1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-12-09 23:11:40 +02:00

Compare commits

...

44 Commits

Author SHA1 Message Date
Dr. Carsten Leue
d8ab6b0ce5 fix: ChainReaderK
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-22 10:39:56 +01:00
Dr. Carsten Leue
4e9998b645 fix: benchmarks and better docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 15:39:41 +01:00
Dr. Carsten Leue
2ea9e292e1 fix: idiomatic/readeresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 15:25:59 +01:00
Dr. Carsten Leue
12a20e30d1 fix: implement BindReaderK
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 13:01:27 +01:00
Dr. Carsten Leue
4909ad5473 fix: add missing monoid
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 10:22:50 +01:00
Dr. Carsten Leue
d116317cde fix: add readerresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 10:04:28 +01:00
Dr. Carsten Leue
1428241f2c fix: race condition
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 08:36:07 +01:00
Dr. Carsten Leue
ef9216bad7 fix: documentation, tests, some utilities
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-20 08:43:15 +01:00
Dr. Carsten Leue
fe77c770b6 fix: cleanup types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-19 17:36:49 +01:00
Dr. Carsten Leue
1c42b2ac1d fix: implement idiomatic/ioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-19 15:39:02 +01:00
Dr. Carsten Leue
cbd93fdecc fix: add statereaderioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 17:54:04 +01:00
Dr. Carsten Leue
6d94697128 fix: document statereaderioeither
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 16:06:56 +01:00
Dr. Carsten Leue
77dde302ef Merge branch 'main' of github.com:IBM/fp-go 2025-11-18 10:59:57 +01:00
Dr. Carsten Leue
909d626019 fix: serveral performance improvements
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 10:58:24 +01:00
renovate[bot]
b01a8f2aff chore(deps): update actions/checkout action to v4.3.1 (#145)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2025-11-18 06:31:59 +00:00
Dr. Carsten Leue
8a2e9539b1 fix: add result
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 20:36:06 +01:00
Dr. Carsten Leue
03d9720a29 fix: optimize performance for option
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 12:19:24 +01:00
Dr. Carsten Leue
57794ccb34 fix: add idiomatic go options package
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 11:10:27 +01:00
Dr. Carsten Leue
404eb875d3 fix: add idiomatic version
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-16 17:27:16 +01:00
Dr. Carsten Leue
ed108812d6 fix: modernize codebase
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-15 17:00:22 +01:00
Dr. Carsten Leue
ab868315d4 fix: traverse
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-15 12:13:37 +01:00
Dr. Carsten Leue
02d0be9dad fix: add traversal for sequences
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 14:12:44 +01:00
Dr. Carsten Leue
2c1d8196b4 fix: support go iterators and cleanup types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 12:56:12 +01:00
Dr. Carsten Leue
17eb8ae66f fix: add Chain...Left methods
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 16:51:15 +01:00
Dr. Carsten Leue
b70e481e7d fix: some minor improvements
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 12:56:51 +01:00
Dr. Carsten Leue
3c3bb7c166 fix: improve lens implementation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 12:15:52 +01:00
Dr. Carsten Leue
d3007cbbfa fix: improve lens generator
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:39:18 +01:00
Dr. Carsten Leue
5aa0e1ea2e fix: handle non comparable types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:35:56 +01:00
Dr. Carsten Leue
d586428cb0 fix: examples
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:05:57 +01:00
Dr. Carsten Leue
d2dbce6e8b fix: improve lens handling
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 18:23:57 +01:00
Dr. Carsten Leue
6f7ec0768d fix: improve lens generation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 17:28:20 +01:00
Dr. Carsten Leue
ca813b673c fix: better tests and doc
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 16:24:12 +01:00
Dr. Carsten Leue
af271e7d10 fix: better endo and lens
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 15:03:55 +01:00
Dr. Carsten Leue
567315a31c fix: make a distinction between Chain and Compose for endomorphism
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 13:51:00 +01:00
Dr. Carsten Leue
311ed55f06 fix: add Read method to Readers
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 11:59:20 +01:00
Dr. Carsten Leue
23333ce52c doc: improve doc
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 11:08:18 +01:00
Dr. Carsten Leue
eb7fc9f77b fix: better tests for Lazy
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 10:46:07 +01:00
Dr. Carsten Leue
fd0550e71b fix: better test coverage
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 10:35:53 +01:00
Dr. Carsten Leue
13063bbd88 fix: doc and tests
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 16:36:12 +01:00
Dr. Carsten Leue
4f8a557072 fix: simplify type hints
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 15:24:45 +01:00
Dr. Carsten Leue
a4e790ac3d fix: improve bind
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 13:05:55 +01:00
Dr. Carsten Leue
1af6501cd8 fix: add bind variations
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 12:42:14 +01:00
Dr. Carsten Leue
600521b220 fix: refactor
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 11:01:49 +01:00
Dr. Carsten Leue
62fcd186a3 fix: introcuce readeioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-10 18:44:14 +01:00
641 changed files with 74512 additions and 7126 deletions

View File

@@ -28,7 +28,7 @@ jobs:
fail-fast: false # Continue with other versions if one fails
steps:
# full checkout for semantic-release
- uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
@@ -66,7 +66,7 @@ jobs:
matrix:
go-version: ['1.24.x', '1.25.x']
steps:
- uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
@@ -126,7 +126,7 @@ jobs:
steps:
# full checkout for semantic-release
- name: Full checkout
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0

View File

@@ -0,0 +1,17 @@
{
"permissions": {
"allow": [
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\monad\"\" && ls -la \"c:dfp-gov2internalapplicative\"\")",
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\chain\"\" && ls -la \"c:dfp-gov2internalfunctor\"\")",
"Bash(go build:*)",
"Bash(go test:*)",
"Bash(go doc:*)",
"Bash(go tool cover:*)",
"Bash(sort:*)",
"Bash(tee:*)",
"Bash(find:*)"
],
"deny": [],
"ask": []
}
}

482
v2/BENCHMARK_COMPARISON.md Normal file
View File

@@ -0,0 +1,482 @@
# Benchmark Comparison: Idiomatic vs Standard Either/Result
**Date:** 2025-11-18
**System:** AMD Ryzen 7 PRO 7840U w/ Radeon 780M Graphics (16 cores)
**Go Version:** go1.23+
This document provides a detailed performance comparison between the optimized `either` package and the `idiomatic/result` package after recent optimizations to the either package.
## Executive Summary
After optimizations to the `either` package, the performance characteristics have changed significantly:
### Key Findings
1. **Constructors & Predicates**: Both packages now perform comparably (~1-2 ns/op) with **zero heap allocations**
2. **Zero-allocation insight**: The `Either` struct (24 bytes) does NOT escape to heap - Go returns it by value on the stack
3. **Core Operations**: Idiomatic package has a **consistent advantage** of 1.2x - 2.3x for most operations
4. **Complex Operations**: Idiomatic package shows **massive advantages**:
- ChainFirst (Right): **32.4x faster** (87.6 ns → 2.7 ns, 72 B → 0 B)
- Pipeline operations: **2-3x faster** with lower allocations
5. **All simple operations**: Both maintain **zero heap allocations** (0 B/op, 0 allocs/op)
### Winner by Category
| Category | Winner | Reason |
|----------|--------|--------|
| Constructors | **TIE** | Both ~1.3-1.8 ns/op |
| Predicates | **TIE** | Both ~1.2-1.5 ns/op |
| Simple Transformations | **Idiomatic** | 1.2-2x faster |
| Monadic Operations | **Idiomatic** | 1.2-2.3x faster |
| Complex Chains | **Idiomatic** | 32x faster, zero allocs |
| Pipelines | **Idiomatic** | 2-2.4x faster, fewer allocs |
| Extraction | **Idiomatic** | 6x faster (GetOrElse) |
## Detailed Benchmark Results
### Constructor Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Left | 1.76 | **1.35** | **1.3x** ✓ | 0 B/op | 0 B/op |
| Right | 1.38 | 1.43 | 1.0x | 0 B/op | 0 B/op |
| Of | 1.68 | **1.22** | **1.4x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Both packages perform extremely well with **zero heap allocations**. Idiomatic has a slight edge on Left and Of.
**Important Clarification: Neither Package Escapes to Heap**
A common misconception is that struct-based Either escapes to heap while tuples stay on stack. The benchmarks prove this is FALSE:
```go
// Either package - NO heap allocation
type Either[E, A any] struct {
r A // 8 bytes
l E // 8 bytes
isLeft bool // 1 byte + 7 padding
} // Total: 24 bytes
func Of[E, A any](value A) Either[E, A] {
return Right[E](value) // Returns 24-byte struct BY VALUE
}
// Benchmark result: 0 B/op, 0 allocs/op ✓
```
**Why Either doesn't escape:**
1. **Small struct** - At 24 bytes, it's below Go's escape threshold (~64 bytes)
2. **Return by value** - Go returns small structs on the stack
3. **Inlining** - The `//go:inline` directive eliminates function overhead
4. **No pointers** - No pointer escapes in normal usage
**Idiomatic package:**
```go
// Returns native tuple - always stack allocated
func Right[A any](a A) (A, error) {
return a, nil // 16 bytes total (8 + 8)
}
// Benchmark result: 0 B/op, 0 allocs/op ✓
```
**Both achieve zero allocations** - the performance difference comes from other factors like function composition overhead, not from constructor allocations.
### Predicate Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| IsLeft | 1.45 | **1.35** | **1.1x** ✓ | 0 B/op | 0 B/op |
| IsRight | 1.47 | 1.51 | 1.0x | 0 B/op | 0 B/op |
**Analysis:** Virtually identical performance. The optimizations brought them to parity.
### Fold Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadFold (Right) | 2.71 | - | - | 0 B/op | - |
| MonadFold (Left) | 2.26 | - | - | 0 B/op | - |
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | 0 B/op | 0 B/op |
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package is 1.5x faster for curried Fold operations.
### Unwrap Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Unwrap (Right) | 1.27 | N/A | Either-specific |
| Unwrap (Left) | 1.24 | N/A | Either-specific |
| UnwrapError (Right) | 1.27 | N/A | Either-specific |
| UnwrapError (Left) | 1.27 | N/A | Either-specific |
| ToError (Right) | N/A | 1.40 | Idiomatic-specific |
| ToError (Left) | N/A | 1.84 | Idiomatic-specific |
**Analysis:** Both provide fast unwrapping. Idiomatic's tuple return is naturally unwrapped.
### Map Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadMap (Right) | 2.96 | - | - | 0 B/op | - |
| MonadMap (Left) | 1.99 | - | - | 0 B/op | - |
| Map (Right) | 5.13 | **4.34** | **1.2x** ✓ | 0 B/op | 0 B/op |
| Map (Left) | 4.19 | **2.48** | **1.7x** ✓ | 0 B/op | 0 B/op |
| MapLeft (Right) | 3.93 | **2.22** | **1.8x** ✓ | 0 B/op | 0 B/op |
| MapLeft (Left) | 7.22 | **3.51** | **2.1x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic is consistently faster across all Map variants, especially for error path (Left).
### BiMap Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| BiMap (Right) | 16.79 | **3.82** | **4.4x** ✓ | 0 B/op | 0 B/op |
| BiMap (Left) | 11.47 | **3.47** | **3.3x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package shows significant advantage for BiMap operations (3-4x faster).
### Chain (Monadic Bind) Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadChain (Right) | 2.89 | - | - | 0 B/op | - |
| MonadChain (Left) | 2.03 | - | - | 0 B/op | - |
| Chain (Right) | 5.44 | **2.34** | **2.3x** ✓ | 0 B/op | 0 B/op |
| Chain (Left) | 4.44 | **2.53** | **1.8x** ✓ | 0 B/op | 0 B/op |
| ChainFirst (Right) | 87.62 | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | 0 B, 0 allocs |
| ChainFirst (Left) | 3.94 | **2.48** | **1.6x** ✓ | 0 B/op | 0 B/op |
**Analysis:**
- Idiomatic is 2x faster for standard Chain operations
- **ChainFirst shows the most dramatic difference**: 32.4x faster with zero allocations vs 72 bytes!
### Flatten Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Flatten (Right) | 8.73 | N/A | Either-specific nested structure |
| Flatten (Left) | 8.86 | N/A | Either-specific nested structure |
**Analysis:** Flatten is specific to Either's nested structure handling.
### Applicative Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadAp (RR) | 3.81 | - | - | 0 B/op | - |
| MonadAp (RL) | 3.07 | - | - | 0 B/op | - |
| MonadAp (LR) | 3.08 | - | - | 0 B/op | - |
| Ap (RR) | 6.99 | - | - | 0 B/op | - |
**Analysis:** MonadAp is fast in Either. Idiomatic package doesn't expose direct Ap benchmarks.
### Alternative Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Alt (RR) | 5.72 | **2.40** | **2.4x** ✓ | 0 B/op | 0 B/op |
| Alt (LR) | 4.89 | **2.39** | **2.0x** ✓ | 0 B/op | 0 B/op |
| OrElse (Right) | 5.28 | **2.40** | **2.2x** ✓ | 0 B/op | 0 B/op |
| OrElse (Left) | 3.99 | **2.42** | **1.6x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package is consistently 2x faster for alternative operations.
### GetOrElse Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | 0 B/op | 0 B/op |
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package shows dramatic advantage for value extraction (3-6x faster).
### TryCatch Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| TryCatch (Success) | 2.39 | N/A | Either-specific |
| TryCatch (Error) | 3.40 | N/A | Either-specific |
| TryCatchError (Success) | 3.32 | N/A | Either-specific |
| TryCatchError (Error) | 6.44 | N/A | Either-specific |
**Analysis:** TryCatch/TryCatchError are Either-specific for wrapping (value, error) tuples.
### Other Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Swap (Right) | 2.30 | - | - | 0 B/op | - |
| Swap (Left) | 3.05 | - | - | 0 B/op | - |
| MapTo (Right) | - | 1.60 | - | - | 0 B/op |
| MapTo (Left) | - | 1.73 | - | - | 0 B/op |
| ChainTo (Right) | - | 2.66 | - | - | 0 B/op |
| ChainTo (Left) | - | 2.85 | - | - | 0 B/op |
| Reduce (Right) | - | 2.34 | - | - | 0 B/op |
| Reduce (Left) | - | 1.40 | - | - | 0 B/op |
| Flap (Right) | - | 3.86 | - | - | 0 B/op |
| Flap (Left) | - | 2.58 | - | - | 0 B/op |
### FromPredicate Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| FromPredicate (Pass) | - | 3.38 | - | - | 0 B/op |
| FromPredicate (Fail) | - | 5.03 | - | - | 0 B/op |
**Analysis:** FromPredicate in idiomatic shows good performance for validation patterns.
### Option Conversion
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| ToOption (Right) | - | 1.17 | - | - | 0 B/op |
| ToOption (Left) | - | 1.21 | - | - | 0 B/op |
| FromOption (Some) | - | 2.68 | - | - | 0 B/op |
| FromOption (None) | - | 3.72 | - | - | 0 B/op |
**Analysis:** Very fast conversion between Result and Option in idiomatic package.
## Pipeline Benchmarks
These benchmarks measure realistic composition scenarios using F.Pipe.
### Simple Map Pipeline
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
| Pipeline Map (Left) | 116.8 | **47.2** | **2.5x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
### Chain Pipeline
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
| Pipeline Chain (Left) | 86.4 | **25.7** | **3.4x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
### Complex Pipeline (Map → Chain → Map)
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Complex (Right) | 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
| Complex (Left) | 288.1 | **115.8** | **2.5x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
**Analysis:**
- Idiomatic package shows **2-3.4x speedup** for realistic pipelines
- Significantly fewer allocations in all pipeline scenarios
- The gap widens as pipelines become more complex
## Array/Collection Operations
### TraverseArray
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| TraverseArray (Success) | - | 32.3 | 48 B, 1 alloc |
| TraverseArray (Error) | - | 28.3 | 48 B, 1 alloc |
**Analysis:** Idiomatic package provides efficient array traversal with minimal allocations.
## Validation (ApV)
### ApV Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| ApV (BothRight) | - | 1.17 | - | - | 0 B/op |
| ApV (BothLeft) | - | 141.5 | - | - | 48 B, 2 allocs |
**Analysis:** Idiomatic's validation applicative shows fast success path, with allocations only when accumulating errors.
## String Formatting
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| String/ToString (Right) | 139.9 | **81.8** | **1.7x** ✓ | 16 B, 1 alloc | 16 B, 1 alloc |
| String/ToString (Left) | 161.6 | **72.7** | **2.2x** ✓ | 48 B, 1 alloc | 24 B, 1 alloc |
**Analysis:** Idiomatic package formats strings faster with fewer allocations for Left values.
## Do-Notation
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Do | 2.03 | - | Either-specific |
| Bind | 153.4 | - | 96 B, 4 allocs |
| Let | 33.5 | - | 16 B, 1 alloc |
**Analysis:** Do-notation is specific to Either package for monadic composition patterns.
## Summary Statistics
### Simple Operations (< 10 ns/op)
**Either Package:**
- Count: 24 operations
- Average: 3.2 ns/op
- Range: 1.24 - 9.01 ns/op
**Idiomatic Package:**
- Count: 36 operations
- Average: 2.1 ns/op
- Range: 1.17 - 5.03 ns/op
**Winner:** Idiomatic (1.5x faster average)
### Complex Operations (Pipelines, allocations)
**Either Package:**
- Pipeline Map: 112.7 ns/op (72 B, 3 allocs)
- Pipeline Chain: 74.4 ns/op (48 B, 2 allocs)
- Complex: 279.8 ns/op (192 B, 8 allocs)
- ChainFirst: 87.6 ns/op (72 B, 3 allocs)
**Idiomatic Package:**
- Pipeline Map: 46.5 ns/op (48 B, 2 allocs)
- Pipeline Chain: 26.1 ns/op (24 B, 1 allocs)
- Complex: 116.3 ns/op (120 B, 5 allocs)
- ChainFirst: 2.71 ns/op (0 B, 0 allocs)
**Winner:** Idiomatic (2-32x faster, significantly fewer allocations)
### Allocation Analysis
**Either Package:**
- Zero-allocation operations: Most simple operations
- Operations with allocations: Pipelines, Bind, Do-notation, ChainFirst
**Idiomatic Package:**
- Zero-allocation operations: Almost all operations except pipelines and validation
- Significantly fewer allocations in pipeline scenarios
- ChainFirst: **Zero allocations** (vs 72 B in Either)
## Performance Characteristics
### Where Either Package Excels
1. **Comparable to Idiomatic**: After optimizations, Either matches Idiomatic for constructors and predicates
2. **Feature Richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
3. **Type Flexibility**: Full Either[E, A] with custom error types
### Where Idiomatic Package Excels
1. **Core Operations**: 1.2-2.3x faster for Map, Chain, Fold
2. **Complex Operations**: 32x faster for ChainFirst
3. **Pipelines**: 2-3.4x faster with fewer allocations
4. **Extraction**: 3-6x faster for GetOrElse
5. **Alternative**: 2x faster for Alt/OrElse
6. **BiMap**: 3-4x faster
7. **Consistency**: More predictable performance profile
## Real-World Performance Impact
### Hot Path Example (1 million operations)
```go
// Map operation (very common)
// Either: 5.13 ns/op × 1M = 5.13 ms
// Idiomatic: 4.34 ns/op × 1M = 4.34 ms
// Savings: 0.79 ms per million operations
// Chain operation (common in pipelines)
// Either: 5.44 ns/op × 1M = 5.44 ms
// Idiomatic: 2.34 ns/op × 1M = 2.34 ms
// Savings: 3.10 ms per million operations
// Pipeline Complex (realistic composition)
// Either: 279.8 ns/op × 1M = 279.8 ms
// Idiomatic: 116.3 ns/op × 1M = 116.3 ms
// Savings: 163.5 ms per million operations
```
### Memory Impact
For 1 million ChainFirst operations:
- Either: 72 MB allocated
- Idiomatic: 0 MB allocated
- **Savings: 72 MB + reduced GC pressure**
## Recommendations
### Use Idiomatic Package When:
1. **Performance is Critical**
- Hot paths in your application
- High-throughput services (>10k req/s)
- Complex operation chains
- Memory-constrained environments
2. **Natural Go Integration**
- Working with stdlib (value, error) patterns
- Team familiar with Go idioms
- Simple migration from existing code
- Want zero-cost abstractions
3. **Pipeline-Heavy Code**
- 2-3.4x faster pipelines
- Significantly fewer allocations
- Better CPU cache utilization
### Use Either Package When:
1. **Feature Requirements**
- Need custom error types (Either[E, A])
- Using Do-notation for complex compositions
- Need Flatten, Swap, or other Either-specific operations
- Porting from FP languages (Scala, Haskell)
2. **Type Safety Over Performance**
- Explicit Either semantics
- Algebraic data type guarantees
- Teaching/learning FP concepts
3. **Moderate Performance Needs**
- After optimizations, Either is quite fast
- Difference matters only at high scale
- Code clarity > micro-optimizations
### Hybrid Approach
```go
// Use Either for complex type safety
import "github.com/IBM/fp-go/v2/either"
type ValidationError struct { Field, Message string }
validated := either.Either[ValidationError, Input]{...}
// Convert to Idiomatic for hot path
import "github.com/IBM/fp-go/v2/idiomatic/result"
value, err := either.UnwrapError(either.MapLeft(toError)(validated))
processed, err := result.Chain(hotPathProcessing)(value, err)
```
## Conclusion
After optimizations to the Either package:
1. **Both packages achieve zero heap allocations for constructors** - The Either struct (24 bytes) does NOT escape to heap
2. **Simple operations** are now **comparable** between both packages (~1-2 ns/op, 0 B/op)
3. **Core transformations** favor Idiomatic by **1.2-2.3x**
4. **Complex operations** heavily favor Idiomatic by **2-32x**
5. **Memory efficiency** strongly favors Idiomatic (especially ChainFirst: 72 B → 0 B)
6. **Real-world pipelines** show **2-3.4x speedup** with Idiomatic
### Key Insight: No Heap Escape Myth
A critical finding: **Both packages avoid heap allocations for simple operations.** The Either struct is small enough (24 bytes) that Go returns it by value on the stack, not the heap. The `0 B/op, 0 allocs/op` benchmarks confirm this.
The performance differences come from:
- **Function composition overhead** in complex operations
- **Currying and closure creation** in pipelines
- **Tuple simplicity** vs struct field access
Not from constructor allocations—both are equally efficient there.
### Final Verdict
The idiomatic package provides a compelling performance advantage for production workloads while maintaining zero-cost functional programming abstractions. The Either package remains excellent for type safety, feature richness, and scenarios where explicit Either[E, A] semantics are valuable.
**Bottom Line:**
- For **high-performance Go services**: idiomatic package is the clear winner (1.2-32x faster)
- For **type-safe, feature-rich FP**: Either package is excellent (comparable simple ops, more features)
- **Both avoid heap allocations** for constructors—choose based on your performance vs features trade-off

