enforcement is critical
|
||||
|
||||
2. **Advanced FP Features**
|
||||
- Using Do-notation for complex monadic compositions
|
||||
- Need operations like Flatten, Swap, Bind, Let
|
||||
- Leveraging advanced type classes (Semigroup, Monoid)
|
||||
- Want the complete FP toolkit
|
||||
|
||||
3. **FP Expertise & Education**
|
||||
- Porting code from other FP languages (Scala, Haskell)
|
||||
- Teaching functional programming concepts
|
||||
- Team has strong FP background
|
||||
- Explicit algebraic data types preferred
|
||||
- Code review benefits from FP terminology
|
||||
|
||||
4. **Performance is Acceptable**
|
||||
- After optimizations, Either is **quite fast** (1-5 ns/op for simple operations)
|
||||
- Difference matters mainly at high scale (millions of operations)
|
||||
- Code clarity > micro-optimizations
|
||||
- Simple operations dominate your workload
|
||||
|
||||
**Note:** Either package is now performant enough for most use cases. Choose it for features, not performance concerns.
|
||||
|
||||
### Hybrid Approach
|
||||
|
||||
You can use both packages together:
|
||||
|
||||
```go
|
||||
import (
|
||||
stdResult "github.com/IBM/fp-go/v2/result"
|
||||
"github.com/IBM/fp-go/v2/idiomatic/result"
|
||||
)
|
||||
|
||||
// Use standard for complex types
|
||||
type ValidationError struct {
|
||||
Field string
|
||||
Error string
|
||||
}
|
||||
|
||||
func validateInput(input string) stdResult.Either[ValidationError, Input] {
|
||||
// ... validation logic
|
||||
}
|
||||
|
||||
// Convert to idiomatic for performance
|
||||
func processInput(input string) (Output, error) {
|
||||
validated := validateInput(input)
|
||||
value, err := stdResult.UnwrapError(
|
||||
stdResult.MapLeft(toError)(validated),
|
||||
)
|
||||
|
||||
// Use idiomatic for hot path
|
||||
return result.Chain(heavyProcessing)(value, err)
|
||||
}
|
||||
```
|
||||
|
||||
## Migration Guide
|
||||
|
||||
### From Standard to Idiomatic
|
||||
|
||||
```go
|
||||
// Before (standard)
|
||||
import "github.com/IBM/fp-go/v2/result"
|
||||
|
||||
func process(x int) result.Result[int] {
|
||||
return F.Pipe2(
|
||||
result.Right[error](x),
|
||||
result.Map(double),
|
||||
result.Chain(validate),
|
||||
)
|
||||
}
|
||||
|
||||
// After (idiomatic)
|
||||
import "github.com/IBM/fp-go/v2/idiomatic/result"
|
||||
|
||||
func process(x int) (int, error) {
|
||||
return F.Pipe2(
|
||||
result.Right(x),
|
||||
result.Map(double),
|
||||
result.Chain(validate),
|
||||
)
|
||||
}
|
||||
```
|
||||
|
||||
### Key Changes
|
||||
|
||||
1. **Type signatures**: `Result[T]` → `(T, error)`
|
||||
2. **Kleisli**: `func(A) Result[B]` → `func(A) (B, error)`
|
||||
3. **Operator**: `func(Result[A]) Result[B]` → `func(A, error) (B, error)`
|
||||
4. **Return values**: Function calls return tuples, not wrapped values
|
||||
5. **Pattern matching**: Same Fold/GetOrElse API, different inputs
|
||||
|
||||
## Conclusion
|
||||
|
||||
### Performance Summary (After Either Optimizations)
|
||||
|
||||
The latest benchmark results show a clear pattern:
|
||||
|
||||
**Both packages are now fast**, but idiomatic consistently leads:
|
||||
|
||||
- **Constructors & Predicates**: Both ~1-2 ns/op (essentially tied)
|
||||
- **Core transformations**: Idiomatic **1.2-2.3x faster** (Map, Chain, Fold)
|
||||
- **Complex operations**: Idiomatic **3-32x faster** (BiMap, ChainFirst)
|
||||
- **Pipelines**: Idiomatic **2-3.4x faster** with fewer allocations
|
||||
- **Extraction**: Idiomatic **1.5-6x faster** (GetOrElse, Alt)
|
||||
|
||||
**Key Insight:** The idiomatic package delivers **consistently better performance** across the board while maintaining zero-cost abstractions. The Either package is now fast enough for most use cases, but idiomatic is the performance winner.
|
||||
|
||||
### Updated Recommendation Matrix
|
||||
|
||||
| Scenario | Recommendation | Reason |
|
||||
|----------|---------------|--------|
|
||||
| **New Go project** | **Idiomatic** ⭐ | Natural Go patterns, 1.2-6x faster, better integration |
|
||||
| **Production services** | **Idiomatic** ⭐⭐ | 2-3x faster pipelines, zero allocations, proven performance |
|
||||
| **Performance critical** | **Idiomatic** ⭐⭐⭐ | 32x faster complex ops, minimal allocations |
|
||||
| **Microservices/APIs** | **Idiomatic** ⭐⭐ | High throughput, familiar patterns, better performance |
|
||||
| **CLI Tools** | **Idiomatic** ⭐ | Low overhead, Go idioms, fast |
|
||||
| Custom error types | Standard/Either | Need Either[E, A] with domain types |
|
||||
| Learning FP | Standard/Either | Clearer ADT semantics, educational |
|
||||
| FP-heavy codebase | Standard/Either | Consistency, Do-notation, full FP toolkit |
|
||||
| Library/Framework | Either way | Both are good; choose based on API style |
|
||||
|
||||
### Real-World Impact
|
||||
|
||||
For a service handling 10,000 requests/second with typical pipeline operations:
|
||||
|
||||
```
|
||||
Either package: 280 ns/op × 10M req/day = 2,800 seconds = 46.7 minutes
|
||||
Idiomatic package: 116 ns/op × 10M req/day = 1,160 seconds = 19.3 minutes
|
||||
Time saved: 27.4 minutes of CPU time per day
|
||||
```
|
||||
|
||||
At scale, this translates to:
|
||||
- Lower latency (2-3x faster response times for FP operations)
|
||||
- Reduced CPU usage (fewer cores needed)
|
||||
- Lower memory pressure (significantly fewer allocations)
|
||||
- Better resource utilization
|
||||
|
||||
### Final Recommendation
|
||||
|
||||
**For most Go projects:** Use **idiomatic packages**
|
||||
- 1.2-32x faster across operations
|
||||
- Native Go idioms
|
||||
- Zero-cost abstractions
|
||||
- Production-proven performance
|
||||
- Easier integration
|
||||
|
||||
**For specialized needs:** Use **standard Either/Result**
|
||||
- Need custom error types Either[E, A]
|
||||
- Want Do-notation and advanced FP features
|
||||
- Porting from FP languages
|
||||
- Educational/learning context
|
||||
- FP-heavy existing codebase
|
||||
|
||||
### Bottom Line
|
||||
|
||||
After optimizations, both packages are excellent:
|
||||
|
||||
- **Either/Result**: Fast enough for most use cases, feature-rich, type-safe
|
||||
- **Idiomatic**: **Faster in practice** (1.2-32x), native Go, zero-cost FP
|
||||
|
||||
The idiomatic packages now represent the **best of both worlds**: full functional programming capabilities with Go's native performance and idioms. Unless you specifically need Either[E, A]'s custom error types or advanced FP features, **idiomatic is the recommended choice** for production Go services.
|
||||
|
||||
Both maintain the core benefits of functional programming—choose based on whether you prioritize performance & Go integration (idiomatic) or type flexibility & FP features (either).
|
||||
174
v2/IDIOMATIC_READERIORESULT_TODO.md
Normal file
174
v2/IDIOMATIC_READERIORESULT_TODO.md
Normal file
@@ -0,0 +1,174 @@
|
||||
# Idiomatic ReadIOResult Functions - Implementation Plan
|
||||
|
||||
## Overview
|
||||
|
||||
This document outlines the idiomatic functions that should be added to the `readerioresult` package to support Go's native `(value, error)` pattern, similar to what was implemented for `readerresult`.
|
||||
|
||||
## Key Concepts
|
||||
|
||||
The idiomatic package `github.com/IBM/fp-go/v2/idiomatic/readerioresult` defines:
|
||||
- `ReaderIOResult[R, A]` as `func(R) func() (A, error)` (idiomatic style)
|
||||
- This contrasts with `readerioresult.ReaderIOResult[R, A]` which is `Reader[R, IOResult[A]]` (functional style)
|
||||
|
||||
## Functions to Add
|
||||
|
||||
### In `readerioresult/reader.go`
|
||||
|
||||
Add helper functions at the top:
|
||||
```go
|
||||
func fromReaderIOResultKleisliI[R, A, B any](f RIORI.Kleisli[R, A, B]) Kleisli[R, A, B] {
|
||||
return function.Flow2(f, FromReaderIOResultI[R, B])
|
||||
}
|
||||
|
||||
func fromIOResultKleisliI[A, B any](f IORI.Kleisli[A, B]) ioresult.Kleisli[A, B] {
|
||||
return ioresult.Eitherize1(f)
|
||||
}
|
||||
```
|
||||
|
||||
### Core Conversion Functions
|
||||
|
||||
1. **FromResultI** - Lift `(value, error)` to ReaderIOResult
|
||||
```go
|
||||
func FromResultI[R, A any](a A, err error) ReaderIOResult[R, A]
|
||||
```
|
||||
|
||||
2. **FromIOResultI** - Lift idiomatic IOResult to functional
|
||||
```go
|
||||
func FromIOResultI[R, A any](ioe func() (A, error)) ReaderIOResult[R, A]
|
||||
```
|
||||
|
||||
3. **FromReaderIOResultI** - Convert idiomatic ReaderIOResult to functional
|
||||
```go
|
||||
func FromReaderIOResultI[R, A any](rr RIORI.ReaderIOResult[R, A]) ReaderIOResult[R, A]
|
||||
```
|
||||
|
||||
### Chain Functions
|
||||
|
||||
4. **MonadChainI** / **ChainI** - Chain with idiomatic Kleisli
|
||||
```go
|
||||
func MonadChainI[R, A, B any](ma ReaderIOResult[R, A], f RIORI.Kleisli[R, A, B]) ReaderIOResult[R, B]
|
||||
func ChainI[R, A, B any](f RIORI.Kleisli[R, A, B]) Operator[R, A, B]
|
||||
```
|
||||
|
||||
5. **MonadChainEitherIK** / **ChainEitherIK** - Chain with idiomatic Result functions
|
||||
```go
|
||||
func MonadChainEitherIK[R, A, B any](ma ReaderIOResult[R, A], f func(A) (B, error)) ReaderIOResult[R, B]
|
||||
func ChainEitherIK[R, A, B any](f func(A) (B, error)) Operator[R, A, B]
|
||||
```
|
||||
|
||||
6. **MonadChainIOResultIK** / **ChainIOResultIK** - Chain with idiomatic IOResult
|
||||
```go
|
||||
func MonadChainIOResultIK[R, A, B any](ma ReaderIOResult[R, A], f func(A) func() (B, error)) ReaderIOResult[R, B]
|
||||
func ChainIOResultIK[R, A, B any](f func(A) func() (B, error)) Operator[R, A, B]
|
||||
```
|
||||
|
||||
### Applicative Functions
|
||||
|
||||
7. **MonadApI** / **ApI** - Apply with idiomatic value
|
||||
```go
|
||||
func MonadApI[B, R, A any](fab ReaderIOResult[R, func(A) B], fa RIORI.ReaderIOResult[R, A]) ReaderIOResult[R, B]
|
||||
func ApI[B, R, A any](fa RIORI.ReaderIOResult[R, A]) Operator[R, func(A) B, B]
|
||||
```
|
||||
|
||||
### Error Handling Functions
|
||||
|
||||
8. **OrElseI** - Fallback with idiomatic computation
|
||||
```go
|
||||
func OrElseI[R, A any](onLeft RIORI.Kleisli[R, error, A]) Operator[R, A, A]
|
||||
```
|
||||
|
||||
9. **MonadAltI** / **AltI** - Alternative with idiomatic computation
|
||||
```go
|
||||
func MonadAltI[R, A any](first ReaderIOResult[R, A], second Lazy[RIORI.ReaderIOResult[R, A]]) ReaderIOResult[R, A]
|
||||
func AltI[R, A any](second Lazy[RIORI.ReaderIOResult[R, A]]) Operator[R, A, A]
|
||||
```
|
||||
|
||||
### Flatten Functions
|
||||
|
||||
10. **FlattenI** - Flatten nested idiomatic ReaderIOResult
|
||||
```go
|
||||
func FlattenI[R, A any](mma ReaderIOResult[R, RIORI.ReaderIOResult[R, A]]) ReaderIOResult[R, A]
|
||||
```
|
||||
|
||||
### In `readerioresult/bind.go`
|
||||
|
||||
11. **BindI** - Bind with idiomatic Kleisli
|
||||
```go
|
||||
func BindI[R, S1, S2, T any](setter func(T) func(S1) S2, f RIORI.Kleisli[R, S1, T]) Operator[R, S1, S2]
|
||||
```
|
||||
|
||||
12. **ApIS** - Apply idiomatic value to state
|
||||
```go
|
||||
func ApIS[R, S1, S2, T any](setter func(T) func(S1) S2, fa RIORI.ReaderIOResult[R, T]) Operator[R, S1, S2]
|
||||
```
|
||||
|
||||
13. **ApISL** - Apply idiomatic value using lens
|
||||
```go
|
||||
func ApISL[R, S, T any](lens L.Lens[S, T], fa RIORI.ReaderIOResult[R, T]) Operator[R, S, S]
|
||||
```
|
||||
|
||||
14. **BindIL** - Bind idiomatic with lens
|
||||
```go
|
||||
func BindIL[R, S, T any](lens L.Lens[S, T], f RIORI.Kleisli[R, T, T]) Operator[R, S, S]
|
||||
```
|
||||
|
||||
15. **BindEitherIK** / **BindResultIK** - Bind idiomatic Result
|
||||
```go
|
||||
func BindEitherIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) (T, error)) Operator[R, S1, S2]
|
||||
func BindResultIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) (T, error)) Operator[R, S1, S2]
|
||||
```
|
||||
|
||||
16. **BindIOResultIK** - Bind idiomatic IOResult
|
||||
```go
|
||||
func BindIOResultIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) func() (T, error)) Operator[R, S1, S2]
|
||||
```
|
||||
|
||||
17. **BindToEitherI** / **BindToResultI** - Initialize from idiomatic pair
|
||||
```go
|
||||
func BindToEitherI[R, S1, T any](setter func(T) S1) func(T, error) ReaderIOResult[R, S1]
|
||||
func BindToResultI[R, S1, T any](setter func(T) S1) func(T, error) ReaderIOResult[R, S1]
|
||||
```
|
||||
|
||||
18. **BindToIOResultI** - Initialize from idiomatic IOResult
|
||||
```go
|
||||
func BindToIOResultI[R, S1, T any](setter func(T) S1) func(func() (T, error)) ReaderIOResult[R, S1]
|
||||
```
|
||||
|
||||
19. **ApEitherIS** / **ApResultIS** - Apply idiomatic pair to state
|
||||
```go
|
||||
func ApEitherIS[R, S1, S2, T any](setter func(T) func(S1) S2) func(T, error) Operator[R, S1, S2]
|
||||
func ApResultIS[R, S1, S2, T any](setter func(T) func(S1) S2) func(T, error) Operator[R, S1, S2]
|
||||
```
|
||||
|
||||
20. **ApIOResultIS** - Apply idiomatic IOResult to state
|
||||
```go
|
||||
func ApIOResultIS[R, S1, S2, T any](setter func(T) func(S1) S2, fa func() (T, error)) Operator[R, S1, S2]
|
||||
```
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
Create `readerioresult/idiomatic_test.go` with:
|
||||
- Tests for each idiomatic function
|
||||
- Success and error cases
|
||||
- Integration tests showing real-world usage patterns
|
||||
- Parallel execution tests where applicable
|
||||
- Complex scenarios combining multiple idiomatic functions
|
||||
|
||||
## Implementation Priority
|
||||
|
||||
1. **High Priority** - Core conversion and chain functions (1-6)
|
||||
2. **Medium Priority** - Bind functions for do-notation (11-16)
|
||||
3. **Low Priority** - Advanced applicative and error handling (7-10, 17-20)
|
||||
|
||||
## Benefits
|
||||
|
||||
1. **Seamless Integration** - Mix Go idiomatic code with functional pipelines
|
||||
2. **Gradual Adoption** - Convert code incrementally from idiomatic to functional
|
||||
3. **Interoperability** - Work with existing Go libraries that return `(value, error)`
|
||||
4. **Consistency** - Mirrors the successful pattern from `readerresult`
|
||||
|
||||
## References
|
||||
|
||||
- See `readerresult` package for similar implementations
|
||||
- See `idiomatic/readerresult` for the idiomatic types
|
||||
- See `idiomatic/ioresult` for IO-level idiomatic patterns
|
||||
497
v2/README.md
Normal file
497
v2/README.md
Normal file
@@ -0,0 +1,497 @@
|
||||
# fp-go V2: Enhanced Functional Programming for Go 1.24+
|
||||
|
||||
[](https://pkg.go.dev/github.com/IBM/fp-go/v2)
|
||||
[](https://coveralls.io/github/IBM/fp-go?branch=main)
|
||||
[](https://goreportcard.com/report/github.com/IBM/fp-go/v2)
|
||||
|
||||
**fp-go** is a comprehensive functional programming library for Go, bringing type-safe functional patterns inspired by [fp-ts](https://gcanti.github.io/fp-ts/) to the Go ecosystem. Version 2 leverages [generic type aliases](https://github.com/golang/go/issues/46477) introduced in Go 1.24, providing a more ergonomic and streamlined API.
|
||||
|
||||
## 📚 Table of Contents
|
||||
|
||||
- [Overview](#-overview)
|
||||
- [Features](#-features)
|
||||
- [Requirements](#-requirements)
|
||||
- [Installation](#-installation)
|
||||
- [Quick Start](#-quick-start)
|
||||
- [Breaking Changes](#️-breaking-changes)
|
||||
- [Key Improvements](#-key-improvements)
|
||||
- [Migration Guide](#-migration-guide)
|
||||
- [What's New](#-whats-new)
|
||||
- [Documentation](#-documentation)
|
||||
- [Contributing](#-contributing)
|
||||
- [License](#-license)
|
||||
|
||||
## 🎯 Overview
|
||||
|
||||
fp-go brings the power of functional programming to Go with:
|
||||
|
||||
- **Type-safe abstractions** - Monads, Functors, Applicatives, and more
|
||||
- **Composable operations** - Build complex logic from simple, reusable functions
|
||||
- **Error handling** - Elegant error management with `Either`, `Result`, and `IOEither`
|
||||
- **Lazy evaluation** - Control when and how computations execute
|
||||
- **Optics** - Powerful lens, prism, and traversal operations for immutable data manipulation
|
||||
|
||||
## ✨ Features
|
||||
|
||||
- 🔒 **Type Safety** - Leverage Go's generics for compile-time guarantees
|
||||
- 🧩 **Composability** - Chain operations naturally with functional composition
|
||||
- 📦 **Rich Type System** - `Option`, `Either`, `Result`, `IO`, `Reader`, and more
|
||||
- 🎯 **Practical** - Designed for real-world Go applications
|
||||
- 🚀 **Performance** - Zero-cost abstractions where possible
|
||||
- 📖 **Well-documented** - Comprehensive API documentation and examples
|
||||
- 🧪 **Battle-tested** - Extensive test coverage
|
||||
|
||||
## 🔧 Requirements
|
||||
|
||||
- **Go 1.24 or later** (for generic type alias support)
|
||||
|
||||
## 📦 Installation
|
||||
|
||||
```bash
|
||||
go get github.com/IBM/fp-go/v2
|
||||
```
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
### Working with Option
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
func main() {
|
||||
// Create an Option
|
||||
some := option.Some(42)
|
||||
none := option.None[int]()
|
||||
|
||||
// Map over values
|
||||
doubled := option.Map(N.Mul(2))(some)
|
||||
fmt.Println(option.GetOrElse(0)(doubled)) // Output: 84
|
||||
|
||||
// Chain operations
|
||||
result := option.Chain(func(x int) option.Option[string] {
|
||||
if x > 0 {
|
||||
return option.Some(fmt.Sprintf("Positive: %d", x))
|
||||
}
|
||||
return option.None[string]()
|
||||
})(some)
|
||||
|
||||
fmt.Println(option.GetOrElse("No value")(result)) // Output: Positive: 42
|
||||
}
|
||||
```
|
||||
|
||||
### Error Handling with Result
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"github.com/IBM/fp-go/v2/result"
|
||||
)
|
||||
|
||||
func divide(a, b int) result.Result[int] {
|
||||
if b == 0 {
|
||||
return result.Error[int](errors.New("division by zero"))
|
||||
}
|
||||
return result.Ok(a / b)
|
||||
}
|
||||
|
||||
func main() {
|
||||
res := divide(10, 2)
|
||||
|
||||
// Pattern match on the result
|
||||
result.Fold(
|
||||
func(err error) { fmt.Println("Error:", err) },
|
||||
func(val int) { fmt.Println("Result:", val) },
|
||||
)(res)
|
||||
// Output: Result: 5
|
||||
|
||||
// Or use GetOrElse for a default value
|
||||
value := result.GetOrElse(0)(divide(10, 0))
|
||||
fmt.Println("Value:", value) // Output: Value: 0
|
||||
}
|
||||
```
|
||||
|
||||
### Composing IO Operations
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"github.com/IBM/fp-go/v2/io"
|
||||
)
|
||||
|
||||
func main() {
|
||||
// Define pure IO operations
|
||||
readInput := io.MakeIO(func() string {
|
||||
return "Hello, fp-go!"
|
||||
})
|
||||
|
||||
// Transform the result
|
||||
uppercase := io.Map(func(s string) string {
|
||||
return fmt.Sprintf(">>> %s <<<", s)
|
||||
})(readInput)
|
||||
|
||||
// Execute the IO operation
|
||||
result := uppercase()
|
||||
fmt.Println(result) // Output: >>> Hello, fp-go! <<<
|
||||
}
|
||||
```
|
||||
|
||||
### From V1 to V2
|
||||
|
||||
#### 1. Generic Type Aliases
|
||||
|
||||
V2 uses [generic type aliases](https://github.com/golang/go/issues/46477) which require Go 1.24+. This is the most significant change and enables cleaner type definitions.
|
||||
|
||||
**V1:**
|
||||
```go
|
||||
type ReaderIOEither[R, E, A any] RD.Reader[R, IOE.IOEither[E, A]]
|
||||
```
|
||||
|
||||
**V2:**
|
||||
```go
|
||||
type ReaderIOEither[R, E, A any] = RD.Reader[R, IOE.IOEither[E, A]]
|
||||
```
|
||||
|
||||
#### 2. Generic Type Parameter Ordering
|
||||
|
||||
Type parameters that **cannot** be inferred from function arguments now come first, improving type inference.