View File

@@ -0,0 +1,344 @@
# Deep Chaining Performance Analysis
## Executive Summary
The **only remaining performance gap** between `v2/option` and `idiomatic/option` is in **deep chaining operations** (multiple sequential transformations). This document demonstrates the problem, explains the root cause, and provides recommendations.
## Benchmark Results
### v2/option (Struct-based)
```
BenchmarkChain_3Steps 8.17 ns/op 0 allocs
BenchmarkChain_5Steps 16.57 ns/op 0 allocs
BenchmarkChain_10Steps 47.01 ns/op 0 allocs
BenchmarkMap_5Steps 0.28 ns/op 0 allocs ⚡
```
### idiomatic/option (Tuple-based)
```
BenchmarkChain_3Steps 0.22 ns/op 0 allocs ⚡
BenchmarkChain_5Steps 0.22 ns/op 0 allocs ⚡
BenchmarkChain_10Steps 0.21 ns/op 0 allocs ⚡
BenchmarkMap_5Steps 0.22 ns/op 0 allocs ⚡
```
### Performance Comparison
| Steps | v2/option | idiomatic/option | Slowdown |
|-------|-----------|------------------|----------|
| 3 | 8.17 ns | 0.22 ns | **37x slower** |
| 5 | 16.57 ns | 0.22 ns | **75x slower** |
| 10 | 47.01 ns | 0.21 ns | **224x slower** |
**Key Finding**: The performance gap **increases linearly** with chain depth!
---
## Visual Example: The Problem
### Scenario: Processing User Input
```go
// Process user input through multiple validation steps
input := "42"
// v2/option - Nested MonadChain
result := MonadChain(
MonadChain(
MonadChain(
Some(input),
validateNotEmpty, // Step 1
),
parseToInt, // Step 2
),
validateRange, // Step 3
)
```
### What Happens Under the Hood
#### v2/option (Struct Construction Overhead)
```go
// Step 0: Initial value
Some(input)
// Creates: Option[string]{value: "42", isSome: true}
// Memory: HEAP allocation
// Step 1: Validate not empty
MonadChain(opt, validateNotEmpty)
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
// Output: Option[string]{value: "42", isSome: true} ← NEW heap allocation
// Memory: 2 heap allocations
// Step 2: Parse to int
MonadChain(opt, parseToInt)
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
// Memory: 3 heap allocations
// Step 3: Validate range
MonadChain(opt, validateRange)
// Input: Option[int]{value: 42, isSome: true} ← Read from heap
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
// Memory: 4 heap allocations TOTAL
// Each step:
// 1. Reads Option struct from memory
// 2. Checks isSome field
// 3. Calls function
// 4. Creates NEW Option struct
// 5. Writes to memory
```
#### idiomatic/option (Zero Allocation)
```go
// Step 0: Initial value
s, ok := Some(input)
// Creates: ("42", true)
// Memory: STACK only (registers)
// Step 1: Validate not empty
v1, ok1 := Chain(validateNotEmpty)(s, ok)
// Input: ("42", true) ← Values in registers
// Output: ("42", true) ← Values in registers
// Memory: ZERO allocations
// Step 2: Parse to int
v2, ok2 := Chain(parseToInt)(v1, ok1)
// Input: ("42", true) ← Values in registers
// Output: (42, true) ← Values in registers
// Memory: ZERO allocations
// Step 3: Validate range
v3, ok3 := Chain(validateRange)(v2, ok2)
// Input: (42, true) ← Values in registers
// Output: (42, true) ← Values in registers
// Memory: ZERO allocations TOTAL
// Each step:
// 1. Reads values from registers (no memory access!)
// 2. Checks bool flag
// 3. Calls function
// 4. Returns new tuple (stays in registers)
// 5. Compiler optimizes everything away!
```
---
## Assembly-Level Difference
### v2/option - Struct Overhead
```asm
; Every chain step does:
MOV RAX, [heap_ptr] ; Load struct from heap
TEST BYTE [RAX+8], 1 ; Check isSome field
JZ none_case ; Branch if None
MOV RDI, [RAX] ; Load value from struct
CALL transform_func ; Call the function
CALL malloc ; Allocate new struct ⚠️
MOV [new_ptr], result ; Store result
MOV [new_ptr+8], 1 ; Set isSome = true
```
### idiomatic/option - Optimized Away
```asm
; All steps compiled to:
MOV EAX, 42 ; The final result!
; Everything else optimized away! ⚡
```
**Compiler insight**: With tuples, the Go compiler can:
1. **Inline everything** - No function call overhead
2. **Eliminate branches** - Constant propagation removes `if ok` checks
3. **Use registers only** - Values never touch memory
4. **Dead code elimination** - Removes unnecessary operations
---
## Real-World Example with Timings
### Example: User Registration Validation Chain
```go
// Validate: email → trim → lowercase → check format → check uniqueness
```
#### v2/option Performance
```go
func ValidateEmail_v2(email string) Option[string] {
return MonadChain(
MonadChain(
MonadChain(
MonadChain(
Some(email),
trimWhitespace, // ~2 ns
),
toLowerCase, // ~2 ns
),
validateFormat, // ~2 ns
),
checkUniqueness, // ~2 ns
)
}
// Total: ~8-16 ns (matches our 5-step benchmark: 16.57 ns)
```
#### idiomatic/option Performance
```go
func ValidateEmail_idiomatic(email string) (string, bool) {
v1, ok1 := Chain(trimWhitespace)(email, true)
v2, ok2 := Chain(toLowerCase)(v1, ok1)
v3, ok3 := Chain(validateFormat)(v2, ok2)
return Chain(checkUniqueness)(v3, ok3)
}
// Total: ~0.22 ns (entire chain optimized to single operation!)
```
**Impact**: For 1 million validations:
- v2/option: 16.57 ms
- idiomatic/option: 0.22 ms
- **Difference: 75x faster = saved 16.35 ms**
---
## Why Map is Fast in v2/option
Interestingly, `Map` (pure transformations) is **much faster** than `Chain`:
```
v2/option:
- BenchmarkChain_5Steps: 16.57 ns
- BenchmarkMap_5Steps: 0.28 ns ← 59x FASTER!
```
**Reason**: Map transformations can be **inlined and fused** by the compiler:
```go
// This:
Map(f5)(Map(f4)(Map(f3)(Map(f2)(Map(f1)(opt)))))
// Becomes (after compiler optimization):
Some(f5(f4(f3(f2(f1(value)))))) // Single struct construction!
// While Chain cannot be optimized the same way:
MonadChain(MonadChain(...)) // Must construct at each step
```
---
## When Does This Matter?
### ⚠️ **Rarely Critical** (99% of use cases)
Even 10-step chains only cost **47 nanoseconds**. For context:
- Database query: **~1,000,000 ns** (1 ms)
- HTTP request: **~10,000,000 ns** (10 ms)
- File I/O: **~100,000 ns** (0.1 ms)
**The 47 ns overhead is negligible compared to real I/O operations.**
### ⚡ **Can Matter** (High-throughput scenarios)
1. **In-memory data processing pipelines**
```go
// Processing 10 million records with 5-step validation
v2/option: 165 ms
idiomatic/option: 2 ms
Difference: 163 ms saved ⚡
```
2. **Real-time stream processing**
- Processing 100k events/second with chained transformations
- 16.57 ns × 100,000 = 1.66 ms vs 0.22 ns × 100,000 = 0.022 ms
- Can affect throughput for high-frequency trading, gaming, etc.
3. **Tight inner loops with chained logic**
```go
for i := 0; i < 1_000_000; i++ {
result := Chain(f1).Chain(f2).Chain(f3).Chain(f4)(data[i])
}
// v2/option: 16 ms
// idiomatic: 0.22 ms
```
---
## Root Cause Summary
| Aspect | v2/option | idiomatic/option | Why? |
|--------|-----------|------------------|------|
| **Intermediate values** | `Option[T]` struct | `(T, bool)` tuple | Struct requires memory, tuple can use registers |
| **Memory allocation** | 1 per step | 0 total | Heap vs stack |
| **Compiler optimization** | Limited | Aggressive | Structs block inlining |
| **Cache impact** | Heap reads | Register-only | Memory bandwidth saved |
| **Branch prediction** | Struct checks | Optimized away | Compiler removes branches |
---
## Recommendations
### ✅ **Use v2/option When:**
- I/O-bound operations (database, network, files)
- User-facing applications (latency dominated by I/O)
- Need JSON marshaling, TryCatch, SequenceArray
- Chain depth < 5 steps (overhead < 20 ns - negligible)
- Code clarity > microsecond performance
### ✅ **Use idiomatic/option When:**
- CPU-bound data processing
- High-throughput stream processing
- Tight inner loops with chaining
- In-memory analytics
- Performance-critical paths
- Chain depth > 5 steps
### ✅ **Mitigation for v2/option:**
If you need v2/option but want better chain performance:
1. **Use Map instead of Chain** when possible:
```go
// Bad (16.57 ns):
MonadChain(MonadChain(MonadChain(opt, f1), f2), f3)
// Good (0.28 ns):
Map(f3)(Map(f2)(Map(f1)(opt)))
```
2. **Batch operations**:
```go
// Instead of chaining many steps:
validate := func(x T) Option[T] {
// Combine multiple checks in one function
if check1(x) && check2(x) && check3(x) {
return Some(transform(x))
}
return None[T]()
}
```
3. **Profile first**:
- Only optimize hot paths
- 47 ns is often acceptable
- Don't premature optimize
---
## Conclusion
**The deep chaining performance gap is:**
- ✅ **Real and measurable** (37-224x slower)
- ✅ **Well understood** (struct construction overhead)
- ⚠️ **Rarely critical** (nanosecond differences usually don't matter)
- ✅ **Easy to work around** (use Map, batch operations)
- ✅ **Worth it for the API benefits** (JSON, methods, helpers)
**For 99% of applications, v2/option's performance is excellent.** The gap only matters in specialized high-throughput scenarios where you should probably use idiomatic/option anyway.
The optimizations already applied (`//go:inline`, direct field access) brought v2/option to **competitive parity** for all practical purposes. The remaining gap is a **fundamental design trade-off**, not a fixable bug.

816
v2/IDIOMATIC_COMPARISON.md Normal file
View File

@@ -0,0 +1,816 @@
# Idiomatic vs Standard Package Comparison
> **Latest Update:** 2025-11-18 - Updated with fresh benchmarks after `either` package optimizations
This document provides a comprehensive comparison between the `idiomatic` packages and the standard fp-go packages (`result` and `option`).
**See also:** [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md) for detailed performance analysis.
## Table of Contents
1. [Overview](#overview)
2. [Design Differences](#design-differences)
3. [Performance Comparison](#performance-comparison)
4. [API Comparison](#api-comparison)
5. [When to Use Each](#when-to-use-each)
## Overview
The fp-go library provides two approaches to functional programming patterns in Go:
- **Standard Packages** (`result`, `either`, `option`): Use struct wrappers for algebraic data types
- **Idiomatic Packages** (`idiomatic/result`, `idiomatic/option`): Use native Go tuples for the same patterns
### Key Insight
After recent optimizations to the `either` package, both approaches now offer excellent performance:
- **Simple operations** (~1-5 ns/op): Both packages perform comparably
- **Core transformations**: Idiomatic is **1.2-2.3x faster**
- **Complex operations**: Idiomatic is **2-32x faster** with significantly fewer allocations
- **Real-world pipelines**: Idiomatic shows **2-3.4x speedup**
The idiomatic packages provide:
- Consistently better performance across most operations
- Zero allocations for complex operations (ChainFirst: 72 B → 0 B)
- More familiar Go idioms
- Seamless integration with existing Go code
## Design Differences
### Data Representation
#### Standard Result Package
```go
// Uses Either[error, A] which is a struct wrapper
type Result[A any] = Either[error, A]
type Either[E, A any] struct {
r A
l E
isLeft bool
}
// Creating values - ZERO heap allocations (struct returned by value)
success := result.Right[error](42) // Returns Either struct by value (0 B/op)
failure := result.Left[int](err) // Returns Either struct by value (0 B/op)
// Benchmarks confirm:
// BenchmarkRight-16 871258489 1.384 ns/op 0 B/op 0 allocs/op
// BenchmarkLeft-16 683089270 1.761 ns/op 0 B/op 0 allocs/op
```
#### Idiomatic Result Package
```go
// Uses native Go tuples (value, error)
type Kleisli[A, B any] = func(A) (B, error)
type Operator[A, B any] = func(A, error) (B, error)
// Creating values - ZERO allocations (tuples on stack)
success := result.Right(42) // Returns (42, nil) - 0 B/op
failure := result.Left[int](err) // Returns (0, err) - 0 B/op
// Benchmarks confirm:
// BenchmarkRight-16 789879016 1.427 ns/op 0 B/op 0 allocs/op
// BenchmarkLeft-16 895412131 1.349 ns/op 0 B/op 0 allocs/op
```
### Type Signatures
#### Standard Result
```go
// Functions take and return Result[T] structs
func Map[A, B any](f func(A) B) func(Result[A]) Result[B]
func Chain[A, B any](f Kleisli[A, B]) func(Result[A]) Result[B]
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(Result[A]) B
// Usage requires wrapping/unwrapping
result := result.Right[error](42)
mapped := result.Map(double)(result)
value, err := result.UnwrapError(mapped)
```
#### Idiomatic Result
```go
// Functions work directly with tuples
func Map[A, B any](f func(A) B) func(A, error) (B, error)
func Chain[A, B any](f Kleisli[A, B]) func(A, error) (B, error)
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(A, error) B
// Usage works naturally with Go's error handling
value, err := result.Right(42)
value, err = result.Map(double)(value, err)
// Can use directly: if err != nil { ... }
```
### Memory Layout
#### Standard Result (struct-based)
```
Either[error, int] struct (returned by value):
┌─────────────────────┐
│ r: int (8B) │ Stack allocation: 24 bytes
│ l: error (8B) │ NO heap allocation when returned by value
│ isLeft: bool (1B) │ Benchmarks show 0 B/op, 0 allocs/op
│ padding (7B) │
└─────────────────────┘
Key insight: Go returns small structs (<= ~64 bytes) by value on the stack.
The Either struct (24 bytes) does NOT escape to heap in normal usage.
```
#### Idiomatic Result (tuple-based)
```
(int, error) tuple:
┌─────────────────────┐
│ int: 8 bytes │ Stack allocation: 16 bytes
│ error: 8 bytes │ NO heap allocation
└─────────────────────┘
Both approaches achieve zero heap allocations for constructor operations!
```
### Why Both Have Zero Allocations
Both packages avoid heap allocations for simple operations:
**Standard Either/Result:**
- `Either` struct is small (24 bytes)
- Go returns by value on the stack
- Inlining eliminates function call overhead
- Result: `0 B/op, 0 allocs/op`
**Idiomatic Result:**
- Tuples are native Go multi-value returns
- Always on stack, never heap
- Even simpler than structs
- Result: `0 B/op, 0 allocs/op`
**When Either WOULD escape to heap:**
```go
// Taking address of local Either
func bad1() *Either[error, int] {
e := Right[error](42)
return &e // ESCAPES: pointer to local
}
// Storing in interface
func bad2() interface{} {
return Right[error](42) // ESCAPES: interface boxing
}
// Closure capture with pointer receiver
func bad3() func() Either[error, int] {
e := Right[error](42)
return func() Either[error, int] {
return e // May escape depending on usage
}
}
```
In normal functional composition (Map, Chain, Fold), neither package causes heap allocations for simple operations.
## Performance Comparison
> **Latest benchmarks:** 2025-11-18 after `either` package optimizations
>
> For detailed analysis, see [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md)
### Quick Summary (Either vs Idiomatic)
Both packages now show **excellent performance** after optimizations:
| Category | Either | Idiomatic | Winner | Speedup |
|----------|--------|-----------|--------|---------|
| **Constructors** | 1.4-1.8 ns/op | 1.2-1.4 ns/op | **TIE** | ~1.0-1.3x |
| **Predicates** | 1.5 ns/op | 1.3-1.5 ns/op | **TIE** | ~1.0x |
| **Map Operations** | 4.2-7.2 ns/op | 2.5-4.3 ns/op | **Idiomatic** | 1.2-2.1x |
| **Chain Operations** | 4.4-5.4 ns/op | 2.3-2.5 ns/op | **Idiomatic** | 1.8-2.3x |
| **ChainFirst** | **87.6 ns/op** (72 B) | **2.7 ns/op** (0 B) | **Idiomatic** | **32.4x** ✓✓✓ |
| **BiMap** | 11.5-16.8 ns/op | 3.5-3.8 ns/op | **Idiomatic** | 3.3-4.4x |
| **Alt/OrElse** | 4.0-5.7 ns/op | 2.4 ns/op | **Idiomatic** | 1.6-2.4x |
| **GetOrElse** | 6.3-9.0 ns/op | 1.5-2.1 ns/op | **Idiomatic** | 3.1-6.1x |
| **Pipelines** | 75-280 ns/op | 26-116 ns/op | **Idiomatic** | 2.4-3.4x |
### Constructor Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|-----------|----------------|-------------------|---------|--------|
| Left | 1.76 | **1.35** | 1.3x | Idiomatic ✓ |
| Right | 1.38 | 1.43 | ~1.0x | Tie |
| Of | 1.68 | **1.22** | 1.4x | Idiomatic ✓ |
**Analysis:** After optimizations, both packages have comparable constructor performance.
### Core Transformation Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|------------------|----------------|-------------------|---------|--------|
| Map (Right) | 5.13 | **4.34** | 1.2x | Idiomatic ✓ |
| Map (Left) | 4.19 | **2.48** | 1.7x | Idiomatic ✓ |
| MapLeft (Right) | 3.93 | **2.22** | 1.8x | Idiomatic ✓ |
| MapLeft (Left) | 7.22 | **3.51** | 2.1x | Idiomatic ✓ |
| Chain (Right) | 5.44 | **2.34** | 2.3x | Idiomatic ✓ |
| Chain (Left) | 4.44 | **2.53** | 1.8x | Idiomatic ✓ |
### Complex Operations - The Big Difference
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------------------|----------------|-------------------|---------|---------------|-------------|
| **ChainFirst (Right)** | **87.62** | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | **0 B, 0 allocs** |
| ChainFirst (Left) | 3.94 | 2.48 | 1.6x | 0 B | 0 B |
| BiMap (Right) | 16.79 | **3.82** | 4.4x | 0 B | 0 B |
| BiMap (Left) | 11.47 | **3.47** | 3.3x | 0 B | 0 B |
**Critical Insight:** ChainFirst shows the most dramatic difference - **32x faster** with **zero allocations** in idiomatic.
### Pipeline Benchmarks (Real-World Scenarios)
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 alloc |
| Pipeline Complex (Right)| 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
**Analysis:** In realistic composition scenarios, idiomatic is consistently 2-3x faster with fewer allocations.
### Extraction Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|-----------|----------------|-------------------|---------|--------|
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | Idiomatic |
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | Idiomatic |
| Alt (Right) | 5.72 | **2.40** | **2.4x** ✓ | Idiomatic |
| Alt (Left) | 4.89 | **2.39** | **2.0x** ✓ | Idiomatic |
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | Idiomatic |
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | Idiomatic |
**Analysis:** Idiomatic shows significant advantages (1.5-6x) for value extraction operations.
### Key Findings After Optimizations
1. **Both packages are now fast** - Simple operations are in the 1-5 ns/op range for both
2. **Idiomatic leads in most operations** - 1.2-2.3x faster for common transformations
3. **ChainFirst is the standout** - 32x faster with zero allocations in idiomatic
4. **Pipelines favor idiomatic** - 2-3.4x faster in realistic composition scenarios
5. **Memory efficiency** - Idiomatic consistently uses fewer allocations
### Performance Summary
**Idiomatic Advantages:**
- **Core operations**: 1.2-2.3x faster for Map, Chain, Fold
- **Complex operations**: 3-32x faster with zero allocations
- **Pipelines**: 2-3.4x faster with significantly fewer allocations
- **Extraction**: 1.5-6x faster for GetOrElse, Alt, Fold
- **Consistency**: Predictable, fast performance across all operations
**Either Advantages:**
- **Comparable performance**: After optimizations, matches idiomatic for simple operations
- **Feature richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
- **Type flexibility**: Full Either[E, A] with custom error types
- **Zero allocations**: Most simple operations have zero allocations
## API Comparison
### Creating Values
#### Standard Result
```go
import "github.com/IBM/fp-go/v2/result"
// Create success/failure
success := result.Right[error](42)
failure := result.Left[int](errors.New("oops"))
// Type annotation required
var r result.Result[int] = result.Right[error](42)
```
#### Idiomatic Result
```go
import "github.com/IBM/fp-go/v2/idiomatic/result"
// Create success/failure (more concise)
success := result.Right(42) // (42, nil)
failure := result.Left[int](errors.New("oops")) // (0, error)
// Native Go pattern
value, err := result.Right(42)
if err != nil {
// handle error
}
```
### Transforming Values
#### Standard Result
```go
// Map transforms the success value
double := result.Map(func(x int) int { return x * 2 })
result := double(result.Right[error](21)) // Right(42)
// Chain sequences operations
validate := result.Chain(func(x int) result.Result[int] {
if x > 0 {
return result.Right[error](x * 2)
}
return result.Left[int](errors.New("negative"))
})
```
#### Idiomatic Result
```go
// Map transforms the success value
double := result.Map(func(x int) int { return x * 2 })
value, err := double(21, nil) // (42, nil)
// Chain sequences operations
validate := result.Chain(func(x int) (int, error) {
if x > 0 {
return x * 2, nil
}
return 0, errors.New("negative")
})
```
### Pattern Matching
#### Standard Result
```go
// Fold extracts the value
output := result.Fold(
func(err error) string { return "Error: " + err.Error() },
func(n int) string { return fmt.Sprintf("Value: %d", n) },
)(myResult)
// GetOrElse with default
value := result.GetOrElse(func(err error) int { return 0 })(myResult)
```
#### Idiomatic Result
```go
// Fold extracts the value (same API, different input)
output := result.Fold(
func(err error) string { return "Error: " + err.Error() },
func(n int) string { return fmt.Sprintf("Value: %d", n) },
)(value, err)
// GetOrElse with default
value := result.GetOrElse(func(err error) int { return 0 })(value, err)
// Or use native Go pattern
if err != nil {
value = 0
}
```
### Integration with Existing Code
#### Standard Result
```go
// Converting from (value, error) to Result
func doSomething() (int, error) {
return 42, nil
}
result := result.TryCatchError(doSomething())
// Converting back to (value, error)
value, err := result.UnwrapError(result)
```
#### Idiomatic Result
```go
// Direct compatibility with (value, error)
func doSomething() (int, error) {
return 42, nil
}
// No conversion needed!
value, err := doSomething()
value, err = result.Map(double)(value, err)
```
### Pipeline Composition
#### Standard Result
```go
import F "github.com/IBM/fp-go/v2/function"
output := F.Pipe3(
result.Right[error](10),
result.Map(double),
result.Chain(validate),
result.Map(format),
)
// Need to unwrap at the end
value, err := result.UnwrapError(output)
```
#### Idiomatic Result
```go
import F "github.com/IBM/fp-go/v2/function"
value, err := F.Pipe3(
result.Right(10),
result.Map(double),
result.Chain(validate),
result.Map(format),
)
// Already in (value, error) form
if err != nil {
// handle error
}
```
## Detailed Design Comparison
### Type System
#### Standard Result
**Strengths:**
- Full algebraic data type semantics
- Explicit Either[E, A] allows custom error types
- Type-safe by construction
- Clear separation of error and success channels
**Weaknesses:**
- Requires wrapper structs (memory overhead)
- Less familiar to Go developers
- Needs conversion functions for Go's standard library
- More verbose type annotations
#### Idiomatic Result
**Strengths:**
- Native Go idioms (value, error) pattern
- Zero wrapper overhead
- Seamless stdlib integration
- Familiar to all Go developers
- Terser syntax
**Weaknesses:**
- Error type fixed to `error`
- Less explicit about Either semantics
- Cannot use custom error types without conversion
- Slightly less type-safe (can accidentally ignore bool/error)
### Monad Laws
Both packages satisfy the monad laws, but enforce them differently:
#### Standard Result
```go
// Left identity: return a >>= f ≡ f a
assert.Equal(
result.Chain(f)(result.Of(a)),
f(a),
)
// Right identity: m >>= return ≡ m
assert.Equal(
result.Chain(result.Of[int])(m),
m,
)
// Associativity: (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)
assert.Equal(
result.Chain(g)(result.Chain(f)(m)),
result.Chain(func(x int) result.Result[int] {
return result.Chain(g)(f(x))
})(m),
)
```
#### Idiomatic Result
```go
// Same laws, different syntax
// Left identity
a, aerr := result.Of(val)
b, berr := result.Chain(f)(a, aerr)
c, cerr := f(val)
assert.Equal((b, berr), (c, cerr))
// Right identity
value, err := m()
identity := result.Chain(result.Of[int])
assert.Equal(identity(value, err), (value, err))
// Associativity (same structure, tuple-based)
```
### Error Handling Philosophy
#### Standard Result
```go
// Explicit error handling through types
func processUser(id int) result.Result[User] {
user := fetchUser(id) // Returns Result[User]
return F.Pipe2(
user,
result.Chain(validateUser),
result.Chain(enrichUser),
)
}
// Must explicitly unwrap
user, err := result.UnwrapError(processUser(42))
if err != nil {
log.Error(err)
}
```
#### Idiomatic Result
```go
// Natural Go error handling
func processUser(id int) (User, error) {
user, err := fetchUser(id) // Returns (User, error)
return F.Pipe2(
(user, err),
result.Chain(validateUser),
result.Chain(enrichUser),
)
}
// Already in Go form
user, err := processUser(42)
if err != nil {
log.Error(err)
}
```
### Composition Patterns
#### Standard Result
```go
// Applicative composition
import A "github.com/IBM/fp-go/v2/apply"
type Config struct {
Host string
Port int
DB string
}
config := A.SequenceT3(
result.FromPredicate(validHost, hostError)(host),
result.FromPredicate(validPort, portError)(port),
result.FromPredicate(validDB, dbError)(db),
)(func(h string, p int, d string) Config {
return Config{h, p, d}
})
```
#### Idiomatic Result
```go
// Direct tuple composition
config, err := func() (Config, error) {
host, err := result.FromPredicate(validHost, hostError)(host)
if err != nil {
return Config{}, err
}
port, err := result.FromPredicate(validPort, portError)(port)
if err != nil {
return Config{}, err
}
db, err := result.FromPredicate(validDB, dbError)(db)
if err != nil {
return Config{}, err
}
return Config{host, port, db}, nil
}()
```
## When to Use Each
### Use Idiomatic Result When (Recommended for Most Cases):
1. **Performance Matters**
- Any production service (web servers, APIs, microservices)
- Hot paths and high-throughput scenarios (>1000 req/s)
- Complex operation chains (**32x faster** ChainFirst)
- Real-world pipelines (**2-3x faster**)
- Memory-constrained environments (zero allocations)
- Want **1.2-6x speedup** across most operations
2. **Go Integration** ⭐⭐
- Working with existing Go codebases
- Interfacing with standard library (native (value, error))
- Team familiar with Go, new to FP
- Want zero-cost functional abstractions
- Seamless error handling patterns
3. **Pragmatic Functional Programming**
- Value performance AND functional patterns
- Prefer Go idioms over FP terminology
- Simpler function signatures
- Lower cognitive overhead
- Production-ready patterns
4. **Real-World Applications**
- Web servers, REST APIs, gRPC services
- CLI tools and command-line applications
- Data processing pipelines
- Any latency-sensitive application
- Systems with tight performance budgets
**Performance Gains:** Use idiomatic for 1.2-32x speedup depending on operation, with consistently lower allocations.
### Use Standard Either/Result When:
1. **Type Safety & Flexibility**
- Need explicit Either[E, A] with **custom error types**
- Building domain-specific error hierarchies
- Want to distinguish different error categories at type level
- Type system enforcement is critical
2. **Advanced FP Features**
- Using Do-notation for complex monadic compositions
- Need operations like Flatten, Swap, Bind, Let
- Leveraging advanced type classes (Semigroup, Monoid)
- Want the complete FP toolkit
3. **FP Expertise & Education**
- Porting code from other FP languages (Scala, Haskell)
- Teaching functional programming concepts
- Team has strong FP background
- Explicit algebraic data types preferred
- Code review benefits from FP terminology
4. **Performance is Acceptable**
- After optimizations, Either is **quite fast** (1-5 ns/op for simple operations)
- Difference matters mainly at high scale (millions of operations)
- Code clarity > micro-optimizations
- Simple operations dominate your workload
**Note:** Either package is now performant enough for most use cases. Choose it for features, not performance concerns.
### Hybrid Approach
You can use both packages together:
```go
import (
stdResult "github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/idiomatic/result"
)
// Use standard for complex types
type ValidationError struct {
Field string
Error string
}
func validateInput(input string) stdResult.Either[ValidationError, Input] {
// ... validation logic
}
// Convert to idiomatic for performance
func processInput(input string) (Output, error) {
validated := validateInput(input)
value, err := stdResult.UnwrapError(
stdResult.MapLeft(toError)(validated),
)
// Use idiomatic for hot path
return result.Chain(heavyProcessing)(value, err)
}
```
## Migration Guide
### From Standard to Idiomatic
```go
// Before (standard)
import "github.com/IBM/fp-go/v2/result"
func process(x int) result.Result[int] {
return F.Pipe2(
result.Right[error](x),
result.Map(double),
result.Chain(validate),
)
}
// After (idiomatic)
import "github.com/IBM/fp-go/v2/idiomatic/result"
func process(x int) (int, error) {
return F.Pipe2(
result.Right(x),
result.Map(double),
result.Chain(validate),
)
}
```
### Key Changes
1. **Type signatures**: `Result[T]``(T, error)`
2. **Kleisli**: `func(A) Result[B]``func(A) (B, error)`
3. **Operator**: `func(Result[A]) Result[B]``func(A, error) (B, error)`
4. **Return values**: Function calls return tuples, not wrapped values
5. **Pattern matching**: Same Fold/GetOrElse API, different inputs
## Conclusion
### Performance Summary (After Either Optimizations)
The latest benchmark results show a clear pattern:
**Both packages are now fast**, but idiomatic consistently leads:
- **Constructors & Predicates**: Both ~1-2 ns/op (essentially tied)
- **Core transformations**: Idiomatic **1.2-2.3x faster** (Map, Chain, Fold)
- **Complex operations**: Idiomatic **3-32x faster** (BiMap, ChainFirst)
- **Pipelines**: Idiomatic **2-3.4x faster** with fewer allocations
- **Extraction**: Idiomatic **1.5-6x faster** (GetOrElse, Alt)
**Key Insight:** The idiomatic package delivers **consistently better performance** across the board while maintaining zero-cost abstractions. The Either package is now fast enough for most use cases, but idiomatic is the performance winner.
### Updated Recommendation Matrix
| Scenario | Recommendation | Reason |
|----------|---------------|--------|
| **New Go project** | **Idiomatic** ⭐ | Natural Go patterns, 1.2-6x faster, better integration |
| **Production services** | **Idiomatic** ⭐⭐ | 2-3x faster pipelines, zero allocations, proven performance |
| **Performance critical** | **Idiomatic** ⭐⭐⭐ | 32x faster complex ops, minimal allocations |
| **Microservices/APIs** | **Idiomatic** ⭐⭐ | High throughput, familiar patterns, better performance |
| **CLI Tools** | **Idiomatic** ⭐ | Low overhead, Go idioms, fast |
| Custom error types | Standard/Either | Need Either[E, A] with domain types |
| Learning FP | Standard/Either | Clearer ADT semantics, educational |
| FP-heavy codebase | Standard/Either | Consistency, Do-notation, full FP toolkit |
| Library/Framework | Either way | Both are good; choose based on API style |
### Real-World Impact
For a service handling 10,000 requests/second with typical pipeline operations:
```
Either package: 280 ns/op × 10M req/day = 2,800 seconds = 46.7 minutes
Idiomatic package: 116 ns/op × 10M req/day = 1,160 seconds = 19.3 minutes
Time saved: 27.4 minutes of CPU time per day
```
At scale, this translates to:
- Lower latency (2-3x faster response times for FP operations)
- Reduced CPU usage (fewer cores needed)
- Lower memory pressure (significantly fewer allocations)
- Better resource utilization
### Final Recommendation
**For most Go projects:** Use **idiomatic packages**
- 1.2-32x faster across operations
- Native Go idioms
- Zero-cost abstractions
- Production-proven performance
- Easier integration
**For specialized needs:** Use **standard Either/Result**
- Need custom error types Either[E, A]
- Want Do-notation and advanced FP features
- Porting from FP languages
- Educational/learning context
- FP-heavy existing codebase
### Bottom Line
After optimizations, both packages are excellent:
- **Either/Result**: Fast enough for most use cases, feature-rich, type-safe
- **Idiomatic**: **Faster in practice** (1.2-32x), native Go, zero-cost FP
The idiomatic packages now represent the **best of both worlds**: full functional programming capabilities with Go's native performance and idioms. Unless you specifically need Either[E, A]'s custom error types or advanced FP features, **idiomatic is the recommended choice** for production Go services.
Both maintain the core benefits of functional programming—choose based on whether you prioritize performance & Go integration (idiomatic) or type flexibility & FP features (either).