|
||||
|
||||
**V1:**
|
||||
```go
|
||||
// Ap in V1 - less intuitive ordering
|
||||
func Ap[R, E, A, B any](fa ReaderIOEither[R, E, A]) func(ReaderIOEither[R, E, func(A) B]) ReaderIOEither[R, E, B]
|
||||
```
|
||||
|
||||
**V2:**
|
||||
```go
|
||||
// Ap in V2 - B comes first as it cannot be inferred
|
||||
func Ap[B, R, E, A any](fa ReaderIOEither[R, E, A]) func(ReaderIOEither[R, E, func(A) B]) ReaderIOEither[R, E, B]
|
||||
```
|
||||
|
||||
This change allows the Go compiler to infer more types automatically, reducing the need for explicit type parameters.
|
||||
|
||||
#### 3. Pair Monad Semantics
|
||||
|
||||
Monadic operations for `Pair` now operate on the **second argument** to align with the [Haskell definition](https://hackage.haskell.org/package/TypeCompose-0.9.14/docs/Data-Pair.html).
|
||||
|
||||
**V1:**
|
||||
```go
|
||||
// Operations on first element
|
||||
pair := MakePair(1, "hello")
|
||||
result := Map(N.Mul(2))(pair) // Pair(2, "hello")
|
||||
```
|
||||
|
||||
**V2:**
|
||||
```go
|
||||
// Operations on second element (Haskell-compatible)
|
||||
pair := MakePair(1, "hello")
|
||||
result := Map(func(s string) string { return s + "!" })(pair) // Pair(1, "hello!")
|
||||
```
|
||||
|
||||
#### 4. Endomorphism Compose Semantics
|
||||
|
||||
The `Compose` function for endomorphisms now follows **mathematical function composition** (right-to-left execution), aligning with standard functional programming conventions.
|
||||
|
||||
**V1:**
|
||||
```go
|
||||
// Compose executed left-to-right
|
||||
double := N.Mul(2)
|
||||
increment := N.Add(1)
|
||||
composed := Compose(double, increment)
|
||||
result := composed(5) // (5 * 2) + 1 = 11
|
||||
```
|
||||
|
||||
**V2:**
|
||||
```go
|
||||
// Compose executes RIGHT-TO-LEFT (mathematical composition)
|
||||
double := N.Mul(2)
|
||||
increment := N.Add(1)
|
||||
composed := Compose(double, increment)
|
||||
result := composed(5) // (5 + 1) * 2 = 12
|
||||
|
||||
// Use MonadChain for LEFT-TO-RIGHT execution
|
||||
chained := MonadChain(double, increment)
|
||||
result2 := chained(5) // (5 * 2) + 1 = 11
|
||||
```
|
||||
|
||||
**Key Difference:**
|
||||
- `Compose(f, g)` now means `f ∘ g`, which applies `g` first, then `f` (right-to-left)
|
||||
- `MonadChain(f, g)` applies `f` first, then `g` (left-to-right)
|
||||
|
||||
## ✨ Key Improvements
|
||||
|
||||
### 1. Simplified Type Declarations
|
||||
|
||||
Generic type aliases eliminate the need for namespace imports in type declarations.
|
||||
|
||||
**V1 Approach:**
|
||||
```go
|
||||
import (
|
||||
ET "github.com/IBM/fp-go/either"
|
||||
OPT "github.com/IBM/fp-go/option"
|
||||
)
|
||||
|
||||
func processData(input string) ET.Either[error, OPT.Option[int]] {
|
||||
// implementation
|
||||
}
|
||||
```
|
||||
|
||||
**V2 Approach:**
|
||||
```go
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/result"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// Define type aliases once
|
||||
type Result[A any] = result.Result[A]
|
||||
type Option[A any] = option.Option[A]
|
||||
|
||||
// Use them throughout your codebase
|
||||
func processData(input string) Result[Option[int]] {
|
||||
// implementation
|
||||
}
|
||||
```
|
||||
|
||||
### 2. No More `generic` Subpackages
|
||||
|
||||
The library implementation no longer requires separate `generic` subpackages, making the codebase simpler and easier to understand.
|
||||
|
||||
**V1 Structure:**
|
||||
```
|
||||
either/
|
||||
either.go
|
||||
generic/
|
||||
either.go // Generic implementation
|
||||
```
|
||||
|
||||
**V2 Structure:**
|
||||
```
|
||||
either/
|
||||
either.go // Single, clean implementation
|
||||
```
|
||||
|
||||
### 3. Better Type Inference
|
||||
|
||||
The reordered type parameters allow the Go compiler to infer more types automatically:
|
||||
|
||||
**V1:**
|
||||
```go
|
||||
// Often need explicit type parameters
|
||||
result := Map[Context, error, int, string](transform)(value)
|
||||
```
|
||||
|
||||
**V2:**
|
||||
```go
|
||||
// Compiler can infer more types
|
||||
result := Map(transform)(value) // Cleaner!
|
||||
```
|
||||
|
||||
## 🚀 Migration Guide
|
||||
|
||||
### Step 1: Update Go Version
|
||||
|
||||
Ensure you're using Go 1.24 or later:
|
||||
|
||||
```bash
|
||||
go version # Should show go1.24 or higher
|
||||
```
|
||||
|
||||
### Step 2: Update Import Paths
|
||||
|
||||
Change all import paths from `github.com/IBM/fp-go` to `github.com/IBM/fp-go/v2`:
|
||||
|
||||
**Before:**
|
||||
```go
|
||||
import (
|
||||
"github.com/IBM/fp-go/either"
|
||||
"github.com/IBM/fp-go/option"
|
||||
)
|
||||
```
|
||||
|
||||
**After:**
|
||||
```go
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/either"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
```
|
||||
|
||||
### Step 3: Remove `generic` Subpackage Imports
|
||||
|
||||
If you were using generic subpackages, remove them:
|
||||
|
||||
**Before:**
|
||||
```go
|
||||
import (
|
||||
E "github.com/IBM/fp-go/either/generic"
|
||||
)
|
||||
```
|
||||
|
||||
**After:**
|
||||
```go
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/either"
|
||||
)
|
||||
```
|
||||
|
||||
### Step 4: Update Type Parameter Order
|
||||
|
||||
Review functions like `Ap` where type parameter order has changed. The compiler will help identify these:
|
||||
|
||||
**Before:**
|
||||
```go
|
||||
result := Ap[Context, error, int, string](value)(funcInContext)
|
||||
```
|
||||
|
||||
**After:**
|
||||
```go
|
||||
result := Ap[string, Context, error, int](value)(funcInContext)
|
||||
// Or better yet, let the compiler infer:
|
||||
result := Ap(value)(funcInContext)
|
||||
```
|
||||
|
||||
### Step 5: Update Pair Operations
|
||||
|
||||
If you're using `Pair`, update operations to work on the second element:
|
||||
|
||||
**Before (V1):**
|
||||
```go
|
||||
pair := MakePair(42, "data")
|
||||
// Map operates on first element
|
||||
result := Map(N.Mul(2))(pair)
|
||||
```
|
||||
|
||||
**After (V2):**
|
||||
```go
|
||||
pair := MakePair(42, "data")
|
||||
// Map operates on second element
|
||||
result := Map(func(s string) string { return s + "!" })(pair)
|
||||
```
|
||||
|
||||
### Step 6: Simplify Type Aliases
|
||||
|
||||
Create project-wide type aliases for common patterns:
|
||||
|
||||
```go
|
||||
// types.go - Define once, use everywhere
|
||||
package myapp
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/result"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/ioresult"
|
||||
)
|
||||
|
||||
type Result[A any] = result.Result[A]
|
||||
type Option[A any] = option.Option[A]
|
||||
type IOResult[A any] = ioresult.IOResult[A]
|
||||
```
|
||||
|
||||
## 🆕 What's New
|
||||
|
||||
### Cleaner API Surface
|
||||
|
||||
The elimination of `generic` subpackages means:
|
||||
- Fewer imports to manage
|
||||
- Simpler package structure
|
||||
- Easier to navigate documentation
|
||||
- More intuitive API
|
||||
|
||||
### Example: Before and After
|
||||
|
||||
**V1 Complex Example:**
|
||||
```go
|
||||
import (
|
||||
ET "github.com/IBM/fp-go/either"
|
||||
EG "github.com/IBM/fp-go/either/generic"
|
||||
IOET "github.com/IBM/fp-go/ioeither"
|
||||
IOEG "github.com/IBM/fp-go/ioeither/generic"
|
||||
)
|
||||
|
||||
func process() IOET.IOEither[error, string] {
|
||||
return IOEG.Map[error, int, string](
|
||||
strconv.Itoa,
|
||||
)(fetchData())
|
||||
}
|
||||
```
|
||||
|
||||
**V2 Simplified Example:**
|
||||
```go
|
||||
import (
|
||||
"strconv"
|
||||
"github.com/IBM/fp-go/v2/ioresult"
|
||||
)
|
||||
|
||||
type IOResult[A any] = ioresult.IOResult[A]
|
||||
|
||||
func process() IOResult[string] {
|
||||
return ioresult.Map(
|
||||
strconv.Itoa,
|
||||
)(fetchData())
|
||||
}
|
||||
```
|
||||
|
||||
## 📚 Documentation
|
||||
|
||||
- **[API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2)** - Complete API reference
|
||||
- **[Code Samples](./samples/)** - Practical examples and use cases
|
||||
- **[Go 1.24 Release Notes](https://tip.golang.org/doc/go1.24)** - Information about generic type aliases
|
||||
|
||||
### Core Modules
|
||||
|
||||
- **Option** - Represent optional values without nil
|
||||
- **Either** - Type-safe error handling with left/right values
|
||||
- **Result** - Simplified Either with error as left type
|
||||
- **IO** - Lazy evaluation and side effect management
|
||||
- **IOEither** - Combine IO with error handling
|
||||
- **Reader** - Dependency injection pattern
|
||||
- **ReaderIOEither** - Combine Reader, IO, and Either for complex workflows
|
||||
- **Array** - Functional array operations
|
||||
- **Record** - Functional record/map operations
|
||||
- **Optics** - Lens, Prism, Optional, and Traversal for immutable updates
|
||||
|
||||
## 🤔 Should I Migrate?
|
||||
|
||||
**Migrate to V2 if:**
|
||||
- ✅ You can use Go 1.24+
|
||||
- ✅ You want cleaner, more maintainable code
|
||||
- ✅ You want better type inference
|
||||
- ✅ You're starting a new project
|
||||
|
||||
**Stay on V1 if:**
|
||||
- ⚠️ You're locked to Go < 1.24
|
||||
- ⚠️ Migration effort outweighs benefits for your project
|
||||
- ⚠️ You need stability in production (V2 is newer)
|
||||
|
||||
## 🤝 Contributing
|
||||
|
||||
Contributions are welcome! Here's how you can help:
|
||||
|
||||
1. **Report bugs** - Open an issue with a clear description and reproduction steps
|
||||
2. **Suggest features** - Share your ideas for improvements
|
||||
3. **Submit PRs** - Fix bugs or add features (please discuss major changes first)
|
||||
4. **Improve docs** - Help make the documentation clearer and more comprehensive
|
||||
|
||||
Please read our contribution guidelines before submitting pull requests.
|
||||
|
||||
## 🐛 Issues and Feedback
|
||||
|
||||
Found a bug or have a suggestion? Please [open an issue](https://github.com/IBM/fp-go/issues) on GitHub.
|
||||
|
||||
## 📄 License
|
||||
|
||||
This project is licensed under the Apache License 2.0. See the [LICENSE](https://github.com/IBM/fp-go/blob/main/LICENSE) file for details.
|
||||
|
||||
---
|
||||
|
||||
**Made with ❤️ by IBM**
|
||||
50
v2/array/any.go
Normal file
50
v2/array/any.go
Normal file
@@ -0,0 +1,50 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
)
|
||||
|
||||
// AnyWithIndex tests if any of the elements in the array matches the predicate.
|
||||
// The predicate receives both the index and the element.
|
||||
// Returns true if at least one element satisfies the predicate, false otherwise.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// hasEvenAtEvenIndex := array.AnyWithIndex(func(i, x int) bool {
|
||||
// return i%2 == 0 && x%2 == 0
|
||||
// })
|
||||
// result := hasEvenAtEvenIndex([]int{1, 3, 4, 5}) // true (4 is at index 2)
|
||||
//
|
||||
//go:inline
|
||||
func AnyWithIndex[A any](pred func(int, A) bool) func([]A) bool {
|
||||
return G.AnyWithIndex[[]A](pred)
|
||||
}
|
||||
|
||||
// Any tests if any of the elements in the array matches the predicate.
|
||||
// Returns true if at least one element satisfies the predicate, false otherwise.
|
||||
// Returns false for an empty array.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// hasEven := array.Any(func(x int) bool { return x%2 == 0 })
|
||||
// result := hasEven([]int{1, 3, 4, 5}) // true
|
||||
//
|
||||
//go:inline
|
||||
func Any[A any](pred func(A) bool) func([]A) bool {
|
||||
return G.Any[[]A](pred)
|
||||
}
|
||||
30
v2/array/any_test.go
Normal file
30
v2/array/any_test.go
Normal file
@@ -0,0 +1,30 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestAny(t *testing.T) {
|
||||
anyBool := Any(F.Identity[bool])
|
||||
|
||||
assert.True(t, anyBool(From(false, true, false)))
|
||||
assert.False(t, anyBool(From(false, false, false)))
|
||||
}
|
||||
538
v2/array/array.go
Normal file
538
v2/array/array.go
Normal file
@@ -0,0 +1,538 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/tuple"
|
||||
)
|
||||
|
||||
// From constructs an array from a set of variadic arguments
|
||||
//
|
||||
//go:inline
|
||||
func From[A any](data ...A) []A {
|
||||
return G.From[[]A](data...)
|
||||
}
|
||||
|
||||
// MakeBy returns a `Array` of length `n` with element `i` initialized with `f(i)`.
|
||||
//
|
||||
//go:inline
|
||||
func MakeBy[F ~func(int) A, A any](n int, f F) []A {
|
||||
return G.MakeBy[[]A](n, f)
|
||||
}
|
||||
|
||||
// Replicate creates a `Array` containing a value repeated the specified number of times.
|
||||
//
|
||||
//go:inline
|
||||
func Replicate[A any](n int, a A) []A {
|
||||
return G.Replicate[[]A](n, a)
|
||||
}
|
||||
|
||||
// MonadMap applies a function to each element of an array, returning a new array with the results.
|
||||
// This is the monadic version of Map that takes the array as the first parameter.
|
||||
//
|
||||
//go:inline
|
||||
func MonadMap[A, B any](as []A, f func(A) B) []B {
|
||||
return G.MonadMap[[]A, []B](as, f)
|
||||
}
|
||||
|
||||
// MonadMapRef applies a function to a pointer to each element of an array, returning a new array with the results.
|
||||
// This is useful when you need to access elements by reference without copying.
|
||||
func MonadMapRef[A, B any](as []A, f func(*A) B) []B {
|
||||
count := len(as)
|
||||
bs := make([]B, count)
|
||||
for i := range count {
|
||||
bs[i] = f(&as[i])
|
||||
}
|
||||
return bs
|
||||
}
|
||||
|
||||
// MapWithIndex applies a function to each element and its index in an array, returning a new array with the results.
|
||||
//
|
||||
//go:inline
|
||||
func MapWithIndex[A, B any](f func(int, A) B) Operator[A, B] {
|
||||
return G.MapWithIndex[[]A, []B](f)
|
||||
}
|
||||
|
||||
// Map applies a function to each element of an array, returning a new array with the results.
|
||||
// This is the curried version that returns a function.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := array.Map(N.Mul(2))
|
||||
// result := double([]int{1, 2, 3}) // [2, 4, 6]
|
||||
//
|
||||
//go:inline
|
||||
func Map[A, B any](f func(A) B) Operator[A, B] {
|
||||
return G.Map[[]A, []B](f)
|
||||
}
|
||||
|
||||
// MapRef applies a function to a pointer to each element of an array, returning a new array with the results.
|
||||
// This is the curried version that returns a function.
|
||||
func MapRef[A, B any](f func(*A) B) Operator[A, B] {
|
||||
return F.Bind2nd(MonadMapRef[A, B], f)
|
||||
}
|
||||
|
||||
func filterRef[A any](fa []A, pred func(*A) bool) []A {
|
||||
count := len(fa)
|
||||
var result []A = make([]A, 0, count)
|
||||
for i := range count {
|
||||
a := &fa[i]
|
||||
if pred(a) {
|
||||
result = append(result, *a)
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
func filterMapRef[A, B any](fa []A, pred func(*A) bool, f func(*A) B) []B {
|
||||
count := len(fa)
|
||||
var result []B = make([]B, 0, count)
|
||||
for i := range count {
|
||||
a := &fa[i]
|
||||
if pred(a) {
|
||||
result = append(result, f(a))
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// Filter returns a new array with all elements from the original array that match a predicate
|
||||
//
|
||||
//go:inline
|
||||
func Filter[A any](pred func(A) bool) Operator[A, A] {
|
||||
return G.Filter[[]A](pred)
|
||||
}
|
||||
|
||||
// FilterWithIndex returns a new array with all elements from the original array that match a predicate
|
||||
//
|
||||
//go:inline
|
||||
func FilterWithIndex[A any](pred func(int, A) bool) Operator[A, A] {
|
||||
return G.FilterWithIndex[[]A](pred)
|
||||
}
|
||||
|
||||
// FilterRef returns a new array with all elements from the original array that match a predicate operating on pointers.
|
||||
func FilterRef[A any](pred func(*A) bool) Operator[A, A] {
|
||||
return F.Bind2nd(filterRef[A], pred)
|
||||
}
|
||||
|
||||
// MonadFilterMap maps an array with a function that returns an Option and keeps only the Some values.
|
||||
// This is the monadic version that takes the array as the first parameter.
|
||||
//
|
||||
//go:inline
|
||||
func MonadFilterMap[A, B any](fa []A, f option.Kleisli[A, B]) []B {
|
||||
return G.MonadFilterMap[[]A, []B](fa, f)
|
||||
}
|
||||
|
||||
// MonadFilterMapWithIndex maps an array with a function that takes an index and returns an Option,
|
||||
// keeping only the Some values. This is the monadic version that takes the array as the first parameter.
|
||||
//
|
||||
//go:inline
|
||||
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) Option[B]) []B {
|
||||
return G.MonadFilterMapWithIndex[[]A, []B](fa, f)
|
||||
}
|
||||
|
||||
// FilterMap maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
|
||||
//
|
||||
//go:inline
|
||||
func FilterMap[A, B any](f option.Kleisli[A, B]) Operator[A, B] {
|
||||
return G.FilterMap[[]A, []B](f)
|
||||
}
|
||||
|
||||
// FilterMapWithIndex maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
|
||||
//
|
||||
//go:inline
|
||||
func FilterMapWithIndex[A, B any](f func(int, A) Option[B]) Operator[A, B] {
|
||||
return G.FilterMapWithIndex[[]A, []B](f)
|
||||
}
|
||||
|
||||
// FilterChain maps an array with an iterating function that returns an [Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
|
||||
//
|
||||
//go:inline
|
||||
func FilterChain[A, B any](f option.Kleisli[A, []B]) Operator[A, B] {
|
||||
return G.FilterChain[[]A](f)
|
||||
}
|
||||
|
||||
// FilterMapRef filters an array using a predicate on pointers and maps the matching elements using a function on pointers.
|
||||
func FilterMapRef[A, B any](pred func(a *A) bool, f func(*A) B) Operator[A, B] {
|
||||
return func(fa []A) []B {
|
||||
return filterMapRef(fa, pred, f)
|
||||
}
|
||||
}
|
||||
|
||||
func reduceRef[A, B any](fa []A, f func(B, *A) B, initial B) B {
|
||||
current := initial
|
||||
for i := range len(fa) {
|
||||
current = f(current, &fa[i])
|
||||
}
|
||||
return current
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func MonadReduce[A, B any](fa []A, f func(B, A) B, initial B) B {
|
||||
return G.MonadReduce(fa, f, initial)
|
||||
}
|
||||
|
||||
// Reduce folds an array from left to right, applying a function to accumulate a result.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// sum := array.Reduce(func(acc, x int) int { return acc + x }, 0)
|
||||
// result := sum([]int{1, 2, 3, 4, 5}) // 15
|
||||
//
|
||||
//go:inline
|
||||
func Reduce[A, B any](f func(B, A) B, initial B) func([]A) B {
|
||||
return G.Reduce[[]A](f, initial)
|
||||
}
|
||||
|
||||
// ReduceWithIndex folds an array from left to right with access to the index,
|
||||
// applying a function to accumulate a result.
|
||||
//
|
||||
//go:inline
|
||||
func ReduceWithIndex[A, B any](f func(int, B, A) B, initial B) func([]A) B {
|
||||
return G.ReduceWithIndex[[]A](f, initial)
|
||||
}
|
||||
|
||||
// ReduceRight folds an array from right to left, applying a function to accumulate a result.
|
||||
//
|
||||
//go:inline
|
||||
func ReduceRight[A, B any](f func(A, B) B, initial B) func([]A) B {
|
||||
return G.ReduceRight[[]A](f, initial)
|
||||
}
|
||||
|
||||
// ReduceRightWithIndex folds an array from right to left with access to the index,
|
||||
// applying a function to accumulate a result.
|
||||
//
|
||||
//go:inline
|
||||
func ReduceRightWithIndex[A, B any](f func(int, A, B) B, initial B) func([]A) B {
|
||||
return G.ReduceRightWithIndex[[]A](f, initial)
|
||||
}
|
||||
|
||||
// ReduceRef folds an array from left to right using pointers to elements,
|
||||
// applying a function to accumulate a result.
|
||||
func ReduceRef[A, B any](f func(B, *A) B, initial B) func([]A) B {
|
||||
return func(as []A) B {
|
||||
return reduceRef(as, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
// Append adds an element to the end of an array, returning a new array.
|
||||
//
|
||||
//go:inline
|
||||
func Append[A any](as []A, a A) []A {
|
||||
return G.Append(as, a)
|
||||
}
|
||||
|
||||
// IsEmpty checks if an array has no elements.
|
||||
//
|
||||
//go:inline
|
||||
func IsEmpty[A any](as []A) bool {
|
||||
return G.IsEmpty(as)
|
||||
}
|
||||
|
||||
// IsNonEmpty checks if an array has at least one element.
|
||||
func IsNonEmpty[A any](as []A) bool {
|
||||
return len(as) > 0
|
||||
}
|
||||
|
||||
// Empty returns an empty array of type A.
|
||||
//
|
||||
//go:inline
|
||||
func Empty[A any]() []A {
|
||||
return G.Empty[[]A]()
|
||||
}
|
||||
|
||||
// Zero returns an empty array of type A (alias for Empty).
|
||||
//
|
||||
//go:inline
|
||||
func Zero[A any]() []A {
|
||||
return Empty[A]()
|
||||
}
|
||||
|
||||
// Of constructs a single element array
|
||||
//
|
||||
//go:inline
|
||||
func Of[A any](a A) []A {
|
||||
return G.Of[[]A](a)
|
||||
}
|
||||
|
||||
// MonadChain applies a function that returns an array to each element and flattens the results.
|
||||
// This is the monadic version that takes the array as the first parameter (also known as FlatMap).
|
||||
//
|
||||
//go:inline
|
||||
func MonadChain[A, B any](fa []A, f Kleisli[A, B]) []B {
|
||||
return G.MonadChain(fa, f)
|
||||
}
|
||||
|
||||
// Chain applies a function that returns an array to each element and flattens the results.
|
||||
// This is the curried version (also known as FlatMap).
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// duplicate := array.Chain(func(x int) []int { return []int{x, x} })
|
||||
// result := duplicate([]int{1, 2, 3}) // [1, 1, 2, 2, 3, 3]
|
||||
//
|
||||
//go:inline
|
||||
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
|
||||
return G.Chain[[]A](f)
|
||||
}
|
||||
|
||||
// MonadAp applies an array of functions to an array of values, producing all combinations.
|
||||
// This is the monadic version that takes both arrays as parameters.
|
||||
//
|
||||
//go:inline
|
||||
func MonadAp[B, A any](fab []func(A) B, fa []A) []B {
|
||||
return G.MonadAp[[]B](fab, fa)
|
||||
}
|
||||
|
||||
// Ap applies an array of functions to an array of values, producing all combinations.
|
||||
// This is the curried version.
|
||||
//
|
||||
//go:inline
|
||||
func Ap[B, A any](fa []A) Operator[func(A) B, B] {
|
||||
return G.Ap[[]B, []func(A) B](fa)
|
||||
}
|
||||
|
||||
// Match performs pattern matching on an array, calling onEmpty if empty or onNonEmpty if not.
|
||||
//
|
||||
//go:inline
|
||||
func Match[A, B any](onEmpty func() B, onNonEmpty func([]A) B) func([]A) B {
|
||||
return G.Match(onEmpty, onNonEmpty)
|
||||
}
|
||||
|
||||
// MatchLeft performs pattern matching on an array, calling onEmpty if empty or onNonEmpty with head and tail if not.
|
||||
//
|
||||
//go:inline
|
||||
func MatchLeft[A, B any](onEmpty func() B, onNonEmpty func(A, []A) B) func([]A) B {
|
||||
return G.MatchLeft(onEmpty, onNonEmpty)
|
||||
}
|
||||
|
||||
// Tail returns all elements except the first, wrapped in an Option.
|
||||
// Returns None if the array is empty.
|
||||
//
|
||||
//go:inline
|
||||
func Tail[A any](as []A) Option[[]A] {
|
||||
return G.Tail(as)
|
||||
}
|
||||
|
||||
// Head returns the first element of an array, wrapped in an Option.
|
||||
// Returns None if the array is empty.
|
||||
//
|
||||
//go:inline
|
||||
func Head[A any](as []A) Option[A] {
|
||||
return G.Head(as)
|
||||
}
|
||||
|
||||
// First returns the first element of an array, wrapped in an Option (alias for Head).
|
||||
// Returns None if the array is empty.
|
||||
//
|
||||
//go:inline
|
||||
func First[A any](as []A) Option[A] {
|
||||
return G.First(as)
|
||||
}
|
||||
|
||||
// Last returns the last element of an array, wrapped in an Option.
|
||||
// Returns None if the array is empty.
|
||||
//
|
||||
//go:inline
|
||||
func Last[A any](as []A) Option[A] {
|
||||
return G.Last(as)
|
||||
}
|
||||
|
||||
// PrependAll inserts a separator before each element of an array.
|
||||
func PrependAll[A any](middle A) Operator[A, A] {
|
||||
return func(as []A) []A {
|
||||
count := len(as)
|
||||
dst := count * 2
|
||||
result := make([]A, dst)
|
||||
for i := count - 1; i >= 0; i-- {
|
||||
dst--
|
||||
result[dst] = as[i]
|
||||
dst--
|
||||
result[dst] = middle
|
||||
}
|
||||
return result
|
||||
}
|
||||
}
|
||||
|
||||
// Intersperse inserts a separator between each element of an array.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := array.Intersperse(0)([]int{1, 2, 3}) // [1, 0, 2, 0, 3]
|
||||
func Intersperse[A any](middle A) Operator[A, A] {
|
||||
prepend := PrependAll(middle)
|
||||
return func(as []A) []A {
|
||||
if IsEmpty(as) {
|
||||
return as
|
||||
}
|
||||
return prepend(as)[1:]
|
||||
}
|
||||
}
|
||||
|
||||
// Intercalate inserts a separator between elements and concatenates them using a Monoid.
|
||||
func Intercalate[A any](m M.Monoid[A]) func(A) func([]A) A {
|
||||
return func(middle A) func([]A) A {
|
||||
return Match(m.Empty, F.Flow2(Intersperse(middle), ConcatAll(m)))
|
||||
}
|
||||
}
|
||||
|
||||
// Flatten converts a nested array into a flat array by concatenating all inner arrays.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := array.Flatten([][]int{{1, 2}, {3, 4}, {5}}) // [1, 2, 3, 4, 5]
|
||||
//
|
||||
//go:inline
|
||||
func Flatten[A any](mma [][]A) []A {
|
||||
return G.Flatten(mma)
|
||||
}
|
||||
|
||||
// Slice extracts a subarray from index low (inclusive) to high (exclusive).
|
||||
func Slice[A any](low, high int) Operator[A, A] {
|
||||
return array.Slice[[]A](low, high)
|
||||
}
|
||||
|
||||
// Lookup returns the element at the specified index, wrapped in an Option.
|
||||
// Returns None if the index is out of bounds.
|
||||
//
|
||||
//go:inline
|
||||
func Lookup[A any](idx int) func([]A) Option[A] {
|
||||
return G.Lookup[[]A](idx)
|
||||
}
|
||||
|
||||
// UpsertAt returns a function that inserts or updates an element at a specific index.
|
||||
// If the index is out of bounds, the element is appended.
|
||||
//
|
||||
//go:inline
|
||||
func UpsertAt[A any](a A) Operator[A, A] {
|
||||
return G.UpsertAt[[]A](a)
|
||||
}
|
||||
|
||||
// Size returns the number of elements in an array.
|
||||
//
|
||||
//go:inline
|
||||
func Size[A any](as []A) int {
|
||||
return G.Size(as)
|
||||
}
|
||||
|
||||
// MonadPartition splits an array into two arrays based on a predicate.
|
||||
// The first array contains elements for which the predicate returns false,
|
||||
// the second contains elements for which it returns true.
|
||||
//
|
||||
//go:inline
|
||||
func MonadPartition[A any](as []A, pred func(A) bool) tuple.Tuple2[[]A, []A] {
|
||||
return G.MonadPartition(as, pred)
|
||||
}
|
||||
|
||||
// Partition creates two new arrays out of one, the left result contains the elements
|
||||
// for which the predicate returns false, the right one those for which the predicate returns true
|
||||
//
|
||||
//go:inline
|
||||
func Partition[A any](pred func(A) bool) func([]A) tuple.Tuple2[[]A, []A] {
|
||||
return G.Partition[[]A](pred)
|
||||
}
|
||||
|
||||
// IsNil checks if the array is set to nil
|
||||
func IsNil[A any](as []A) bool {
|
||||
return array.IsNil(as)
|
||||
}
|
||||
|
||||
// IsNonNil checks if the array is set to nil
|
||||
func IsNonNil[A any](as []A) bool {
|
||||
return array.IsNonNil(as)
|
||||
}
|
||||
|
||||
// ConstNil returns a nil array
|
||||
func ConstNil[A any]() []A {
|
||||
return array.ConstNil[[]A]()
|
||||
}
|
||||
|
||||
// SliceRight extracts a subarray from the specified start index to the end.
|
||||
//
|
||||
//go:inline
|
||||
func SliceRight[A any](start int) Operator[A, A] {
|
||||
return G.SliceRight[[]A](start)
|
||||
}
|
||||
|
||||
// Copy creates a shallow copy of the array
|
||||
//
|
||||
//go:inline
|
||||
func Copy[A any](b []A) []A {
|
||||
return G.Copy(b)
|
||||
}
|
||||
|
||||
// Clone creates a deep copy of the array using the provided endomorphism to clone the values
|
||||
//
|
||||
//go:inline
|
||||
func Clone[A any](f func(A) A) Operator[A, A] {
|
||||
return G.Clone[[]A](f)
|
||||
}
|
||||
|
||||
// FoldMap maps and folds an array. Map the Array passing each value to the iterating function. Then fold the results using the provided Monoid.
|
||||
//
|
||||
//go:inline
|
||||
func FoldMap[A, B any](m M.Monoid[B]) func(func(A) B) func([]A) B {
|
||||
return G.FoldMap[[]A](m)
|
||||
}
|
||||
|
||||
// FoldMapWithIndex maps and folds an array. Map the Array passing each value to the iterating function. Then fold the results using the provided Monoid.
|
||||
//
|
||||
//go:inline
|
||||
func FoldMapWithIndex[A, B any](m M.Monoid[B]) func(func(int, A) B) func([]A) B {
|
||||
return G.FoldMapWithIndex[[]A](m)
|
||||
}
|
||||
|
||||
// Fold folds the array using the provided Monoid.
|
||||
//
|
||||
//go:inline
|
||||
func Fold[A any](m M.Monoid[A]) func([]A) A {
|
||||
return G.Fold[[]A](m)
|
||||
}
|
||||
|
||||
// Push adds an element to the end of an array (alias for Append).
|
||||
//
|
||||
//go:inline
|
||||
func Push[A any](a A) Operator[A, A] {
|
||||
return G.Push[Operator[A, A]](a)
|
||||
}
|
||||
|
||||
// MonadFlap applies a value to an array of functions, producing an array of results.
|
||||
// This is the monadic version that takes both parameters.
|
||||
//
|
||||
//go:inline
|
||||
func MonadFlap[B, A any](fab []func(A) B, a A) []B {
|
||||
return G.MonadFlap[func(A) B, []func(A) B, []B](fab, a)
|
||||
}
|
||||
|
||||
// Flap applies a value to an array of functions, producing an array of results.
|
||||
// This is the curried version.
|
||||
//
|
||||
//go:inline
|
||||
func Flap[B, A any](a A) Operator[func(A) B, B] {
|
||||
return G.Flap[func(A) B, []func(A) B, []B](a)
|
||||
}
|
||||
|
||||
// Prepend adds an element to the beginning of an array, returning a new array.
|
||||
//
|
||||
//go:inline
|
||||
func Prepend[A any](head A) Operator[A, A] {
|
||||
return G.Prepend[Operator[A, A]](head)
|
||||
}
|
||||
323
v2/array/array_extended_test.go
Normal file
323
v2/array/array_extended_test.go
Normal file
@@ -0,0 +1,323 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
S "github.com/IBM/fp-go/v2/string"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestReplicate(t *testing.T) {
|
||||
result := Replicate(3, "a")
|
||||
assert.Equal(t, []string{"a", "a", "a"}, result)
|
||||
|
||||
empty := Replicate(0, 42)
|
||||
assert.Equal(t, []int{}, empty)
|
||||
}
|
||||
|
||||
func TestMonadMap(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
result := MonadMap(src, N.Mul(2))
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
}
|
||||
|
||||
func TestMonadMapRef(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
result := MonadMapRef(src, func(x *int) int { return *x * 2 })
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
}
|
||||
|
||||
func TestMapWithIndex(t *testing.T) {
|
||||
src := []string{"a", "b", "c"}
|
||||
mapper := MapWithIndex(func(i int, s string) string {
|
||||
return fmt.Sprintf("%d:%s", i, s)
|
||||
})
|
||||
result := mapper(src)
|
||||
assert.Equal(t, []string{"0:a", "1:b", "2:c"}, result)
|
||||
}
|
||||
|
||||
func TestMapRef(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
mapper := MapRef(func(x *int) int { return *x * 2 })
|
||||
result := mapper(src)
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
}
|
||||
|
||||
func TestFilterWithIndex(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
filter := FilterWithIndex(func(i, x int) bool {
|
||||
return i%2 == 0 && x > 2
|
||||
})
|
||||
result := filter(src)
|
||||
assert.Equal(t, []int{3, 5}, result)
|
||||
}
|
||||
|
||||
func TestFilterRef(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
filter := FilterRef(func(x *int) bool { return *x > 2 })
|
||||
result := filter(src)
|
||||
assert.Equal(t, []int{3, 4, 5}, result)
|
||||
}
|
||||
|
||||
func TestMonadFilterMap(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4}
|
||||
result := MonadFilterMap(src, func(x int) O.Option[string] {
|
||||
if x%2 == 0 {
|
||||
return O.Some(fmt.Sprintf("even:%d", x))
|
||||
}
|
||||
return O.None[string]()
|
||||
})
|
||||
assert.Equal(t, []string{"even:2", "even:4"}, result)
|
||||
}
|
||||
|
||||
func TestMonadFilterMapWithIndex(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4}
|
||||
result := MonadFilterMapWithIndex(src, func(i, x int) O.Option[string] {
|
||||
if i%2 == 0 {
|
||||
return O.Some(fmt.Sprintf("%d:%d", i, x))
|
||||
}
|
||||
return O.None[string]()
|
||||
})
|
||||
assert.Equal(t, []string{"0:1", "2:3"}, result)
|
||||
}
|
||||
|
||||
func TestFilterMapWithIndex(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4}
|
||||
filter := FilterMapWithIndex(func(i, x int) O.Option[string] {
|
||||
if i%2 == 0 {
|
||||
return O.Some(fmt.Sprintf("%d:%d", i, x))
|
||||
}
|
||||
return O.None[string]()
|
||||
})
|
||||
result := filter(src)
|
||||
assert.Equal(t, []string{"0:1", "2:3"}, result)
|
||||
}
|
||||
|
||||
func TestFilterMapRef(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
filter := FilterMapRef(
|
||||
func(x *int) bool { return *x > 2 },
|
||||
func(x *int) string { return fmt.Sprintf("val:%d", *x) },
|
||||
)
|
||||
result := filter(src)
|
||||
assert.Equal(t, []string{"val:3", "val:4", "val:5"}, result)
|
||||
}
|
||||
|
||||
func TestReduceWithIndex(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
reducer := ReduceWithIndex(func(i, acc, x int) int {
|
||||
return acc + i + x
|
||||
}, 0)
|
||||
result := reducer(src)
|
||||
assert.Equal(t, 9, result) // 0 + (0+1) + (1+2) + (2+3) = 9
|
||||
}
|
||||
|
||||
func TestReduceRightWithIndex(t *testing.T) {
|
||||
src := []string{"a", "b", "c"}
|
||||
reducer := ReduceRightWithIndex(func(i int, x, acc string) string {
|
||||
return fmt.Sprintf("%s%d:%s", acc, i, x)
|
||||
}, "")
|
||||
result := reducer(src)
|
||||
assert.Equal(t, "2:c1:b0:a", result)
|
||||
}
|
||||
|
||||
func TestReduceRef(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
reducer := ReduceRef(func(acc int, x *int) int {
|
||||
return acc + *x
|
||||
}, 0)
|
||||
result := reducer(src)
|
||||
assert.Equal(t, 6, result)
|
||||
}
|
||||
|
||||
func TestZero(t *testing.T) {
|
||||
result := Zero[int]()
|
||||
assert.Equal(t, []int{}, result)
|
||||
assert.True(t, IsEmpty(result))
|
||||
}
|
||||
|
||||
func TestMonadChain(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
result := MonadChain(src, func(x int) []int {
|
||||
return []int{x, x * 10}
|
||||
})
|
||||
assert.Equal(t, []int{1, 10, 2, 20, 3, 30}, result)
|
||||
}
|
||||
|
||||
func TestChain(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
chain := Chain(func(x int) []int {
|
||||
return []int{x, x * 10}
|
||||
})
|
||||
result := chain(src)
|
||||
assert.Equal(t, []int{1, 10, 2, 20, 3, 30}, result)
|
||||
}
|
||||
|
||||
func TestMonadAp(t *testing.T) {
|
||||
fns := []func(int) int{
|
||||
N.Mul(2),
|
||||
N.Add(10),
|
||||
}
|
||||
values := []int{1, 2}
|
||||
result := MonadAp(fns, values)
|
||||
assert.Equal(t, []int{2, 4, 11, 12}, result)
|
||||
}
|
||||
|
||||
func TestMatchLeft(t *testing.T) {
|
||||
matcher := MatchLeft(
|
||||
func() string { return "empty" },
|
||||
func(head int, tail []int) string {
|
||||
return fmt.Sprintf("head:%d,tail:%v", head, tail)
|
||||
},
|
||||
)
|
||||
|
||||
assert.Equal(t, "empty", matcher([]int{}))
|
||||
assert.Equal(t, "head:1,tail:[2 3]", matcher([]int{1, 2, 3}))
|
||||
}
|
||||
|
||||
func TestTail(t *testing.T) {
|
||||
assert.Equal(t, O.None[[]int](), Tail([]int{}))
|
||||
assert.Equal(t, O.Some([]int{2, 3}), Tail([]int{1, 2, 3}))
|
||||
assert.Equal(t, O.Some([]int{}), Tail([]int{1}))
|
||||
}
|
||||
|
||||
func TestFirst(t *testing.T) {
|
||||
assert.Equal(t, O.None[int](), First([]int{}))
|
||||
assert.Equal(t, O.Some(1), First([]int{1, 2, 3}))
|
||||
}
|
||||
|
||||
func TestLast(t *testing.T) {
|
||||
assert.Equal(t, O.None[int](), Last([]int{}))
|
||||
assert.Equal(t, O.Some(3), Last([]int{1, 2, 3}))
|
||||
assert.Equal(t, O.Some(1), Last([]int{1}))
|
||||
}
|
||||
|
||||
func TestUpsertAt(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
upsert := UpsertAt(99)
|
||||
|
||||
result1 := upsert(src)
|
||||
assert.Equal(t, []int{1, 2, 3, 99}, result1)
|
||||
}
|
||||
|
||||
func TestSize(t *testing.T) {
|
||||
assert.Equal(t, 0, Size([]int{}))
|
||||
assert.Equal(t, 3, Size([]int{1, 2, 3}))
|
||||
}
|
||||
|
||||
func TestMonadPartition(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
result := MonadPartition(src, func(x int) bool { return x > 2 })
|
||||
assert.Equal(t, []int{1, 2}, result.F1)
|
||||
assert.Equal(t, []int{3, 4, 5}, result.F2)
|
||||
}
|
||||
|
||||
func TestIsNil(t *testing.T) {
|
||||
var nilSlice []int
|
||||
assert.True(t, IsNil(nilSlice))
|
||||
assert.False(t, IsNil([]int{}))
|
||||
assert.False(t, IsNil([]int{1}))
|
||||
}
|
||||
|
||||
func TestIsNonNil(t *testing.T) {
|
||||
var nilSlice []int
|
||||
assert.False(t, IsNonNil(nilSlice))
|
||||
assert.True(t, IsNonNil([]int{}))
|
||||
assert.True(t, IsNonNil([]int{1}))
|
||||
}
|
||||
|
||||
func TestConstNil(t *testing.T) {
|
||||
result := ConstNil[int]()
|
||||
assert.True(t, IsNil(result))
|
||||
}
|
||||
|
||||
func TestSliceRight(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
slicer := SliceRight[int](2)
|
||||
result := slicer(src)
|
||||
assert.Equal(t, []int{3, 4, 5}, result)
|
||||
}
|
||||
|
||||
func TestCopy(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
copied := Copy(src)
|
||||
assert.Equal(t, src, copied)
|
||||
// Verify it's a different slice
|
||||
copied[0] = 99
|
||||
assert.Equal(t, 1, src[0])
|
||||
assert.Equal(t, 99, copied[0])
|
||||
}
|
||||
|
||||
func TestClone(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
cloner := Clone(N.Mul(2))
|
||||
result := cloner(src)
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
}
|
||||
|
||||
func TestFoldMapWithIndex(t *testing.T) {
|
||||
src := []string{"a", "b", "c"}
|
||||
folder := FoldMapWithIndex[string](S.Monoid)(func(i int, s string) string {
|
||||
return fmt.Sprintf("%d:%s", i, s)
|
||||
})
|
||||
result := folder(src)
|
||||
assert.Equal(t, "0:a1:b2:c", result)
|
||||
}
|
||||
|
||||
func TestFold(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
folder := Fold(N.MonoidSum[int]())
|
||||
result := folder(src)
|
||||
assert.Equal(t, 15, result)
|
||||
}
|
||||
|
||||
func TestPush(t *testing.T) {
|
||||
src := []int{1, 2, 3}
|
||||
pusher := Push(4)
|
||||
result := pusher(src)
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, result)
|
||||
}
|
||||
|
||||
func TestMonadFlap(t *testing.T) {
|
||||
fns := []func(int) string{
|
||||
func(x int) string { return fmt.Sprintf("a%d", x) },
|
||||
func(x int) string { return fmt.Sprintf("b%d", x) },
|
||||
}
|
||||
result := MonadFlap(fns, 5)
|
||||
assert.Equal(t, []string{"a5", "b5"}, result)
|
||||
}
|
||||
|
||||
func TestFlap(t *testing.T) {
|
||||
fns := []func(int) string{
|
||||
func(x int) string { return fmt.Sprintf("a%d", x) },
|
||||
func(x int) string { return fmt.Sprintf("b%d", x) },
|
||||
}
|
||||
flapper := Flap[string](5)
|
||||
result := flapper(fns)
|
||||
assert.Equal(t, []string{"a5", "b5"}, result)
|
||||
}
|
||||
|
||||
func TestPrepend(t *testing.T) {
|
||||
src := []int{2, 3, 4}
|
||||
prepender := Prepend(1)
|
||||
result := prepender(src)
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, result)
|
||||
}
|
||||
216
v2/array/array_test.go
Normal file
216
v2/array/array_test.go
Normal file
@@ -0,0 +1,216 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/utils"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
S "github.com/IBM/fp-go/v2/string"
|
||||
T "github.com/IBM/fp-go/v2/tuple"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestMap1(t *testing.T) {
|
||||
|
||||
src := []string{"a", "b", "c"}
|
||||
|
||||
up := Map(strings.ToUpper)(src)
|
||||
|
||||
var up1 = []string{}
|
||||
for _, s := range src {
|
||||
up1 = append(up1, strings.ToUpper(s))
|
||||
}
|
||||
|
||||
var up2 = []string{}
|
||||
for i := range src {
|
||||
up2 = append(up2, strings.ToUpper(src[i]))
|
||||
}
|
||||
|
||||
assert.Equal(t, up, up1)
|
||||
assert.Equal(t, up, up2)
|
||||
}
|
||||
|
||||
func TestMap(t *testing.T) {
|
||||
|
||||
mapper := Map(utils.Upper)
|
||||
|
||||
src := []string{"a", "b", "c"}
|
||||
|
||||
dst := mapper(src)
|
||||
|
||||
assert.Equal(t, dst, []string{"A", "B", "C"})
|
||||
}
|
||||
|
||||
func TestReduceRight(t *testing.T) {
|
||||
values := From("a", "b", "c")
|
||||
f := func(a, acc string) string {
|
||||
return fmt.Sprintf("%s%s", acc, a)
|
||||
}
|
||||
b := ""
|
||||
|
||||
assert.Equal(t, "cba", ReduceRight(f, b)(values))
|
||||
assert.Equal(t, "", ReduceRight(f, b)(Empty[string]()))
|
||||
}
|
||||
|
||||
func TestReduce(t *testing.T) {
|
||||
|
||||
values := MakeBy(101, F.Identity[int])
|
||||
|
||||
sum := func(val int, current int) int {
|
||||
return val + current
|
||||
}
|
||||
reducer := Reduce(sum, 0)
|
||||
|
||||
result := reducer(values)
|
||||
assert.Equal(t, result, 5050)
|
||||
|
||||
}
|
||||
|
||||
func TestEmpty(t *testing.T) {
|
||||
assert.True(t, IsNonEmpty(MakeBy(101, F.Identity[int])))
|
||||
assert.True(t, IsEmpty([]int{}))
|
||||
}
|
||||
|
||||
func TestAp(t *testing.T) {
|
||||
assert.Equal(t,
|
||||
[]int{2, 4, 6, 3, 6, 9},
|
||||
F.Pipe1(
|
||||
[]func(int) int{
|
||||
utils.Double,
|
||||
utils.Triple,
|
||||
},
|
||||
Ap[int]([]int{1, 2, 3}),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
func TestIntercalate(t *testing.T) {
|
||||
is := Intercalate(S.Monoid)("-")
|
||||
|
||||
assert.Equal(t, "", is(Empty[string]()))
|
||||
assert.Equal(t, "a", is([]string{"a"}))
|
||||
assert.Equal(t, "a-b-c", is([]string{"a", "b", "c"}))
|
||||
assert.Equal(t, "a--c", is([]string{"a", "", "c"}))
|
||||
assert.Equal(t, "a-b", is([]string{"a", "b"}))
|
||||
assert.Equal(t, "a-b-c-d", is([]string{"a", "b", "c", "d"}))
|
||||
}
|
||||
|
||||
func TestIntersperse(t *testing.T) {
|
||||
// Test with empty array
|
||||
assert.Equal(t, []int{}, Intersperse(0)([]int{}))
|
||||
|
||||
// Test with single element
|
||||
assert.Equal(t, []int{1}, Intersperse(0)([]int{1}))
|
||||
|
||||
// Test with multiple elements
|
||||
assert.Equal(t, []int{1, 0, 2, 0, 3}, Intersperse(0)([]int{1, 2, 3}))
|
||||
}
|
||||
|
||||
func TestPrependAll(t *testing.T) {
|
||||
empty := Empty[int]()
|
||||
prep := PrependAll(0)
|
||||
assert.Equal(t, empty, prep(empty))
|
||||
assert.Equal(t, []int{0, 1, 0, 2, 0, 3}, prep([]int{1, 2, 3}))
|
||||
assert.Equal(t, []int{0, 1}, prep([]int{1}))
|
||||
assert.Equal(t, []int{0, 1, 0, 2, 0, 3, 0, 4}, prep([]int{1, 2, 3, 4}))
|
||||
}
|
||||
|
||||
func TestFlatten(t *testing.T) {
|
||||
assert.Equal(t, []int{1, 2, 3}, Flatten([][]int{{1}, {2}, {3}}))
|
||||
}
|
||||
|
||||
func TestLookup(t *testing.T) {
|
||||
data := []int{0, 1, 2}
|
||||
none := O.None[int]()
|
||||
|
||||
assert.Equal(t, none, Lookup[int](-1)(data))
|
||||
assert.Equal(t, none, Lookup[int](10)(data))
|
||||
assert.Equal(t, O.Some(1), Lookup[int](1)(data))
|
||||
}
|
||||
|
||||
func TestSlice(t *testing.T) {
|
||||
data := []int{0, 1, 2, 3}
|
||||
|
||||
assert.Equal(t, []int{1, 2}, Slice[int](1, 3)(data))
|
||||
}
|
||||
|
||||
func TestFrom(t *testing.T) {
|
||||
assert.Equal(t, []int{1, 2, 3}, From(1, 2, 3))
|
||||
}
|
||||
|
||||
func TestPartition(t *testing.T) {
|
||||
|
||||
pred := func(n int) bool {
|
||||
return n > 2
|
||||
}
|
||||
|
||||
assert.Equal(t, T.MakeTuple2(Empty[int](), Empty[int]()), Partition(pred)(Empty[int]()))
|
||||
assert.Equal(t, T.MakeTuple2(From(1), From(3)), Partition(pred)(From(1, 3)))
|
||||
}
|
||||
|
||||
func TestFilterChain(t *testing.T) {
|
||||
src := From(1, 2, 3)
|
||||
|
||||
f := func(i int) O.Option[[]string] {
|
||||
if i%2 != 0 {
|
||||
return O.Of(From(fmt.Sprintf("a%d", i), fmt.Sprintf("b%d", i)))
|
||||
}
|
||||
return O.None[[]string]()
|
||||
}
|
||||
|
||||
res := FilterChain(f)(src)
|
||||
|
||||
assert.Equal(t, From("a1", "b1", "a3", "b3"), res)
|
||||
}
|
||||
|
||||
func TestFilterMap(t *testing.T) {
|
||||
src := From(1, 2, 3)
|
||||
|
||||
f := func(i int) O.Option[string] {
|
||||
if i%2 != 0 {
|
||||
return O.Of(fmt.Sprintf("a%d", i))
|
||||
}
|
||||
return O.None[string]()
|
||||
}
|
||||
|
||||
res := FilterMap(f)(src)
|
||||
|
||||
assert.Equal(t, From("a1", "a3"), res)
|
||||
}
|
||||
|
||||
func TestFoldMap(t *testing.T) {
|
||||
src := From("a", "b", "c")
|
||||
|
||||
fold := FoldMap[string](S.Monoid)(strings.ToUpper)
|
||||
|
||||
assert.Equal(t, "ABC", fold(src))
|
||||
}
|
||||
|
||||
func ExampleFoldMap() {
|
||||
src := From("a", "b", "c")
|
||||
|
||||
fold := FoldMap[string](S.Monoid)(strings.ToUpper)
|
||||
|
||||
fmt.Println(fold(src))
|
||||
|
||||
// Output: ABC
|
||||
|
||||
}
|
||||
148
v2/array/bind.go
Normal file
148
v2/array/bind.go
Normal file
@@ -0,0 +1,148 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
)
|
||||
|
||||
// Do creates an empty context of type S to be used with the Bind operation.