View File

@@ -2,25 +2,152 @@
[![Go Reference](https://pkg.go.dev/badge/github.com/IBM/fp-go/v2.svg)](https://pkg.go.dev/github.com/IBM/fp-go/v2)
[![Coverage Status](https://coveralls.io/repos/github/IBM/fp-go/badge.svg?branch=main&flag=v2)](https://coveralls.io/github/IBM/fp-go?branch=main)
[![Go Report Card](https://goreportcard.com/badge/github.com/IBM/fp-go/v2)](https://goreportcard.com/report/github.com/IBM/fp-go/v2)
Version 2 of fp-go leverages [generic type aliases](https://github.com/golang/go/issues/46477) introduced in Go 1.24, providing a more ergonomic and streamlined API.
**fp-go** is a comprehensive functional programming library for Go, bringing type-safe functional patterns inspired by [fp-ts](https://gcanti.github.io/fp-ts/) to the Go ecosystem. Version 2 leverages [generic type aliases](https://github.com/golang/go/issues/46477) introduced in Go 1.24, providing a more ergonomic and streamlined API.
## 📚 Table of Contents
- [Overview](#-overview)
- [Features](#-features)
- [Requirements](#-requirements)
- [Breaking Changes](#-breaking-changes)
- [Installation](#-installation)
- [Quick Start](#-quick-start)
- [Breaking Changes](#️-breaking-changes)
- [Key Improvements](#-key-improvements)
- [Migration Guide](#-migration-guide)
- [Installation](#-installation)
- [What's New](#-whats-new)
- [Documentation](#-documentation)
- [Contributing](#-contributing)
- [License](#-license)
## 🎯 Overview
fp-go brings the power of functional programming to Go with:
- **Type-safe abstractions** - Monads, Functors, Applicatives, and more
- **Composable operations** - Build complex logic from simple, reusable functions
- **Error handling** - Elegant error management with `Either`, `Result`, and `IOEither`
- **Lazy evaluation** - Control when and how computations execute
- **Optics** - Powerful lens, prism, and traversal operations for immutable data manipulation
## ✨ Features
- 🔒 **Type Safety** - Leverage Go's generics for compile-time guarantees
- 🧩 **Composability** - Chain operations naturally with functional composition
- 📦 **Rich Type System** - `Option`, `Either`, `Result`, `IO`, `Reader`, and more
- 🎯 **Practical** - Designed for real-world Go applications
- 🚀 **Performance** - Zero-cost abstractions where possible
- 📖 **Well-documented** - Comprehensive API documentation and examples
- 🧪 **Battle-tested** - Extensive test coverage
## 🔧 Requirements
- **Go 1.24 or later** (for generic type alias support)
## ⚠️ Breaking Changes
## 📦 Installation
### 1. Generic Type Aliases
```bash
go get github.com/IBM/fp-go/v2
```
## 🚀 Quick Start
### Working with Option
```go
package main
import (
"fmt"
"github.com/IBM/fp-go/v2/option"
)
func main() {
// Create an Option
some := option.Some(42)
none := option.None[int]()
// Map over values
doubled := option.Map(N.Mul(2))(some)
fmt.Println(option.GetOrElse(0)(doubled)) // Output: 84
// Chain operations
result := option.Chain(func(x int) option.Option[string] {
if x > 0 {
return option.Some(fmt.Sprintf("Positive: %d", x))
}
return option.None[string]()
})(some)
fmt.Println(option.GetOrElse("No value")(result)) // Output: Positive: 42
}
```
### Error Handling with Result
```go
package main
import (
"errors"
"fmt"
"github.com/IBM/fp-go/v2/result"
)
func divide(a, b int) result.Result[int] {
if b == 0 {
return result.Error[int](errors.New("division by zero"))
}
return result.Ok(a / b)
}
func main() {
res := divide(10, 2)
// Pattern match on the result
result.Fold(
func(err error) { fmt.Println("Error:", err) },
func(val int) { fmt.Println("Result:", val) },
)(res)
// Output: Result: 5
// Or use GetOrElse for a default value
value := result.GetOrElse(0)(divide(10, 0))
fmt.Println("Value:", value) // Output: Value: 0
}
```
### Composing IO Operations
```go
package main
import (
"fmt"
"github.com/IBM/fp-go/v2/io"
)
func main() {
// Define pure IO operations
readInput := io.MakeIO(func() string {
return "Hello, fp-go!"
})
// Transform the result
uppercase := io.Map(func(s string) string {
return fmt.Sprintf(">>> %s <<<", s)
})(readInput)
// Execute the IO operation
result := uppercase()
fmt.Println(result) // Output: >>> Hello, fp-go! <<<
}
```
### From V1 to V2
#### 1. Generic Type Aliases
V2 uses [generic type aliases](https://github.com/golang/go/issues/46477) which require Go 1.24+. This is the most significant change and enables cleaner type definitions.
@@ -34,7 +161,7 @@ type ReaderIOEither[R, E, A any] RD.Reader[R, IOE.IOEither[E, A]]
type ReaderIOEither[R, E, A any] = RD.Reader[R, IOE.IOEither[E, A]]
```
### 2. Generic Type Parameter Ordering
#### 2. Generic Type Parameter Ordering
Type parameters that **cannot** be inferred from function arguments now come first, improving type inference.
@@ -52,7 +179,7 @@ func Ap[B, R, E, A any](fa ReaderIOEither[R, E, A]) func(ReaderIOEither[R, E, fu
This change allows the Go compiler to infer more types automatically, reducing the need for explicit type parameters.
### 3. Pair Monad Semantics
#### 3. Pair Monad Semantics
Monadic operations for `Pair` now operate on the **second argument** to align with the [Haskell definition](https://hackage.haskell.org/package/TypeCompose-0.9.14/docs/Data-Pair.html).
@@ -60,7 +187,7 @@ Monadic operations for `Pair` now operate on the **second argument** to align wi
```go
// Operations on first element
pair := MakePair(1, "hello")
result := Map(func(x int) int { return x * 2 })(pair) // Pair(2, "hello")
result := Map(N.Mul(2))(pair) // Pair(2, "hello")
```
**V2:**
@@ -70,6 +197,36 @@ pair := MakePair(1, "hello")
result := Map(func(s string) string { return s + "!" })(pair) // Pair(1, "hello!")
```
#### 4. Endomorphism Compose Semantics
The `Compose` function for endomorphisms now follows **mathematical function composition** (right-to-left execution), aligning with standard functional programming conventions.
**V1:**
```go
// Compose executed left-to-right
double := N.Mul(2)
increment := func(x int) int { return x + 1 }
composed := Compose(double, increment)
result := composed(5) // (5 * 2) + 1 = 11
```
**V2:**
```go
// Compose executes RIGHT-TO-LEFT (mathematical composition)
double := N.Mul(2)
increment := func(x int) int { return x + 1 }
composed := Compose(double, increment)
result := composed(5) // (5 + 1) * 2 = 12
// Use MonadChain for LEFT-TO-RIGHT execution
chained := MonadChain(double, increment)
result2 := chained(5) // (5 * 2) + 1 = 11
```
**Key Difference:**
- `Compose(f, g)` now means `f ∘ g`, which applies `g` first, then `f` (right-to-left)
- `MonadChain(f, g)` applies `f` first, then `g` (left-to-right)
## ✨ Key Improvements
### 1. Simplified Type Declarations
@@ -91,16 +248,16 @@ func processData(input string) ET.Either[error, OPT.Option[int]] {
**V2 Approach:**
```go
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/option"
)
// Define type aliases once
type Either[A any] = either.Either[error, A]
type Result[A any] = result.Result[A]
type Option[A any] = option.Option[A]
// Use them throughout your codebase
func processData(input string) Either[Option[int]] {
func processData(input string) Result[Option[int]] {
// implementation
}
```
@@ -211,7 +368,7 @@ If you're using `Pair`, update operations to work on the second element:
```go
pair := MakePair(42, "data")
// Map operates on first element
result := Map(func(x int) int { return x * 2 })(pair)
result := Map(N.Mul(2))(pair)
```
**After (V2):**
@@ -230,20 +387,14 @@ Create project-wide type aliases for common patterns:
package myapp
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
)
type Either[A any] = either.Either[error, A]
type Result[A any] = result.Result[A]
type Option[A any] = option.Option[A]
type IOEither[A any] = ioeither.IOEither[error, A]
```
## 📦 Installation
```bash
go get github.com/IBM/fp-go/v2
type IOResult[A any] = ioresult.IOResult[A]
```
## 🆕 What's New
@@ -269,7 +420,7 @@ import (
func process() IOET.IOEither[error, string] {
return IOEG.Map[error, int, string](
func(x int) string { return fmt.Sprintf("%d", x) },
strconv.Itoa,
)(fetchData())
}
```
@@ -277,25 +428,37 @@ func process() IOET.IOEither[error, string] {
**V2 Simplified Example:**
```go
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/ioeither"
"strconv"
"github.com/IBM/fp-go/v2/ioresult"
)
type IOEither[A any] = ioeither.IOEither[error, A]
type IOResult[A any] = ioresult.IOResult[A]
func process() IOEither[string] {
return ioeither.Map(
func(x int) string { return fmt.Sprintf("%d", x) },
func process() IOResult[string] {
return ioresult.Map(
strconv.Itoa,
)(fetchData())
}
```
## 📚 Additional Resources
## 📚 Documentation
- [Main README](../README.md) - Core concepts and design philosophy
- [API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2)
- [Code Samples](../samples/)
- [Go 1.24 Release Notes](https://tip.golang.org/doc/go1.24)
- **[API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2)** - Complete API reference
- **[Code Samples](./samples/)** - Practical examples and use cases
- **[Go 1.24 Release Notes](https://tip.golang.org/doc/go1.24)** - Information about generic type aliases
### Core Modules
- **Option** - Represent optional values without nil
- **Either** - Type-safe error handling with left/right values
- **Result** - Simplified Either with error as left type
- **IO** - Lazy evaluation and side effect management
- **IOEither** - Combine IO with error handling
- **Reader** - Dependency injection pattern
- **ReaderIOEither** - Combine Reader, IO, and Either for complex workflows
- **Array** - Functional array operations
- **Record** - Functional record/map operations
- **Optics** - Lens, Prism, Optional, and Traversal for immutable updates
## 🤔 Should I Migrate?
@@ -310,10 +473,25 @@ func process() IOEither[string] {
- ⚠️ Migration effort outweighs benefits for your project
- ⚠️ You need stability in production (V2 is newer)
## 🤝 Contributing
Contributions are welcome! Here's how you can help:
1. **Report bugs** - Open an issue with a clear description and reproduction steps
2. **Suggest features** - Share your ideas for improvements
3. **Submit PRs** - Fix bugs or add features (please discuss major changes first)
4. **Improve docs** - Help make the documentation clearer and more comprehensive
Please read our contribution guidelines before submitting pull requests.
## 🐛 Issues and Feedback
Found a bug or have a suggestion? Please [open an issue](https://github.com/IBM/fp-go/issues) on GitHub.
## 📄 License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
This project is licensed under the Apache License 2.0. See the [LICENSE](https://github.com/IBM/fp-go/blob/main/LICENSE) file for details.
---
**Made with ❤️ by IBM**

View File

@@ -17,11 +17,10 @@ package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
EM "github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/tuple"
)
@@ -50,16 +49,16 @@ func Replicate[A any](n int, a A) []A {
// This is the monadic version of Map that takes the array as the first parameter.
//
//go:inline
func MonadMap[A, B any](as []A, f func(a A) B) []B {
func MonadMap[A, B any](as []A, f func(A) B) []B {
return G.MonadMap[[]A, []B](as, f)
}
// MonadMapRef applies a function to a pointer to each element of an array, returning a new array with the results.
// This is useful when you need to access elements by reference without copying.
func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
func MonadMapRef[A, B any](as []A, f func(*A) B) []B {
count := len(as)
bs := make([]B, count)
for i := count - 1; i >= 0; i-- {
for i := range count {
bs[i] = f(&as[i])
}
return bs
@@ -68,7 +67,7 @@ func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
// MapWithIndex applies a function to each element and its index in an array, returning a new array with the results.
//
//go:inline
func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
func MapWithIndex[A, B any](f func(int, A) B) Operator[A, B] {
return G.MapWithIndex[[]A, []B](f)
}
@@ -77,39 +76,39 @@ func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
//
// Example:
//
// double := array.Map(func(x int) int { return x * 2 })
// double := array.Map(N.Mul(2))
// result := double([]int{1, 2, 3}) // [2, 4, 6]
//
//go:inline
func Map[A, B any](f func(a A) B) func([]A) []B {
return G.Map[[]A, []B, A, B](f)
func Map[A, B any](f func(A) B) Operator[A, B] {
return G.Map[[]A, []B](f)
}
// MapRef applies a function to a pointer to each element of an array, returning a new array with the results.
// This is the curried version that returns a function.
func MapRef[A, B any](f func(a *A) B) func([]A) []B {
func MapRef[A, B any](f func(*A) B) Operator[A, B] {
return F.Bind2nd(MonadMapRef[A, B], f)
}
func filterRef[A any](fa []A, pred func(a *A) bool) []A {
var result []A
func filterRef[A any](fa []A, pred func(*A) bool) []A {
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, a)
var result []A = make([]A, 0, count)
for i := range count {
a := &fa[i]
if pred(a) {
result = append(result, *a)
}
}
return result
}
func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
var result []B
func filterMapRef[A, B any](fa []A, pred func(*A) bool, f func(*A) B) []B {
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, f(&a))
var result []B = make([]B, 0, count)
for i := range count {
a := &fa[i]
if pred(a) {
result = append(result, f(a))
}
}
return result
@@ -118,19 +117,19 @@ func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
// Filter returns a new array with all elements from the original array that match a predicate
//
//go:inline
func Filter[A any](pred func(A) bool) EM.Endomorphism[[]A] {
func Filter[A any](pred func(A) bool) Operator[A, A] {
return G.Filter[[]A](pred)
}
// FilterWithIndex returns a new array with all elements from the original array that match a predicate
//
//go:inline
func FilterWithIndex[A any](pred func(int, A) bool) EM.Endomorphism[[]A] {
func FilterWithIndex[A any](pred func(int, A) bool) Operator[A, A] {
return G.FilterWithIndex[[]A](pred)
}
// FilterRef returns a new array with all elements from the original array that match a predicate operating on pointers.
func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
func FilterRef[A any](pred func(*A) bool) Operator[A, A] {
return F.Bind2nd(filterRef[A], pred)
}
@@ -138,7 +137,7 @@ func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
// This is the monadic version that takes the array as the first parameter.
//
//go:inline
func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
func MonadFilterMap[A, B any](fa []A, f option.Kleisli[A, B]) []B {
return G.MonadFilterMap[[]A, []B](fa, f)
}
@@ -146,33 +145,33 @@ func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
// keeping only the Some values. This is the monadic version that takes the array as the first parameter.
//
//go:inline
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) O.Option[B]) []B {
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) Option[B]) []B {
return G.MonadFilterMapWithIndex[[]A, []B](fa, f)
}
// FilterMap maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
// FilterMap maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
//
//go:inline
func FilterMap[A, B any](f func(A) O.Option[B]) func([]A) []B {
func FilterMap[A, B any](f option.Kleisli[A, B]) Operator[A, B] {
return G.FilterMap[[]A, []B](f)
}
// FilterMapWithIndex maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
// FilterMapWithIndex maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
//
//go:inline
func FilterMapWithIndex[A, B any](f func(int, A) O.Option[B]) func([]A) []B {
func FilterMapWithIndex[A, B any](f func(int, A) Option[B]) Operator[A, B] {
return G.FilterMapWithIndex[[]A, []B](f)
}
// FilterChain maps an array with an iterating function that returns an [O.Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
// FilterChain maps an array with an iterating function that returns an [Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
//
//go:inline
func FilterChain[A, B any](f func(A) O.Option[[]B]) func([]A) []B {
func FilterChain[A, B any](f option.Kleisli[A, []B]) Operator[A, B] {
return G.FilterChain[[]A](f)
}
// FilterMapRef filters an array using a predicate on pointers and maps the matching elements using a function on pointers.
func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B {
func FilterMapRef[A, B any](pred func(a *A) bool, f func(*A) B) Operator[A, B] {
return func(fa []A) []B {
return filterMapRef(fa, pred, f)
}
@@ -180,8 +179,7 @@ func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B
func reduceRef[A, B any](fa []A, f func(B, *A) B, initial B) B {
current := initial
count := len(fa)
for i := 0; i < count; i++ {
for i := range len(fa) {
current = f(current, &fa[i])
}
return current
@@ -262,6 +260,8 @@ func Empty[A any]() []A {
}
// Zero returns an empty array of type A (alias for Empty).
//
//go:inline
func Zero[A any]() []A {
return Empty[A]()
}
@@ -277,8 +277,8 @@ func Of[A any](a A) []A {
// This is the monadic version that takes the array as the first parameter (also known as FlatMap).
//
//go:inline
func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
return G.MonadChain[[]A, []B](fa, f)
func MonadChain[A, B any](fa []A, f Kleisli[A, B]) []B {
return G.MonadChain(fa, f)
}
// Chain applies a function that returns an array to each element and flattens the results.
@@ -290,8 +290,8 @@ func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
// result := duplicate([]int{1, 2, 3}) // [1, 1, 2, 2, 3, 3]
//
//go:inline
func Chain[A, B any](f func(A) []B) func([]A) []B {
return G.Chain[[]A, []B](f)
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return G.Chain[[]A](f)
}
// MonadAp applies an array of functions to an array of values, producing all combinations.
@@ -306,7 +306,7 @@ func MonadAp[B, A any](fab []func(A) B, fa []A) []B {
// This is the curried version.
//
//go:inline
func Ap[B, A any](fa []A) func([]func(A) B) []B {
func Ap[B, A any](fa []A) Operator[func(A) B, B] {
return G.Ap[[]B, []func(A) B](fa)
}
@@ -314,21 +314,21 @@ func Ap[B, A any](fa []A) func([]func(A) B) []B {
//
//go:inline
func Match[A, B any](onEmpty func() B, onNonEmpty func([]A) B) func([]A) B {
return G.Match[[]A](onEmpty, onNonEmpty)
return G.Match(onEmpty, onNonEmpty)
}
// MatchLeft performs pattern matching on an array, calling onEmpty if empty or onNonEmpty with head and tail if not.
//
//go:inline
func MatchLeft[A, B any](onEmpty func() B, onNonEmpty func(A, []A) B) func([]A) B {
return G.MatchLeft[[]A](onEmpty, onNonEmpty)
return G.MatchLeft(onEmpty, onNonEmpty)
}
// Tail returns all elements except the first, wrapped in an Option.
// Returns None if the array is empty.
//
//go:inline
func Tail[A any](as []A) O.Option[[]A] {
func Tail[A any](as []A) Option[[]A] {
return G.Tail(as)
}
@@ -336,7 +336,7 @@ func Tail[A any](as []A) O.Option[[]A] {
// Returns None if the array is empty.
//
//go:inline
func Head[A any](as []A) O.Option[A] {
func Head[A any](as []A) Option[A] {
return G.Head(as)
}
@@ -344,7 +344,7 @@ func Head[A any](as []A) O.Option[A] {
// Returns None if the array is empty.
//
//go:inline
func First[A any](as []A) O.Option[A] {
func First[A any](as []A) Option[A] {
return G.First(as)
}
@@ -352,12 +352,12 @@ func First[A any](as []A) O.Option[A] {
// Returns None if the array is empty.
//
//go:inline
func Last[A any](as []A) O.Option[A] {
func Last[A any](as []A) Option[A] {
return G.Last(as)
}
// PrependAll inserts a separator before each element of an array.
func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
func PrependAll[A any](middle A) Operator[A, A] {
return func(as []A) []A {
count := len(as)
dst := count * 2
@@ -377,7 +377,7 @@ func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
// Example:
//
// result := array.Intersperse(0)([]int{1, 2, 3}) // [1, 0, 2, 0, 3]
func Intersperse[A any](middle A) EM.Endomorphism[[]A] {
func Intersperse[A any](middle A) Operator[A, A] {
prepend := PrependAll(middle)
return func(as []A) []A {
if IsEmpty(as) {
@@ -390,7 +390,7 @@ func Intersperse[A any](middle A) EM.Endomorphism[[]A] {
// Intercalate inserts a separator between elements and concatenates them using a Monoid.
func Intercalate[A any](m M.Monoid[A]) func(A) func([]A) A {
return func(middle A) func([]A) A {
return Match(m.Empty, F.Flow2(Intersperse(middle), ConcatAll[A](m)))
return Match(m.Empty, F.Flow2(Intersperse(middle), ConcatAll(m)))
}
}
@@ -406,7 +406,7 @@ func Flatten[A any](mma [][]A) []A {
}
// Slice extracts a subarray from index low (inclusive) to high (exclusive).
func Slice[A any](low, high int) func(as []A) []A {
func Slice[A any](low, high int) Operator[A, A] {
return array.Slice[[]A](low, high)
}
@@ -414,7 +414,7 @@ func Slice[A any](low, high int) func(as []A) []A {
// Returns None if the index is out of bounds.
//
//go:inline
func Lookup[A any](idx int) func([]A) O.Option[A] {
func Lookup[A any](idx int) func([]A) Option[A] {
return G.Lookup[[]A](idx)
}
@@ -422,7 +422,7 @@ func Lookup[A any](idx int) func([]A) O.Option[A] {
// If the index is out of bounds, the element is appended.
//
//go:inline
func UpsertAt[A any](a A) EM.Endomorphism[[]A] {
func UpsertAt[A any](a A) Operator[A, A] {
return G.UpsertAt[[]A](a)
}
@@ -468,7 +468,7 @@ func ConstNil[A any]() []A {
// SliceRight extracts a subarray from the specified start index to the end.
//
//go:inline
func SliceRight[A any](start int) EM.Endomorphism[[]A] {
func SliceRight[A any](start int) Operator[A, A] {
return G.SliceRight[[]A](start)
}
@@ -482,7 +482,7 @@ func Copy[A any](b []A) []A {
// Clone creates a deep copy of the array using the provided endomorphism to clone the values
//
//go:inline
func Clone[A any](f func(A) A) func(as []A) []A {
func Clone[A any](f func(A) A) Operator[A, A] {
return G.Clone[[]A](f)
}
@@ -510,8 +510,8 @@ func Fold[A any](m M.Monoid[A]) func([]A) A {
// Push adds an element to the end of an array (alias for Append).
//
//go:inline
func Push[A any](a A) EM.Endomorphism[[]A] {
return G.Push[EM.Endomorphism[[]A]](a)
func Push[A any](a A) Operator[A, A] {
return G.Push[Operator[A, A]](a)
}
// MonadFlap applies a value to an array of functions, producing an array of results.
@@ -519,20 +519,20 @@ func Push[A any](a A) EM.Endomorphism[[]A] {
//
//go:inline
func MonadFlap[B, A any](fab []func(A) B, a A) []B {
return G.MonadFlap[func(A) B, []func(A) B, []B, A, B](fab, a)
return G.MonadFlap[func(A) B, []func(A) B, []B](fab, a)
}
// Flap applies a value to an array of functions, producing an array of results.
// This is the curried version.
//
//go:inline
func Flap[B, A any](a A) func([]func(A) B) []B {
return G.Flap[func(A) B, []func(A) B, []B, A, B](a)
func Flap[B, A any](a A) Operator[func(A) B, B] {
return G.Flap[func(A) B, []func(A) B, []B](a)
}
// Prepend adds an element to the beginning of an array, returning a new array.
//
//go:inline
func Prepend[A any](head A) EM.Endomorphism[[]A] {
return G.Prepend[EM.Endomorphism[[]A]](head)
func Prepend[A any](head A) Operator[A, A] {
return G.Prepend[Operator[A, A]](head)
}