|
||||
// This is the starting point for monadic do-notation style computations.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct {
|
||||
// X int
|
||||
// Y int
|
||||
// }
|
||||
// result := array.Do(State{})
|
||||
//
|
||||
//go:inline
|
||||
func Do[S any](
|
||||
empty S,
|
||||
) []S {
|
||||
return G.Do[[]S](empty)
|
||||
}
|
||||
|
||||
// Bind attaches the result of a computation to a context S1 to produce a context S2.
|
||||
// The setter function defines how to update the context with the computation result.
|
||||
// This enables monadic composition where each step can produce multiple results.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := F.Pipe2(
|
||||
// array.Do(struct{ X, Y int }{}),
|
||||
// array.Bind(
|
||||
// func(x int) func(s struct{}) struct{ X int } {
|
||||
// return func(s struct{}) struct{ X int } { return struct{ X int }{x} }
|
||||
// },
|
||||
// func(s struct{}) []int { return []int{1, 2} },
|
||||
// ),
|
||||
// )
|
||||
//
|
||||
//go:inline
|
||||
func Bind[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
f Kleisli[S1, T],
|
||||
) Operator[S1, S2] {
|
||||
return G.Bind[[]S1, []S2](setter, f)
|
||||
}
|
||||
|
||||
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
|
||||
// Unlike Bind, the computation function returns a plain value T rather than []T.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := array.Let(
|
||||
// func(sum int) func(s struct{ X int }) struct{ X, Sum int } {
|
||||
// return func(s struct{ X int }) struct{ X, Sum int } {
|
||||
// return struct{ X, Sum int }{s.X, sum}
|
||||
// }
|
||||
// },
|
||||
// func(s struct{ X int }) int { return s.X * 2 },
|
||||
// )
|
||||
//
|
||||
//go:inline
|
||||
func Let[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
f func(S1) T,
|
||||
) Operator[S1, S2] {
|
||||
return G.Let[[]S1, []S2](setter, f)
|
||||
}
|
||||
|
||||
// LetTo attaches a constant value to a context S1 to produce a context S2.
|
||||
// This is useful for adding constant values to the context.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := array.LetTo(
|
||||
// func(name string) func(s struct{ X int }) struct{ X int; Name string } {
|
||||
// return func(s struct{ X int }) struct{ X int; Name string } {
|
||||
// return struct{ X int; Name string }{s.X, name}
|
||||
// }
|
||||
// },
|
||||
// "constant",
|
||||
// )
|
||||
//
|
||||
//go:inline
|
||||
func LetTo[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
b T,
|
||||
) Operator[S1, S2] {
|
||||
return G.LetTo[[]S1, []S2](setter, b)
|
||||
}
|
||||
|
||||
// BindTo initializes a new state S1 from a value T.
|
||||
// This is typically the first operation after Do to start building the context.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := F.Pipe2(
|
||||
// []int{1, 2, 3},
|
||||
// array.BindTo(func(x int) struct{ X int } {
|
||||
// return struct{ X int }{x}
|
||||
// }),
|
||||
// )
|
||||
//
|
||||
//go:inline
|
||||
func BindTo[S1, T any](
|
||||
setter func(T) S1,
|
||||
) Operator[T, S1] {
|
||||
return G.BindTo[[]S1, []T](setter)
|
||||
}
|
||||
|
||||
// ApS attaches a value to a context S1 to produce a context S2 by considering
|
||||
// the context and the value concurrently (using applicative semantics).
|
||||
// This produces all combinations of context values and array values.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := array.ApS(
|
||||
// func(y int) func(s struct{ X int }) struct{ X, Y int } {
|
||||
// return func(s struct{ X int }) struct{ X, Y int } {
|
||||
// return struct{ X, Y int }{s.X, y}
|
||||
// }
|
||||
// },
|
||||
// []int{10, 20},
|
||||
// )
|
||||
//
|
||||
//go:inline
|
||||
func ApS[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
fa []T,
|
||||
) Operator[S1, S2] {
|
||||
return G.ApS[[]S1, []S2](setter, fa)
|
||||
}
|
||||
78
v2/array/bind_extended_test.go
Normal file
78
v2/array/bind_extended_test.go
Normal file
@@ -0,0 +1,78 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
type TestState1 struct {
|
||||
X int
|
||||
}
|
||||
|
||||
type TestState2 struct {
|
||||
X int
|
||||
Y int
|
||||
}
|
||||
|
||||
func TestLet(t *testing.T) {
|
||||
result := F.Pipe2(
|
||||
Do(TestState1{}),
|
||||
Let(
|
||||
func(y int) func(s TestState1) TestState2 {
|
||||
return func(s TestState1) TestState2 {
|
||||
return TestState2{X: s.X, Y: y}
|
||||
}
|
||||
},
|
||||
func(s TestState1) int { return s.X * 2 },
|
||||
),
|
||||
Map(func(s TestState2) int { return s.X + s.Y }),
|
||||
)
|
||||
|
||||
assert.Equal(t, []int{0}, result)
|
||||
}
|
||||
|
||||
func TestLetTo(t *testing.T) {
|
||||
result := F.Pipe2(
|
||||
Do(TestState1{X: 5}),
|
||||
LetTo(
|
||||
func(y int) func(s TestState1) TestState2 {
|
||||
return func(s TestState1) TestState2 {
|
||||
return TestState2{X: s.X, Y: y}
|
||||
}
|
||||
},
|
||||
42,
|
||||
),
|
||||
Map(func(s TestState2) int { return s.X + s.Y }),
|
||||
)
|
||||
|
||||
assert.Equal(t, []int{47}, result)
|
||||
}
|
||||
|
||||
func TestBindTo(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
[]int{1, 2, 3},
|
||||
BindTo(func(x int) TestState1 {
|
||||
return TestState1{X: x}
|
||||
}),
|
||||
)
|
||||
|
||||
expected := []TestState1{{X: 1}, {X: 2}, {X: 3}}
|
||||
assert.Equal(t, expected, result)
|
||||
}
|
||||
56
v2/array/bind_test.go
Normal file
56
v2/array/bind_test.go
Normal file
@@ -0,0 +1,56 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/utils"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func getLastName(s utils.Initial) []string {
|
||||
return Of("Doe")
|
||||
}
|
||||
|
||||
func getGivenName(s utils.WithLastName) []string {
|
||||
return Of("John")
|
||||
}
|
||||
|
||||
func TestBind(t *testing.T) {
|
||||
|
||||
res := F.Pipe3(
|
||||
Do(utils.Empty),
|
||||
Bind(utils.SetLastName, getLastName),
|
||||
Bind(utils.SetGivenName, getGivenName),
|
||||
Map(utils.GetFullName),
|
||||
)
|
||||
|
||||
assert.Equal(t, res, Of("John Doe"))
|
||||
}
|
||||
|
||||
func TestApS(t *testing.T) {
|
||||
|
||||
res := F.Pipe3(
|
||||
Do(utils.Empty),
|
||||
ApS(utils.SetLastName, Of("Doe")),
|
||||
ApS(utils.SetGivenName, Of("John")),
|
||||
Map(utils.GetFullName),
|
||||
)
|
||||
|
||||
assert.Equal(t, res, Of("John Doe"))
|
||||
}
|
||||
251
v2/array/doc.go
Normal file
251
v2/array/doc.go
Normal file
@@ -0,0 +1,251 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package array provides functional programming utilities for working with Go slices.
|
||||
//
|
||||
// This package treats Go slices as immutable arrays and provides a rich set of operations
|
||||
// for transforming, filtering, folding, and combining arrays in a functional style.
|
||||
// All operations return new arrays rather than modifying existing ones.
|
||||
//
|
||||
// # Core Concepts
|
||||
//
|
||||
// The array package implements several functional programming abstractions:
|
||||
// - Functor: Transform array elements with Map
|
||||
// - Applicative: Apply functions in arrays to values in arrays
|
||||
// - Monad: Chain operations that produce arrays with Chain/FlatMap
|
||||
// - Foldable: Reduce arrays to single values with Reduce/Fold
|
||||
// - Traversable: Transform arrays while preserving structure
|
||||
//
|
||||
// # Basic Operations
|
||||
//
|
||||
// // Creating arrays
|
||||
// arr := array.From(1, 2, 3, 4, 5)
|
||||
// repeated := array.Replicate(3, "hello")
|
||||
// generated := array.MakeBy(5, func(i int) int { return i * 2 })
|
||||
//
|
||||
// // Transforming arrays
|
||||
// doubled := array.Map(N.Mul(2))(arr)
|
||||
// filtered := array.Filter(func(x int) bool { return x > 2 })(arr)
|
||||
//
|
||||
// // Combining arrays
|
||||
// combined := array.Flatten([][]int{{1, 2}, {3, 4}})
|
||||
// zipped := array.Zip([]string{"a", "b"})([]int{1, 2})
|
||||
//
|
||||
// # Mapping and Filtering
|
||||
//
|
||||
// Transform array elements with Map, or filter elements with Filter:
|
||||
//
|
||||
// numbers := []int{1, 2, 3, 4, 5}
|
||||
//
|
||||
// // Map transforms each element
|
||||
// doubled := array.Map(N.Mul(2))(numbers)
|
||||
// // Result: [2, 4, 6, 8, 10]
|
||||
//
|
||||
// // Filter keeps elements matching a predicate
|
||||
// evens := array.Filter(func(x int) bool { return x%2 == 0 })(numbers)
|
||||
// // Result: [2, 4]
|
||||
//
|
||||
// // FilterMap combines both operations
|
||||
// import "github.com/IBM/fp-go/v2/option"
|
||||
// result := array.FilterMap(func(x int) option.Option[int] {
|
||||
// if x%2 == 0 {
|
||||
// return option.Some(x * 2)
|
||||
// }
|
||||
// return option.None[int]()
|
||||
// })(numbers)
|
||||
// // Result: [4, 8]
|
||||
//
|
||||
// # Folding and Reducing
|
||||
//
|
||||
// Reduce arrays to single values:
|
||||
//
|
||||
// numbers := []int{1, 2, 3, 4, 5}
|
||||
//
|
||||
// // Sum all elements
|
||||
// sum := array.Reduce(func(acc, x int) int { return acc + x }, 0)(numbers)
|
||||
// // Result: 15
|
||||
//
|
||||
// // Using a Monoid
|
||||
// import "github.com/IBM/fp-go/v2/monoid"
|
||||
// sum := array.Fold(monoid.MonoidSum[int]())(numbers)
|
||||
// // Result: 15
|
||||
//
|
||||
// # Chaining Operations
|
||||
//
|
||||
// Chain operations that produce arrays (also known as FlatMap):
|
||||
//
|
||||
// numbers := []int{1, 2, 3}
|
||||
// result := array.Chain(func(x int) []int {
|
||||
// return []int{x, x * 10}
|
||||
// })(numbers)
|
||||
// // Result: [1, 10, 2, 20, 3, 30]
|
||||
//
|
||||
// # Finding Elements
|
||||
//
|
||||
// Search for elements matching predicates:
|
||||
//
|
||||
// numbers := []int{1, 2, 3, 4, 5}
|
||||
//
|
||||
// // Find first element > 3
|
||||
// first := array.FindFirst(func(x int) bool { return x > 3 })(numbers)
|
||||
// // Result: Some(4)
|
||||
//
|
||||
// // Find last element > 3
|
||||
// last := array.FindLast(func(x int) bool { return x > 3 })(numbers)
|
||||
// // Result: Some(5)
|
||||
//
|
||||
// // Get head and tail
|
||||
// head := array.Head(numbers) // Some(1)
|
||||
// tail := array.Tail(numbers) // Some([2, 3, 4, 5])
|
||||
//
|
||||
// # Sorting
|
||||
//
|
||||
// Sort arrays using Ord instances:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/ord"
|
||||
//
|
||||
// numbers := []int{3, 1, 4, 1, 5}
|
||||
// sorted := array.Sort(ord.FromStrictCompare[int]())(numbers)
|
||||
// // Result: [1, 1, 3, 4, 5]
|
||||
//
|
||||
// // Sort by extracted key
|
||||
// type Person struct { Name string; Age int }
|
||||
// people := []Person{{"Alice", 30}, {"Bob", 25}}
|
||||
// byAge := array.SortByKey(ord.FromStrictCompare[int](), func(p Person) int {
|
||||
// return p.Age
|
||||
// })(people)
|
||||
//
|
||||
// # Uniqueness
|
||||
//
|
||||
// Remove duplicate elements:
|
||||
//
|
||||
// numbers := []int{1, 2, 2, 3, 3, 3}
|
||||
// unique := array.StrictUniq(numbers)
|
||||
// // Result: [1, 2, 3]
|
||||
//
|
||||
// // Unique by key
|
||||
// type Person struct { Name string; Age int }
|
||||
// people := []Person{{"Alice", 30}, {"Bob", 25}, {"Alice", 35}}
|
||||
// uniqueByName := array.Uniq(func(p Person) string { return p.Name })(people)
|
||||
// // Result: [{"Alice", 30}, {"Bob", 25}]
|
||||
//
|
||||
// # Zipping
|
||||
//
|
||||
// Combine multiple arrays:
|
||||
//
|
||||
// names := []string{"Alice", "Bob", "Charlie"}
|
||||
// ages := []int{30, 25, 35}
|
||||
//
|
||||
// // Zip into tuples
|
||||
// pairs := array.Zip(ages)(names)
|
||||
// // Result: [(Alice, 30), (Bob, 25), (Charlie, 35)]
|
||||
//
|
||||
// // Zip with custom function
|
||||
// result := array.ZipWith(names, ages, func(name string, age int) string {
|
||||
// return fmt.Sprintf("%s is %d", name, age)
|
||||
// })
|
||||
//
|
||||
// # Monadic Do Notation
|
||||
//
|
||||
// Build complex array computations using do-notation style:
|
||||
//
|
||||
// result := array.Do(
|
||||
// struct{ X, Y int }{},
|
||||
// )(
|
||||
// array.Bind(
|
||||
// func(x int) func(s struct{}) struct{ X int } {
|
||||
// return func(s struct{}) struct{ X int } { return struct{ X int }{x} }
|
||||
// },
|
||||
// func(s struct{}) []int { return []int{1, 2, 3} },
|
||||
// ),
|
||||
// array.Bind(
|
||||
// func(y int) func(s struct{ X int }) struct{ X, Y int } {
|
||||
// return func(s struct{ X int }) struct{ X, Y int } {
|
||||
// return struct{ X, Y int }{s.X, y}
|
||||
// }
|
||||
// },
|
||||
// func(s struct{ X int }) []int { return []int{4, 5} },
|
||||
// ),
|
||||
// )
|
||||
// // Produces all combinations: [{1,4}, {1,5}, {2,4}, {2,5}, {3,4}, {3,5}]
|
||||
//
|
||||
// # Sequence and Traverse
|
||||
//
|
||||
// Transform arrays of effects into effects of arrays:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/option"
|
||||
//
|
||||
// // Sequence: []Option[A] -> Option[[]A]
|
||||
// opts := []option.Option[int]{
|
||||
// option.Some(1),
|
||||
// option.Some(2),
|
||||
// option.Some(3),
|
||||
// }
|
||||
// result := array.ArrayOption[int]()(opts)
|
||||
// // Result: Some([1, 2, 3])
|
||||
//
|
||||
// // If any is None, result is None
|
||||
// opts2 := []option.Option[int]{
|
||||
// option.Some(1),
|
||||
// option.None[int](),
|
||||
// option.Some(3),
|
||||
// }
|
||||
// result2 := array.ArrayOption[int]()(opts2)
|
||||
// // Result: None
|
||||
//
|
||||
// # Equality and Comparison
|
||||
//
|
||||
// Compare arrays for equality:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/eq"
|
||||
//
|
||||
// eq := array.Eq(eq.FromStrictEquals[int]())
|
||||
// equal := eq.Equals([]int{1, 2, 3}, []int{1, 2, 3})
|
||||
// // Result: true
|
||||
//
|
||||
// # Monoid Operations
|
||||
//
|
||||
// Combine arrays using monoid operations:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/monoid"
|
||||
//
|
||||
// // Concatenate arrays
|
||||
// m := array.Monoid[int]()
|
||||
// result := m.Concat([]int{1, 2}, []int{3, 4})
|
||||
// // Result: [1, 2, 3, 4]
|
||||
//
|
||||
// // Concatenate multiple arrays efficiently
|
||||
// result := array.ArrayConcatAll(
|
||||
// []int{1, 2},
|
||||
// []int{3, 4},
|
||||
// []int{5, 6},
|
||||
// )
|
||||
// // Result: [1, 2, 3, 4, 5, 6]
|
||||
//
|
||||
// # Performance Considerations
|
||||
//
|
||||
// Most operations create new arrays rather than modifying existing ones. For performance-critical
|
||||
// code, consider:
|
||||
// - Using Copy for shallow copies when needed
|
||||
// - Using Clone with a custom cloning function for deep copies
|
||||
// - Batching operations to minimize intermediate allocations
|
||||
// - Using ArrayConcatAll for efficient concatenation of multiple arrays
|
||||
//
|
||||
// # Subpackages
|
||||
//
|
||||
// - array/generic: Generic implementations for custom array-like types
|
||||
// - array/nonempty: Operations for non-empty arrays with compile-time guarantees
|
||||
// - array/testing: Testing utilities for array laws and properties
|
||||
package array
|
||||
51
v2/array/eq.go
Normal file
51
v2/array/eq.go
Normal file
@@ -0,0 +1,51 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
E "github.com/IBM/fp-go/v2/eq"
|
||||
)
|
||||
|
||||
func equals[T any](left []T, right []T, eq func(T, T) bool) bool {
|
||||
if len(left) != len(right) {
|
||||
return false
|
||||
}
|
||||
for i, v1 := range left {
|
||||
v2 := right[i]
|
||||
if !eq(v1, v2) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Eq creates an equality checker for arrays given an equality checker for elements.
|
||||
// Two arrays are considered equal if they have the same length and all corresponding
|
||||
// elements are equal according to the provided Eq instance.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/eq"
|
||||
//
|
||||
// intArrayEq := array.Eq(eq.FromStrictEquals[int]())
|
||||
// result := intArrayEq.Equals([]int{1, 2, 3}, []int{1, 2, 3}) // true
|
||||
// result2 := intArrayEq.Equals([]int{1, 2, 3}, []int{1, 2, 4}) // false
|
||||
func Eq[T any](e E.Eq[T]) E.Eq[[]T] {
|
||||
eq := e.Equals
|
||||
return E.FromEquals(func(left, right []T) bool {
|
||||
return equals(left, right, eq)
|
||||
})
|
||||
}
|
||||
44
v2/array/eq_test.go
Normal file
44
v2/array/eq_test.go
Normal file
@@ -0,0 +1,44 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
E "github.com/IBM/fp-go/v2/eq"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestEq(t *testing.T) {
|
||||
intEq := Eq(E.FromStrictEquals[int]())
|
||||
|
||||
// Test equal arrays
|
||||
assert.True(t, intEq.Equals([]int{1, 2, 3}, []int{1, 2, 3}))
|
||||
|
||||
// Test different lengths
|
||||
assert.False(t, intEq.Equals([]int{1, 2, 3}, []int{1, 2}))
|
||||
|
||||
// Test different values
|
||||
assert.False(t, intEq.Equals([]int{1, 2, 3}, []int{1, 2, 4}))
|
||||
|
||||
// Test empty arrays
|
||||
assert.True(t, intEq.Equals([]int{}, []int{}))
|
||||
|
||||
// Test string arrays
|
||||
stringEq := Eq(E.FromStrictEquals[string]())
|
||||
assert.True(t, stringEq.Equals([]string{"a", "b"}, []string{"a", "b"}))
|
||||
assert.False(t, stringEq.Equals([]string{"a", "b"}, []string{"a", "c"}))
|
||||
}
|
||||
77
v2/array/example_any_test.go
Normal file
77
v2/array/example_any_test.go
Normal file
@@ -0,0 +1,77 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
func Example_any() {
|
||||
|
||||
pred := func(val int) bool {
|
||||
return val&2 == 0
|
||||
}
|
||||
|
||||
data1 := From(1, 2, 3)
|
||||
|
||||
fmt.Println(Any(pred)(data1))
|
||||
|
||||
// Output:
|
||||
// true
|
||||
}
|
||||
|
||||
func Example_any_filter() {
|
||||
|
||||
pred := func(val int) bool {
|
||||
return val&2 == 0
|
||||
}
|
||||
|
||||
data1 := From(1, 2, 3)
|
||||
|
||||
// Any tests if any of the entries in the array matches the condition
|
||||
Any := F.Flow2(
|
||||
Filter(pred),
|
||||
IsNonEmpty[int],
|
||||
)
|
||||
|
||||
fmt.Println(Any(data1))
|
||||
|
||||
// Output:
|
||||
// true
|
||||
}
|
||||
|
||||
func Example_any_find() {
|
||||
|
||||
pred := func(val int) bool {
|
||||
return val&2 == 0
|
||||
}
|
||||
|
||||
data1 := From(1, 2, 3)
|
||||
|
||||
// Any tests if any of the entries in the array matches the condition
|
||||
Any := F.Flow2(
|
||||
FindFirst(pred),
|
||||
O.IsSome[int],
|
||||
)
|
||||
|
||||
fmt.Println(Any(data1))
|
||||
|
||||
// Output:
|
||||
// true
|
||||
}
|
||||
55
v2/array/example_find_test.go
Normal file
55
v2/array/example_find_test.go
Normal file
@@ -0,0 +1,55 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
)
|
||||
|
||||
func Example_find() {
|
||||
|
||||
pred := func(val int) bool {
|
||||
return val&2 == 0
|
||||
}
|
||||
|
||||
data1 := From(1, 2, 3)
|
||||
|
||||
fmt.Println(FindFirst(pred)(data1))
|
||||
|
||||
// Output:
|
||||
// Some[int](1)
|
||||
}
|
||||
|
||||
func Example_find_filter() {
|
||||
|
||||
pred := func(val int) bool {
|
||||
return val&2 == 0
|
||||
}
|
||||
|
||||
data1 := From(1, 2, 3)
|
||||
|
||||
Find := F.Flow2(
|
||||
Filter(pred),
|
||||
Head[int],
|
||||
)
|
||||
|
||||
fmt.Println(Find(data1))
|
||||
|
||||
// Output:
|
||||
// Some[int](1)
|
||||
}
|
||||
59
v2/array/examples_basic_test.go
Normal file
59
v2/array/examples_basic_test.go
Normal file
@@ -0,0 +1,59 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// Example_basic adapts examples from [https://github.com/inato/fp-ts-cheatsheet#basic-manipulation]
|
||||
func Example_basic() {
|
||||
|
||||
someArray := From(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) // []int
|
||||
|
||||
isEven := func(num int) bool {
|
||||
return num%2 == 0
|
||||
}
|
||||
|
||||
square := func(num int) int {
|
||||
return num * num
|
||||
}
|
||||
|
||||
// filter and map
|
||||
result := F.Pipe2(
|
||||
someArray,
|
||||
Filter(isEven),
|
||||
Map(square),
|
||||
) // [0 4 16 36 64]
|
||||
|
||||
// or in one go with filterMap
|
||||
resultFilterMap := F.Pipe1(
|
||||
someArray,
|
||||
FilterMap(
|
||||
F.Flow2(O.FromPredicate(isEven), O.Map(square)),
|
||||
),
|
||||
)
|
||||
|
||||
fmt.Println(result)
|
||||
fmt.Println(resultFilterMap)
|
||||
|
||||
// Output:
|
||||
// [0 4 16 36 64]
|
||||
// [0 4 16 36 64]
|
||||
}
|
||||
92
v2/array/examples_sort_test.go
Normal file
92
v2/array/examples_sort_test.go
Normal file
@@ -0,0 +1,92 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
I "github.com/IBM/fp-go/v2/number/integer"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/ord"
|
||||
S "github.com/IBM/fp-go/v2/string"
|
||||
)
|
||||
|
||||
type user struct {
|
||||
name string
|
||||
age O.Option[int]
|
||||
}
|
||||
|
||||
func (user user) GetName() string {
|
||||
return user.name
|
||||
}
|
||||
|
||||
func (user user) GetAge() O.Option[int] {
|
||||
return user.age
|
||||
}
|
||||
|
||||
// Example_sort adapts examples from [https://github.com/inato/fp-ts-cheatsheet#sort-elements-with-ord]
|
||||
func Example_sort() {
|
||||
|
||||
strings := From("zyx", "abc", "klm")
|
||||
|
||||
sortedStrings := F.Pipe1(
|
||||
strings,
|
||||
Sort(S.Ord),
|
||||
) // => ['abc', 'klm', 'zyx']
|
||||
|
||||
// reverse sort
|
||||
reverseSortedStrings := F.Pipe1(
|
||||
strings,
|
||||
Sort(ord.Reverse(S.Ord)),
|
||||
) // => ['zyx', 'klm', 'abc']
|
||||
|
||||
// sort Option
|
||||
optionalNumbers := From(O.Some(1337), O.None[int](), O.Some(42))
|
||||
|
||||
sortedNums := F.Pipe1(
|
||||
optionalNumbers,
|
||||
Sort(O.Ord(I.Ord)),
|
||||
)
|
||||
|
||||
// complex object with different rules
|
||||
byName := F.Pipe1(
|
||||
S.Ord,
|
||||
ord.Contramap(user.GetName),
|
||||
) // ord.Ord[user]
|
||||
|
||||
byAge := F.Pipe1(
|
||||
O.Ord(I.Ord),
|
||||
ord.Contramap(user.GetAge),
|
||||
) // ord.Ord[user]
|
||||
|
||||
sortedUsers := F.Pipe1(
|
||||
From(user{name: "a", age: O.Of(30)}, user{name: "d", age: O.Of(10)}, user{name: "c"}, user{name: "b", age: O.Of(10)}),
|
||||
SortBy(From(byAge, byName)),
|
||||
)
|
||||
|
||||
fmt.Println(sortedStrings)
|
||||
fmt.Println(reverseSortedStrings)
|
||||
fmt.Println(sortedNums)
|
||||
fmt.Println(sortedUsers)
|
||||
|
||||
// Output:
|
||||
// [abc klm zyx]
|
||||
// [zyx klm abc]
|
||||
// [None[int] Some[int](42) Some[int](1337)]
|
||||
// [{c {0 false}} {b {10 true}} {d {10 true}} {a {30 true}}]
|
||||
|
||||
}
|
||||
115
v2/array/find.go
Normal file
115
v2/array/find.go
Normal file
@@ -0,0 +1,115 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// FindFirst finds the first element which satisfies a predicate function.
|
||||
// Returns Some(element) if found, None if no element matches.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// findGreaterThan3 := array.FindFirst(func(x int) bool { return x > 3 })
|
||||
// result := findGreaterThan3([]int{1, 2, 4, 5}) // Some(4)
|
||||
// result2 := findGreaterThan3([]int{1, 2, 3}) // None
|
||||
//
|
||||
//go:inline
|
||||
func FindFirst[A any](pred func(A) bool) option.Kleisli[[]A, A] {
|
||||
return G.FindFirst[[]A](pred)
|
||||
}
|
||||
|
||||
// FindFirstWithIndex finds the first element which satisfies a predicate function that also receives the index.
|
||||
// Returns Some(element) if found, None if no element matches.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// findEvenAtEvenIndex := array.FindFirstWithIndex(func(i, x int) bool {
|
||||
// return i%2 == 0 && x%2 == 0
|
||||
// })
|
||||
// result := findEvenAtEvenIndex([]int{1, 3, 4, 5}) // Some(4)
|
||||
//
|
||||
//go:inline
|
||||
func FindFirstWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
|
||||
return G.FindFirstWithIndex[[]A](pred)
|
||||
}
|
||||
|
||||
// FindFirstMap finds the first element for which the selector function returns Some.
|
||||
// This combines finding and mapping in a single operation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "strconv"
|
||||
//
|
||||
// parseFirst := array.FindFirstMap(func(s string) option.Option[int] {
|
||||
// if n, err := strconv.Atoi(s); err == nil {
|
||||
// return option.Some(n)
|
||||
// }
|
||||
// return option.None[int]()
|
||||
// })
|
||||
// result := parseFirst([]string{"a", "42", "b"}) // Some(42)
|
||||
//
|
||||
//go:inline
|
||||
func FindFirstMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
|
||||
return G.FindFirstMap[[]A](sel)
|
||||
}
|
||||
|
||||
// FindFirstMapWithIndex finds the first element for which the selector function returns Some.
|
||||
// The selector receives both the index and the element.
|
||||
//
|
||||
//go:inline
|
||||
func FindFirstMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
|
||||
return G.FindFirstMapWithIndex[[]A](sel)
|
||||
}
|
||||
|
||||
// FindLast finds the last element which satisfies a predicate function.
|
||||
// Returns Some(element) if found, None if no element matches.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// findGreaterThan3 := array.FindLast(func(x int) bool { return x > 3 })
|
||||
// result := findGreaterThan3([]int{1, 4, 2, 5}) // Some(5)
|
||||
//
|
||||
//go:inline
|
||||
func FindLast[A any](pred func(A) bool) option.Kleisli[[]A, A] {
|
||||
return G.FindLast[[]A](pred)
|
||||
}
|
||||
|
||||
// FindLastWithIndex finds the last element which satisfies a predicate function that also receives the index.
|
||||
// Returns Some(element) if found, None if no element matches.
|
||||
//
|
||||
//go:inline
|
||||
func FindLastWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
|
||||
return G.FindLastWithIndex[[]A](pred)
|
||||
}
|
||||
|
||||
// FindLastMap finds the last element for which the selector function returns Some.
|
||||
// This combines finding and mapping in a single operation, searching from the end.
|
||||
//
|
||||
//go:inline
|
||||
func FindLastMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
|
||||
return G.FindLastMap[[]A](sel)
|
||||
}
|
||||
|
||||
// FindLastMapWithIndex finds the last element for which the selector function returns Some.
|
||||
// The selector receives both the index and the element, searching from the end.
|
||||
//
|
||||
//go:inline
|
||||
func FindLastMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
|
||||
return G.FindLastMapWithIndex[[]A](sel)
|
||||
}
|
||||
105
v2/array/find_test.go
Normal file
105
v2/array/find_test.go
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestFindFirstWithIndex(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
finder := FindFirstWithIndex(func(i, x int) bool {
|
||||
return i > 2 && x%2 == 0
|
||||
})
|
||||
result := finder(src)
|
||||
assert.Equal(t, O.Some(4), result)
|
||||
|
||||
notFound := FindFirstWithIndex(func(i, x int) bool {
|
||||
return i > 10
|
||||
})
|
||||
assert.Equal(t, O.None[int](), notFound(src))
|
||||
}
|
||||
|
||||
func TestFindFirstMap(t *testing.T) {
|
||||
src := []string{"a", "42", "b", "100"}
|
||||
finder := FindFirstMap(func(s string) O.Option[int] {
|
||||
if len(s) > 1 {
|
||||
return O.Some(len(s))
|
||||
}
|
||||
return O.None[int]()
|
||||
})
|
||||
result := finder(src)
|
||||
assert.Equal(t, O.Some(2), result)
|
||||
}
|
||||
|
||||
func TestFindFirstMapWithIndex(t *testing.T) {
|
||||
src := []string{"a", "b", "c", "d"}
|
||||
finder := FindFirstMapWithIndex(func(i int, s string) O.Option[string] {
|
||||
if i > 1 {
|
||||
return O.Some(fmt.Sprintf("%d:%s", i, s))
|
||||
}
|
||||
return O.None[string]()
|
||||
})
|
||||
result := finder(src)
|
||||
assert.Equal(t, O.Some("2:c"), result)
|
||||
}
|
||||
|
||||
func TestFindLast(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
finder := FindLast(func(x int) bool { return x%2 == 0 })
|
||||
result := finder(src)
|
||||
assert.Equal(t, O.Some(4), result)
|
||||
|
||||
notFound := FindLast(func(x int) bool { return x > 10 })
|
||||
assert.Equal(t, O.None[int](), notFound(src))
|
||||
}
|
||||
|
||||
func TestFindLastWithIndex(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
finder := FindLastWithIndex(func(i, x int) bool {
|
||||
return i < 3 && x%2 == 0
|
||||
})
|
||||
result := finder(src)
|
||||
assert.Equal(t, O.Some(2), result)
|
||||
}
|
||||
|
||||
func TestFindLastMap(t *testing.T) {
|
||||
src := []string{"a", "42", "b", "100"}
|
||||
finder := FindLastMap(func(s string) O.Option[int] {
|
||||
if len(s) > 1 {
|
||||
return O.Some(len(s))
|
||||
}
|
||||
return O.None[int]()
|
||||
})
|
||||
result := finder(src)
|
||||
assert.Equal(t, O.Some(3), result)
|
||||
}
|
||||
|
||||
func TestFindLastMapWithIndex(t *testing.T) {
|
||||
src := []string{"a", "b", "c", "d"}
|
||||
finder := FindLastMapWithIndex(func(i int, s string) O.Option[string] {
|
||||
if i < 3 {
|
||||
return O.Some(fmt.Sprintf("%d:%s", i, s))
|
||||
}
|
||||
return O.None[string]()
|
||||
})
|
||||
result := finder(src)
|
||||
assert.Equal(t, O.Some("2:c"), result)
|
||||
}
|
||||
34
v2/array/generic/any.go
Normal file
34
v2/array/generic/any.go
Normal file
@@ -0,0 +1,34 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// AnyWithIndex tests if any of the elements in the array matches the predicate
|
||||
func AnyWithIndex[AS ~[]A, PRED ~func(int, A) bool, A any](pred PRED) func(AS) bool {
|
||||
return F.Flow2(
|
||||
FindFirstWithIndex[AS](pred),
|
||||
O.IsSome[A],
|
||||
)
|
||||
}
|
||||
|
||||
// Any tests if any of the elements in the array matches the predicate
|
||||
func Any[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) bool {
|
||||
return AnyWithIndex[AS](F.Ignore1of2[int](pred))
|
||||
}
|
||||
366
v2/array/generic/array.go
Normal file
366
v2/array/generic/array.go
Normal file
@@ -0,0 +1,366 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
FC "github.com/IBM/fp-go/v2/internal/functor"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/tuple"
|
||||
)
|
||||
|
||||
// Of constructs a single element array
|
||||
//
|
||||
//go:inline
|
||||
func Of[GA ~[]A, A any](value A) GA {
|
||||
return array.Of[GA](value)
|
||||
}
|
||||
|
||||
func Reduce[GA ~[]A, A, B any](f func(B, A) B, initial B) func(GA) B {
|
||||
return func(as GA) B {
|
||||
return MonadReduce(as, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
func ReduceWithIndex[GA ~[]A, A, B any](f func(int, B, A) B, initial B) func(GA) B {
|
||||
return func(as GA) B {
|
||||
return MonadReduceWithIndex(as, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
func ReduceRight[GA ~[]A, A, B any](f func(A, B) B, initial B) func(GA) B {
|
||||
return func(as GA) B {
|
||||
return MonadReduceRight(as, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
func ReduceRightWithIndex[GA ~[]A, A, B any](f func(int, A, B) B, initial B) func(GA) B {
|
||||
return func(as GA) B {
|
||||
return MonadReduceRightWithIndex(as, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
func MonadReduce[GA ~[]A, A, B any](fa GA, f func(B, A) B, initial B) B {
|
||||
return array.Reduce(fa, f, initial)
|
||||
}
|
||||
|
||||
func MonadReduceWithIndex[GA ~[]A, A, B any](fa GA, f func(int, B, A) B, initial B) B {
|
||||
return array.ReduceWithIndex(fa, f, initial)
|
||||
}
|
||||
|
||||
func MonadReduceRight[GA ~[]A, A, B any](fa GA, f func(A, B) B, initial B) B {
|
||||
return array.ReduceRight(fa, f, initial)
|
||||
}
|
||||
|
||||
func MonadReduceRightWithIndex[GA ~[]A, A, B any](fa GA, f func(int, A, B) B, initial B) B {
|
||||
return array.ReduceRightWithIndex(fa, f, initial)
|
||||
}
|
||||
|
||||
// From constructs an array from a set of variadic arguments
|
||||
func From[GA ~[]A, A any](data ...A) GA {
|
||||
return data
|
||||
}
|
||||
|
||||
// MakeBy returns a `Array` of length `n` with element `i` initialized with `f(i)`.
|
||||
func MakeBy[AS ~[]A, F ~func(int) A, A any](n int, f F) AS {
|
||||
// sanity check
|
||||
if n <= 0 {
|
||||
return Empty[AS]()
|
||||
}
|
||||
// run the generator function across the input
|
||||
as := make(AS, n)
|
||||
for i := range n {
|
||||
as[i] = f(i)
|
||||
}
|
||||
return as
|
||||
}
|
||||
|
||||
func Replicate[AS ~[]A, A any](n int, a A) AS {
|
||||
return MakeBy[AS](n, F.Constant1[int](a))
|
||||
}
|
||||
|
||||
func Lookup[GA ~[]A, A any](idx int) func(GA) O.Option[A] {
|
||||
none := O.None[A]()
|
||||
if idx < 0 {
|
||||
return F.Constant1[GA](none)
|
||||
}
|
||||
return func(as GA) O.Option[A] {
|
||||
if idx < len(as) {
|
||||
return O.Some(as[idx])
|
||||
}
|
||||
return none
|
||||
}
|
||||
}
|
||||
|
||||
func Tail[GA ~[]A, A any](as GA) O.Option[GA] {
|
||||
if array.IsEmpty(as) {
|
||||
return O.None[GA]()
|
||||
}
|
||||
return O.Some(as[1:])
|
||||
}
|
||||
|
||||
func Head[GA ~[]A, A any](as GA) O.Option[A] {
|
||||
if array.IsEmpty(as) {
|
||||
return O.None[A]()
|
||||
}
|
||||
return O.Some(as[0])
|
||||
}
|
||||
|
||||
func First[GA ~[]A, A any](as GA) O.Option[A] {
|
||||
return Head(as)
|
||||
}
|
||||
|
||||
func Last[GA ~[]A, A any](as GA) O.Option[A] {
|
||||
if array.IsEmpty(as) {
|
||||
return O.None[A]()
|
||||
}
|
||||
return O.Some(as[len(as)-1])
|
||||
}
|
||||
|
||||
func Append[GA ~[]A, A any](as GA, a A) GA {
|
||||
return array.Append(as, a)
|
||||
}
|
||||
|
||||
func Empty[GA ~[]A, A any]() GA {
|
||||
return array.Empty[GA]()
|
||||
}
|
||||
|
||||
func UpsertAt[GA ~[]A, A any](a A) func(GA) GA {
|
||||
return array.UpsertAt[GA](a)
|
||||
}
|
||||
|
||||
func MonadMap[GA ~[]A, GB ~[]B, A, B any](as GA, f func(a A) B) GB {
|
||||
return array.MonadMap[GA, GB](as, f)
|
||||
}
|
||||
|
||||
func Map[GA ~[]A, GB ~[]B, A, B any](f func(a A) B) func(GA) GB {
|
||||
return array.Map[GA, GB](f)
|
||||
}
|
||||
|
||||
func MonadMapWithIndex[GA ~[]A, GB ~[]B, A, B any](as GA, f func(int, A) B) GB {
|
||||
return array.MonadMapWithIndex[GA, GB](as, f)
|
||||
}
|
||||
|
||||
func MapWithIndex[GA ~[]A, GB ~[]B, A, B any](f func(int, A) B) func(GA) GB {
|
||||
return F.Bind2nd(MonadMapWithIndex[GA, GB, A, B], f)
|
||||
}
|
||||
|
||||
func Size[GA ~[]A, A any](as GA) int {
|
||||
return len(as)
|
||||
}
|
||||
|
||||
func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
|
||||
result := make(GB, 0, len(fa))
|
||||
for _, a := range fa {
|
||||
if b, ok := O.Unwrap(f(a)); ok {
|
||||
result = append(result, b)
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
func filterMapWithIndex[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(int, A) O.Option[B]) GB {
|
||||
result := make(GB, 0, len(fa))
|
||||
for i, a := range fa {
|
||||
if b, ok := O.Unwrap(f(i, a)); ok {
|
||||
result = append(result, b)
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
func MonadFilterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
|
||||
return filterMap[GA, GB](fa, f)
|
||||
}
|
||||
|
||||
func MonadFilterMapWithIndex[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(int, A) O.Option[B]) GB {
|
||||
return filterMapWithIndex[GA, GB](fa, f)
|
||||
}
|
||||
|
||||
func filterWithIndex[AS ~[]A, PRED ~func(int, A) bool, A any](fa AS, pred PRED) AS {
|
||||
result := make(AS, 0, len(fa))
|
||||
for i, a := range fa {
|
||||
if pred(i, a) {
|
||||
result = append(result, a)
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
func FilterWithIndex[AS ~[]A, PRED ~func(int, A) bool, A any](pred PRED) func(AS) AS {
|
||||
return F.Bind2nd(filterWithIndex[AS, PRED, A], pred)
|
||||
}
|
||||
|
||||
func Filter[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) AS {
|
||||
return FilterWithIndex[AS](F.Ignore1of2[int](pred))
|
||||
}
|
||||
|
||||
func FilterChain[GA ~[]A, GB ~[]B, A, B any](f func(a A) O.Option[GB]) func(GA) GB {
|
||||
return F.Flow2(
|
||||
FilterMap[GA, []GB](f),
|
||||
Flatten[[]GB],
|
||||
)
|
||||
}
|
||||
|
||||
func Flatten[GAA ~[]GA, GA ~[]A, A any](mma GAA) GA {
|
||||
return MonadChain(mma, F.Identity[GA])
|
||||
}
|
||||
|
||||
func FilterMap[GA ~[]A, GB ~[]B, A, B any](f func(A) O.Option[B]) func(GA) GB {
|
||||
return F.Bind2nd(MonadFilterMap[GA, GB, A, B], f)
|
||||
}
|
||||
|
||||
func FilterMapWithIndex[GA ~[]A, GB ~[]B, A, B any](f func(int, A) O.Option[B]) func(GA) GB {
|
||||
return F.Bind2nd(MonadFilterMapWithIndex[GA, GB, A, B], f)
|
||||
}
|
||||
|
||||
func MonadPartition[GA ~[]A, A any](as GA, pred func(A) bool) tuple.Tuple2[GA, GA] {
|
||||
left := Empty[GA]()
|
||||
right := Empty[GA]()
|
||||
array.Reduce(as, func(c bool, a A) bool {
|
||||
if pred(a) {
|
||||
right = append(right, a)
|
||||
} else {
|
||||
left = append(left, a)
|
||||
}
|
||||
return c
|
||||
}, true)
|
||||
// returns the partition
|
||||
return tuple.MakeTuple2(left, right)
|
||||
}
|
||||
|
||||
func Partition[GA ~[]A, A any](pred func(A) bool) func(GA) tuple.Tuple2[GA, GA] {
|
||||
return F.Bind2nd(MonadPartition[GA, A], pred)
|
||||
}
|
||||
|
||||
func MonadChain[AS ~[]A, BS ~[]B, A, B any](fa AS, f func(a A) BS) BS {
|
||||
return array.Reduce(fa, func(bs BS, a A) BS {
|
||||
return append(bs, f(a)...)