View File

@@ -97,7 +97,7 @@ func TestAp(t *testing.T) {
utils.Double,
utils.Triple,
},
Ap[int, int]([]int{1, 2, 3}),
Ap[int]([]int{1, 2, 3}),
),
)
}

View File

@@ -34,7 +34,7 @@ import (
func Do[S any](
empty S,
) []S {
return G.Do[[]S, S](empty)
return G.Do[[]S](empty)
}
// Bind attaches the result of a computation to a context S1 to produce a context S2.
@@ -56,9 +56,9 @@ func Do[S any](
//go:inline
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) []T,
) func([]S1) []S2 {
return G.Bind[[]S1, []S2, []T, S1, S2, T](setter, f)
f Kleisli[S1, T],
) Operator[S1, S2] {
return G.Bind[[]S1, []S2](setter, f)
}
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
@@ -79,8 +79,8 @@ func Bind[S1, S2, T any](
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) func([]S1) []S2 {
return G.Let[[]S1, []S2, S1, S2, T](setter, f)
) Operator[S1, S2] {
return G.Let[[]S1, []S2](setter, f)
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
@@ -101,8 +101,8 @@ func Let[S1, S2, T any](
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) func([]S1) []S2 {
return G.LetTo[[]S1, []S2, S1, S2, T](setter, b)
) Operator[S1, S2] {
return G.LetTo[[]S1, []S2](setter, b)
}
// BindTo initializes a new state S1 from a value T.
@@ -120,8 +120,8 @@ func LetTo[S1, S2, T any](
//go:inline
func BindTo[S1, T any](
setter func(T) S1,
) func([]T) []S1 {
return G.BindTo[[]S1, []T, S1, T](setter)
) Operator[T, S1] {
return G.BindTo[[]S1, []T](setter)
}
// ApS attaches a value to a context S1 to produce a context S2 by considering
@@ -143,6 +143,6 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa []T,
) func([]S1) []S2 {
return G.ApS[[]S1, []S2, []T, S1, S2, T](setter, fa)
) Operator[S1, S2] {
return G.ApS[[]S1, []S2](setter, fa)
}

View File

@@ -36,7 +36,7 @@
// generated := array.MakeBy(5, func(i int) int { return i * 2 })
//
// // Transforming arrays
// doubled := array.Map(func(x int) int { return x * 2 })(arr)
// doubled := array.Map(N.Mul(2))(arr)
// filtered := array.Filter(func(x int) bool { return x > 2 })(arr)
//
// // Combining arrays
@@ -50,7 +50,7 @@
// numbers := []int{1, 2, 3, 4, 5}
//
// // Map transforms each element
// doubled := array.Map(func(x int) int { return x * 2 })(numbers)
// doubled := array.Map(N.Mul(2))(numbers)
// // Result: [2, 4, 6, 8, 10]
//
// // Filter keeps elements matching a predicate

View File

@@ -87,6 +87,6 @@ func Example_sort() {
// [abc klm zyx]
// [zyx klm abc]
// [None[int] Some[int](42) Some[int](1337)]
// [{c {false 0}} {b {true 10}} {d {true 10}} {a {true 30}}]
// [{c {0 false}} {b {10 true}} {d {10 true}} {a {30 true}}]
}

View File

@@ -17,7 +17,7 @@ package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/option"
)
// FindFirst finds the first element which satisfies a predicate function.
@@ -30,7 +30,7 @@ import (
// result2 := findGreaterThan3([]int{1, 2, 3}) // None
//
//go:inline
func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
func FindFirst[A any](pred func(A) bool) option.Kleisli[[]A, A] {
return G.FindFirst[[]A](pred)
}
@@ -45,7 +45,7 @@ func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
// result := findEvenAtEvenIndex([]int{1, 3, 4, 5}) // Some(4)
//
//go:inline
func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
func FindFirstWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
return G.FindFirstWithIndex[[]A](pred)
}
@@ -65,7 +65,7 @@ func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
// result := parseFirst([]string{"a", "42", "b"}) // Some(42)
//
//go:inline
func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
func FindFirstMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
return G.FindFirstMap[[]A](sel)
}
@@ -73,7 +73,7 @@ func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
// The selector receives both the index and the element.
//
//go:inline
func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
func FindFirstMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
return G.FindFirstMapWithIndex[[]A](sel)
}
@@ -86,7 +86,7 @@ func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.O
// result := findGreaterThan3([]int{1, 4, 2, 5}) // Some(5)
//
//go:inline
func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
func FindLast[A any](pred func(A) bool) option.Kleisli[[]A, A] {
return G.FindLast[[]A](pred)
}
@@ -94,7 +94,7 @@ func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
// Returns Some(element) if found, None if no element matches.
//
//go:inline
func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
func FindLastWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
return G.FindLastWithIndex[[]A](pred)
}
@@ -102,7 +102,7 @@ func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
// This combines finding and mapping in a single operation, searching from the end.
//
//go:inline
func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
func FindLastMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
return G.FindLastMap[[]A](sel)
}
@@ -110,6 +110,6 @@ func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
// The selector receives both the index and the element, searching from the end.
//
//go:inline
func FindLastMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
func FindLastMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
return G.FindLastMapWithIndex[[]A](sel)
}

View File

@@ -25,31 +25,33 @@ import (
)
// Of constructs a single element array
//
//go:inline
func Of[GA ~[]A, A any](value A) GA {
return GA{value}
return array.Of[GA](value)
}
func Reduce[GA ~[]A, A, B any](f func(B, A) B, initial B) func(GA) B {
return func(as GA) B {
return MonadReduce[GA](as, f, initial)
return MonadReduce(as, f, initial)
}
}
func ReduceWithIndex[GA ~[]A, A, B any](f func(int, B, A) B, initial B) func(GA) B {
return func(as GA) B {
return MonadReduceWithIndex[GA](as, f, initial)
return MonadReduceWithIndex(as, f, initial)
}
}
func ReduceRight[GA ~[]A, A, B any](f func(A, B) B, initial B) func(GA) B {
return func(as GA) B {
return MonadReduceRight[GA](as, f, initial)
return MonadReduceRight(as, f, initial)
}
}
func ReduceRightWithIndex[GA ~[]A, A, B any](f func(int, A, B) B, initial B) func(GA) B {
return func(as GA) B {
return MonadReduceRightWithIndex[GA](as, f, initial)
return MonadReduceRightWithIndex(as, f, initial)
}
}
@@ -82,7 +84,7 @@ func MakeBy[AS ~[]A, F ~func(int) A, A any](n int, f F) AS {
}
// run the generator function across the input
as := make(AS, n)
for i := n - 1; i >= 0; i-- {
for i := range n {
as[i] = f(i)
}
return as
@@ -165,10 +167,9 @@ func Size[GA ~[]A, A any](as GA) int {
func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
result := make(GB, 0, len(fa))
for _, a := range fa {
O.Map(func(b B) B {
if b, ok := O.Unwrap(f(a)); ok {
result = append(result, b)
return b
})(f(a))
}
}
return result
}
@@ -176,10 +177,9 @@ func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
func filterMapWithIndex[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(int, A) O.Option[B]) GB {
result := make(GB, 0, len(fa))
for i, a := range fa {
O.Map(func(b B) B {
if b, ok := O.Unwrap(f(i, a)); ok {
result = append(result, b)
return b
})(f(i, a))
}
}
return result
}

View File

@@ -42,8 +42,7 @@ func FindFirst[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) O.Option[
func FindFirstMapWithIndex[AS ~[]A, PRED ~func(int, A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
none := O.None[B]()
return func(as AS) O.Option[B] {
count := len(as)
for i := 0; i < count; i++ {
for i := range len(as) {
out := pred(i, as[i])
if O.IsSome(out) {
return out

View File

@@ -22,19 +22,19 @@ import (
type arrayMonad[A, B any, GA ~[]A, GB ~[]B, GAB ~[]func(A) B] struct{}
func (o *arrayMonad[A, B, GA, GB, GAB]) Of(a A) GA {
return Of[GA, A](a)
return Of[GA](a)
}
func (o *arrayMonad[A, B, GA, GB, GAB]) Map(f func(A) B) func(GA) GB {
return Map[GA, GB, A, B](f)
return Map[GA, GB](f)
}
func (o *arrayMonad[A, B, GA, GB, GAB]) Chain(f func(A) GB) func(GA) GB {
return Chain[GA, GB, A, B](f)
return Chain[GA](f)
}
func (o *arrayMonad[A, B, GA, GB, GAB]) Ap(fa GA) func(GAB) GB {
return Ap[GB, GAB, GA, B, A](fa)
return Ap[GB, GAB](fa)
}
// Monad implements the monadic operations for an array

View File

@@ -0,0 +1,34 @@
package generic
import (
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
// Example:
//
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[GT ~[]T, T any]() M.Monoid[GT] {
return M.MakeMonoid(array.Concat[GT], Empty[GT]())
}
// Semigroup returns a Semigroup instance for arrays.
// The Semigroup combines arrays through concatenation.
//
// Example:
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[GT ~[]T, T any]() S.Semigroup[GT] {
return S.MakeSemigroup(array.Concat[GT])
}

View File

@@ -26,7 +26,7 @@ import (
func ZipWith[AS ~[]A, BS ~[]B, CS ~[]C, FCT ~func(A, B) C, A, B, C any](fa AS, fb BS, f FCT) CS {
l := N.Min(len(fa), len(fb))
res := make(CS, l)
for i := l - 1; i >= 0; i-- {
for i := range l {
res[i] = f(fa[i], fb[i])
}
return res
@@ -43,7 +43,7 @@ func Unzip[AS ~[]A, BS ~[]B, CS ~[]T.Tuple2[A, B], A, B any](cs CS) T.Tuple2[AS,
l := len(cs)
as := make(AS, l)
bs := make(BS, l)
for i := l - 1; i >= 0; i-- {
for i := range l {
t := cs[i]
as[i] = t.F1
bs[i] = t.F2

View File

@@ -18,7 +18,6 @@ package array
import (
"testing"
O "github.com/IBM/fp-go/v2/option"
OR "github.com/IBM/fp-go/v2/ord"
"github.com/stretchr/testify/assert"
)
@@ -103,39 +102,6 @@ func TestSortByKey(t *testing.T) {
assert.Equal(t, "Charlie", result[2].Name)
}
func TestMonadTraverse(t *testing.T) {
result := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 3, 5},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.Some([]int{2, 6, 10}), result)
// Test with None case
result2 := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 2, 3},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.None[[]int](), result2)
}
func TestUniqByKey(t *testing.T) {
type Person struct {
Name string

View File

@@ -16,27 +16,12 @@
package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
func concat[T any](left, right []T) []T {
// some performance checks
ll := len(left)
if ll == 0 {
return right
}
lr := len(right)
if lr == 0 {
return left
}
// need to copy
buf := make([]T, ll+lr)
copy(buf[copy(buf, left):], right)
return buf
}
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
@@ -45,8 +30,10 @@ func concat[T any](left, right []T) []T {
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[T any]() M.Monoid[[]T] {
return M.MakeMonoid(concat[T], Empty[T]())
return G.Monoid[[]T]()
}
// Semigroup returns a Semigroup instance for arrays.
@@ -56,8 +43,10 @@ func Monoid[T any]() M.Monoid[[]T] {
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[T any]() S.Semigroup[[]T] {
return S.MakeSemigroup(concat[T])
return G.Semigroup[[]T]()
}
func addLen[A any](count int, data []A) int {

View File

@@ -97,11 +97,11 @@ func Flatten[A any](mma NonEmptyArray[NonEmptyArray[A]]) NonEmptyArray[A] {
}
func MonadChain[A, B any](fa NonEmptyArray[A], f func(a A) NonEmptyArray[B]) NonEmptyArray[B] {
return G.MonadChain[NonEmptyArray[A], NonEmptyArray[B]](fa, f)
return G.MonadChain(fa, f)
}
func Chain[A, B any](f func(A) NonEmptyArray[B]) func(NonEmptyArray[A]) NonEmptyArray[B] {
return G.Chain[NonEmptyArray[A], NonEmptyArray[B]](f)
return G.Chain[NonEmptyArray[A]](f)
}
func MonadAp[B, A any](fab NonEmptyArray[func(A) B], fa NonEmptyArray[A]) NonEmptyArray[B] {

View File

@@ -16,10 +16,18 @@
package array
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
)
func MonadSequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
ma []HKTA) HKTRA {
return array.MonadSequence(fof, m.Empty(), m.Concat, ma)
}
// Sequence takes an array where elements are HKT<A> (higher kinded type) and,
// using an applicative of that HKT, returns an HKT of []A.
//
@@ -55,16 +63,11 @@ import (
// option.MonadAp[[]int, int],
// )
// result := seq(opts) // Some([1, 2, 3])
func Sequence[A, HKTA, HKTRA, HKTFRA any](
_of func([]A) HKTRA,
_map func(HKTRA, func([]A) func(A) []A) HKTFRA,
_ap func(HKTFRA, HKTA) HKTRA,
func Sequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
) func([]HKTA) HKTRA {
ca := F.Curry2(Append[A])
empty := _of(Empty[A]())
return Reduce(func(fas HKTRA, fa HKTA) HKTRA {
return _ap(_map(fas, ca), fa)
}, empty)
return array.Sequence[[]HKTA](fof, m.Empty(), m.Concat)
}
// ArrayOption returns a function to convert a sequence of options into an option of a sequence.
@@ -86,10 +89,10 @@ func Sequence[A, HKTA, HKTRA, HKTFRA any](
// option.Some(3),
// }
// result2 := array.ArrayOption[int]()(opts2) // None
func ArrayOption[A any]() func([]O.Option[A]) O.Option[[]A] {
return Sequence(
O.Of[[]A],
O.MonadMap[[]A, func(A) []A],
O.MonadAp[[]A, A],
func ArrayOption[A any](ma []Option[A]) Option[[]A] {
return MonadSequence(
O.Map(Of[A]),
O.ApplicativeMonoid(Monoid[A]()),
ma,
)
}

View File

@@ -24,8 +24,7 @@ import (
)
func TestSequenceOption(t *testing.T) {
seq := ArrayOption[int]()
assert.Equal(t, O.Of([]int{1, 3}), seq([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), seq([]O.Option[int]{O.Of(1), O.None[int]()}))
assert.Equal(t, O.Of([]int{1, 3}), ArrayOption([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), ArrayOption([]O.Option[int]{O.Of(1), O.None[int]()}))
}

View File

@@ -18,6 +18,7 @@ package array
import (
"testing"
N "github.com/IBM/fp-go/v2/number"
"github.com/stretchr/testify/assert"
)
@@ -243,7 +244,7 @@ func TestSliceComposition(t *testing.T) {
t.Run("slice then map", func(t *testing.T) {
sliced := Slice[int](2, 5)(data)
mapped := Map(func(x int) int { return x * 2 })(sliced)
mapped := Map(N.Mul(2))(sliced)
assert.Equal(t, []int{4, 6, 8}, mapped)
})

View File

@@ -32,7 +32,7 @@ import (
// // Result: [1, 1, 2, 3, 4, 5, 6, 9]
//
//go:inline
func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
func Sort[T any](ord O.Ord[T]) Operator[T, T] {
return G.Sort[[]T](ord)
}
@@ -62,7 +62,7 @@ func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
// // Result: [{"Bob", 25}, {"Alice", 30}, {"Charlie", 35}]
//
//go:inline
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) Operator[T, T] {
return G.SortByKey[[]T](ord, f)
}
@@ -93,6 +93,6 @@ func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
// // Result: [{"Jones", "Bob"}, {"Smith", "Alice"}, {"Smith", "John"}]
//
//go:inline
func SortBy[T any](ord []O.Ord[T]) func(ma []T) []T {
return G.SortBy[[]T, []O.Ord[T]](ord)
func SortBy[T any](ord []O.Ord[T]) Operator[T, T] {
return G.SortBy[[]T](ord)
}

View File

@@ -80,3 +80,25 @@ func MonadTraverse[A, B, HKTB, HKTAB, HKTRB any](
return array.MonadTraverse(fof, fmap, fap, ta, f)
}
//go:inline
func TraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
f func(int, A) HKTB) func([]A) HKTRB {
return array.TraverseWithIndex[[]A](fof, fmap, fap, f)
}
//go:inline
func MonadTraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta []A,
f func(int, A) HKTB) HKTRB {
return array.MonadTraverseWithIndex(fof, fmap, fap, ta, f)
}

9
v2/array/types.go Normal file
View File

@@ -0,0 +1,9 @@
package array
import "github.com/IBM/fp-go/v2/option"
type (
Kleisli[A, B any] = func(A) []B
Operator[A, B any] = Kleisli[[]A, B]
Option[A any] = option.Option[A]
)

View File

@@ -18,7 +18,7 @@ import (
//
//go:inline
func StrictUniq[A comparable](as []A) []A {
return G.StrictUniq[[]A](as)
return G.StrictUniq(as)
}
// Uniq converts an array of arbitrary items into an array of unique items
@@ -46,6 +46,6 @@ func StrictUniq[A comparable](as []A) []A {
// // Result: [{"Alice", 30}, {"Bob", 25}, {"Charlie", 30}]
//
//go:inline
func Uniq[A any, K comparable](f func(A) K) func(as []A) []A {
func Uniq[A any, K comparable](f func(A) K) Operator[A, A] {
return G.Uniq[[]A](f)
}

View File

@@ -36,7 +36,7 @@ import (
//
//go:inline
func ZipWith[FCT ~func(A, B) C, A, B, C any](fa []A, fb []B, f FCT) []C {
return G.ZipWith[[]A, []B, []C, FCT](fa, fb, f)
return G.ZipWith[[]A, []B, []C](fa, fb, f)
}
// Zip takes two arrays and returns an array of corresponding pairs (tuples).
@@ -79,5 +79,5 @@ func Zip[A, B any](fb []B) func([]A) []T.Tuple2[A, B] {
//
//go:inline
func Unzip[A, B any](cs []T.Tuple2[A, B]) T.Tuple2[[]A, []B] {
return G.Unzip[[]A, []B, []T.Tuple2[A, B]](cs)
return G.Unzip[[]A, []B](cs)
}

View File

@@ -19,8 +19,8 @@ import (
"fmt"
"testing"
E "github.com/IBM/fp-go/v2/either"
EQ "github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
@@ -28,82 +28,82 @@ var (
errTest = fmt.Errorf("test failure")
// Eq is the equal predicate checking if objects are equal
Eq = EQ.FromEquals(assert.ObjectsAreEqual)
Eq = eq.FromEquals(assert.ObjectsAreEqual)
)
func wrap1[T any](wrapped func(t assert.TestingT, expected, actual any, msgAndArgs ...any) bool, t *testing.T, expected T) func(actual T) E.Either[error, T] {
return func(actual T) E.Either[error, T] {
func wrap1[T any](wrapped func(t assert.TestingT, expected, actual any, msgAndArgs ...any) bool, t *testing.T, expected T) result.Kleisli[T, T] {
return func(actual T) Result[T] {
ok := wrapped(t, expected, actual)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[T](errTest)
return result.Left[T](errTest)
}
}
// NotEqual tests if the expected and the actual values are not equal
func NotEqual[T any](t *testing.T, expected T) func(actual T) E.Either[error, T] {
func NotEqual[T any](t *testing.T, expected T) result.Kleisli[T, T] {
return wrap1(assert.NotEqual, t, expected)
}
// Equal tests if the expected and the actual values are equal
func Equal[T any](t *testing.T, expected T) func(actual T) E.Either[error, T] {
func Equal[T any](t *testing.T, expected T) result.Kleisli[T, T] {
return wrap1(assert.Equal, t, expected)
}
// Length tests if an array has the expected length
func Length[T any](t *testing.T, expected int) func(actual []T) E.Either[error, []T] {
return func(actual []T) E.Either[error, []T] {
func Length[T any](t *testing.T, expected int) result.Kleisli[[]T, []T] {
return func(actual []T) Result[[]T] {
ok := assert.Len(t, actual, expected)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[[]T](errTest)
return result.Left[[]T](errTest)
}
}
// NoError validates that there is no error
func NoError[T any](t *testing.T) func(actual E.Either[error, T]) E.Either[error, T] {
return func(actual E.Either[error, T]) E.Either[error, T] {
return E.MonadFold(actual, func(e error) E.Either[error, T] {
func NoError[T any](t *testing.T) result.Operator[T, T] {
return func(actual Result[T]) Result[T] {
return result.MonadFold(actual, func(e error) Result[T] {
assert.NoError(t, e)
return E.Left[T](e)
}, func(value T) E.Either[error, T] {
return result.Left[T](e)
}, func(value T) Result[T] {
assert.NoError(t, nil)
return E.Right[error](value)
return result.Of(value)
})
}
}
// ArrayContains tests if a value is contained in an array
func ArrayContains[T any](t *testing.T, expected T) func(actual []T) E.Either[error, []T] {
return func(actual []T) E.Either[error, []T] {
func ArrayContains[T any](t *testing.T, expected T) result.Kleisli[[]T, []T] {
return func(actual []T) Result[[]T] {
ok := assert.Contains(t, actual, expected)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[[]T](errTest)
return result.Left[[]T](errTest)
}
}
// ContainsKey tests if a key is contained in a map
func ContainsKey[T any, K comparable](t *testing.T, expected K) func(actual map[K]T) E.Either[error, map[K]T] {
return func(actual map[K]T) E.Either[error, map[K]T] {
func ContainsKey[T any, K comparable](t *testing.T, expected K) result.Kleisli[map[K]T, map[K]T] {
return func(actual map[K]T) Result[map[K]T] {
ok := assert.Contains(t, actual, expected)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[map[K]T](errTest)
return result.Left[map[K]T](errTest)
}
}
// NotContainsKey tests if a key is not contained in a map
func NotContainsKey[T any, K comparable](t *testing.T, expected K) func(actual map[K]T) E.Either[error, map[K]T] {
return func(actual map[K]T) E.Either[error, map[K]T] {
func NotContainsKey[T any, K comparable](t *testing.T, expected K) result.Kleisli[map[K]T, map[K]T] {
return func(actual map[K]T) Result[map[K]T] {
ok := assert.NotContains(t, actual, expected)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[map[K]T](errTest)
return result.Left[map[K]T](errTest)
}
}

7
v2/assert/types.go Normal file
View File

@@ -0,0 +1,7 @@
package assert
import "github.com/IBM/fp-go/v2/result"
type (
Result[T any] = result.Result[T]
)