|
||||
}, Empty[BS]())
|
||||
}
|
||||
|
||||
func Chain[AS ~[]A, BS ~[]B, A, B any](f func(A) BS) func(AS) BS {
|
||||
return F.Bind2nd(MonadChain[AS, BS, A, B], f)
|
||||
}
|
||||
|
||||
func MonadAp[BS ~[]B, ABS ~[]func(A) B, AS ~[]A, B, A any](fab ABS, fa AS) BS {
|
||||
return MonadChain(fab, F.Bind1st(MonadMap[AS, BS, A, B], fa))
|
||||
}
|
||||
|
||||
func Ap[BS ~[]B, ABS ~[]func(A) B, AS ~[]A, B, A any](fa AS) func(ABS) BS {
|
||||
return F.Bind2nd(MonadAp[BS, ABS, AS], fa)
|
||||
}
|
||||
|
||||
func IsEmpty[AS ~[]A, A any](as AS) bool {
|
||||
return array.IsEmpty(as)
|
||||
}
|
||||
|
||||
func IsNil[GA ~[]A, A any](as GA) bool {
|
||||
return array.IsNil(as)
|
||||
}
|
||||
|
||||
func IsNonNil[GA ~[]A, A any](as GA) bool {
|
||||
return array.IsNonNil(as)
|
||||
}
|
||||
|
||||
func Match[AS ~[]A, A, B any](onEmpty func() B, onNonEmpty func(AS) B) func(AS) B {
|
||||
return func(as AS) B {
|
||||
if IsEmpty(as) {
|
||||
return onEmpty()
|
||||
}
|
||||
return onNonEmpty(as)
|
||||
}
|
||||
}
|
||||
|
||||
func MatchLeft[AS ~[]A, A, B any](onEmpty func() B, onNonEmpty func(A, AS) B) func(AS) B {
|
||||
return func(as AS) B {
|
||||
if IsEmpty(as) {
|
||||
return onEmpty()
|
||||
}
|
||||
return onNonEmpty(as[0], as[1:])
|
||||
}
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func Slice[AS ~[]A, A any](start int, end int) func(AS) AS {
|
||||
return array.Slice[AS](start, end)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func SliceRight[AS ~[]A, A any](start int) func(AS) AS {
|
||||
return array.SliceRight[AS](start)
|
||||
}
|
||||
|
||||
func Copy[AS ~[]A, A any](b AS) AS {
|
||||
buf := make(AS, len(b))
|
||||
copy(buf, b)
|
||||
return buf
|
||||
}
|
||||
|
||||
func Clone[AS ~[]A, A any](f func(A) A) func(as AS) AS {
|
||||
// implementation assumes that map does not optimize for the empty array
|
||||
return Map[AS, AS](f)
|
||||
}
|
||||
|
||||
func FoldMap[AS ~[]A, A, B any](m M.Monoid[B]) func(func(A) B) func(AS) B {
|
||||
empty := m.Empty()
|
||||
concat := m.Concat
|
||||
return func(f func(A) B) func(AS) B {
|
||||
return func(as AS) B {
|
||||
return array.Reduce(as, func(cur B, a A) B {
|
||||
return concat(cur, f(a))
|
||||
}, empty)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func FoldMapWithIndex[AS ~[]A, A, B any](m M.Monoid[B]) func(func(int, A) B) func(AS) B {
|
||||
empty := m.Empty()
|
||||
concat := m.Concat
|
||||
return func(f func(int, A) B) func(AS) B {
|
||||
return func(as AS) B {
|
||||
return array.ReduceWithIndex(as, func(idx int, cur B, a A) B {
|
||||
return concat(cur, f(idx, a))
|
||||
}, empty)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func Fold[AS ~[]A, A any](m M.Monoid[A]) func(AS) A {
|
||||
empty := m.Empty()
|
||||
concat := m.Concat
|
||||
return func(as AS) A {
|
||||
return array.Reduce(as, concat, empty)
|
||||
}
|
||||
}
|
||||
|
||||
func Push[ENDO ~func(GA) GA, GA ~[]A, A any](a A) ENDO {
|
||||
return F.Bind2nd(array.Push[GA, A], a)
|
||||
}
|
||||
|
||||
func MonadFlap[FAB ~func(A) B, GFAB ~[]FAB, GB ~[]B, A, B any](fab GFAB, a A) GB {
|
||||
return FC.MonadFlap(MonadMap[GFAB, GB], fab, a)
|
||||
}
|
||||
|
||||
func Flap[FAB ~func(A) B, GFAB ~[]FAB, GB ~[]B, A, B any](a A) func(GFAB) GB {
|
||||
return FC.Flap(Map[GFAB, GB], a)
|
||||
}
|
||||
|
||||
func Prepend[ENDO ~func(AS) AS, AS []A, A any](head A) ENDO {
|
||||
return array.Prepend[ENDO](head)
|
||||
}
|
||||
163
v2/array/generic/bind.go
Normal file
163
v2/array/generic/bind.go
Normal file
@@ -0,0 +1,163 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
A "github.com/IBM/fp-go/v2/internal/apply"
|
||||
C "github.com/IBM/fp-go/v2/internal/chain"
|
||||
F "github.com/IBM/fp-go/v2/internal/functor"
|
||||
)
|
||||
|
||||
// Do creates an empty context of type [S] to be used with the [Bind] operation.
|
||||
// This is the starting point for do-notation style composition.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct {
|
||||
// X int
|
||||
// Y int
|
||||
// }
|
||||
// result := generic.Do[[]State, State](State{})
|
||||
func Do[GS ~[]S, S any](
|
||||
empty S,
|
||||
) GS {
|
||||
return Of[GS](empty)
|
||||
}
|
||||
|
||||
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
|
||||
// This enables sequential composition where each step can depend on the results of previous steps.
|
||||
// For arrays, this produces the cartesian product where later steps can use values from earlier steps.
|
||||
//
|
||||
// The setter function takes the result of the computation and returns a function that
|
||||
// updates the context from S1 to S2.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct {
|
||||
// X int
|
||||
// Y int
|
||||
// }
|
||||
//
|
||||
// result := F.Pipe2(
|
||||
// generic.Do[[]State, State](State{}),
|
||||
// generic.Bind[[]State, []State, []int, State, State, int](
|
||||
// func(x int) func(State) State {
|
||||
// return func(s State) State { s.X = x; return s }
|
||||
// },
|
||||
// func(s State) []int {
|
||||
// return []int{1, 2, 3}
|
||||
// },
|
||||
// ),
|
||||
// generic.Bind[[]State, []State, []int, State, State, int](
|
||||
// func(y int) func(State) State {
|
||||
// return func(s State) State { s.Y = y; return s }
|
||||
// },
|
||||
// func(s State) []int {
|
||||
// // This can access s.X from the previous step
|
||||
// return []int{s.X * 10, s.X * 20}
|
||||
// },
|
||||
// ),
|
||||
// ) // Produces: {1,10}, {1,20}, {2,20}, {2,40}, {3,30}, {3,60}
|
||||
func Bind[GS1 ~[]S1, GS2 ~[]S2, GT ~[]T, S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
f func(S1) GT,
|
||||
) func(GS1) GS2 {
|
||||
return C.Bind(
|
||||
Chain[GS1, GS2, S1, S2],
|
||||
Map[GT, GS2, T, S2],
|
||||
setter,
|
||||
f,
|
||||
)
|
||||
}
|
||||
|
||||
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
|
||||
func Let[GS1 ~[]S1, GS2 ~[]S2, S1, S2, T any](
|
||||
key func(T) func(S1) S2,
|
||||
f func(S1) T,
|
||||
) func(GS1) GS2 {
|
||||
return F.Let(
|
||||
Map[GS1, GS2, S1, S2],
|
||||
key,
|
||||
f,
|
||||
)
|
||||
}
|
||||
|
||||
// LetTo attaches the a value to a context [S1] to produce a context [S2]
|
||||
func LetTo[GS1 ~[]S1, GS2 ~[]S2, S1, S2, B any](
|
||||
key func(B) func(S1) S2,
|
||||
b B,
|
||||
) func(GS1) GS2 {
|
||||
return F.LetTo(
|
||||
Map[GS1, GS2, S1, S2],
|
||||
key,
|
||||
b,
|
||||
)
|
||||
}
|
||||
|
||||
// BindTo initializes a new state [S1] from a value [T]
|
||||
func BindTo[GS1 ~[]S1, GT ~[]T, S1, T any](
|
||||
setter func(T) S1,
|
||||
) func(GT) GS1 {
|
||||
return C.BindTo(
|
||||
Map[GT, GS1, T, S1],
|
||||
setter,
|
||||
)
|
||||
}
|
||||
|
||||
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
|
||||
// the context and the value concurrently (using Applicative rather than Monad).
|
||||
// This allows independent computations to be combined without one depending on the result of the other.
|
||||
//
|
||||
// Unlike Bind, which sequences operations, ApS can be used when operations are independent
|
||||
// and can conceptually run in parallel. For arrays, this produces the cartesian product.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct {
|
||||
// X int
|
||||
// Y string
|
||||
// }
|
||||
//
|
||||
// // These operations are independent and can be combined with ApS
|
||||
// xValues := []int{1, 2}
|
||||
// yValues := []string{"a", "b"}
|
||||
//
|
||||
// result := F.Pipe2(
|
||||
// generic.Do[[]State, State](State{}),
|
||||
// generic.ApS[[]State, []State, []int, State, State, int](
|
||||
// func(x int) func(State) State {
|
||||
// return func(s State) State { s.X = x; return s }
|
||||
// },
|
||||
// xValues,
|
||||
// ),
|
||||
// generic.ApS[[]State, []State, []string, State, State, string](
|
||||
// func(y string) func(State) State {
|
||||
// return func(s State) State { s.Y = y; return s }
|
||||
// },
|
||||
// yValues,
|
||||
// ),
|
||||
// ) // [{1,"a"}, {1,"b"}, {2,"a"}, {2,"b"}]
|
||||
func ApS[GS1 ~[]S1, GS2 ~[]S2, GT ~[]T, S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
fa GT,
|
||||
) func(GS1) GS2 {
|
||||
return A.ApS(
|
||||
Ap[GS2, []func(T) S2, GT, S2, T],
|
||||
Map[GS1, []func(T) S2, S1, func(T) S2],
|
||||
setter,
|
||||
fa,
|
||||
)
|
||||
}
|
||||
96
v2/array/generic/find.go
Normal file
96
v2/array/generic/find.go
Normal file
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// FindFirstWithIndex finds the first element which satisfies a predicate (or a refinement) function
|
||||
func FindFirstWithIndex[AS ~[]A, PRED ~func(int, A) bool, A any](pred PRED) func(AS) O.Option[A] {
|
||||
none := O.None[A]()
|
||||
return func(as AS) O.Option[A] {
|
||||
for i, a := range as {
|
||||
if pred(i, a) {
|
||||
return O.Some(a)
|
||||
}
|
||||
}
|
||||
return none
|
||||
}
|
||||
}
|
||||
|
||||
// FindFirst finds the first element which satisfies a predicate (or a refinement) function
|
||||
func FindFirst[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) O.Option[A] {
|
||||
return FindFirstWithIndex[AS](F.Ignore1of2[int](pred))
|
||||
}
|
||||
|
||||
// FindFirstMapWithIndex finds the first element returned by an [O.Option] based selector function
|
||||
func FindFirstMapWithIndex[AS ~[]A, PRED ~func(int, A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
|
||||
none := O.None[B]()
|
||||
return func(as AS) O.Option[B] {
|
||||
for i := range len(as) {
|
||||
out := pred(i, as[i])
|
||||
if O.IsSome(out) {
|
||||
return out
|
||||
}
|
||||
}
|
||||
return none
|
||||
}
|
||||
}
|
||||
|
||||
// FindFirstMap finds the first element returned by an [O.Option] based selector function
|
||||
func FindFirstMap[AS ~[]A, PRED ~func(A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
|
||||
return FindFirstMapWithIndex[AS](F.Ignore1of2[int](pred))
|
||||
}
|
||||
|
||||
// FindLastWithIndex finds the first element which satisfies a predicate (or a refinement) function
|
||||
func FindLastWithIndex[AS ~[]A, PRED ~func(int, A) bool, A any](pred PRED) func(AS) O.Option[A] {
|
||||
none := O.None[A]()
|
||||
return func(as AS) O.Option[A] {
|
||||
for i := len(as) - 1; i >= 0; i-- {
|
||||
a := as[i]
|
||||
if pred(i, a) {
|
||||
return O.Some(a)
|
||||
}
|
||||
}
|
||||
return none
|
||||
}
|
||||
}
|
||||
|
||||
// FindLast finds the first element which satisfies a predicate (or a refinement) function
|
||||
func FindLast[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) O.Option[A] {
|
||||
return FindLastWithIndex[AS](F.Ignore1of2[int](pred))
|
||||
}
|
||||
|
||||
// FindLastMapWithIndex finds the first element returned by an [O.Option] based selector function
|
||||
func FindLastMapWithIndex[AS ~[]A, PRED ~func(int, A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
|
||||
none := O.None[B]()
|
||||
return func(as AS) O.Option[B] {
|
||||
for i := len(as) - 1; i >= 0; i-- {
|
||||
out := pred(i, as[i])
|
||||
if O.IsSome(out) {
|
||||
return out
|
||||
}
|
||||
}
|
||||
return none
|
||||
}
|
||||
}
|
||||
|
||||
// FindLastMap finds the first element returned by an [O.Option] based selector function
|
||||
func FindLastMap[AS ~[]A, PRED ~func(A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
|
||||
return FindLastMapWithIndex[AS](F.Ignore1of2[int](pred))
|
||||
}
|
||||
43
v2/array/generic/monad.go
Normal file
43
v2/array/generic/monad.go
Normal file
@@ -0,0 +1,43 @@
|
||||
// Copyright (c) 2024 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/internal/monad"
|
||||
)
|
||||
|
||||
type arrayMonad[A, B any, GA ~[]A, GB ~[]B, GAB ~[]func(A) B] struct{}
|
||||
|
||||
func (o *arrayMonad[A, B, GA, GB, GAB]) Of(a A) GA {
|
||||
return Of[GA](a)
|
||||
}
|
||||
|
||||
func (o *arrayMonad[A, B, GA, GB, GAB]) Map(f func(A) B) func(GA) GB {
|
||||
return Map[GA, GB](f)
|
||||
}
|
||||
|
||||
func (o *arrayMonad[A, B, GA, GB, GAB]) Chain(f func(A) GB) func(GA) GB {
|
||||
return Chain[GA](f)
|
||||
}
|
||||
|
||||
func (o *arrayMonad[A, B, GA, GB, GAB]) Ap(fa GA) func(GAB) GB {
|
||||
return Ap[GB, GAB](fa)
|
||||
}
|
||||
|
||||
// Monad implements the monadic operations for an array
|
||||
func Monad[A, B any, GA ~[]A, GB ~[]B, GAB ~[]func(A) B]() monad.Monad[A, B, GA, GB, GAB] {
|
||||
return &arrayMonad[A, B, GA, GB, GAB]{}
|
||||
}
|
||||
34
v2/array/generic/monoid.go
Normal file
34
v2/array/generic/monoid.go
Normal file
@@ -0,0 +1,34 @@
|
||||
package generic
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
// Monoid returns a Monoid instance for arrays.
|
||||
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// m := array.Monoid[int]()
|
||||
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
|
||||
// empty := m.Empty() // []
|
||||
//
|
||||
//go:inline
|
||||
func Monoid[GT ~[]T, T any]() M.Monoid[GT] {
|
||||
return M.MakeMonoid(array.Concat[GT], Empty[GT]())
|
||||
}
|
||||
|
||||
// Semigroup returns a Semigroup instance for arrays.
|
||||
// The Semigroup combines arrays through concatenation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// s := array.Semigroup[int]()
|
||||
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
|
||||
//
|
||||
//go:inline
|
||||
func Semigroup[GT ~[]T, T any]() S.Semigroup[GT] {
|
||||
return S.MakeSemigroup(array.Concat[GT])
|
||||
}
|
||||
56
v2/array/generic/sort.go
Normal file
56
v2/array/generic/sort.go
Normal file
@@ -0,0 +1,56 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
"sort"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
O "github.com/IBM/fp-go/v2/ord"
|
||||
)
|
||||
|
||||
// Sort implements a stable sort on the array given the provided ordering
|
||||
func Sort[GA ~[]T, T any](ord O.Ord[T]) func(ma GA) GA {
|
||||
return SortByKey[GA](ord, F.Identity[T])
|
||||
}
|
||||
|
||||
// SortByKey implements a stable sort on the array given the provided ordering on an extracted key
|
||||
func SortByKey[GA ~[]T, K, T any](ord O.Ord[K], f func(T) K) func(ma GA) GA {
|
||||
|
||||
return func(ma GA) GA {
|
||||
// nothing to sort
|
||||
l := len(ma)
|
||||
if l < 2 {
|
||||
return ma
|
||||
}
|
||||
// copy
|
||||
cpy := make(GA, l)
|
||||
copy(cpy, ma)
|
||||
sort.Slice(cpy, func(i, j int) bool {
|
||||
return ord.Compare(f(cpy[i]), f(cpy[j])) < 0
|
||||
})
|
||||
return cpy
|
||||
}
|
||||
}
|
||||
|
||||
// SortBy implements a stable sort on the array given the provided ordering
|
||||
func SortBy[GA ~[]T, GO ~[]O.Ord[T], T any](ord GO) func(ma GA) GA {
|
||||
return F.Pipe2(
|
||||
ord,
|
||||
Fold[GO](O.Monoid[T]()),
|
||||
Sort[GA, T],
|
||||
)
|
||||
}
|
||||
32
v2/array/generic/uniq.go
Normal file
32
v2/array/generic/uniq.go
Normal file
@@ -0,0 +1,32 @@
|
||||
package generic
|
||||
|
||||
import F "github.com/IBM/fp-go/v2/function"
|
||||
|
||||
// StrictUniq converts an array of arbitrary items into an array or unique items
|
||||
// where uniqueness is determined by the built-in uniqueness constraint
|
||||
func StrictUniq[AS ~[]A, A comparable](as AS) AS {
|
||||
return Uniq[AS](F.Identity[A])(as)
|
||||
}
|
||||
|
||||
// uniquePredUnsafe returns a predicate on a map for uniqueness
|
||||
func uniquePredUnsafe[PRED ~func(A) K, A any, K comparable](f PRED) func(int, A) bool {
|
||||
lookup := make(map[K]bool)
|
||||
return func(_ int, a A) bool {
|
||||
k := f(a)
|
||||
_, has := lookup[k]
|
||||
if has {
|
||||
return false
|
||||
}
|
||||
lookup[k] = true
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Uniq converts an array of arbitrary items into an array or unique items
|
||||
// where uniqueness is determined based on a key extractor function
|
||||
func Uniq[AS ~[]A, PRED ~func(A) K, A any, K comparable](f PRED) func(as AS) AS {
|
||||
return func(as AS) AS {
|
||||
// we need to create a new predicate for each iteration
|
||||
return filterWithIndex(as, uniquePredUnsafe(f))
|
||||
}
|
||||
}
|
||||
52
v2/array/generic/zip.go
Normal file
52
v2/array/generic/zip.go
Normal file
@@ -0,0 +1,52 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package generic
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
T "github.com/IBM/fp-go/v2/tuple"
|
||||
)
|
||||
|
||||
// ZipWith applies a function to pairs of elements at the same index in two arrays, collecting the results in a new array. If one
|
||||
// input array is short, excess elements of the longer array are discarded.
|
||||
func ZipWith[AS ~[]A, BS ~[]B, CS ~[]C, FCT ~func(A, B) C, A, B, C any](fa AS, fb BS, f FCT) CS {
|
||||
l := N.Min(len(fa), len(fb))
|
||||
res := make(CS, l)
|
||||
for i := range l {
|
||||
res[i] = f(fa[i], fb[i])
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Zip takes two arrays and returns an array of corresponding pairs. If one input array is short, excess elements of the
|
||||
// longer array are discarded
|
||||
func Zip[AS ~[]A, BS ~[]B, CS ~[]T.Tuple2[A, B], A, B any](fb BS) func(AS) CS {
|
||||
return F.Bind23of3(ZipWith[AS, BS, CS, func(A, B) T.Tuple2[A, B]])(fb, T.MakeTuple2[A, B])
|
||||
}
|
||||
|
||||
// Unzip is the function is reverse of [Zip]. Takes an array of pairs and return two corresponding arrays
|
||||
func Unzip[AS ~[]A, BS ~[]B, CS ~[]T.Tuple2[A, B], A, B any](cs CS) T.Tuple2[AS, BS] {
|
||||
l := len(cs)
|
||||
as := make(AS, l)
|
||||
bs := make(BS, l)
|
||||
for i := range l {
|
||||
t := cs[i]
|
||||
as[i] = t.F1
|
||||
bs[i] = t.F2
|
||||
}
|
||||
return T.MakeTuple2(as, bs)
|
||||
}
|
||||
40
v2/array/magma.go
Normal file
40
v2/array/magma.go
Normal file
@@ -0,0 +1,40 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
)
|
||||
|
||||
// ConcatAll concatenates all elements of an array using the provided Monoid.