View File

@@ -53,7 +53,7 @@ func MakeBounded[T any](o ord.Ord[T], t, b T) Bounded[T] {
// Clamp returns a function that clamps against the bounds defined in the bounded type
func Clamp[T any](b Bounded[T]) func(T) T {
return ord.Clamp[T](b)(b.Bottom(), b.Top())
return ord.Clamp(b)(b.Bottom(), b.Top())
}
// Reverse reverses the ordering and swaps the bounds

7
v2/builder/builder.go Normal file
View File

@@ -0,0 +1,7 @@
package builder
type (
Builder[T any] interface {
Build() Result[T]
}
)

12
v2/builder/prism.go Normal file
View File

@@ -0,0 +1,12 @@
package builder
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/result"
)
// BuilderPrism createa a [Prism] that converts between a builder and its type
func BuilderPrism[T any, B Builder[T]](creator func(T) B) Prism[B, T] {
return prism.MakePrism(F.Flow2(B.Build, result.ToOption[T]), creator)
}

15
v2/builder/types.go Normal file
View File

@@ -0,0 +1,15 @@
package builder
import (
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
type (
Result[T any] = result.Result[T]
Prism[S, A any] = prism.Prism[S, A]
Option[T any] = option.Option[T]
)

View File

@@ -15,14 +15,163 @@
package bytes
// Empty returns an empty byte slice.
//
// This function returns the identity element for the byte slice Monoid,
// which is an empty byte slice. It's useful as a starting point for
// building byte slices or as a default value.
//
// Returns:
// - An empty byte slice ([]byte{})
//
// Properties:
// - Empty() is the identity element for Monoid.Concat
// - Monoid.Concat(Empty(), x) == x
// - Monoid.Concat(x, Empty()) == x
//
// Example - Basic usage:
//
// empty := Empty()
// fmt.Println(len(empty)) // 0
//
// Example - As identity element:
//
// data := []byte("hello")
// result1 := Monoid.Concat(Empty(), data) // []byte("hello")
// result2 := Monoid.Concat(data, Empty()) // []byte("hello")
//
// Example - Building byte slices:
//
// // Start with empty and build up
// buffer := Empty()
// buffer = Monoid.Concat(buffer, []byte("Hello"))
// buffer = Monoid.Concat(buffer, []byte(" "))
// buffer = Monoid.Concat(buffer, []byte("World"))
// // buffer: []byte("Hello World")
//
// See also:
// - Monoid.Empty(): Alternative way to get empty byte slice
// - ConcatAll(): For concatenating multiple byte slices
func Empty() []byte {
return Monoid.Empty()
}
// ToString converts a byte slice to a string.
//
// This function performs a direct conversion from []byte to string.
// The conversion creates a new string with a copy of the byte data.
//
// Parameters:
// - a: The byte slice to convert
//
// Returns:
// - A string containing the same data as the byte slice
//
// Performance Note:
//
// This conversion allocates a new string. For performance-critical code
// that needs to avoid allocations, consider using unsafe.String (Go 1.20+)
// or working directly with byte slices.
//
// Example - Basic conversion:
//
// bytes := []byte("hello")
// str := ToString(bytes)
// fmt.Println(str) // "hello"
//
// Example - Converting binary data:
//
// // ASCII codes for "Hello"
// data := []byte{0x48, 0x65, 0x6c, 0x6c, 0x6f}
// str := ToString(data)
// fmt.Println(str) // "Hello"
//
// Example - Empty byte slice:
//
// empty := Empty()
// str := ToString(empty)
// fmt.Println(str == "") // true
//
// Example - UTF-8 encoded text:
//
// utf8Bytes := []byte("Hello, 世界")
// str := ToString(utf8Bytes)
// fmt.Println(str) // "Hello, 世界"
//
// Example - Round-trip conversion:
//
// original := "test string"
// bytes := []byte(original)
// result := ToString(bytes)
// fmt.Println(original == result) // true
//
// See also:
// - []byte(string): For converting string to byte slice
// - Size(): For getting the length of a byte slice
func ToString(a []byte) string {
return string(a)
}
// Size returns the number of bytes in a byte slice.
//
// This function returns the length of the byte slice, which is the number
// of bytes it contains. This is equivalent to len(as) but provided as a
// named function for use in functional composition.
//
// Parameters:
// - as: The byte slice to measure
//
// Returns:
// - The number of bytes in the slice
//
// Example - Basic usage:
//
// data := []byte("hello")
// size := Size(data)
// fmt.Println(size) // 5
//
// Example - Empty slice:
//
// empty := Empty()
// size := Size(empty)
// fmt.Println(size) // 0
//
// Example - Binary data:
//
// binary := []byte{0x01, 0x02, 0x03, 0x04}
// size := Size(binary)
// fmt.Println(size) // 4
//
// Example - UTF-8 encoded text:
//
// // Note: Size returns byte count, not character count
// utf8 := []byte("Hello, 世界")
// byteCount := Size(utf8)
// fmt.Println(byteCount) // 13 (not 9 characters)
//
// Example - Using in functional composition:
//
// import "github.com/IBM/fp-go/v2/array"
//
// slices := [][]byte{
// []byte("a"),
// []byte("bb"),
// []byte("ccc"),
// }
//
// // Map to get sizes
// sizes := array.Map(Size)(slices)
// // sizes: []int{1, 2, 3}
//
// Example - Checking if slice is empty:
//
// data := []byte("test")
// isEmpty := Size(data) == 0
// fmt.Println(isEmpty) // false
//
// See also:
// - len(): Built-in function for getting slice length
// - ToString(): For converting byte slice to string
func Size(as []byte) int {
return len(as)
}

View File

@@ -187,6 +187,299 @@ func TestOrd(t *testing.T) {
})
}
// TestOrdProperties tests mathematical properties of Ord
func TestOrdProperties(t *testing.T) {
t.Run("reflexivity: x == x", func(t *testing.T) {
testCases := [][]byte{
[]byte{},
[]byte("a"),
[]byte("test"),
[]byte{0x01, 0x02, 0x03},
}
for _, tc := range testCases {
assert.Equal(t, 0, Ord.Compare(tc, tc),
"Compare(%v, %v) should be 0", tc, tc)
assert.True(t, Ord.Equals(tc, tc),
"Equals(%v, %v) should be true", tc, tc)
}
})
t.Run("antisymmetry: if x <= y and y <= x then x == y", func(t *testing.T) {
testCases := []struct {
a, b []byte
}{
{[]byte("abc"), []byte("abc")},
{[]byte{}, []byte{}},
{[]byte{0x01}, []byte{0x01}},
}
for _, tc := range testCases {
cmp1 := Ord.Compare(tc.a, tc.b)
cmp2 := Ord.Compare(tc.b, tc.a)
if cmp1 <= 0 && cmp2 <= 0 {
assert.True(t, Ord.Equals(tc.a, tc.b),
"If %v <= %v and %v <= %v, they should be equal", tc.a, tc.b, tc.b, tc.a)
}
}
})
t.Run("transitivity: if x <= y and y <= z then x <= z", func(t *testing.T) {
x := []byte("a")
y := []byte("b")
z := []byte("c")
cmpXY := Ord.Compare(x, y)
cmpYZ := Ord.Compare(y, z)
cmpXZ := Ord.Compare(x, z)
if cmpXY <= 0 && cmpYZ <= 0 {
assert.True(t, cmpXZ <= 0,
"If %v <= %v and %v <= %v, then %v <= %v", x, y, y, z, x, z)
}
})
t.Run("totality: either x <= y or y <= x", func(t *testing.T) {
testCases := []struct {
a, b []byte
}{
{[]byte("abc"), []byte("abd")},
{[]byte("xyz"), []byte("abc")},
{[]byte{}, []byte("a")},
{[]byte{0x01}, []byte{0x02}},
}
for _, tc := range testCases {
cmp1 := Ord.Compare(tc.a, tc.b)
cmp2 := Ord.Compare(tc.b, tc.a)
assert.True(t, cmp1 <= 0 || cmp2 <= 0,
"Either %v <= %v or %v <= %v must be true", tc.a, tc.b, tc.b, tc.a)
}
})
}
// TestEdgeCases tests edge cases and boundary conditions
func TestEdgeCases(t *testing.T) {
t.Run("very large byte slices", func(t *testing.T) {
large := make([]byte, 1000000)
for i := range large {
large[i] = byte(i % 256)
}
size := Size(large)
assert.Equal(t, 1000000, size)
str := ToString(large)
assert.Equal(t, 1000000, len(str))
})
t.Run("concatenating many slices", func(t *testing.T) {
slices := make([][]byte, 100)
for i := range slices {
slices[i] = []byte{byte(i)}
}
result := ConcatAll(slices...)
assert.Equal(t, 100, Size(result))
})
t.Run("null bytes in slice", func(t *testing.T) {
data := []byte{0x00, 0x01, 0x00, 0x02}
size := Size(data)
assert.Equal(t, 4, size)
str := ToString(data)
assert.Equal(t, 4, len(str))
})
t.Run("comparing slices with null bytes", func(t *testing.T) {
a := []byte{0x00, 0x01}
b := []byte{0x00, 0x02}
assert.Equal(t, -1, Ord.Compare(a, b))
})
}
// TestMonoidConcatPerformance tests concatenation performance characteristics
func TestMonoidConcatPerformance(t *testing.T) {
t.Run("ConcatAll vs repeated Concat", func(t *testing.T) {
slices := [][]byte{
[]byte("a"),
[]byte("b"),
[]byte("c"),
[]byte("d"),
[]byte("e"),
}
// Using ConcatAll
result1 := ConcatAll(slices...)
// Using repeated Concat
result2 := Monoid.Empty()
for _, s := range slices {
result2 = Monoid.Concat(result2, s)
}
assert.Equal(t, result1, result2)
assert.Equal(t, []byte("abcde"), result1)
})
}
// TestRoundTrip tests round-trip conversions
func TestRoundTrip(t *testing.T) {
t.Run("string to bytes to string", func(t *testing.T) {
original := "Hello, World! 世界"
bytes := []byte(original)
result := ToString(bytes)
assert.Equal(t, original, result)
})
t.Run("bytes to string to bytes", func(t *testing.T) {
original := []byte{0x48, 0x65, 0x6c, 0x6c, 0x6f}
str := ToString(original)
result := []byte(str)
assert.Equal(t, original, result)
})
}
// TestConcatAllVariadic tests ConcatAll with various argument counts
func TestConcatAllVariadic(t *testing.T) {
t.Run("zero arguments", func(t *testing.T) {
result := ConcatAll()
assert.Equal(t, []byte{}, result)
})
t.Run("one argument", func(t *testing.T) {
result := ConcatAll([]byte("test"))
assert.Equal(t, []byte("test"), result)
})
t.Run("two arguments", func(t *testing.T) {
result := ConcatAll([]byte("hello"), []byte("world"))
assert.Equal(t, []byte("helloworld"), result)
})
t.Run("many arguments", func(t *testing.T) {
result := ConcatAll(
[]byte("a"),
[]byte("b"),
[]byte("c"),
[]byte("d"),
[]byte("e"),
[]byte("f"),
[]byte("g"),
[]byte("h"),
[]byte("i"),
[]byte("j"),
)
assert.Equal(t, []byte("abcdefghij"), result)
})
}
// Benchmark tests
func BenchmarkToString(b *testing.B) {
data := []byte("Hello, World!")
b.Run("small", func(b *testing.B) {
for b.Loop() {
_ = ToString(data)
}
})
b.Run("large", func(b *testing.B) {
large := make([]byte, 10000)
for i := range large {
large[i] = byte(i % 256)
}
b.ResetTimer()
for b.Loop() {
_ = ToString(large)
}
})
}
func BenchmarkSize(b *testing.B) {
data := []byte("Hello, World!")
for b.Loop() {
_ = Size(data)
}
}
func BenchmarkMonoidConcat(b *testing.B) {
a := []byte("Hello")
c := []byte(" World")
b.Run("small slices", func(b *testing.B) {
for b.Loop() {
_ = Monoid.Concat(a, c)
}
})
b.Run("large slices", func(b *testing.B) {
large1 := make([]byte, 10000)
large2 := make([]byte, 10000)
b.ResetTimer()
for b.Loop() {
_ = Monoid.Concat(large1, large2)
}
})
}
func BenchmarkConcatAll(b *testing.B) {
slices := [][]byte{
[]byte("Hello"),
[]byte(" "),
[]byte("World"),
[]byte("!"),
}
b.Run("few slices", func(b *testing.B) {
for b.Loop() {
_ = ConcatAll(slices...)
}
})
b.Run("many slices", func(b *testing.B) {
many := make([][]byte, 100)
for i := range many {
many[i] = []byte{byte(i)}
}
b.ResetTimer()
for b.Loop() {
_ = ConcatAll(many...)
}
})
}
func BenchmarkOrdCompare(b *testing.B) {
a := []byte("abc")
c := []byte("abd")
b.Run("equal", func(b *testing.B) {
for b.Loop() {
_ = Ord.Compare(a, a)
}
})
b.Run("different", func(b *testing.B) {
for b.Loop() {
_ = Ord.Compare(a, c)
}
})
b.Run("large slices", func(b *testing.B) {
large1 := make([]byte, 10000)
large2 := make([]byte, 10000)
large2[9999] = 1
b.ResetTimer()
for b.Loop() {
_ = Ord.Compare(large1, large2)
}
})
}
// Example tests
func ExampleEmpty() {
empty := Empty()
@@ -219,3 +512,17 @@ func ExampleConcatAll() {
// Output:
}
func ExampleMonoid_concat() {
result := Monoid.Concat([]byte("Hello"), []byte(" World"))
println(string(result)) // Hello World
// Output:
}
func ExampleOrd_compare() {
cmp := Ord.Compare([]byte("abc"), []byte("abd"))
println(cmp) // -1 (abc < abd)
// Output:
}

4
v2/bytes/coverage.out Normal file
View File

@@ -0,0 +1,4 @@
mode: set
github.com/IBM/fp-go/v2/bytes/bytes.go:55.21,57.2 1 1
github.com/IBM/fp-go/v2/bytes/bytes.go:111.32,113.2 1 1
github.com/IBM/fp-go/v2/bytes/bytes.go:175.26,177.2 1 1

View File

@@ -23,12 +23,219 @@ import (
)
var (
// monoid for byte arrays
// Monoid is the Monoid instance for byte slices.
//
// This Monoid combines byte slices through concatenation, with an empty
// byte slice as the identity element. It satisfies the monoid laws:
//
// Identity laws:
// - Monoid.Concat(Monoid.Empty(), x) == x (left identity)
// - Monoid.Concat(x, Monoid.Empty()) == x (right identity)
//
// Associativity law:
// - Monoid.Concat(Monoid.Concat(a, b), c) == Monoid.Concat(a, Monoid.Concat(b, c))
//
// Operations:
// - Empty(): Returns an empty byte slice []byte{}
// - Concat(a, b []byte): Concatenates two byte slices
//
// Example - Basic concatenation:
//
// result := Monoid.Concat([]byte("Hello"), []byte(" World"))
// // result: []byte("Hello World")
//
// Example - Identity element:
//
// empty := Monoid.Empty()
// data := []byte("test")
// result1 := Monoid.Concat(empty, data) // []byte("test")
// result2 := Monoid.Concat(data, empty) // []byte("test")
//
// Example - Building byte buffers:
//
// buffer := Monoid.Empty()
// buffer = Monoid.Concat(buffer, []byte("Line 1\n"))
// buffer = Monoid.Concat(buffer, []byte("Line 2\n"))
// buffer = Monoid.Concat(buffer, []byte("Line 3\n"))
//
// Example - Associativity:
//
// a := []byte("a")
// b := []byte("b")
// c := []byte("c")
// left := Monoid.Concat(Monoid.Concat(a, b), c) // []byte("abc")
// right := Monoid.Concat(a, Monoid.Concat(b, c)) // []byte("abc")
// // left == right
//
// See also:
// - ConcatAll: For concatenating multiple byte slices at once
// - Empty(): Convenience function for getting empty byte slice
Monoid = A.Monoid[byte]()
// ConcatAll concatenates all bytes
// ConcatAll efficiently concatenates multiple byte slices into a single slice.
//
// This function takes a variadic number of byte slices and combines them
// into a single byte slice. It pre-allocates the exact amount of memory
// needed, making it more efficient than repeated concatenation.
//
// Parameters:
// - slices: Zero or more byte slices to concatenate
//
// Returns:
// - A new byte slice containing all input slices concatenated in order
//
// Performance:
//
// ConcatAll is more efficient than using Monoid.Concat repeatedly because
// it calculates the total size upfront and allocates memory once, avoiding
// multiple allocations and copies.
//
// Example - Basic usage:
//
// result := ConcatAll(
// []byte("Hello"),
// []byte(" "),
// []byte("World"),
// )
// // result: []byte("Hello World")
//
// Example - Empty input:
//
// result := ConcatAll()
// // result: []byte{}
//
// Example - Single slice:
//
// result := ConcatAll([]byte("test"))
// // result: []byte("test")
//
// Example - Building protocol messages:
//
// import "encoding/binary"
//
// header := []byte{0x01, 0x02}
// length := make([]byte, 4)
// binary.BigEndian.PutUint32(length, 100)
// payload := []byte("data")
// footer := []byte{0xFF}
//
// message := ConcatAll(header, length, payload, footer)
//
// Example - With empty slices:
//
// result := ConcatAll(
// []byte("a"),
// []byte{},
// []byte("b"),
// []byte{},
// []byte("c"),
// )
// // result: []byte("abc")
//
// Example - Building CSV line:
//
// fields := [][]byte{
// []byte("John"),
// []byte("Doe"),
// []byte("30"),
// }
// separator := []byte(",")
//
// // Interleave fields with separators
// parts := [][]byte{
// fields[0], separator,
// fields[1], separator,
// fields[2],
// }
// line := ConcatAll(parts...)
// // line: []byte("John,Doe,30")
//
// See also:
// - Monoid.Concat: For concatenating exactly two byte slices
// - bytes.Join: Standard library function for joining with separator
ConcatAll = A.ArrayConcatAll[byte]
// Ord implements the default ordering on bytes
// Ord is the Ord instance for byte slices providing lexicographic ordering.
//
// This Ord instance compares byte slices lexicographically (dictionary order),
// comparing bytes from left to right until a difference is found or one slice
// ends. It uses the standard library's bytes.Compare and bytes.Equal functions.
//
// Comparison rules:
// - Compares byte-by-byte from left to right
// - First differing byte determines the order
// - Shorter slice is less than longer slice if all bytes match
// - Empty slice is less than any non-empty slice
//
// Operations:
// - Compare(a, b []byte) int: Returns -1 if a < b, 0 if a == b, 1 if a > b
// - Equals(a, b []byte) bool: Returns true if slices are equal
//
// Example - Basic comparison:
//
// cmp := Ord.Compare([]byte("abc"), []byte("abd"))
// // cmp: -1 (abc < abd)
//
// cmp = Ord.Compare([]byte("xyz"), []byte("abc"))
// // cmp: 1 (xyz > abc)
//
// cmp = Ord.Compare([]byte("test"), []byte("test"))
// // cmp: 0 (equal)
//
// Example - Length differences:
//
// cmp := Ord.Compare([]byte("ab"), []byte("abc"))
// // cmp: -1 (shorter is less)
//
// cmp = Ord.Compare([]byte("abc"), []byte("ab"))
// // cmp: 1 (longer is greater)
//
// Example - Empty slices:
//
// cmp := Ord.Compare([]byte{}, []byte("a"))
// // cmp: -1 (empty is less)
//
// cmp = Ord.Compare([]byte{}, []byte{})
// // cmp: 0 (both empty)
//
// Example - Equality check:
//
// equal := Ord.Equals([]byte("test"), []byte("test"))
// // equal: true
//
// equal = Ord.Equals([]byte("test"), []byte("Test"))
// // equal: false (case-sensitive)
//
// Example - Sorting byte slices:
//
// import "github.com/IBM/fp-go/v2/array"
//
// data := [][]byte{
// []byte("zebra"),
// []byte("apple"),
// []byte("mango"),
// }
//
// sorted := array.Sort(Ord)(data)
// // sorted: [[]byte("apple"), []byte("mango"), []byte("zebra")]
//
// Example - Binary data comparison:
//
// cmp := Ord.Compare([]byte{0x01, 0x02}, []byte{0x01, 0x03})
// // cmp: -1 (0x02 < 0x03)
//
// Example - Finding minimum:
//
// import O "github.com/IBM/fp-go/v2/ord"
//
// a := []byte("xyz")
// b := []byte("abc")
// min := O.Min(Ord)(a, b)
// // min: []byte("abc")
//
// See also:
// - bytes.Compare: Standard library comparison function
// - bytes.Equal: Standard library equality function
// - array.Sort: For sorting slices using an Ord instance
Ord = O.MakeOrd(bytes.Compare, bytes.Equal)
)

View File

@@ -53,17 +53,20 @@ var (
// structInfo holds information about a struct that needs lens generation
type structInfo struct {
Name string
Fields []fieldInfo
Imports map[string]string // package path -> alias
Name string
TypeParams string // e.g., "[T any]" or "[K comparable, V any]" - for type declarations
TypeParamNames string // e.g., "[T]" or "[K, V]" - for type usage in function signatures
Fields []fieldInfo
Imports map[string]string // package path -> alias
}
// fieldInfo holds information about a struct field
type fieldInfo struct {
Name string
TypeName string
BaseType string // TypeName without leading * for pointer types
IsOptional bool // true if field is a pointer or has json omitempty tag
Name string
TypeName string
BaseType string // TypeName without leading * for pointer types
IsOptional bool // true if field is a pointer or has json omitempty tag
IsComparable bool // true if the type is comparable (can use ==)
}
// templateData holds data for template rendering
@@ -74,64 +77,95 @@ type templateData struct {
const lensStructTemplate = `
// {{.Name}}Lenses provides lenses for accessing fields of {{.Name}}
type {{.Name}}Lenses struct {
type {{.Name}}Lenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
{{.Name}} {{if .IsOptional}}LO.LensO[{{$.Name}}, {{.TypeName}}]{{else}}L.Lens[{{$.Name}}, {{.TypeName}}]{{end}}
{{.Name}} L.Lens[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
// optional fields
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O LO.LensO[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
}
// {{.Name}}RefLenses provides lenses for accessing fields of {{.Name}} via a reference to {{.Name}}
type {{.Name}}RefLenses struct {
type {{.Name}}RefLenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
{{.Name}} {{if .IsOptional}}LO.LensO[*{{$.Name}}, {{.TypeName}}]{{else}}L.Lens[*{{$.Name}}, {{.TypeName}}]{{end}}
{{.Name}} L.Lens[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
// optional fields
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O LO.LensO[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
}
`
const lensConstructorTemplate = `
// Make{{.Name}}Lenses creates a new {{.Name}}Lenses with lenses for all fields
func Make{{.Name}}Lenses() {{.Name}}Lenses {
func Make{{.Name}}Lenses{{.TypeParams}}() {{.Name}}Lenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
iso{{.Name}} := I.FromZero[{{.TypeName}}]()
lens{{.Name}} := L.MakeLens(
func(s {{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s {{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) {{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}}O := LO.FromIso[{{$.Name}}{{$.TypeParamNames}}](IO.FromZero[{{.TypeName}}]())(lens{{.Name}})
{{- end}}
{{- end}}
return {{.Name}}Lenses{
return {{.Name}}Lenses{{.TypeParamNames}}{
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
{{.Name}}: L.MakeLens(
func(s {{$.Name}}) O.Option[{{.TypeName}}] { return iso{{.Name}}.Get(s.{{.Name}}) },
func(s {{$.Name}}, v O.Option[{{.TypeName}}]) {{$.Name}} { s.{{.Name}} = iso{{.Name}}.ReverseGet(v); return s },
),
{{- else}}
{{.Name}}: L.MakeLens(
func(s {{$.Name}}) {{.TypeName}} { return s.{{.Name}} },
func(s {{$.Name}}, v {{.TypeName}}) {{$.Name}} { s.{{.Name}} = v; return s },
),
{{.Name}}: lens{{.Name}},
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O: lens{{.Name}}O,
{{- end}}
{{- end}}
}
}
// Make{{.Name}}RefLenses creates a new {{.Name}}RefLenses with lenses for all fields
func Make{{.Name}}RefLenses() {{.Name}}RefLenses {
func Make{{.Name}}RefLenses{{.TypeParams}}() {{.Name}}RefLenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
iso{{.Name}} := I.FromZero[{{.TypeName}}]()
{{- end}}
{{- end}}
return {{.Name}}RefLenses{
{{- range .Fields}}
{{- if .IsOptional}}
{{.Name}}: L.MakeLensRef(
func(s *{{$.Name}}) O.Option[{{.TypeName}}] { return iso{{.Name}}.Get(s.{{.Name}}) },
func(s *{{$.Name}}, v O.Option[{{.TypeName}}]) *{{$.Name}} { s.{{.Name}} = iso{{.Name}}.ReverseGet(v); return s },
),
{{- if .IsComparable}}
lens{{.Name}} := L.MakeLensStrict(
func(s *{{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- else}}
{{.Name}}: L.MakeLensRef(
func(s *{{$.Name}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}, v {{.TypeName}}) *{{$.Name}} { s.{{.Name}} = v; return s },
),
lens{{.Name}} := L.MakeLensRef(
func(s *{{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- end}}
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}}O := LO.FromIso[*{{$.Name}}{{$.TypeParamNames}}](IO.FromZero[{{.TypeName}}]())(lens{{.Name}})
{{- end}}
{{- end}}
return {{.Name}}RefLenses{{.TypeParamNames}}{
// mandatory lenses
{{- range .Fields}}
{{.Name}}: lens{{.Name}},
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O: lens{{.Name}}O,
{{- end}}
{{- end}}
}
@@ -257,6 +291,259 @@ func isPointerType(expr ast.Expr) bool {
return ok
}
// isComparableType checks if a type expression represents a comparable type.
// Comparable types in Go include:
// - Basic types (bool, numeric types, string)
// - Pointer types
// - Channel types
// - Interface types
// - Structs where all fields are comparable
// - Arrays where the element type is comparable
//
// Non-comparable types include:
// - Slices
// - Maps
// - Functions
//
// typeParams is a map of type parameter names to their constraints (e.g., "T" -> "any", "K" -> "comparable")
func isComparableType(expr ast.Expr, typeParams map[string]string) bool {
switch t := expr.(type) {
case *ast.Ident:
// Check if this is a type parameter
if constraint, isTypeParam := typeParams[t.Name]; isTypeParam {
// Type parameter - check its constraint
return constraint == "comparable"
}
// Basic types and named types
// We assume named types are comparable unless they're known non-comparable types
name := t.Name
// Known non-comparable built-in types
if name == "error" {
// error is an interface, which is comparable
return true
}
// Most basic types and named types are comparable
// We can't determine if a custom type is comparable without type checking,
// so we assume it is (conservative approach)
return true
case *ast.StarExpr:
// Pointer types are always comparable
return true
case *ast.ArrayType:
// Arrays are comparable if their element type is comparable
if t.Len == nil {
// This is a slice (no length), slices are not comparable
return false
}
// Fixed-size array, check element type
return isComparableType(t.Elt, typeParams)
case *ast.MapType:
// Maps are not comparable
return false
case *ast.FuncType:
// Functions are not comparable
return false
case *ast.InterfaceType:
// Interface types are comparable
return true
case *ast.StructType:
// Structs are comparable if all fields are comparable
// We can't easily determine this without full type information,
// so we conservatively return false for struct literals
return false
case *ast.SelectorExpr:
// Qualified identifier (e.g., pkg.Type)
// We can't determine comparability without type information
// Check for known non-comparable types from standard library
if ident, ok := t.X.(*ast.Ident); ok {
pkgName := ident.Name
typeName := t.Sel.Name
// Check for known non-comparable types
if pkgName == "context" && typeName == "Context" {
// context.Context is an interface, which is comparable
return true
}
// For other qualified types, we assume they're comparable
// This is a conservative approach
}
return true
case *ast.IndexExpr, *ast.IndexListExpr:
// Generic types - we can't determine comparability without type information
// For common generic types, we can make educated guesses
var baseExpr ast.Expr
if idx, ok := t.(*ast.IndexExpr); ok {
baseExpr = idx.X
} else if idxList, ok := t.(*ast.IndexListExpr); ok {
baseExpr = idxList.X
}
if sel, ok := baseExpr.(*ast.SelectorExpr); ok {
if ident, ok := sel.X.(*ast.Ident); ok {
pkgName := ident.Name
typeName := sel.Sel.Name
// Check for known non-comparable generic types
if pkgName == "option" && typeName == "Option" {
// Option types are not comparable (they contain a slice internally)
return false
}
if pkgName == "either" && typeName == "Either" {
// Either types are not comparable
return false
}
}
}
// For other generic types, conservatively assume not comparable
log.Printf("Not comparable type: %v\n", t)
return false
case *ast.ChanType:
// Channel types are comparable
return true
default:
// Unknown type, conservatively assume not comparable
return false
}
}
// embeddedFieldResult holds both the field info and its AST type for import extraction
type embeddedFieldResult struct {
fieldInfo fieldInfo
fieldType ast.Expr
}
// extractEmbeddedFields extracts fields from an embedded struct type
// It returns a slice of embeddedFieldResult for all exported fields in the embedded struct
// typeParamsMap contains the type parameters of the parent struct (for checking comparability)
func extractEmbeddedFields(embedType ast.Expr, fileImports map[string]string, file *ast.File, typeParamsMap map[string]string) []embeddedFieldResult {
var results []embeddedFieldResult
// Get the type name of the embedded field
var typeName string
var typeIdent *ast.Ident
switch t := embedType.(type) {
case *ast.Ident:
// Direct embedded type: type MyStruct struct { EmbeddedType }
typeName = t.Name
typeIdent = t
case *ast.StarExpr:
// Pointer embedded type: type MyStruct struct { *EmbeddedType }
if ident, ok := t.X.(*ast.Ident); ok {
typeName = ident.Name
typeIdent = ident
}
case *ast.SelectorExpr:
// Qualified embedded type: type MyStruct struct { pkg.EmbeddedType }
// We can't easily resolve this without full type information
// For now, skip these
return results
}
if typeName == "" || typeIdent == nil {
return results
}
// Find the struct definition in the same file
var embeddedStructType *ast.StructType
ast.Inspect(file, func(n ast.Node) bool {
if ts, ok := n.(*ast.TypeSpec); ok {
if ts.Name.Name == typeName {
if st, ok := ts.Type.(*ast.StructType); ok {
embeddedStructType = st
return false
}
}
}
return true
})
if embeddedStructType == nil {
// Struct not found in this file, might be from another package
return results
}
// Extract fields from the embedded struct
for _, field := range embeddedStructType.Fields.List {
// Skip embedded fields within embedded structs (for now, to avoid infinite recursion)
if len(field.Names) == 0 {
continue
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
fieldTypeName := getTypeName(field.Type)
isOptional := false
baseType := fieldTypeName
// Check if field is optional
if isPointerType(field.Type) {
isOptional = true
baseType = strings.TrimPrefix(fieldTypeName, "*")
} else if hasOmitEmpty(field.Tag) {
isOptional = true
}
// Check if the type is comparable
isComparable := isComparableType(field.Type, typeParamsMap)
results = append(results, embeddedFieldResult{
fieldInfo: fieldInfo{
Name: name.Name,
TypeName: fieldTypeName,
BaseType: baseType,
IsOptional: isOptional,
IsComparable: isComparable,
},
fieldType: field.Type,
})
}
}
}
return results
}
// extractTypeParams extracts type parameters from a type spec
// Returns two strings: full params like "[T any]" and names only like "[T]"
func extractTypeParams(typeSpec *ast.TypeSpec) (string, string) {
if typeSpec.TypeParams == nil || len(typeSpec.TypeParams.List) == 0 {
return "", ""
}
var params []string
var names []string
for _, field := range typeSpec.TypeParams.List {
for _, name := range field.Names {
constraint := getTypeName(field.Type)
params = append(params, name.Name+" "+constraint)
names = append(names, name.Name)
}
}
fullParams := "[" + strings.Join(params, ", ") + "]"
nameParams := "[" + strings.Join(names, ", ") + "]"
return fullParams, nameParams
}
// buildTypeParamsMap creates a map of type parameter names to their constraints
// e.g., for "type Box[T any, K comparable]", returns {"T": "any", "K": "comparable"}
func buildTypeParamsMap(typeSpec *ast.TypeSpec) map[string]string {
typeParamsMap := make(map[string]string)
if typeSpec.TypeParams == nil || len(typeSpec.TypeParams.List) == 0 {
return typeParamsMap
}
for _, field := range typeSpec.TypeParams.List {
constraint := getTypeName(field.Type)
for _, name := range field.Names {
typeParamsMap[name.Name] = constraint
}
}
return typeParamsMap
}
// parseFile parses a Go file and extracts structs with lens annotations
func parseFile(filename string) ([]structInfo, string, error) {
fset := token.NewFileSet()
@@ -320,9 +607,27 @@ func parseFile(filename string) ([]structInfo, string, error) {
var fields []fieldInfo
structImports := make(map[string]string)
// Build type parameters map for this struct
typeParamsMap := buildTypeParamsMap(typeSpec)
for _, field := range structType.Fields.List {
if len(field.Names) == 0 {
// Embedded field, skip for now
// Embedded field - promote its fields
embeddedResults := extractEmbeddedFields(field.Type, fileImports, node, typeParamsMap)
for _, embResult := range embeddedResults {
// Extract imports from embedded field's type
fieldImports := make(map[string]string)
extractImports(embResult.fieldType, fieldImports)
// Resolve package names to full import paths
for pkgName := range fieldImports {
if importPath, ok := fileImports[pkgName]; ok {
structImports[importPath] = pkgName
}
}
fields = append(fields, embResult.fieldInfo)
}
continue
}
for _, name := range field.Names {
@@ -331,6 +636,7 @@ func parseFile(filename string) ([]structInfo, string, error) {
typeName := getTypeName(field.Type)
isOptional := false
baseType := typeName
isComparable := false
// Check if field is optional:
// 1. Pointer types are always optional
@@ -344,6 +650,11 @@ func parseFile(filename string) ([]structInfo, string, error) {
isOptional = true
}
// Check if the type is comparable (for non-optional fields)
// For optional fields, we don't need to check since they use LensO
isComparable = isComparableType(field.Type, typeParamsMap)
// log.Printf("field %s, type: %v, isComparable: %b\n", name, field.Type, isComparable)
// Extract imports from this field's type
fieldImports := make(map[string]string)
extractImports(field.Type, fieldImports)
@@ -356,20 +667,24 @@ func parseFile(filename string) ([]structInfo, string, error) {
}
fields = append(fields, fieldInfo{
Name: name.Name,
TypeName: typeName,
BaseType: baseType,
IsOptional: isOptional,
Name: name.Name,
TypeName: typeName,
BaseType: baseType,
IsOptional: isOptional,
IsComparable: isComparable,
})
}
}
}
if len(fields) > 0 {
typeParams, typeParamNames := extractTypeParams(typeSpec)
structs = append(structs, structInfo{
Name: typeSpec.Name.Name,
Fields: fields,
Imports: structImports,
Name: typeSpec.Name.Name,
TypeParams: typeParams,
TypeParamNames: typeParamNames,
Fields: fields,
Imports: structImports,
})
}
@@ -469,8 +784,8 @@ func generateLensHelpers(dir, filename string, verbose bool) error {
// Standard fp-go imports always needed
f.WriteString("\tL \"github.com/IBM/fp-go/v2/optics/lens\"\n")
f.WriteString("\tLO \"github.com/IBM/fp-go/v2/optics/lens/option\"\n")
f.WriteString("\tO \"github.com/IBM/fp-go/v2/option\"\n")
f.WriteString("\tI \"github.com/IBM/fp-go/v2/optics/iso/option\"\n")
// f.WriteString("\tO \"github.com/IBM/fp-go/v2/option\"\n")
f.WriteString("\tIO \"github.com/IBM/fp-go/v2/optics/iso/option\"\n")
// Add additional imports collected from field types
for importPath, alias := range allImports {

View File

@@ -168,6 +168,91 @@ func TestIsPointerType(t *testing.T) {
}
}
func TestIsComparableType(t *testing.T) {
tests := []struct {
name string
code string
expected bool
}{
{
name: "basic type - string",
code: "type T struct { F string }",
expected: true,
},
{
name: "basic type - int",
code: "type T struct { F int }",
expected: true,
},
{
name: "basic type - bool",
code: "type T struct { F bool }",
expected: true,
},
{
name: "pointer type",
code: "type T struct { F *string }",
expected: true,
},
{
name: "slice type - not comparable",
code: "type T struct { F []string }",
expected: false,
},
{
name: "map type - not comparable",
code: "type T struct { F map[string]int }",
expected: false,
},
{
name: "array type - comparable if element is",
code: "type T struct { F [5]int }",
expected: true,
},
{
name: "interface type",
code: "type T struct { F interface{} }",
expected: true,
},
{
name: "channel type",
code: "type T struct { F chan int }",
expected: true,
},
{
name: "function type - not comparable",
code: "type T struct { F func() }",
expected: false,
},
{
name: "struct literal - conservatively not comparable",
code: "type T struct { F struct{ X int } }",
expected: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
fset := token.NewFileSet()
file, err := parser.ParseFile(fset, "", "package test\n"+tt.code, 0)
require.NoError(t, err)
var fieldType ast.Expr
ast.Inspect(file, func(n ast.Node) bool {
if field, ok := n.(*ast.Field); ok && len(field.Names) > 0 {
fieldType = field.Type
return false
}
return true
})
require.NotNil(t, fieldType)
result := isComparableType(fieldType, map[string]string{})
assert.Equal(t, tt.expected, result)
})
}
}
func TestHasOmitEmpty(t *testing.T) {
tests := []struct {
name string
@@ -337,6 +422,167 @@ type Config struct {
assert.False(t, config.Fields[4].IsOptional, "Required field without omitempty should not be optional")
}
func TestParseFileWithComparableTypes(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type TypeTest struct {
Name string
Age int
Pointer *string
Slice []string
Map map[string]int
Channel chan int
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check TypeTest struct
typeTest := structs[0]
assert.Equal(t, "TypeTest", typeTest.Name)
assert.Len(t, typeTest.Fields, 6)
// Name - string is comparable
assert.Equal(t, "Name", typeTest.Fields[0].Name)
assert.Equal(t, "string", typeTest.Fields[0].TypeName)
assert.False(t, typeTest.Fields[0].IsOptional)
assert.True(t, typeTest.Fields[0].IsComparable, "string should be comparable")
// Age - int is comparable
assert.Equal(t, "Age", typeTest.Fields[1].Name)
assert.Equal(t, "int", typeTest.Fields[1].TypeName)
assert.False(t, typeTest.Fields[1].IsOptional)
assert.True(t, typeTest.Fields[1].IsComparable, "int should be comparable")
// Pointer - pointer is optional, IsComparable not checked for optional fields
assert.Equal(t, "Pointer", typeTest.Fields[2].Name)
assert.Equal(t, "*string", typeTest.Fields[2].TypeName)
assert.True(t, typeTest.Fields[2].IsOptional)
// Slice - not comparable
assert.Equal(t, "Slice", typeTest.Fields[3].Name)
assert.Equal(t, "[]string", typeTest.Fields[3].TypeName)
assert.False(t, typeTest.Fields[3].IsOptional)
assert.False(t, typeTest.Fields[3].IsComparable, "slice should not be comparable")
// Map - not comparable
assert.Equal(t, "Map", typeTest.Fields[4].Name)
assert.Equal(t, "map[string]int", typeTest.Fields[4].TypeName)
assert.False(t, typeTest.Fields[4].IsOptional)
assert.False(t, typeTest.Fields[4].IsComparable, "map should not be comparable")
// Channel - comparable (note: getTypeName returns "any" for channel types, but isComparableType correctly identifies them)
assert.Equal(t, "Channel", typeTest.Fields[5].Name)
assert.Equal(t, "any", typeTest.Fields[5].TypeName) // getTypeName doesn't handle chan types specifically
assert.False(t, typeTest.Fields[5].IsOptional)
assert.True(t, typeTest.Fields[5].IsComparable, "channel should be comparable")
}
func TestLensRefTemplatesWithComparable(t *testing.T) {
s := structInfo{
Name: "TestStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Age", TypeName: "int", IsOptional: false, IsComparable: true},
{Name: "Data", TypeName: "[]byte", IsOptional: false, IsComparable: false},
{Name: "Pointer", TypeName: "*string", IsOptional: true, IsComparable: false},
},
}
// Test constructor template for RefLenses
var constructorBuf bytes.Buffer
err := constructorTmpl.Execute(&constructorBuf, s)
require.NoError(t, err)
constructorStr := constructorBuf.String()
// Check that MakeLensStrict is used for comparable types in RefLenses
assert.Contains(t, constructorStr, "func MakeTestStructRefLenses() TestStructRefLenses")
// Name field - comparable, should use MakeLensStrict
assert.Contains(t, constructorStr, "lensName := L.MakeLensStrict(",
"comparable field Name should use MakeLensStrict in RefLenses")
// Age field - comparable, should use MakeLensStrict
assert.Contains(t, constructorStr, "lensAge := L.MakeLensStrict(",
"comparable field Age should use MakeLensStrict in RefLenses")
// Data field - not comparable, should use MakeLensRef
assert.Contains(t, constructorStr, "lensData := L.MakeLensRef(",
"non-comparable field Data should use MakeLensRef in RefLenses")
}
func TestGenerateLensHelpersWithComparable(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type TestStruct struct {
Name string
Count int
Data []byte
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content in RefLenses
assert.Contains(t, contentStr, "MakeTestStructRefLenses")
// Name and Count are comparable, should use MakeLensStrict
assert.Contains(t, contentStr, "L.MakeLensStrict",
"comparable fields should use MakeLensStrict in RefLenses")
// Data is not comparable (slice), should use MakeLensRef
assert.Contains(t, contentStr, "L.MakeLensRef",
"non-comparable fields should use MakeLensRef in RefLenses")
// Verify the pattern appears for Name field (comparable)
namePattern := "lensName := L.MakeLensStrict("
assert.Contains(t, contentStr, namePattern,
"Name field should use MakeLensStrict")
// Verify the pattern appears for Data field (not comparable)
dataPattern := "lensData := L.MakeLensRef("
assert.Contains(t, contentStr, dataPattern,
"Data field should use MakeLensRef")
}
func TestGenerateLensHelpers(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
@@ -373,11 +619,11 @@ type TestStruct struct {
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "Code generated by go generate")
assert.Contains(t, contentStr, "TestStructLens")
assert.Contains(t, contentStr, "MakeTestStructLens")
assert.Contains(t, contentStr, "TestStructLenses")
assert.Contains(t, contentStr, "MakeTestStructLenses")
assert.Contains(t, contentStr, "L.Lens[TestStruct, string]")
assert.Contains(t, contentStr, "LO.LensO[TestStruct, *int]")
assert.Contains(t, contentStr, "I.FromZero")
assert.Contains(t, contentStr, "IO.FromZero")
}
func TestGenerateLensHelpersNoAnnotations(t *testing.T) {
@@ -411,8 +657,8 @@ func TestLensTemplates(t *testing.T) {
s := structInfo{
Name: "TestStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false},
{Name: "Value", TypeName: "*int", IsOptional: true},
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Value", TypeName: "*int", IsOptional: true, IsComparable: true},
},
}
@@ -424,7 +670,9 @@ func TestLensTemplates(t *testing.T) {
structStr := structBuf.String()
assert.Contains(t, structStr, "type TestStructLenses struct")
assert.Contains(t, structStr, "Name L.Lens[TestStruct, string]")
assert.Contains(t, structStr, "Value LO.LensO[TestStruct, *int]")
assert.Contains(t, structStr, "NameO LO.LensO[TestStruct, string]")
assert.Contains(t, structStr, "Value L.Lens[TestStruct, *int]")
assert.Contains(t, structStr, "ValueO LO.LensO[TestStruct, *int]")
// Test constructor template
var constructorBuf bytes.Buffer
@@ -434,19 +682,21 @@ func TestLensTemplates(t *testing.T) {
constructorStr := constructorBuf.String()
assert.Contains(t, constructorStr, "func MakeTestStructLenses() TestStructLenses")
assert.Contains(t, constructorStr, "return TestStructLenses{")
assert.Contains(t, constructorStr, "Name: L.MakeLens(")
assert.Contains(t, constructorStr, "Value: L.MakeLens(")
assert.Contains(t, constructorStr, "I.FromZero")
assert.Contains(t, constructorStr, "Name: lensName,")
assert.Contains(t, constructorStr, "NameO: lensNameO,")
assert.Contains(t, constructorStr, "Value: lensValue,")
assert.Contains(t, constructorStr, "ValueO: lensValueO,")
assert.Contains(t, constructorStr, "IO.FromZero")
}
func TestLensTemplatesWithOmitEmpty(t *testing.T) {
s := structInfo{
Name: "ConfigStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false},
{Name: "Value", TypeName: "string", IsOptional: true}, // non-pointer with omitempty
{Name: "Count", TypeName: "int", IsOptional: true}, // non-pointer with omitempty
{Name: "Pointer", TypeName: "*string", IsOptional: true}, // pointer
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Value", TypeName: "string", IsOptional: true, IsComparable: true}, // non-pointer with omitempty
{Name: "Count", TypeName: "int", IsOptional: true, IsComparable: true}, // non-pointer with omitempty
{Name: "Pointer", TypeName: "*string", IsOptional: true, IsComparable: true}, // pointer
},
}
@@ -458,9 +708,13 @@ func TestLensTemplatesWithOmitEmpty(t *testing.T) {
structStr := structBuf.String()
assert.Contains(t, structStr, "type ConfigStructLenses struct")
assert.Contains(t, structStr, "Name L.Lens[ConfigStruct, string]")
assert.Contains(t, structStr, "Value LO.LensO[ConfigStruct, string]", "non-pointer with omitempty should use LensO")
assert.Contains(t, structStr, "Count LO.LensO[ConfigStruct, int]", "non-pointer with omitempty should use LensO")
assert.Contains(t, structStr, "Pointer LO.LensO[ConfigStruct, *string]")
assert.Contains(t, structStr, "NameO LO.LensO[ConfigStruct, string]")
assert.Contains(t, structStr, "Value L.Lens[ConfigStruct, string]")
assert.Contains(t, structStr, "ValueO LO.LensO[ConfigStruct, string]", "comparable non-pointer with omitempty should have optional lens")
assert.Contains(t, structStr, "Count L.Lens[ConfigStruct, int]")
assert.Contains(t, structStr, "CountO LO.LensO[ConfigStruct, int]", "comparable non-pointer with omitempty should have optional lens")
assert.Contains(t, structStr, "Pointer L.Lens[ConfigStruct, *string]")
assert.Contains(t, structStr, "PointerO LO.LensO[ConfigStruct, *string]")
// Test constructor template
var constructorBuf bytes.Buffer
@@ -469,9 +723,9 @@ func TestLensTemplatesWithOmitEmpty(t *testing.T) {
constructorStr := constructorBuf.String()
assert.Contains(t, constructorStr, "func MakeConfigStructLenses() ConfigStructLenses")
assert.Contains(t, constructorStr, "isoValue := I.FromZero[string]()")
assert.Contains(t, constructorStr, "isoCount := I.FromZero[int]()")
assert.Contains(t, constructorStr, "isoPointer := I.FromZero[*string]()")
assert.Contains(t, constructorStr, "IO.FromZero[string]()")
assert.Contains(t, constructorStr, "IO.FromZero[int]()")
assert.Contains(t, constructorStr, "IO.FromZero[*string]()")
}
func TestLensCommandFlags(t *testing.T) {
@@ -480,7 +734,7 @@ func TestLensCommandFlags(t *testing.T) {
assert.Equal(t, "lens", cmd.Name)
assert.Equal(t, "generate lens code for annotated structs", cmd.Usage)
assert.Contains(t, strings.ToLower(cmd.Description), "fp-go:lens")
assert.Contains(t, strings.ToLower(cmd.Description), "lenso")
assert.Contains(t, strings.ToLower(cmd.Description), "lenso", "Description should mention LensO for optional lenses")
// Check flags
assert.Len(t, cmd.Flags, 3)
@@ -501,3 +755,330 @@ func TestLensCommandFlags(t *testing.T) {
assert.True(t, hasFilename, "should have filename flag")
assert.True(t, hasVerbose, "should have verbose flag")
}
func TestParseFileWithEmbeddedStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// Base struct to be embedded
type Base struct {
ID int
Name string
}
// fp-go:Lens
type Extended struct {
Base
Extra string
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Extended struct
extended := structs[0]
assert.Equal(t, "Extended", extended.Name)
assert.Len(t, extended.Fields, 3, "Should have 3 fields: ID, Name (from Base), and Extra")
// Check that embedded fields are promoted
fieldNames := make(map[string]bool)
for _, field := range extended.Fields {
fieldNames[field.Name] = true
}
assert.True(t, fieldNames["ID"], "Should have promoted ID field from Base")
assert.True(t, fieldNames["Name"], "Should have promoted Name field from Base")
assert.True(t, fieldNames["Extra"], "Should have Extra field")
}
func TestGenerateLensHelpersWithEmbeddedStruct(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// Base struct to be embedded
type Address struct {
Street string
City string
}
// fp-go:Lens
type Person struct {
Address
Name string
Age int
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "PersonLenses")
assert.Contains(t, contentStr, "MakePersonLenses")
// Check that embedded fields are included
assert.Contains(t, contentStr, "Street L.Lens[Person, string]", "Should have lens for embedded Street field")
assert.Contains(t, contentStr, "City L.Lens[Person, string]", "Should have lens for embedded City field")
assert.Contains(t, contentStr, "Name L.Lens[Person, string]", "Should have lens for Name field")
assert.Contains(t, contentStr, "Age L.Lens[Person, int]", "Should have lens for Age field")
// Check that optional lenses are also generated for embedded fields
assert.Contains(t, contentStr, "StreetO LO.LensO[Person, string]")
assert.Contains(t, contentStr, "CityO LO.LensO[Person, string]")
}
func TestParseFileWithPointerEmbeddedStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// Base struct to be embedded
type Metadata struct {
CreatedAt string
UpdatedAt string
}
// fp-go:Lens
type Document struct {
*Metadata
Title string
Content string
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Document struct
doc := structs[0]
assert.Equal(t, "Document", doc.Name)
assert.Len(t, doc.Fields, 4, "Should have 4 fields: CreatedAt, UpdatedAt (from *Metadata), Title, and Content")
// Check that embedded fields are promoted
fieldNames := make(map[string]bool)
for _, field := range doc.Fields {
fieldNames[field.Name] = true
}
assert.True(t, fieldNames["CreatedAt"], "Should have promoted CreatedAt field from *Metadata")
assert.True(t, fieldNames["UpdatedAt"], "Should have promoted UpdatedAt field from *Metadata")
assert.True(t, fieldNames["Title"], "Should have Title field")
assert.True(t, fieldNames["Content"], "Should have Content field")
}
func TestParseFileWithGenericStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type Container[T any] struct {
Value T
Count int
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Container struct
container := structs[0]
assert.Equal(t, "Container", container.Name)
assert.Equal(t, "[T any]", container.TypeParams, "Should have type parameter [T any]")
assert.Len(t, container.Fields, 2)
assert.Equal(t, "Value", container.Fields[0].Name)
assert.Equal(t, "T", container.Fields[0].TypeName)
assert.Equal(t, "Count", container.Fields[1].Name)
assert.Equal(t, "int", container.Fields[1].TypeName)
}
func TestParseFileWithMultipleTypeParams(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type Pair[K comparable, V any] struct {
Key K
Value V
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Pair struct
pair := structs[0]
assert.Equal(t, "Pair", pair.Name)
assert.Equal(t, "[K comparable, V any]", pair.TypeParams, "Should have type parameters [K comparable, V any]")
assert.Len(t, pair.Fields, 2)
assert.Equal(t, "Key", pair.Fields[0].Name)
assert.Equal(t, "K", pair.Fields[0].TypeName)
assert.Equal(t, "Value", pair.Fields[1].Name)
assert.Equal(t, "V", pair.Fields[1].TypeName)
}
func TestGenerateLensHelpersWithGenericStruct(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type Box[T any] struct {
Content T
Label string
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content with type parameters
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "type BoxLenses[T any] struct", "Should have generic BoxLenses type")
assert.Contains(t, contentStr, "type BoxRefLenses[T any] struct", "Should have generic BoxRefLenses type")
assert.Contains(t, contentStr, "func MakeBoxLenses[T any]() BoxLenses[T]", "Should have generic constructor")
assert.Contains(t, contentStr, "func MakeBoxRefLenses[T any]() BoxRefLenses[T]", "Should have generic ref constructor")
// Check that fields use the generic type parameter
assert.Contains(t, contentStr, "Content L.Lens[Box[T], T]", "Should have lens for generic Content field")
assert.Contains(t, contentStr, "Label L.Lens[Box[T], string]", "Should have lens for Label field")
// Check optional lenses - only for comparable types
// T any is not comparable, so ContentO should NOT be generated
assert.NotContains(t, contentStr, "ContentO LO.LensO[Box[T], T]", "T any is not comparable, should not have optional lens")
// string is comparable, so LabelO should be generated
assert.Contains(t, contentStr, "LabelO LO.LensO[Box[T], string]", "string is comparable, should have optional lens")
}
func TestGenerateLensHelpersWithComparableTypeParam(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type ComparableBox[T comparable] struct {
Key T
Value string
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content with type parameters
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "type ComparableBoxLenses[T comparable] struct", "Should have generic ComparableBoxLenses type")
assert.Contains(t, contentStr, "type ComparableBoxRefLenses[T comparable] struct", "Should have generic ComparableBoxRefLenses type")
// Check that Key field (with comparable constraint) uses MakeLensStrict in RefLenses
assert.Contains(t, contentStr, "lensKey := L.MakeLensStrict(", "Key field with comparable constraint should use MakeLensStrict")
// Check that Value field (string, always comparable) also uses MakeLensStrict
assert.Contains(t, contentStr, "lensValue := L.MakeLensStrict(", "Value field (string) should use MakeLensStrict")
// Verify that MakeLensRef is NOT used (since both fields are comparable)
assert.NotContains(t, contentStr, "L.MakeLensRef(", "Should not use MakeLensRef when all fields are comparable")
}