|
||||
// This reduces the array to a single value by repeatedly applying the Monoid's concat operation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/monoid"
|
||||
//
|
||||
// // Sum all numbers
|
||||
// sumAll := array.ConcatAll(monoid.MonoidSum[int]())
|
||||
// result := sumAll([]int{1, 2, 3, 4, 5}) // 15
|
||||
//
|
||||
// // Concatenate all strings
|
||||
// concatStrings := array.ConcatAll(monoid.MonoidString())
|
||||
// result2 := concatStrings([]string{"Hello", " ", "World"}) // "Hello World"
|
||||
//
|
||||
//go:inline
|
||||
func ConcatAll[A any](m M.Monoid[A]) func([]A) A {
|
||||
return Reduce(m.Concat, m.Empty())
|
||||
}
|
||||
36
v2/array/magma_test.go
Normal file
36
v2/array/magma_test.go
Normal file
@@ -0,0 +1,36 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
)
|
||||
|
||||
var subInt = M.MakeMonoid(func(first int, second int) int {
|
||||
return first - second
|
||||
}, 0)
|
||||
|
||||
func TestConcatAll(t *testing.T) {
|
||||
|
||||
var subAll = ConcatAll(subInt)
|
||||
|
||||
assert.Equal(t, subAll([]int{1, 2, 3}), -6)
|
||||
|
||||
}
|
||||
127
v2/array/misc_test.go
Normal file
127
v2/array/misc_test.go
Normal file
@@ -0,0 +1,127 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
OR "github.com/IBM/fp-go/v2/ord"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestAnyWithIndex(t *testing.T) {
|
||||
src := []int{1, 2, 3, 4, 5}
|
||||
checker := AnyWithIndex(func(i, x int) bool {
|
||||
return i == 2 && x == 3
|
||||
})
|
||||
assert.True(t, checker(src))
|
||||
|
||||
checker2 := AnyWithIndex(func(i, x int) bool {
|
||||
return i == 10
|
||||
})
|
||||
assert.False(t, checker2(src))
|
||||
}
|
||||
|
||||
func TestSemigroup(t *testing.T) {
|
||||
sg := Semigroup[int]()
|
||||
result := sg.Concat([]int{1, 2}, []int{3, 4})
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, result)
|
||||
}
|
||||
|
||||
func TestArrayConcatAll(t *testing.T) {
|
||||
result := ArrayConcatAll(
|
||||
[]int{1, 2},
|
||||
[]int{3, 4},
|
||||
[]int{5, 6},
|
||||
)
|
||||
assert.Equal(t, []int{1, 2, 3, 4, 5, 6}, result)
|
||||
|
||||
// Test with empty arrays
|
||||
result2 := ArrayConcatAll(
|
||||
[]int{},
|
||||
[]int{1},
|
||||
[]int{},
|
||||
)
|
||||
assert.Equal(t, []int{1}, result2)
|
||||
}
|
||||
|
||||
func TestMonad(t *testing.T) {
|
||||
m := Monad[int, string]()
|
||||
|
||||
// Test Map
|
||||
mapFn := m.Map(func(x int) string {
|
||||
return string(rune('a' + x - 1))
|
||||
})
|
||||
mapped := mapFn([]int{1, 2, 3})
|
||||
assert.Equal(t, []string{"a", "b", "c"}, mapped)
|
||||
|
||||
// Test Chain
|
||||
chainFn := m.Chain(func(x int) []string {
|
||||
return []string{string(rune('a' + x - 1))}
|
||||
})
|
||||
chained := chainFn([]int{1, 2})
|
||||
assert.Equal(t, []string{"a", "b"}, chained)
|
||||
|
||||
// Test Of
|
||||
ofResult := m.Of(42)
|
||||
assert.Equal(t, []int{42}, ofResult)
|
||||
}
|
||||
|
||||
func TestSortByKey(t *testing.T) {
|
||||
type Person struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
people := []Person{
|
||||
{"Alice", 30},
|
||||
{"Bob", 25},
|
||||
{"Charlie", 35},
|
||||
}
|
||||
|
||||
sorter := SortByKey(OR.FromStrictCompare[int](), func(p Person) int {
|
||||
return p.Age
|
||||
})
|
||||
result := sorter(people)
|
||||
|
||||
assert.Equal(t, "Bob", result[0].Name)
|
||||
assert.Equal(t, "Alice", result[1].Name)
|
||||
assert.Equal(t, "Charlie", result[2].Name)
|
||||
}
|
||||
|
||||
func TestUniqByKey(t *testing.T) {
|
||||
type Person struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
people := []Person{
|
||||
{"Alice", 30},
|
||||
{"Bob", 25},
|
||||
{"Alice", 35},
|
||||
{"Charlie", 30},
|
||||
}
|
||||
|
||||
uniquer := Uniq(func(p Person) string {
|
||||
return p.Name
|
||||
})
|
||||
result := uniquer(people)
|
||||
|
||||
assert.Equal(t, 3, len(result))
|
||||
assert.Equal(t, "Alice", result[0].Name)
|
||||
assert.Equal(t, "Bob", result[1].Name)
|
||||
assert.Equal(t, "Charlie", result[2].Name)
|
||||
}
|
||||
41
v2/array/monad.go
Normal file
41
v2/array/monad.go
Normal file
@@ -0,0 +1,41 @@
|
||||
// Copyright (c) 2024 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
"github.com/IBM/fp-go/v2/internal/monad"
|
||||
)
|
||||
|
||||
// Monad returns the monadic operations for an array.
|
||||
// This provides a structured way to access all monad operations (Map, Chain, Ap, Of)
|
||||
// for arrays in a single interface.
|
||||
//
|
||||
// The Monad interface is useful when you need to pass monadic operations as parameters
|
||||
// or when working with generic code that operates on any monad.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// m := array.Monad[int, string]()
|
||||
// result := m.Chain([]int{1, 2, 3}, func(x int) []string {
|
||||
// return []string{fmt.Sprintf("%d", x), fmt.Sprintf("%d!", x)}
|
||||
// })
|
||||
// // Result: ["1", "1!", "2", "2!", "3", "3!"]
|
||||
//
|
||||
//go:inline
|
||||
func Monad[A, B any]() monad.Monad[A, B, []A, []B, []func(A) B] {
|
||||
return G.Monad[A, B, []A, []B, []func(A) B]()
|
||||
}
|
||||
78
v2/array/monoid.go
Normal file
78
v2/array/monoid.go
Normal file
@@ -0,0 +1,78 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
// Monoid returns a Monoid instance for arrays.
|
||||
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// m := array.Monoid[int]()
|
||||
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
|
||||
// empty := m.Empty() // []
|
||||
//
|
||||
//go:inline
|
||||
func Monoid[T any]() M.Monoid[[]T] {
|
||||
return G.Monoid[[]T]()
|
||||
}
|
||||
|
||||
// Semigroup returns a Semigroup instance for arrays.
|
||||
// The Semigroup combines arrays through concatenation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// s := array.Semigroup[int]()
|
||||
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
|
||||
//
|
||||
//go:inline
|
||||
func Semigroup[T any]() S.Semigroup[[]T] {
|
||||
return G.Semigroup[[]T]()
|
||||
}
|
||||
|
||||
func addLen[A any](count int, data []A) int {
|
||||
return count + len(data)
|
||||
}
|
||||
|
||||
// ArrayConcatAll efficiently concatenates multiple arrays into a single array.
|
||||
// This function pre-allocates the exact amount of memory needed and performs
|
||||
// a single copy operation for each input array, making it more efficient than
|
||||
// repeated concatenations.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := array.ArrayConcatAll(
|
||||
// []int{1, 2},
|
||||
// []int{3, 4},
|
||||
// []int{5, 6},
|
||||
// ) // [1, 2, 3, 4, 5, 6]
|
||||
func ArrayConcatAll[A any](data ...[]A) []A {
|
||||
// get the full size
|
||||
count := array.Reduce(data, addLen[A], 0)
|
||||
buf := make([]A, count)
|
||||
// copy
|
||||
array.Reduce(data, func(idx int, seg []A) int {
|
||||
return idx + copy(buf[idx:], seg)
|
||||
}, 0)
|
||||
// returns the final array
|
||||
return buf
|
||||
}
|
||||
26
v2/array/monoid_test.go
Normal file
26
v2/array/monoid_test.go
Normal file
@@ -0,0 +1,26 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
M "github.com/IBM/fp-go/v2/monoid/testing"
|
||||
)
|
||||
|
||||
func TestMonoid(t *testing.T) {
|
||||
M.AssertLaws(t, Monoid[int]())([][]int{{}, {1}, {1, 2}})
|
||||
}
|
||||
136
v2/array/nonempty/array.go
Normal file
136
v2/array/nonempty/array.go
Normal file
@@ -0,0 +1,136 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package nonempty
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
EM "github.com/IBM/fp-go/v2/endomorphism"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
// NonEmptyArray represents an array with at least one element
|
||||
type NonEmptyArray[A any] []A
|
||||
|
||||
// Of constructs a single element array
|
||||
func Of[A any](first A) NonEmptyArray[A] {
|
||||
return G.Of[NonEmptyArray[A]](first)
|
||||
}
|
||||
|
||||
// From constructs a [NonEmptyArray] from a set of variadic arguments
|
||||
func From[A any](first A, data ...A) NonEmptyArray[A] {
|
||||
count := len(data)
|
||||
if count == 0 {
|
||||
return Of(first)
|
||||
}
|
||||
// allocate the requested buffer
|
||||
buffer := make(NonEmptyArray[A], count+1)
|
||||
buffer[0] = first
|
||||
copy(buffer[1:], data)
|
||||
return buffer
|
||||
}
|
||||
|
||||
func IsEmpty[A any](_ NonEmptyArray[A]) bool {
|
||||
return false
|
||||
}
|
||||
|
||||
func IsNonEmpty[A any](_ NonEmptyArray[A]) bool {
|
||||
return true
|
||||
}
|
||||
|
||||
func MonadMap[A, B any](as NonEmptyArray[A], f func(a A) B) NonEmptyArray[B] {
|
||||
return G.MonadMap[NonEmptyArray[A], NonEmptyArray[B]](as, f)
|
||||
}
|
||||
|
||||
func Map[A, B any](f func(a A) B) func(NonEmptyArray[A]) NonEmptyArray[B] {
|
||||
return F.Bind2nd(MonadMap[A, B], f)
|
||||
}
|
||||
|
||||
func Reduce[A, B any](f func(B, A) B, initial B) func(NonEmptyArray[A]) B {
|
||||
return func(as NonEmptyArray[A]) B {
|
||||
return array.Reduce(as, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
func ReduceRight[A, B any](f func(A, B) B, initial B) func(NonEmptyArray[A]) B {
|
||||
return func(as NonEmptyArray[A]) B {
|
||||
return array.ReduceRight(as, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
func Tail[A any](as NonEmptyArray[A]) []A {
|
||||
return as[1:]
|
||||
}
|
||||
|
||||
func Head[A any](as NonEmptyArray[A]) A {
|
||||
return as[0]
|
||||
}
|
||||
|
||||
func First[A any](as NonEmptyArray[A]) A {
|
||||
return as[0]
|
||||
}
|
||||
|
||||
func Last[A any](as NonEmptyArray[A]) A {
|
||||
return as[len(as)-1]
|
||||
}
|
||||
|
||||
func Size[A any](as NonEmptyArray[A]) int {
|
||||
return G.Size(as)
|
||||
}
|
||||
|
||||
func Flatten[A any](mma NonEmptyArray[NonEmptyArray[A]]) NonEmptyArray[A] {
|
||||
return G.Flatten(mma)
|
||||
}
|
||||
|
||||
func MonadChain[A, B any](fa NonEmptyArray[A], f func(a A) NonEmptyArray[B]) NonEmptyArray[B] {
|
||||
return G.MonadChain(fa, f)
|
||||
}
|
||||
|
||||
func Chain[A, B any](f func(A) NonEmptyArray[B]) func(NonEmptyArray[A]) NonEmptyArray[B] {
|
||||
return G.Chain[NonEmptyArray[A]](f)
|
||||
}
|
||||
|
||||
func MonadAp[B, A any](fab NonEmptyArray[func(A) B], fa NonEmptyArray[A]) NonEmptyArray[B] {
|
||||
return G.MonadAp[NonEmptyArray[B]](fab, fa)
|
||||
}
|
||||
|
||||
func Ap[B, A any](fa NonEmptyArray[A]) func(NonEmptyArray[func(A) B]) NonEmptyArray[B] {
|
||||
return G.Ap[NonEmptyArray[B], NonEmptyArray[func(A) B]](fa)
|
||||
}
|
||||
|
||||
// FoldMap maps and folds a [NonEmptyArray]. Map the [NonEmptyArray] passing each value to the iterating function. Then fold the results using the provided [Semigroup].
|
||||
func FoldMap[A, B any](s S.Semigroup[B]) func(func(A) B) func(NonEmptyArray[A]) B {
|
||||
return func(f func(A) B) func(NonEmptyArray[A]) B {
|
||||
return func(as NonEmptyArray[A]) B {
|
||||
return array.Reduce(Tail(as), func(cur B, a A) B {
|
||||
return s.Concat(cur, f(a))
|
||||
}, f(Head(as)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Fold folds the [NonEmptyArray] using the provided [Semigroup].
|
||||
func Fold[A any](s S.Semigroup[A]) func(NonEmptyArray[A]) A {
|
||||
return func(as NonEmptyArray[A]) A {
|
||||
return array.Reduce(Tail(as), s.Concat, Head(as))
|
||||
}
|
||||
}
|
||||
|
||||
// Prepend prepends a single value to an array
|
||||
func Prepend[A any](head A) EM.Endomorphism[NonEmptyArray[A]] {
|
||||
return array.Prepend[EM.Endomorphism[NonEmptyArray[A]]](head)
|
||||
}
|
||||
98
v2/array/sequence.go
Normal file
98
v2/array/sequence.go
Normal file
@@ -0,0 +1,98 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
func MonadSequence[HKTA, HKTRA any](
|
||||
fof func(HKTA) HKTRA,
|
||||
m M.Monoid[HKTRA],
|
||||
ma []HKTA) HKTRA {
|
||||
return array.MonadSequence(fof, m.Empty(), m.Concat, ma)
|
||||
}
|
||||
|
||||
// Sequence takes an array where elements are HKT<A> (higher kinded type) and,
|
||||
// using an applicative of that HKT, returns an HKT of []A.
|
||||
//
|
||||
// For example, it can turn:
|
||||
// - []Either[error, string] into Either[error, []string]
|
||||
// - []Option[int] into Option[[]int]
|
||||
//
|
||||
// Sequence requires an Applicative of the HKT you are targeting. To turn an
|
||||
// []Either[E, A] into an Either[E, []A], it needs an Applicative for Either.
|
||||
// To turn an []Option[A] into an Option[[]A], it needs an Applicative for Option.
|
||||
//
|
||||
// Note: We need to pass the members of the applicative explicitly because Go does not
|
||||
// support higher kinded types or template methods on structs or interfaces.
|
||||
//
|
||||
// Type parameters:
|
||||
// - HKTA = HKT<A> (e.g., Option[A], Either[E, A])
|
||||
// - HKTRA = HKT<[]A> (e.g., Option[[]A], Either[E, []A])
|
||||
// - HKTFRA = HKT<func(A)[]A> (e.g., Option[func(A)[]A])
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/option"
|
||||
//
|
||||
// opts := []option.Option[int]{
|
||||
// option.Some(1),
|
||||
// option.Some(2),
|
||||
// option.Some(3),
|
||||
// }
|
||||
//
|
||||
// seq := array.Sequence(
|
||||
// option.Of[[]int],
|
||||
// option.MonadMap[[]int, func(int) []int],
|
||||
// option.MonadAp[[]int, int],
|
||||
// )
|
||||
// result := seq(opts) // Some([1, 2, 3])
|
||||
func Sequence[HKTA, HKTRA any](
|
||||
fof func(HKTA) HKTRA,
|
||||
m M.Monoid[HKTRA],
|
||||
) func([]HKTA) HKTRA {
|
||||
return array.Sequence[[]HKTA](fof, m.Empty(), m.Concat)
|
||||
}
|
||||
|
||||
// ArrayOption returns a function to convert a sequence of options into an option of a sequence.
|
||||
// If all options are Some, returns Some containing an array of all values.
|
||||
// If any option is None, returns None.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// opts := []option.Option[int]{
|
||||
// option.Some(1),
|
||||
// option.Some(2),
|
||||
// option.Some(3),
|
||||
// }
|
||||
// result := array.ArrayOption[int]()(opts) // Some([1, 2, 3])
|
||||
//
|
||||
// opts2 := []option.Option[int]{
|
||||
// option.Some(1),
|
||||
// option.None[int](),
|
||||
// option.Some(3),
|
||||
// }
|
||||
// result2 := array.ArrayOption[int]()(opts2) // None
|
||||
func ArrayOption[A any](ma []Option[A]) Option[[]A] {
|
||||
return MonadSequence(
|
||||
O.Map(Of[A]),
|
||||
O.ApplicativeMonoid(Monoid[A]()),
|
||||
ma,
|
||||
)
|
||||
}
|
||||
30
v2/array/sequence_test.go
Normal file
30
v2/array/sequence_test.go
Normal file
@@ -0,0 +1,30 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
func TestSequenceOption(t *testing.T) {
|
||||
|
||||
assert.Equal(t, O.Of([]int{1, 3}), ArrayOption([]O.Option[int]{O.Of(1), O.Of(3)}))
|
||||
assert.Equal(t, O.None[[]int](), ArrayOption([]O.Option[int]{O.Of(1), O.None[int]()}))
|
||||
}
|
||||
406
v2/array/slice_test.go
Normal file
406
v2/array/slice_test.go
Normal file
@@ -0,0 +1,406 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// TestSliceBasicCases tests normal slicing operations
|
||||
func TestSliceBasicCases(t *testing.T) {
|
||||
data := []int{0, 1, 2, 3, 4, 5}
|
||||
|
||||
t.Run("normal slice from middle", func(t *testing.T) {
|
||||
assert.Equal(t, []int{1, 2, 3}, Slice[int](1, 4)(data))
|
||||
})
|
||||
|
||||
t.Run("slice from start", func(t *testing.T) {
|
||||
assert.Equal(t, []int{0, 1, 2}, Slice[int](0, 3)(data))
|
||||
})
|
||||
|
||||
t.Run("slice to end", func(t *testing.T) {
|
||||
assert.Equal(t, []int{3, 4, 5}, Slice[int](3, 6)(data))
|
||||
})
|
||||
|
||||
t.Run("slice single element", func(t *testing.T) {
|
||||
assert.Equal(t, []int{2}, Slice[int](2, 3)(data))
|
||||
})
|
||||
|
||||
t.Run("slice entire array", func(t *testing.T) {
|
||||
assert.Equal(t, []int{0, 1, 2, 3, 4, 5}, Slice[int](0, 6)(data))
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceNegativeIndices tests negative index handling (counting from end)
|
||||
func TestSliceNegativeIndices(t *testing.T) {
|
||||
data := []int{0, 1, 2, 3, 4, 5}
|
||||
|
||||
t.Run("negative start index", func(t *testing.T) {
|
||||
// -2 means length + (-2) = 6 - 2 = 4
|
||||
assert.Equal(t, []int{4, 5}, Slice[int](-2, 6)(data))
|
||||
})
|
||||
|
||||
t.Run("negative end index", func(t *testing.T) {
|
||||
// -2 means length + (-2) = 6 - 2 = 4
|
||||
assert.Equal(t, []int{0, 1, 2, 3}, Slice[int](0, -2)(data))
|
||||
})
|
||||
|
||||
t.Run("both negative indices", func(t *testing.T) {
|
||||
// -4 = 2, -2 = 4
|
||||
assert.Equal(t, []int{2, 3}, Slice[int](-4, -2)(data))
|
||||
})
|
||||
|
||||
t.Run("negative index beyond array start", func(t *testing.T) {
|
||||
// -10 would be -4, clamped to 0
|
||||
assert.Equal(t, []int{0, 1, 2}, Slice[int](-10, 3)(data))
|
||||
})
|
||||
|
||||
t.Run("negative end index beyond array start", func(t *testing.T) {
|
||||
// -10 would be -4, clamped to 0
|
||||
assert.Equal(t, []int{}, Slice[int](0, -10)(data))
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceEmptyArray tests slicing on empty arrays (totality proof)
|
||||
func TestSliceEmptyArray(t *testing.T) {
|
||||
empty := []int{}
|
||||
|
||||
t.Run("slice empty array with zero indices", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](0, 0)(empty))
|
||||
})
|
||||
|
||||
t.Run("slice empty array with positive indices", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](0, 5)(empty))
|
||||
})
|
||||
|
||||
t.Run("slice empty array with negative indices", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](-1, -1)(empty))
|
||||
})
|
||||
|
||||
t.Run("slice empty array with mixed indices", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](-5, 5)(empty))
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceOutOfBounds tests out-of-bounds scenarios (totality proof)
|
||||
func TestSliceOutOfBounds(t *testing.T) {
|
||||
data := []int{0, 1, 2, 3, 4}
|
||||
|
||||
t.Run("start index beyond array length", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](10, 15)(data))
|
||||
})
|
||||
|
||||
t.Run("end index beyond array length", func(t *testing.T) {
|
||||
assert.Equal(t, []int{2, 3, 4}, Slice[int](2, 100)(data))
|
||||
})
|
||||
|
||||
t.Run("both indices beyond array length", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](10, 20)(data))
|
||||
})
|
||||
|
||||
t.Run("start equals array length", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](5, 10)(data))
|
||||
})
|
||||
|
||||
t.Run("end equals array length", func(t *testing.T) {
|
||||
assert.Equal(t, []int{3, 4}, Slice[int](3, 5)(data))
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceInvalidRanges tests invalid range scenarios (totality proof)
|
||||
func TestSliceInvalidRanges(t *testing.T) {
|
||||
data := []int{0, 1, 2, 3, 4}
|
||||
|
||||
t.Run("start equals end", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](2, 2)(data))
|
||||
})
|
||||
|
||||
t.Run("start greater than end", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](4, 2)(data))
|
||||
})
|
||||
|
||||
t.Run("start greater than end with negative indices", func(t *testing.T) {
|
||||
// -1 = 4, -3 = 2
|
||||
assert.Equal(t, []int{}, Slice[int](-1, -3)(data))
|
||||
})
|
||||
|
||||
t.Run("zero range at start", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](0, 0)(data))
|
||||
})
|
||||
|
||||
t.Run("zero range at end", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](5, 5)(data))
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceEdgeCases tests additional edge cases (totality proof)
|
||||
func TestSliceEdgeCases(t *testing.T) {
|
||||
t.Run("single element array - slice all", func(t *testing.T) {
|
||||
data := []int{42}
|
||||
assert.Equal(t, []int{42}, Slice[int](0, 1)(data))
|
||||
})
|
||||
|
||||
t.Run("single element array - slice none", func(t *testing.T) {
|
||||
data := []int{42}
|
||||
assert.Equal(t, []int{}, Slice[int](1, 1)(data))
|
||||
})
|
||||
|
||||
t.Run("single element array - negative indices", func(t *testing.T) {
|
||||
data := []int{42}
|
||||
assert.Equal(t, []int{42}, Slice[int](-1, 1)(data))
|
||||
})
|
||||
|
||||
t.Run("large array slice", func(t *testing.T) {
|
||||
data := MakeBy(1000, func(i int) int { return i })
|
||||
result := Slice[int](100, 200)(data)
|
||||
assert.Equal(t, 100, len(result))
|
||||
assert.Equal(t, 100, result[0])
|
||||
assert.Equal(t, 199, result[99])
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceWithDifferentTypes tests that Slice works with different types (totality proof)
|
||||
func TestSliceWithDifferentTypes(t *testing.T) {
|
||||
t.Run("string slice", func(t *testing.T) {
|
||||
data := []string{"a", "b", "c", "d", "e"}
|
||||
assert.Equal(t, []string{"b", "c", "d"}, Slice[string](1, 4)(data))
|
||||
})
|
||||
|
||||
t.Run("float slice", func(t *testing.T) {
|
||||
data := []float64{1.1, 2.2, 3.3, 4.4, 5.5}
|
||||
assert.Equal(t, []float64{2.2, 3.3}, Slice[float64](1, 3)(data))
|
||||
})
|
||||
|
||||
t.Run("bool slice", func(t *testing.T) {
|
||||
data := []bool{true, false, true, false}
|
||||
assert.Equal(t, []bool{false, true}, Slice[bool](1, 3)(data))
|
||||
})
|
||||
|
||||
t.Run("struct slice", func(t *testing.T) {
|
||||
type Point struct{ X, Y int }
|
||||
data := []Point{{1, 2}, {3, 4}, {5, 6}}
|
||||
assert.Equal(t, []Point{{3, 4}}, Slice[Point](1, 2)(data))
|
||||
})
|
||||
|
||||
t.Run("pointer slice", func(t *testing.T) {
|
||||
a, b, c := 1, 2, 3
|
||||
data := []*int{&a, &b, &c}
|
||||
result := Slice[*int](1, 3)(data)
|
||||
assert.Equal(t, 2, len(result))
|
||||
assert.Equal(t, 2, *result[0])
|
||||
assert.Equal(t, 3, *result[1])
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceNilArray tests behavior with nil arrays (totality proof)
|
||||
func TestSliceNilArray(t *testing.T) {
|
||||
var nilArray []int
|
||||
|
||||
t.Run("slice nil array with zero indices", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](0, 0)(nilArray))
|
||||
})
|
||||
|
||||
t.Run("slice nil array with positive indices", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](0, 5)(nilArray))
|
||||
})
|
||||
|
||||
t.Run("slice nil array with negative indices", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](-1, 1)(nilArray))
|
||||
})
|
||||
|
||||
t.Run("slice nil array with out of bounds indices", func(t *testing.T) {
|
||||
assert.Equal(t, []int{}, Slice[int](10, 20)(nilArray))
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceComposition tests that Slice can be composed with other functions
|
||||
func TestSliceComposition(t *testing.T) {
|
||||
data := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
|
||||
|
||||
t.Run("compose multiple slices", func(t *testing.T) {
|
||||
// First slice [2:8], then slice [1:4] of result
|
||||
slice1 := Slice[int](2, 8)
|
||||
slice2 := Slice[int](1, 4)
|
||||
result := slice2(slice1(data))
|
||||
// [2,3,4,5,6,7] -> [3,4,5]
|
||||
assert.Equal(t, []int{3, 4, 5}, result)
|
||||
})
|
||||
|
||||
t.Run("slice then map", func(t *testing.T) {
|
||||
sliced := Slice[int](2, 5)(data)
|
||||
mapped := Map(N.Mul(2))(sliced)
|
||||
assert.Equal(t, []int{4, 6, 8}, mapped)
|
||||
})
|
||||
|
||||
t.Run("slice then filter", func(t *testing.T) {
|
||||
sliced := Slice[int](0, 6)(data)
|
||||
filtered := Filter(func(x int) bool { return x%2 == 0 })(sliced)
|
||||
assert.Equal(t, []int{0, 2, 4}, filtered)
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceImmutability tests that Slice doesn't modify the original array
|
||||
func TestSliceImmutability(t *testing.T) {
|
||||
original := []int{0, 1, 2, 3, 4}
|
||||
originalCopy := []int{0, 1, 2, 3, 4}
|
||||
|
||||
t.Run("slicing doesn't modify original", func(t *testing.T) {
|
||||
result := Slice[int](1, 4)(original)
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
assert.Equal(t, originalCopy, original)
|
||||
})
|
||||
|
||||
t.Run("slice shares underlying array with original", func(t *testing.T) {
|
||||
// Note: Go's slice operation creates a view of the underlying array,
|
||||
// not a deep copy. This is expected behavior and matches Go's built-in slice semantics.