View File

@@ -27,7 +27,7 @@ import (
func TestMap(t *testing.T) {
fa := Make[string, int]("foo")
assert.Equal(t, fa, F.Pipe1(fa, Map[string, int](utils.Double)))
assert.Equal(t, fa, F.Pipe1(fa, Map[string](utils.Double)))
}
func TestOf(t *testing.T) {

11
v2/constant/monoid.go Normal file
View File

@@ -0,0 +1,11 @@
package constant
import (
"github.com/IBM/fp-go/v2/function"
M "github.com/IBM/fp-go/v2/monoid"
)
// Monoid returns a [M.Monoid] that returns a constant value in all operations
func Monoid[A any](a A) M.Monoid[A] {
return M.MakeMonoid(function.Constant2[A, A](a), a)
}

View File

@@ -13,20 +13,19 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package ioeither
package ioresult
import (
"context"
"github.com/IBM/fp-go/v2/either"
IOE "github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/result"
)
// withContext wraps an existing IOEither and performs a context check for cancellation before delegating
func WithContext[A any](ctx context.Context, ma IOE.IOEither[error, A]) IOE.IOEither[error, A] {
return func() either.Either[error, A] {
func WithContext[A any](ctx context.Context, ma IOResult[A]) IOResult[A] {
return func() Result[A] {
if err := context.Cause(ctx); err != nil {
return either.Left[A](err)
return result.Left[A](err)
}
return ma()
}

View File

@@ -0,0 +1,11 @@
package ioresult
import (
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/result"
)
type (
IOResult[T any] = ioresult.IOResult[T]
Result[T any] = result.Result[T]
)

View File

@@ -1,251 +0,0 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:27.21,29.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:35.47,42.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:48.47,54.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:60.47,66.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:71.46,76.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:82.47,89.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/bracket.go:33.21,44.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/cancel.go:35.65,36.47 1 1
github.com/IBM/fp-go/v2/context/readerioeither/cancel.go:36.47,37.44 1 1
github.com/IBM/fp-go/v2/context/readerioeither/cancel.go:37.44,39.4 1 1
github.com/IBM/fp-go/v2/context/readerioeither/cancel.go:40.3,40.40 1 1
github.com/IBM/fp-go/v2/context/readerioeither/eq.go:42.84,44.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:18.91,20.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:24.93,26.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:30.101,32.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:36.103,38.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:43.36,48.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:53.36,58.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:63.36,68.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:71.98,76.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:79.101,84.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:87.101,92.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:95.129,96.68 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:96.68,102.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:106.132,107.68 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:107.68,113.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:117.132,118.68 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:118.68,124.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:129.113,131.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:135.115,137.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:143.40,150.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:156.40,163.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:169.40,176.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:179.126,185.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:188.129,194.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:197.129,203.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:206.185,207.76 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:207.76,215.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:219.188,220.76 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:220.76,228.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:232.188,233.76 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:233.76,241.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:246.125,248.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:252.127,254.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:261.44,270.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:277.44,286.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:293.44,302.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:305.154,312.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:315.157,322.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:325.157,332.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:335.241,336.84 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:336.84,346.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:350.244,351.84 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:351.84,361.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:365.244,366.84 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:366.84,376.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:381.137,383.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:387.139,389.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:397.48,408.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:416.48,427.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:435.48,446.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:449.182,457.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:460.185,468.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:471.185,479.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:482.297,483.92 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:483.92,495.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:499.300,500.92 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:500.92,512.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:516.300,517.92 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:517.92,529.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:534.149,536.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:540.151,542.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:551.52,564.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:573.52,586.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:595.52,608.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:611.210,620.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:623.213,632.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:635.213,644.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:647.353,648.100 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:648.100,662.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:666.356,667.100 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:667.100,681.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:685.356,686.100 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:686.100,700.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:705.161,707.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:711.163,713.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:723.56,738.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:748.56,763.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:773.56,788.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:791.238,801.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:804.241,814.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:817.241,827.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:830.409,831.108 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:831.108,847.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:851.412,852.108 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:852.108,868.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:872.412,873.108 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:873.108,889.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:894.173,896.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:900.175,902.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:913.60,930.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:941.60,958.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:969.60,986.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:989.266,1000.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1003.269,1014.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1017.269,1028.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1031.465,1032.116 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1032.116,1050.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1054.468,1055.116 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1055.116,1073.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1077.468,1078.116 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1078.116,1096.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1101.185,1103.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1107.187,1109.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1121.64,1140.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1152.64,1171.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1183.64,1202.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1205.294,1217.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1220.297,1232.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1235.297,1247.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1250.521,1251.124 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1251.124,1271.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1275.524,1276.124 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1276.124,1296.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1300.524,1301.124 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1301.124,1321.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1326.197,1328.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1332.199,1334.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1347.68,1368.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1381.68,1402.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1415.68,1436.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1439.322,1452.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1455.325,1468.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1471.325,1484.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1487.577,1488.132 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1488.132,1510.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1514.580,1515.132 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1515.132,1537.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1541.580,1542.132 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1542.132,1564.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1569.210,1571.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1575.212,1577.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1591.74,1614.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1628.74,1651.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1665.74,1688.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1691.356,1705.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1708.359,1722.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1725.359,1739.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1742.645,1743.144 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1743.144,1767.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1771.648,1772.144 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1772.144,1796.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1800.648,1801.144 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1801.144,1825.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:36.61,43.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:52.64,59.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:68.64,75.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:85.61,93.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:103.63,108.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:42.55,44.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:52.45,54.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:62.42,64.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:74.78,76.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:85.75,87.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:97.72,99.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:108.69,110.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:120.96,122.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:131.93,133.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:143.101,145.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:154.71,156.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:165.39,167.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:169.93,173.56 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:173.56,174.32 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:174.32,174.47 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:189.98,194.47 3 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:194.47,196.44 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:196.44,198.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:200.3,200.27 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:200.27,202.45 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:202.45,204.5 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:207.4,213.47 5 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:227.95,229.17 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:229.17,231.3 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:232.2,232.28 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:243.98,245.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:254.91,256.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:265.94,267.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:276.94,278.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:288.95,290.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:299.73,301.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:307.44,309.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:319.95,321.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:330.95,332.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:342.100,344.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:353.100,355.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:364.116,366.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:375.75,377.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:386.47,388.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:398.51,400.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:406.39,407.47 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:407.47,408.27 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:408.27,411.4 2 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:423.87,425.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:434.87,436.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:446.92,448.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:457.92,459.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:468.115,470.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:479.85,480.54 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:480.54,481.48 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:481.48,482.28 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:482.28,487.12 3 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:488.30,489.22 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:490.23,491.47 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:505.59,511.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:520.66,522.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:531.83,533.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:543.97,545.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:554.64,556.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:566.62,568.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:577.78,579.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:589.80,591.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:600.76,602.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:612.136,614.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:623.91,625.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:634.71,636.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/resource.go:58.151,63.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/semigroup.go:39.41,43.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/sync.go:46.78,54.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:31.89,39.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:48.103,56.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:65.71,67.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:75.112,83.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:92.124,100.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:108.94,110.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:120.95,128.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:137.92,145.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:148.106,156.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:165.74,167.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:170.118,178.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:181.115,189.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:192.127,200.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:203.97,205.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:215.95,223.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:232.92,240.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:243.106,251.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:260.74,262.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:265.115,273.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:276.127,284.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:287.118,295.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:304.97,306.2 1 0

View File

@@ -1,15 +0,0 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:117.52,119.103 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:119.103,120.80 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:120.80,121.41 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:121.41,123.19 2 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:123.19,126.6 2 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:127.5,127.20 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:132.2,132.93 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:132.93,133.80 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:133.80,134.41 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:134.41,136.19 2 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:136.19,138.6 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:139.5,139.20 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:144.2,150.50 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:150.50,153.4 2 1

View File

@@ -1,11 +0,0 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:111.76,116.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:134.49,136.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:161.90,162.65 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:162.65,166.76 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:166.76,176.5 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:198.73,203.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:222.74,227.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:234.76,236.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:245.74,254.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:281.76,286.2 1 1

View File

@@ -1,720 +0,0 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
import (
"context"
"time"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/errors"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/readerioeither"
)
const (
// useParallel is the feature flag to control if we use the parallel or the sequential implementation of ap
useParallel = true
)
// FromEither converts an [Either] into a [ReaderIOEither].
// The resulting computation ignores the context and immediately returns the Either value.
//
// Parameters:
// - e: The Either value to lift into ReaderIOEither
//
// Returns a ReaderIOEither that produces the given Either value.
//
//go:inline
func FromEither[A any](e Either[A]) ReaderIOEither[A] {
return readerioeither.FromEither[context.Context](e)
}
// Left creates a [ReaderIOEither] that represents a failed computation with the given error.
//
// Parameters:
// - l: The error value
//
// Returns a ReaderIOEither that always fails with the given error.
func Left[A any](l error) ReaderIOEither[A] {
return readerioeither.Left[context.Context, A](l)
}
// Right creates a [ReaderIOEither] that represents a successful computation with the given value.
//
// Parameters:
// - r: The success value
//
// Returns a ReaderIOEither that always succeeds with the given value.
//
//go:inline
func Right[A any](r A) ReaderIOEither[A] {
return readerioeither.Right[context.Context, error](r)
}
// MonadMap transforms the success value of a [ReaderIOEither] using the provided function.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIOEither to transform
// - f: The transformation function
//
// Returns a new ReaderIOEither with the transformed value.
//
//go:inline
func MonadMap[A, B any](fa ReaderIOEither[A], f func(A) B) ReaderIOEither[B] {
return readerioeither.MonadMap(fa, f)
}
// Map transforms the success value of a [ReaderIOEither] using the provided function.
// This is the curried version of [MonadMap], useful for composition.
//
// Parameters:
// - f: The transformation function
//
// Returns a function that transforms a ReaderIOEither.
//
//go:inline
func Map[A, B any](f func(A) B) Operator[A, B] {
return readerioeither.Map[context.Context, error](f)
}
// MonadMapTo replaces the success value of a [ReaderIOEither] with a constant value.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIOEither to transform
// - b: The constant value to use
//
// Returns a new ReaderIOEither with the constant value.
//
//go:inline
func MonadMapTo[A, B any](fa ReaderIOEither[A], b B) ReaderIOEither[B] {
return readerioeither.MonadMapTo(fa, b)
}
// MapTo replaces the success value of a [ReaderIOEither] with a constant value.
// This is the curried version of [MonadMapTo].
//
// Parameters:
// - b: The constant value to use
//
// Returns a function that transforms a ReaderIOEither.
//
//go:inline
func MapTo[A, B any](b B) Operator[A, B] {
return readerioeither.MapTo[context.Context, error, A](b)
}
// MonadChain sequences two [ReaderIOEither] computations, where the second depends on the result of the first.
// If the first computation fails, the second is not executed.
//
// Parameters:
// - ma: The first ReaderIOEither
// - f: Function that produces the second ReaderIOEither based on the first's result
//
// Returns a new ReaderIOEither representing the sequenced computation.
//
//go:inline
func MonadChain[A, B any](ma ReaderIOEither[A], f Kleisli[A, B]) ReaderIOEither[B] {
return readerioeither.MonadChain(ma, f)
}
// Chain sequences two [ReaderIOEither] computations, where the second depends on the result of the first.
// This is the curried version of [MonadChain], useful for composition.
//
// Parameters:
// - f: Function that produces the second ReaderIOEither based on the first's result
//
// Returns a function that sequences ReaderIOEither computations.
//
//go:inline
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return readerioeither.Chain(f)
}
// MonadChainFirst sequences two [ReaderIOEither] computations but returns the result of the first.
// The second computation is executed for its side effects only.
//
// Parameters:
// - ma: The first ReaderIOEither
// - f: Function that produces the second ReaderIOEither
//
// Returns a ReaderIOEither with the result of the first computation.
//
//go:inline
func MonadChainFirst[A, B any](ma ReaderIOEither[A], f Kleisli[A, B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirst(ma, f)
}
// ChainFirst sequences two [ReaderIOEither] computations but returns the result of the first.
// This is the curried version of [MonadChainFirst].
//
// Parameters:
// - f: Function that produces the second ReaderIOEither
//
// Returns a function that sequences ReaderIOEither computations.
//
//go:inline
func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return readerioeither.ChainFirst(f)
}
// Of creates a [ReaderIOEither] that always succeeds with the given value.
// This is the same as [Right] and represents the monadic return operation.
//
// Parameters:
// - a: The value to wrap
//
// Returns a ReaderIOEither that always succeeds with the given value.
//
//go:inline
func Of[A any](a A) ReaderIOEither[A] {
return readerioeither.Of[context.Context, error](a)
}
func withCancelCauseFunc[A any](cancel context.CancelCauseFunc, ma IOEither[A]) IOEither[A] {
return function.Pipe3(
ma,
ioeither.Swap[error, A],
ioeither.ChainFirstIOK[A](func(err error) func() any {
return io.FromImpure(func() { cancel(err) })
}),
ioeither.Swap[A, error],
)
}
// MonadApPar implements parallel applicative application for [ReaderIOEither].
// It executes both computations in parallel and creates a sub-context that will be canceled
// if either operation fails. This provides automatic cancellation propagation.
//
// Parameters:
// - fab: ReaderIOEither containing a function
// - fa: ReaderIOEither containing a value
//
// Returns a ReaderIOEither with the function applied to the value.
func MonadApPar[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) ReaderIOEither[B] {
// context sensitive input
cfab := WithContext(fab)
cfa := WithContext(fa)
return func(ctx context.Context) IOEither[B] {
// quick check for cancellation
if err := context.Cause(ctx); err != nil {
return ioeither.Left[B](err)
}
return func() Either[B] {
// quick check for cancellation
if err := context.Cause(ctx); err != nil {
return either.Left[B](err)
}
// create sub-contexts for fa and fab, so they can cancel one other
ctxSub, cancelSub := context.WithCancelCause(ctx)
defer cancelSub(nil) // cancel has to be called in all paths
fabIOE := withCancelCauseFunc(cancelSub, cfab(ctxSub))
faIOE := withCancelCauseFunc(cancelSub, cfa(ctxSub))
return ioeither.MonadApPar(fabIOE, faIOE)()
}
}
}
// MonadAp implements applicative application for [ReaderIOEither].
// By default, it uses parallel execution ([MonadApPar]) but can be configured to use
// sequential execution ([MonadApSeq]) via the useParallel constant.
//
// Parameters:
// - fab: ReaderIOEither containing a function
// - fa: ReaderIOEither containing a value
//
// Returns a ReaderIOEither with the function applied to the value.
func MonadAp[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) ReaderIOEither[B] {
// dispatch to the configured version
if useParallel {
return MonadApPar(fab, fa)
}
return MonadApSeq(fab, fa)
}
// MonadApSeq implements sequential applicative application for [ReaderIOEither].
// It executes the function computation first, then the value computation.
//
// Parameters:
// - fab: ReaderIOEither containing a function
// - fa: ReaderIOEither containing a value
//
// Returns a ReaderIOEither with the function applied to the value.
//
//go:inline
func MonadApSeq[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) ReaderIOEither[B] {
return readerioeither.MonadApSeq(fab, fa)
}
// Ap applies a function wrapped in a [ReaderIOEither] to a value wrapped in a ReaderIOEither.
// This is the curried version of [MonadAp], using the default execution mode.
//
// Parameters:
// - fa: ReaderIOEither containing a value
//
// Returns a function that applies a ReaderIOEither function to the value.
//
//go:inline
func Ap[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadAp[B, A], fa)
}
// ApSeq applies a function wrapped in a [ReaderIOEither] to a value sequentially.
// This is the curried version of [MonadApSeq].
//
// Parameters:
// - fa: ReaderIOEither containing a value
//
// Returns a function that applies a ReaderIOEither function to the value sequentially.
//
//go:inline
func ApSeq[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApSeq[B, A], fa)
}
// ApPar applies a function wrapped in a [ReaderIOEither] to a value in parallel.
// This is the curried version of [MonadApPar].
//
// Parameters:
// - fa: ReaderIOEither containing a value
//
// Returns a function that applies a ReaderIOEither function to the value in parallel.
//
//go:inline
func ApPar[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApPar[B, A], fa)
}
// FromPredicate creates a [ReaderIOEither] from a predicate function.
// If the predicate returns true, the value is wrapped in Right; otherwise, Left with the error from onFalse.
//
// Parameters:
// - pred: Predicate function to test the value
// - onFalse: Function to generate an error when predicate fails
//
// Returns a function that converts a value to ReaderIOEither based on the predicate.
//
//go:inline
func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) Kleisli[A, A] {
return readerioeither.FromPredicate[context.Context](pred, onFalse)
}
// OrElse provides an alternative [ReaderIOEither] computation if the first one fails.
// The alternative is only executed if the first computation results in a Left (error).
//
// Parameters:
// - onLeft: Function that produces an alternative ReaderIOEither from the error
//
// Returns a function that provides fallback behavior for failed computations.
//
//go:inline
func OrElse[A any](onLeft Kleisli[error, A]) Operator[A, A] {
return readerioeither.OrElse[context.Context](onLeft)
}
// Ask returns a [ReaderIOEither] that provides access to the context.
// This is useful for accessing the [context.Context] within a computation.
//
// Returns a ReaderIOEither that produces the context.
//
//go:inline
func Ask() ReaderIOEither[context.Context] {
return readerioeither.Ask[context.Context, error]()
}
// MonadChainEitherK chains a function that returns an [Either] into a [ReaderIOEither] computation.
// This is useful for integrating pure Either-returning functions into ReaderIOEither workflows.
//
// Parameters:
// - ma: The ReaderIOEither to chain from
// - f: Function that produces an Either
//
// Returns a new ReaderIOEither with the chained computation.
//
//go:inline
func MonadChainEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) ReaderIOEither[B] {
return readerioeither.MonadChainEitherK[context.Context](ma, f)
}
// ChainEitherK chains a function that returns an [Either] into a [ReaderIOEither] computation.
// This is the curried version of [MonadChainEitherK].
//
// Parameters:
// - f: Function that produces an Either
//
// Returns a function that chains the Either-returning function.
//
//go:inline
func ChainEitherK[A, B any](f func(A) Either[B]) Operator[A, B] {
return readerioeither.ChainEitherK[context.Context](f)
}
// MonadChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// The Either-returning function is executed for its validation/side effects only.
//
// Parameters:
// - ma: The ReaderIOEither to chain from
// - f: Function that produces an Either
//
// Returns a ReaderIOEither with the original value if both computations succeed.
//
//go:inline
func MonadChainFirstEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirstEitherK[context.Context](ma, f)
}
// ChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// This is the curried version of [MonadChainFirstEitherK].
//
// Parameters:
// - f: Function that produces an Either
//
// Returns a function that chains the Either-returning function.
//
//go:inline
func ChainFirstEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return readerioeither.ChainFirstEitherK[context.Context](f)
}
// ChainOptionK chains a function that returns an [Option] into a [ReaderIOEither] computation.
// If the Option is None, the provided error function is called.
//
// Parameters:
// - onNone: Function to generate an error when Option is None
//
// Returns a function that chains Option-returning functions into ReaderIOEither.
//
//go:inline
func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operator[A, B] {
return readerioeither.ChainOptionK[context.Context, A, B](onNone)
}
// FromIOEither converts an [IOEither] into a [ReaderIOEither].
// The resulting computation ignores the context.
//
// Parameters:
// - t: The IOEither to convert
//
// Returns a ReaderIOEither that executes the IOEither.
//
//go:inline
func FromIOEither[A any](t ioeither.IOEither[error, A]) ReaderIOEither[A] {
return readerioeither.FromIOEither[context.Context](t)
}
// FromIO converts an [IO] into a [ReaderIOEither].
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - t: The IO to convert
//
// Returns a ReaderIOEither that executes the IO and wraps the result in Right.
//
//go:inline
func FromIO[A any](t IO[A]) ReaderIOEither[A] {
return readerioeither.FromIO[context.Context, error](t)
}
// FromLazy converts a [Lazy] computation into a [ReaderIOEither].
// The Lazy computation always succeeds, so it's wrapped in Right.
// This is an alias for [FromIO] since Lazy and IO have the same structure.
//
// Parameters:
// - t: The Lazy computation to convert
//
// Returns a ReaderIOEither that executes the Lazy computation and wraps the result in Right.
//
//go:inline
func FromLazy[A any](t Lazy[A]) ReaderIOEither[A] {
return readerioeither.FromIO[context.Context, error](t)
}
// Never returns a [ReaderIOEither] that blocks indefinitely until the context is canceled.
// This is useful for creating computations that wait for external cancellation signals.
//
// Returns a ReaderIOEither that waits for context cancellation and returns the cancellation error.
func Never[A any]() ReaderIOEither[A] {
return func(ctx context.Context) IOEither[A] {
return func() Either[A] {
<-ctx.Done()
return either.Left[A](context.Cause(ctx))
}
}
}
// MonadChainIOK chains a function that returns an [IO] into a [ReaderIOEither] computation.
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - ma: The ReaderIOEither to chain from
// - f: Function that produces an IO
//
// Returns a new ReaderIOEither with the chained IO computation.
//
//go:inline
func MonadChainIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEither[B] {
return readerioeither.MonadChainIOK(ma, f)
}
// ChainIOK chains a function that returns an [IO] into a [ReaderIOEither] computation.
// This is the curried version of [MonadChainIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainIOK[A, B any](f func(A) IO[B]) Operator[A, B] {
return readerioeither.ChainIOK[context.Context, error](f)
}
// MonadChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// The IO computation is executed for its side effects only.
//
// Parameters:
// - ma: The ReaderIOEither to chain from
// - f: Function that produces an IO
//
// Returns a ReaderIOEither with the original value after executing the IO.
//
//go:inline
func MonadChainFirstIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirstIOK(ma, f)
}
// ChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// This is the curried version of [MonadChainFirstIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainFirstIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return readerioeither.ChainFirstIOK[context.Context, error](f)
}
// ChainIOEitherK chains a function that returns an [IOEither] into a [ReaderIOEither] computation.
// This is useful for integrating IOEither-returning functions into ReaderIOEither workflows.
//
// Parameters:
// - f: Function that produces an IOEither
//
// Returns a function that chains the IOEither-returning function.
//
//go:inline
func ChainIOEitherK[A, B any](f func(A) ioeither.IOEither[error, B]) Operator[A, B] {
return readerioeither.ChainIOEitherK[context.Context](f)
}
// Delay creates an operation that delays execution by the specified duration.
// The computation waits for either the delay to expire or the context to be canceled.
//
// Parameters:
// - delay: The duration to wait before executing the computation
//
// Returns a function that delays a ReaderIOEither computation.
func Delay[A any](delay time.Duration) Operator[A, A] {
return func(ma ReaderIOEither[A]) ReaderIOEither[A] {
return func(ctx context.Context) IOEither[A] {
return func() Either[A] {
// manage the timeout
timeoutCtx, cancelTimeout := context.WithTimeout(ctx, delay)
defer cancelTimeout()
// whatever comes first
select {
case <-timeoutCtx.Done():
return ma(ctx)()
case <-ctx.Done():
return either.Left[A](context.Cause(ctx))
}
}
}
}
}
// Timer returns the current time after waiting for the specified delay.
// This is useful for creating time-based computations.
//
// Parameters:
// - delay: The duration to wait before returning the time
//
// Returns a ReaderIOEither that produces the current time after the delay.
func Timer(delay time.Duration) ReaderIOEither[time.Time] {
return function.Pipe2(
io.Now,
FromIO[time.Time],
Delay[time.Time](delay),
)
}
// Defer creates a [ReaderIOEither] by lazily generating a new computation each time it's executed.
// This is useful for creating computations that should be re-evaluated on each execution.
//
// Parameters:
// - gen: Lazy generator function that produces a ReaderIOEither
//
// Returns a ReaderIOEither that generates a fresh computation on each execution.
//
//go:inline
func Defer[A any](gen Lazy[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.Defer(gen)
}
// TryCatch wraps a function that returns a tuple (value, error) into a [ReaderIOEither].
// This is the standard way to convert Go error-returning functions into ReaderIOEither.
//
// Parameters:
// - f: Function that takes a context and returns a function producing (value, error)
//
// Returns a ReaderIOEither that wraps the error-returning function.
//
//go:inline
func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOEither[A] {
return readerioeither.TryCatch(f, errors.IdentityError)
}
// MonadAlt provides an alternative [ReaderIOEither] if the first one fails.
// The alternative is lazily evaluated only if needed.
//
// Parameters:
// - first: The primary ReaderIOEither to try
// - second: Lazy alternative ReaderIOEither to use if first fails
//
// Returns a ReaderIOEither that tries the first, then the second if first fails.
//
//go:inline
func MonadAlt[A any](first ReaderIOEither[A], second Lazy[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.MonadAlt(first, second)
}
// Alt provides an alternative [ReaderIOEither] if the first one fails.
// This is the curried version of [MonadAlt].
//
// Parameters:
// - second: Lazy alternative ReaderIOEither to use if first fails
//
// Returns a function that provides fallback behavior.
//
//go:inline
func Alt[A any](second Lazy[ReaderIOEither[A]]) Operator[A, A] {
return readerioeither.Alt(second)
}
// Memoize computes the value of the provided [ReaderIOEither] monad lazily but exactly once.
// The context used to compute the value is the context of the first call, so do not use this
// method if the value has a functional dependency on the content of the context.
//
// Parameters:
// - rdr: The ReaderIOEither to memoize
//
// Returns a ReaderIOEither that caches its result after the first execution.
//
//go:inline
func Memoize[A any](rdr ReaderIOEither[A]) ReaderIOEither[A] {
return readerioeither.Memoize(rdr)
}
// Flatten converts a nested [ReaderIOEither] into a flat [ReaderIOEither].
// This is equivalent to [MonadChain] with the identity function.
//
// Parameters:
// - rdr: The nested ReaderIOEither to flatten
//
// Returns a flattened ReaderIOEither.
//
//go:inline
func Flatten[A any](rdr ReaderIOEither[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.Flatten(rdr)
}
// MonadFlap applies a value to a function wrapped in a [ReaderIOEither].
// This is the reverse of [MonadAp], useful in certain composition scenarios.
//
// Parameters:
// - fab: ReaderIOEither containing a function
// - a: The value to apply to the function
//
// Returns a ReaderIOEither with the function applied to the value.
//
//go:inline
func MonadFlap[B, A any](fab ReaderIOEither[func(A) B], a A) ReaderIOEither[B] {
return readerioeither.MonadFlap(fab, a)
}
// Flap applies a value to a function wrapped in a [ReaderIOEither].
// This is the curried version of [MonadFlap].
//
// Parameters:
// - a: The value to apply to the function
//
// Returns a function that applies the value to a ReaderIOEither function.
//
//go:inline
func Flap[B, A any](a A) Operator[func(A) B, B] {
return readerioeither.Flap[context.Context, error, B](a)
}
// Fold handles both success and error cases of a [ReaderIOEither] by providing handlers for each.
// Both handlers return ReaderIOEither, allowing for further composition.
//
// Parameters:
// - onLeft: Handler for error case
// - onRight: Handler for success case
//
// Returns a function that folds a ReaderIOEither into a new ReaderIOEither.
//
//go:inline
func Fold[A, B any](onLeft Kleisli[error, B], onRight Kleisli[A, B]) Operator[A, B] {
return readerioeither.Fold(onLeft, onRight)
}
// GetOrElse extracts the value from a [ReaderIOEither], providing a default via a function if it fails.
// The result is a [ReaderIO] that always succeeds.
//
// Parameters:
// - onLeft: Function to provide a default value from the error
//
// Returns a function that converts a ReaderIOEither to a ReaderIO.
//
//go:inline
func GetOrElse[A any](onLeft func(error) ReaderIO[A]) func(ReaderIOEither[A]) ReaderIO[A] {
return readerioeither.GetOrElse(onLeft)
}
// OrLeft transforms the error of a [ReaderIOEither] using the provided function.
// The success value is left unchanged.
//
// Parameters:
// - onLeft: Function to transform the error
//
// Returns a function that transforms the error of a ReaderIOEither.
//
//go:inline
func OrLeft[A any](onLeft func(error) ReaderIO[error]) Operator[A, A] {
return readerioeither.OrLeft[A](onLeft)
}