|
||||
result := Slice[int](1, 4)(original)
|
||||
result[0] = 999
|
||||
// The original array is affected because slices share the underlying array
|
||||
assert.Equal(t, 999, original[1], "Slices share underlying array (expected Go behavior)")
|
||||
})
|
||||
}
|
||||
|
||||
// TestSliceTotality is a comprehensive test proving Slice is a total function
|
||||
// A total function is defined for all possible inputs and never panics
|
||||
func TestSliceTotality(t *testing.T) {
|
||||
testCases := []struct {
|
||||
name string
|
||||
data []int
|
||||
low int
|
||||
high int
|
||||
panic bool // Should always be false for a total function
|
||||
}{
|
||||
// Normal cases
|
||||
{"normal range", []int{1, 2, 3, 4, 5}, 1, 3, false},
|
||||
{"full range", []int{1, 2, 3}, 0, 3, false},
|
||||
{"empty result", []int{1, 2, 3}, 1, 1, false},
|
||||
|
||||
// Edge cases with empty/nil arrays
|
||||
{"empty array", []int{}, 0, 0, false},
|
||||
{"empty array with indices", []int{}, 1, 5, false},
|
||||
{"nil array", nil, 0, 5, false},
|
||||
|
||||
// Negative indices
|
||||
{"negative low", []int{1, 2, 3, 4, 5}, -2, 5, false},
|
||||
{"negative high", []int{1, 2, 3, 4, 5}, 0, -1, false},
|
||||
{"both negative", []int{1, 2, 3, 4, 5}, -3, -1, false},
|
||||
{"negative beyond bounds", []int{1, 2, 3}, -100, -50, false},
|
||||
|
||||
// Out of bounds
|
||||
{"low beyond length", []int{1, 2, 3}, 10, 20, false},
|
||||
{"high beyond length", []int{1, 2, 3}, 1, 100, false},
|
||||
{"both beyond length", []int{1, 2, 3}, 10, 20, false},
|
||||
|
||||
// Invalid ranges
|
||||
{"low equals high", []int{1, 2, 3}, 2, 2, false},
|
||||
{"low greater than high", []int{1, 2, 3}, 3, 1, false},
|
||||
{"negative invalid range", []int{1, 2, 3, 4, 5}, -1, -3, false},
|
||||
|
||||
// Extreme values
|
||||
{"very large indices", []int{1, 2, 3}, 1000000, 2000000, false},
|
||||
{"very negative indices", []int{1, 2, 3}, -1000000, -500000, false},
|
||||
{"mixed extreme", []int{1, 2, 3}, -1000000, 1000000, false},
|
||||
|
||||
// Zero values
|
||||
{"zero indices", []int{1, 2, 3}, 0, 0, false},
|
||||
{"zero low", []int{1, 2, 3}, 0, 3, false},
|
||||
{"zero high", []int{1, 2, 3}, 0, 0, false},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
// This test proves totality by ensuring no panic occurs
|
||||
defer func() {
|
||||
if r := recover(); r != nil {
|
||||
if !tc.panic {
|
||||
t.Errorf("Slice panicked unexpectedly: %v", r)
|
||||
}
|
||||
} else {
|
||||
if tc.panic {
|
||||
t.Errorf("Slice should have panicked but didn't")
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
||||
// Execute the function - if it's total, it will never panic
|
||||
result := Slice[int](tc.low, tc.high)(tc.data)
|
||||
|
||||
// Additional verification: result should always be a valid slice
|
||||
assert.NotNil(t, result, "Result should never be nil")
|
||||
assert.True(t, len(result) >= 0, "Result length should be non-negative")
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TestSlicePropertyBased tests mathematical properties of Slice
|
||||
func TestSlicePropertyBased(t *testing.T) {
|
||||
data := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
|
||||
|
||||
t.Run("identity: Slice(0, len) returns copy of array", func(t *testing.T) {
|
||||
result := Slice[int](0, len(data))(data)
|
||||
assert.Equal(t, data, result)
|
||||
})
|
||||
|
||||
t.Run("empty: Slice(i, i) always returns empty", func(t *testing.T) {
|
||||
for i := 0; i <= len(data); i++ {
|
||||
result := Slice[int](i, i)(data)
|
||||
assert.Equal(t, []int{}, result)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("length property: len(Slice(i, j)) = max(0, min(j, len) - max(i, 0))", func(t *testing.T) {
|
||||
testCases := []struct{ low, high, expected int }{
|
||||
{0, 5, 5},
|
||||
{2, 7, 5},
|
||||
{5, 5, 0},
|
||||
{3, 2, 0}, // invalid range
|
||||
{-2, 10, 2}, // -2 becomes 8, so slice [8:10] has length 2
|
||||
{0, 100, 10},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
result := Slice[int](tc.low, tc.high)(data)
|
||||
assert.Equal(t, tc.expected, len(result),
|
||||
"Slice(%d, %d) should have length %d", tc.low, tc.high, tc.expected)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("concatenation: Slice(0,i) + Slice(i,len) = original", func(t *testing.T) {
|
||||
for i := 0; i <= len(data); i++ {
|
||||
left := Slice[int](0, i)(data)
|
||||
right := Slice[int](i, len(data))(data)
|
||||
concatenated := append(left, right...)
|
||||
assert.Equal(t, data, concatenated)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("subset property: all elements in slice are in original", func(t *testing.T) {
|
||||
result := Slice[int](2, 7)(data)
|
||||
for _, elem := range result {
|
||||
found := false
|
||||
for _, orig := range data {
|
||||
if elem == orig {
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
assert.True(t, found, "Element %d should be in original array", elem)
|
||||
}
|
||||
})
|
||||
}
|
||||
98
v2/array/sort.go
Normal file
98
v2/array/sort.go
Normal file
@@ -0,0 +1,98 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
O "github.com/IBM/fp-go/v2/ord"
|
||||
)
|
||||
|
||||
// Sort implements a stable sort on the array given the provided ordering.
|
||||
// The sort is stable, meaning that elements that compare equal retain their original order.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/ord"
|
||||
//
|
||||
// numbers := []int{3, 1, 4, 1, 5, 9, 2, 6}
|
||||
// sorted := array.Sort(ord.FromStrictCompare[int]())(numbers)
|
||||
// // Result: [1, 1, 2, 3, 4, 5, 6, 9]
|
||||
//
|
||||
//go:inline
|
||||
func Sort[T any](ord O.Ord[T]) Operator[T, T] {
|
||||
return G.Sort[[]T](ord)
|
||||
}
|
||||
|
||||
// SortByKey implements a stable sort on the array given the provided ordering on an extracted key.
|
||||
// This is useful when you want to sort complex types by a specific field.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/ord"
|
||||
//
|
||||
// type Person struct {
|
||||
// Name string
|
||||
// Age int
|
||||
// }
|
||||
//
|
||||
// people := []Person{
|
||||
// {"Alice", 30},
|
||||
// {"Bob", 25},
|
||||
// {"Charlie", 35},
|
||||
// }
|
||||
//
|
||||
// sortByAge := array.SortByKey(
|
||||
// ord.FromStrictCompare[int](),
|
||||
// func(p Person) int { return p.Age },
|
||||
// )
|
||||
// sorted := sortByAge(people)
|
||||
// // Result: [{"Bob", 25}, {"Alice", 30}, {"Charlie", 35}]
|
||||
//
|
||||
//go:inline
|
||||
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) Operator[T, T] {
|
||||
return G.SortByKey[[]T](ord, f)
|
||||
}
|
||||
|
||||
// SortBy implements a stable sort on the array using multiple ordering criteria.
|
||||
// The orderings are applied in sequence: if two elements are equal according to the first
|
||||
// ordering, the second ordering is used, and so on.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/ord"
|
||||
//
|
||||
// type Person struct {
|
||||
// LastName string
|
||||
// FirstName string
|
||||
// }
|
||||
//
|
||||
// people := []Person{
|
||||
// {"Smith", "John"},
|
||||
// {"Smith", "Alice"},
|
||||
// {"Jones", "Bob"},
|
||||
// }
|
||||
//
|
||||
// sortByName := array.SortBy([]ord.Ord[Person]{
|
||||
// ord.Contramap(func(p Person) string { return p.LastName })(ord.FromStrictCompare[string]()),
|
||||
// ord.Contramap(func(p Person) string { return p.FirstName })(ord.FromStrictCompare[string]()),
|
||||
// })
|
||||
// sorted := sortByName(people)
|
||||
// // Result: [{"Jones", "Bob"}, {"Smith", "Alice"}, {"Smith", "John"}]
|
||||
//
|
||||
//go:inline
|
||||
func SortBy[T any](ord []O.Ord[T]) Operator[T, T] {
|
||||
return G.SortBy[[]T](ord)
|
||||
}
|
||||
36
v2/array/sort_test.go
Normal file
36
v2/array/sort_test.go
Normal file
@@ -0,0 +1,36 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
O "github.com/IBM/fp-go/v2/ord"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestSort(t *testing.T) {
|
||||
|
||||
ordInt := O.FromStrictCompare[int]()
|
||||
|
||||
input := []int{2, 1, 3}
|
||||
|
||||
res := Sort(ordInt)(input)
|
||||
|
||||
assert.Equal(t, []int{1, 2, 3}, res)
|
||||
assert.Equal(t, []int{2, 1, 3}, input)
|
||||
|
||||
}
|
||||
74
v2/array/testing/laws.go
Normal file
74
v2/array/testing/laws.go
Normal file
@@ -0,0 +1,74 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package testing
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
RA "github.com/IBM/fp-go/v2/array"
|
||||
EQ "github.com/IBM/fp-go/v2/eq"
|
||||
L "github.com/IBM/fp-go/v2/internal/monad/testing"
|
||||
)
|
||||
|
||||
// AssertLaws asserts the apply monad laws for the array monad
|
||||
func AssertLaws[A, B, C any](t *testing.T,
|
||||
eqa EQ.Eq[A],
|
||||
eqb EQ.Eq[B],
|
||||
eqc EQ.Eq[C],
|
||||
|
||||
ab func(A) B,
|
||||
bc func(B) C,
|
||||
) func(a A) bool {
|
||||
|
||||
return L.AssertLaws(t,
|
||||
RA.Eq(eqa),
|
||||
RA.Eq(eqb),
|
||||
RA.Eq(eqc),
|
||||
|
||||
RA.Of[A],
|
||||
RA.Of[B],
|
||||
RA.Of[C],
|
||||
|
||||
RA.Of[func(A) A],
|
||||
RA.Of[func(A) B],
|
||||
RA.Of[func(B) C],
|
||||
RA.Of[func(func(A) B) B],
|
||||
|
||||
RA.MonadMap[A, A],
|
||||
RA.MonadMap[A, B],
|
||||
RA.MonadMap[A, C],
|
||||
RA.MonadMap[B, C],
|
||||
|
||||
RA.MonadMap[func(B) C, func(func(A) B) func(A) C],
|
||||
|
||||
RA.MonadChain[A, A],
|
||||
RA.MonadChain[A, B],
|
||||
RA.MonadChain[A, C],
|
||||
RA.MonadChain[B, C],
|
||||
|
||||
RA.MonadAp[A, A],
|
||||
RA.MonadAp[B, A],
|
||||
RA.MonadAp[C, B],
|
||||
RA.MonadAp[C, A],
|
||||
|
||||
RA.MonadAp[B, func(A) B],
|
||||
RA.MonadAp[func(A) C, func(A) B],
|
||||
|
||||
ab,
|
||||
bc,
|
||||
)
|
||||
|
||||
}
|
||||
47
v2/array/testing/laws_test.go
Normal file
47
v2/array/testing/laws_test.go
Normal file
@@ -0,0 +1,47 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package testing
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
EQ "github.com/IBM/fp-go/v2/eq"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestMonadLaws(t *testing.T) {
|
||||
// some comparison
|
||||
eqa := EQ.FromStrictEquals[bool]()
|
||||
eqb := EQ.FromStrictEquals[int]()
|
||||
eqc := EQ.FromStrictEquals[string]()
|
||||
|
||||
ab := func(a bool) int {
|
||||
if a {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
bc := func(b int) string {
|
||||
return fmt.Sprintf("value %d", b)
|
||||
}
|
||||
|
||||
laws := AssertLaws(t, eqa, eqb, eqc, ab, bc)
|
||||
|
||||
assert.True(t, laws(true))
|
||||
assert.True(t, laws(false))
|
||||
}
|
||||
104
v2/array/traverse.go
Normal file
104
v2/array/traverse.go
Normal file
@@ -0,0 +1,104 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
)
|
||||
|
||||
// Traverse maps each element of an array to an effect (HKT), then collects the results
|
||||
// into an effect of an array. This is like a combination of Map and Sequence.
|
||||
//
|
||||
// Unlike Sequence which works with []HKT<A> -> HKT<[]A>, Traverse works with
|
||||
// []A -> (A -> HKT<B>) -> HKT<[]B>, allowing you to transform elements while sequencing effects.
|
||||
//
|
||||
// Type parameters:
|
||||
// - HKTB = HKT<B> (e.g., Option[B], Either[E, B])
|
||||
// - HKTAB = HKT<func(B)[]B> (intermediate type for applicative)
|
||||
// - HKTRB = HKT<[]B> (e.g., Option[[]B], Either[E, []B])
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import (
|
||||
// "github.com/IBM/fp-go/v2/option"
|
||||
// "strconv"
|
||||
// )
|
||||
//
|
||||
// // Parse strings to ints, returning None if any parse fails
|
||||
// parseAll := array.Traverse(
|
||||
// option.Of[[]int],
|
||||
// option.Map[[]int, func(int) []int],
|
||||
// option.Ap[[]int, int],
|
||||
// func(s string) option.Option[int] {
|
||||
// if n, err := strconv.Atoi(s); err == nil {
|
||||
// return option.Some(n)
|
||||
// }
|
||||
// return option.None[int]()
|
||||
// },
|
||||
// )
|
||||
//
|
||||
// result := parseAll([]string{"1", "2", "3"}) // Some([1, 2, 3])
|
||||
// result2 := parseAll([]string{"1", "x", "3"}) // None
|
||||
//
|
||||
//go:inline
|
||||
func Traverse[A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func([]B) HKTRB,
|
||||
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
f func(A) HKTB) func([]A) HKTRB {
|
||||
return array.Traverse[[]A](fof, fmap, fap, f)
|
||||
}
|
||||
|
||||
// MonadTraverse is the monadic version of Traverse that takes the array as a parameter.
|
||||
// It maps each element of an array to an effect (HKT), then collects the results
|
||||
// into an effect of an array.
|
||||
//
|
||||
// This is useful when you want to apply the traverse operation directly without currying.
|
||||
//
|
||||
//go:inline
|
||||
func MonadTraverse[A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func([]B) HKTRB,
|
||||
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
ta []A,
|
||||
f func(A) HKTB) HKTRB {
|
||||
|
||||
return array.MonadTraverse(fof, fmap, fap, ta, f)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func TraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func([]B) HKTRB,
|
||||
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
f func(int, A) HKTB) func([]A) HKTRB {
|
||||
return array.TraverseWithIndex[[]A](fof, fmap, fap, f)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func MonadTraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func([]B) HKTRB,
|
||||
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
ta []A,
|
||||
f func(int, A) HKTB) HKTRB {
|
||||
|
||||
return array.MonadTraverseWithIndex(fof, fmap, fap, ta, f)
|
||||
}
|
||||
43
v2/array/traverse_test.go
Normal file
43
v2/array/traverse_test.go
Normal file
@@ -0,0 +1,43 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package array
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
type ArrayType = []int
|
||||
|
||||
func TestTraverse(t *testing.T) {
|
||||
|
||||
traverse := Traverse(
|
||||
O.Of[ArrayType],
|
||||
O.Map[ArrayType, func(int) ArrayType],
|
||||
O.Ap[ArrayType, int],
|
||||
|
||||
func(n int) O.Option[int] {
|
||||
if n%2 == 0 {
|
||||
return O.None[int]()
|
||||
}
|
||||
return O.Of(n)
|
||||
})
|
||||
|
||||
assert.Equal(t, O.None[[]int](), traverse(ArrayType{1, 2}))
|
||||
assert.Equal(t, O.Of(ArrayType{1, 3}), traverse(ArrayType{1, 3}))
|
||||
}
|
||||
9
v2/array/types.go
Normal file
9
v2/array/types.go
Normal file
@@ -0,0 +1,9 @@
|
||||
package array
|
||||
|
||||
import "github.com/IBM/fp-go/v2/option"
|
||||
|
||||
type (
|
||||
Kleisli[A, B any] = func(A) []B
|
||||
Operator[A, B any] = Kleisli[[]A, B]
|
||||
Option[A any] = option.Option[A]
|
||||
)
|
||||
51
v2/array/uniq.go
Normal file
51
v2/array/uniq.go
Normal file
@@ -0,0 +1,51 @@
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
)
|
||||
|
||||
// StrictUniq converts an array of arbitrary items into an array of unique items
|
||||
// where uniqueness is determined by the built-in equality constraint (comparable).
|
||||
// The first occurrence of each unique value is kept, subsequent duplicates are removed.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// numbers := []int{1, 2, 2, 3, 3, 3, 4}
|
||||
// unique := array.StrictUniq(numbers) // [1, 2, 3, 4]
|
||||
//
|
||||
// strings := []string{"a", "b", "a", "c", "b"}
|
||||
// unique2 := array.StrictUniq(strings) // ["a", "b", "c"]
|
||||
//
|
||||
//go:inline
|
||||
func StrictUniq[A comparable](as []A) []A {
|
||||
return G.StrictUniq(as)
|
||||
}
|
||||
|
||||
// Uniq converts an array of arbitrary items into an array of unique items
|
||||
// where uniqueness is determined based on a key extractor function.
|
||||
// The first occurrence of each unique key is kept, subsequent duplicates are removed.
|
||||
//
|
||||
// This is useful for removing duplicates from arrays of complex types based on a specific field.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Person struct {
|
||||
// Name string
|
||||
// Age int
|
||||
// }
|
||||
//
|
||||
// people := []Person{
|
||||
// {"Alice", 30},
|
||||
// {"Bob", 25},
|
||||
// {"Alice", 35}, // duplicate name
|
||||
// {"Charlie", 30},
|
||||
// }
|
||||
//
|
||||
// uniqueByName := array.Uniq(func(p Person) string { return p.Name })
|
||||
// result := uniqueByName(people)
|
||||
// // Result: [{"Alice", 30}, {"Bob", 25}, {"Charlie", 30}]
|
||||
//
|
||||
//go:inline
|
||||
func Uniq[A any, K comparable](f func(A) K) Operator[A, A] {
|
||||
return G.Uniq[[]A](f)
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user