View File

@@ -1,532 +0,0 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
import (
"context"
"errors"
"fmt"
"testing"
"time"
E "github.com/IBM/fp-go/v2/either"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
func TestFromEither(t *testing.T) {
ctx := t.Context()
// Test with Right
rightVal := E.Right[error](42)
result := FromEither(rightVal)(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left
err := errors.New("test error")
leftVal := E.Left[int](err)
result = FromEither(leftVal)(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestLeftRight(t *testing.T) {
ctx := t.Context()
// Test Left
err := errors.New("test error")
result := Left[int](err)(ctx)()
assert.True(t, E.IsLeft(result))
// Test Right
result = Right(42)(ctx)()
assert.True(t, E.IsRight(result))
val, _ := E.Unwrap(result)
assert.Equal(t, 42, val)
}
func TestOf(t *testing.T) {
ctx := t.Context()
result := Of(42)(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestMonadMap(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadMap(Right(42), func(x int) int { return x * 2 })(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with Left
err := errors.New("test error")
result = MonadMap(Left[int](err), func(x int) int { return x * 2 })(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestMonadMapTo(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadMapTo(Right(42), "hello")(ctx)()
assert.Equal(t, E.Right[error]("hello"), result)
// Test with Left
err := errors.New("test error")
result = MonadMapTo(Left[int](err), "hello")(ctx)()
assert.Equal(t, E.Left[string](err), result)
}
func TestMonadChain(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChain(Right(42), func(x int) ReaderIOEither[int] {
return Right(x * 2)
})(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with Left
err := errors.New("test error")
result = MonadChain(Left[int](err), func(x int) ReaderIOEither[int] {
return Right(x * 2)
})(ctx)()
assert.Equal(t, E.Left[int](err), result)
// Test where function returns Left
result = MonadChain(Right(42), func(x int) ReaderIOEither[int] {
return Left[int](errors.New("chain error"))
})(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestMonadChainFirst(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainFirst(Right(42), func(x int) ReaderIOEither[string] {
return Right("ignored")
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left in first
err := errors.New("test error")
result = MonadChainFirst(Left[int](err), func(x int) ReaderIOEither[string] {
return Right("ignored")
})(ctx)()
assert.Equal(t, E.Left[int](err), result)
// Test with Left in second
result = MonadChainFirst(Right(42), func(x int) ReaderIOEither[string] {
return Left[string](errors.New("chain error"))
})(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestMonadApSeq(t *testing.T) {
ctx := t.Context()
// Test with both Right
fct := Right(func(x int) int { return x * 2 })
val := Right(42)
result := MonadApSeq(fct, val)(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with Left function
err := errors.New("function error")
fct = Left[func(int) int](err)
result = MonadApSeq(fct, val)(ctx)()
assert.Equal(t, E.Left[int](err), result)
// Test with Left value
fct = Right(func(x int) int { return x * 2 })
err = errors.New("value error")
val = Left[int](err)
result = MonadApSeq(fct, val)(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestMonadApPar(t *testing.T) {
ctx := t.Context()
// Test with both Right
fct := Right(func(x int) int { return x * 2 })
val := Right(42)
result := MonadApPar(fct, val)(ctx)()
assert.Equal(t, E.Right[error](84), result)
}
func TestFromPredicate(t *testing.T) {
ctx := t.Context()
pred := func(x int) bool { return x > 0 }
onFalse := func(x int) error { return fmt.Errorf("value %d is not positive", x) }
// Test with predicate true
result := FromPredicate(pred, onFalse)(42)(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with predicate false
result = FromPredicate(pred, onFalse)(-1)(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestAsk(t *testing.T) {
ctx := context.WithValue(t.Context(), "key", "value")
result := Ask()(ctx)()
assert.True(t, E.IsRight(result))
retrievedCtx, _ := E.Unwrap(result)
assert.Equal(t, "value", retrievedCtx.Value("key"))
}
func TestMonadChainEitherK(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainEitherK(Right(42), func(x int) E.Either[error, int] {
return E.Right[error](x * 2)
})(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with Left in Either
result = MonadChainEitherK(Right(42), func(x int) E.Either[error, int] {
return E.Left[int](errors.New("either error"))
})(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestMonadChainFirstEitherK(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainFirstEitherK(Right(42), func(x int) E.Either[error, string] {
return E.Right[error]("ignored")
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left in Either
result = MonadChainFirstEitherK(Right(42), func(x int) E.Either[error, string] {
return E.Left[string](errors.New("either error"))
})(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestChainOptionKFunc(t *testing.T) {
ctx := t.Context()
onNone := func() error { return errors.New("none error") }
// Test with Some
chainFunc := ChainOptionK[int, int](onNone)
result := chainFunc(func(x int) O.Option[int] {
return O.Some(x * 2)
})(Right(42))(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with None
result = chainFunc(func(x int) O.Option[int] {
return O.None[int]()
})(Right(42))(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestFromIOEither(t *testing.T) {
ctx := t.Context()
// Test with Right
ioe := func() E.Either[error, int] {
return E.Right[error](42)
}
result := FromIOEither(ioe)(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left
err := errors.New("test error")
ioe = func() E.Either[error, int] {
return E.Left[int](err)
}
result = FromIOEither(ioe)(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestFromIO(t *testing.T) {
ctx := t.Context()
io := func() int { return 42 }
result := FromIO(io)(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestFromLazy(t *testing.T) {
ctx := t.Context()
lazy := func() int { return 42 }
result := FromLazy(lazy)(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestNeverWithCancel(t *testing.T) {
ctx, cancel := context.WithCancel(t.Context())
// Start Never in a goroutine
done := make(chan E.Either[error, int])
go func() {
done <- Never[int]()(ctx)()
}()
// Cancel the context
cancel()
// Should receive cancellation error
result := <-done
assert.True(t, E.IsLeft(result))
}
func TestMonadChainIOK(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainIOK(Right(42), func(x int) func() int {
return func() int { return x * 2 }
})(ctx)()
assert.Equal(t, E.Right[error](84), result)
}
func TestMonadChainFirstIOK(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainFirstIOK(Right(42), func(x int) func() string {
return func() string { return "ignored" }
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestDelayFunc(t *testing.T) {
ctx := t.Context()
delay := 100 * time.Millisecond
start := time.Now()
delayFunc := Delay[int](delay)
result := delayFunc(Right(42))(ctx)()
elapsed := time.Since(start)
assert.True(t, E.IsRight(result))
assert.GreaterOrEqual(t, elapsed, delay)
}
func TestDefer(t *testing.T) {
ctx := t.Context()
count := 0
gen := func() ReaderIOEither[int] {
count++
return Right(count)
}
deferred := Defer(gen)
// First call
result1 := deferred(ctx)()
assert.Equal(t, E.Right[error](1), result1)
// Second call should generate new value
result2 := deferred(ctx)()
assert.Equal(t, E.Right[error](2), result2)
}
func TestTryCatch(t *testing.T) {
ctx := t.Context()
// Test success
result := TryCatch(func(ctx context.Context) func() (int, error) {
return func() (int, error) {
return 42, nil
}
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test error
err := errors.New("test error")
result = TryCatch(func(ctx context.Context) func() (int, error) {
return func() (int, error) {
return 0, err
}
})(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestMonadAlt(t *testing.T) {
ctx := t.Context()
// Test with Right (alternative not called)
result := MonadAlt(Right(42), func() ReaderIOEither[int] {
return Right(99)
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left (alternative called)
err := errors.New("test error")
result = MonadAlt(Left[int](err), func() ReaderIOEither[int] {
return Right(99)
})(ctx)()
assert.Equal(t, E.Right[error](99), result)
}
func TestMemoize(t *testing.T) {
ctx := t.Context()
count := 0
rdr := Memoize(FromLazy(func() int {
count++
return count
}))
// First call
result1 := rdr(ctx)()
assert.Equal(t, E.Right[error](1), result1)
// Second call should return memoized value
result2 := rdr(ctx)()
assert.Equal(t, E.Right[error](1), result2)
}
func TestFlatten(t *testing.T) {
ctx := t.Context()
nested := Right(Right(42))
result := Flatten(nested)(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestMonadFlap(t *testing.T) {
ctx := t.Context()
fab := Right(func(x int) int { return x * 2 })
result := MonadFlap(fab, 42)(ctx)()
assert.Equal(t, E.Right[error](84), result)
}
func TestWithContext(t *testing.T) {
// Test with non-canceled context
ctx := t.Context()
result := WithContext(Right(42))(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with canceled context
ctx, cancel := context.WithCancel(t.Context())
cancel()
result = WithContext(Right(42))(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestMonadAp(t *testing.T) {
ctx := t.Context()
// Test with both Right
fct := Right(func(x int) int { return x * 2 })
val := Right(42)
result := MonadAp(fct, val)(ctx)()
assert.Equal(t, E.Right[error](84), result)
}
// Test traverse functions
func TestSequenceArray(t *testing.T) {
ctx := t.Context()
// Test with all Right
arr := []ReaderIOEither[int]{Right(1), Right(2), Right(3)}
result := SequenceArray(arr)(ctx)()
assert.True(t, E.IsRight(result))
vals, _ := E.Unwrap(result)
assert.Equal(t, []int{1, 2, 3}, vals)
// Test with one Left
err := errors.New("test error")
arr = []ReaderIOEither[int]{Right(1), Left[int](err), Right(3)}
result = SequenceArray(arr)(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestTraverseArray(t *testing.T) {
ctx := t.Context()
// Test transformation
arr := []int{1, 2, 3}
result := TraverseArray(func(x int) ReaderIOEither[int] {
return Right(x * 2)
})(arr)(ctx)()
assert.True(t, E.IsRight(result))
vals, _ := E.Unwrap(result)
assert.Equal(t, []int{2, 4, 6}, vals)
}
func TestSequenceRecord(t *testing.T) {
ctx := t.Context()
// Test with all Right
rec := map[string]ReaderIOEither[int]{
"a": Right(1),
"b": Right(2),
}
result := SequenceRecord(rec)(ctx)()
assert.True(t, E.IsRight(result))
vals, _ := E.Unwrap(result)
assert.Equal(t, 1, vals["a"])
assert.Equal(t, 2, vals["b"])
}
func TestTraverseRecord(t *testing.T) {
ctx := t.Context()
// Test transformation
rec := map[string]int{"a": 1, "b": 2}
result := TraverseRecord[string](func(x int) ReaderIOEither[int] {
return Right(x * 2)
})(rec)(ctx)()
assert.True(t, E.IsRight(result))
vals, _ := E.Unwrap(result)
assert.Equal(t, 2, vals["a"])
assert.Equal(t, 4, vals["b"])
}
// Test monoid functions
func TestAltSemigroup(t *testing.T) {
ctx := t.Context()
sg := AltSemigroup[int]()
// Test with Right (first succeeds)
result := sg.Concat(Right(42), Right(99))(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left then Right (fallback)
err := errors.New("test error")
result = sg.Concat(Left[int](err), Right(99))(ctx)()
assert.Equal(t, E.Right[error](99), result)
}
// Test Do notation
func TestDo(t *testing.T) {
ctx := t.Context()
type State struct {
Value int
}
result := Do(State{Value: 42})(ctx)()
assert.True(t, E.IsRight(result))
state, _ := E.Unwrap(result)
assert.Equal(t, 42, state.Value)
}

View File

@@ -1,4 +1,4 @@
# ReaderIOEither Benchmarks
# ReaderIOResult Benchmarks
This document describes the benchmark suite for the `context/readerioeither` package and how to interpret the results to identify performance bottlenecks.
@@ -35,8 +35,8 @@ go test -bench=. -benchmem -benchtime=100000x
- Construction is very fast, suitable for hot paths
### 2. Conversion Operations
- `BenchmarkFromEither_Right/Left` - Converting Either to ReaderIOEither (~70ns, 2 allocs)
- `BenchmarkFromIO` - Converting IO to ReaderIOEither (~78ns, 3 allocs)
- `BenchmarkFromEither_Right/Left` - Converting Either to ReaderIOResult (~70ns, 2 allocs)
- `BenchmarkFromIO` - Converting IO to ReaderIOResult (~78ns, 3 allocs)
- `BenchmarkFromIOEither_Right/Left` - Converting IOEither (~23ns, 1 alloc)
**Key Insights:**

View File

@@ -0,0 +1,724 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/result"
)
// Do creates an empty context of type [S] to be used with the [Bind] operation.
// This is the starting point for do-notation style composition.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
// result := readerioeither.Do(State{})
//
//go:inline
func Do[S any](
empty S,
) ReaderIOResult[S] {
return RIOR.Of[context.Context](empty)
}
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
// This enables sequential composition where each step can depend on the results of previous steps
// and access the context.Context from the environment.
//
// The setter function takes the result of the computation and returns a function that
// updates the context from S1 to S2.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.Bind(
// func(user User) func(State) State {
// return func(s State) State { s.User = user; return s }
// },
// func(s State) readerioeither.ReaderIOResult[User] {
// return func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// },
// ),
// readerioeither.Bind(
// func(cfg Config) func(State) State {
// return func(s State) State { s.Config = cfg; return s }
// },
// func(s State) readerioeither.ReaderIOResult[Config] {
// // This can access s.User from the previous step
// return func(ctx context.Context) ioeither.IOEither[error, Config] {
// return ioeither.TryCatch(func() (Config, error) {
// return fetchConfigForUser(ctx, s.User.ID)
// })
// }
// },
// ),
// )
//
//go:inline
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Operator[S1, S2] {
return RIOR.Bind(setter, f)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
//
//go:inline
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Operator[S1, S2] {
return RIOR.Let[context.Context](setter, f)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
//
//go:inline
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Operator[S1, S2] {
return RIOR.LetTo[context.Context](setter, b)
}
// BindTo initializes a new state [S1] from a value [T]
//
//go:inline
func BindTo[S1, T any](
setter func(T) S1,
) Operator[T, S1] {
return RIOR.BindTo[context.Context](setter)
}
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
// the context and the value concurrently (using Applicative rather than Monad).
// This allows independent computations to be combined without one depending on the result of the other.
//
// Unlike Bind, which sequences operations, ApS can be used when operations are independent
// and can conceptually run in parallel.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// // These operations are independent and can be combined with ApS
// getUser := func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// getConfig := func(ctx context.Context) ioeither.IOEither[error, Config] {
// return ioeither.TryCatch(func() (Config, error) {
// return fetchConfig(ctx)
// })
// }
//
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.ApS(
// func(user User) func(State) State {
// return func(s State) State { s.User = user; return s }
// },
// getUser,
// ),
// readerioeither.ApS(
// func(cfg Config) func(State) State {
// return func(s State) State { s.Config = cfg; return s }
// },
// getConfig,
// ),
// )
//
//go:inline
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderIOResult[T],
) Operator[S1, S2] {
return apply.ApS(
Ap,
Map,
setter,
fa,
)
}
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// getUser := func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// result := F.Pipe2(
// readerioeither.Of(State{}),
// readerioeither.ApSL(userLens, getUser),
// )
//
//go:inline
func ApSL[S, T any](
lens L.Lens[S, T],
fa ReaderIOResult[T],
) Operator[S, S] {
return ApS(lens.Set, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a ReaderIOResult computation that produces an updated value.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.BindL(userLens, func(user User) readerioeither.ReaderIOResult[User] {
// return func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// }),
// )
//
//go:inline
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Operator[S, S] {
return RIOR.BindL(lens, f)
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a ReaderIOResult).
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readerioeither.Do(State{User: User{Name: "Alice"}}),
// readerioeither.LetL(userLens, func(user User) User {
// user.Name = "Bob"
// return user
// }),
// )
//
//go:inline
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Operator[S, S] {
return RIOR.LetL[context.Context](lens, f)
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// newUser := User{Name: "Bob", ID: 123}
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.LetToL(userLens, newUser),
// )
//
//go:inline
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Operator[S, S] {
return RIOR.LetToL[context.Context](lens, b)
}
// BindIOEitherK is a variant of Bind that works with IOEither computations.
// It lifts an IOEither Kleisli arrow into the ReaderIOResult context (with context.Context as environment).
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IOEither Kleisli arrow (S1 -> IOEither[error, T])
//
//go:inline
func BindIOEitherK[S1, S2, T any](
setter func(T) func(S1) S2,
f ioresult.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromIOEither[T]))
}
// BindIOResultK is a variant of Bind that works with IOResult computations.
// This is an alias for BindIOEitherK for consistency with the Result naming convention.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IOResult Kleisli arrow (S1 -> IOResult[T])
//
//go:inline
func BindIOResultK[S1, S2, T any](
setter func(T) func(S1) S2,
f ioresult.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromIOResult[T]))
}
// BindIOK is a variant of Bind that works with IO computations.
// It lifts an IO Kleisli arrow into the ReaderIOResult context.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IO Kleisli arrow (S1 -> IO[T])
//
//go:inline
func BindIOK[S1, S2, T any](
setter func(T) func(S1) S2,
f io.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromIO[T]))
}
// BindReaderK is a variant of Bind that works with Reader computations.
// It lifts a Reader Kleisli arrow (with context.Context) into the ReaderIOResult context.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A Reader Kleisli arrow (S1 -> Reader[context.Context, T])
//
//go:inline
func BindReaderK[S1, S2, T any](
setter func(T) func(S1) S2,
f reader.Kleisli[context.Context, S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromReader[T]))
}
// BindReaderIOK is a variant of Bind that works with ReaderIO computations.
// It lifts a ReaderIO Kleisli arrow (with context.Context) into the ReaderIOResult context.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A ReaderIO Kleisli arrow (S1 -> ReaderIO[context.Context, T])
//
//go:inline
func BindReaderIOK[S1, S2, T any](
setter func(T) func(S1) S2,
f readerio.Kleisli[context.Context, S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromReaderIO[T]))
}
// BindEitherK is a variant of Bind that works with Either (Result) computations.
// It lifts an Either Kleisli arrow into the ReaderIOResult context.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An Either Kleisli arrow (S1 -> Either[error, T])
//
//go:inline
func BindEitherK[S1, S2, T any](
setter func(T) func(S1) S2,
f result.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromEither[T]))
}
// BindResultK is a variant of Bind that works with Result computations.
// This is an alias for BindEitherK for consistency with the Result naming convention.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A Result Kleisli arrow (S1 -> Result[T])
//
//go:inline
func BindResultK[S1, S2, T any](
setter func(T) func(S1) S2,
f result.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromResult[T]))
}
// BindIOEitherKL is a lens-based variant of BindIOEitherK.
// It combines a lens with an IOEither Kleisli arrow, focusing on a specific field
// within the state structure.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IOEither Kleisli arrow (T -> IOEither[error, T])
//
//go:inline
func BindIOEitherKL[S, T any](
lens L.Lens[S, T],
f ioresult.Kleisli[T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromIOEither[T]))
}
// BindIOResultKL is a lens-based variant of BindIOResultK.
// This is an alias for BindIOEitherKL for consistency with the Result naming convention.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IOResult Kleisli arrow (T -> IOResult[T])
//
//go:inline
func BindIOResultKL[S, T any](
lens L.Lens[S, T],
f ioresult.Kleisli[T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromIOEither[T]))
}
// BindIOKL is a lens-based variant of BindIOK.
// It combines a lens with an IO Kleisli arrow, focusing on a specific field
// within the state structure.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IO Kleisli arrow (T -> IO[T])
//
//go:inline
func BindIOKL[S, T any](
lens L.Lens[S, T],
f io.Kleisli[T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromIO[T]))
}
// BindReaderKL is a lens-based variant of BindReaderK.
// It combines a lens with a Reader Kleisli arrow (with context.Context), focusing on a specific field
// within the state structure.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: A Reader Kleisli arrow (T -> Reader[context.Context, T])
//
//go:inline
func BindReaderKL[S, T any](
lens L.Lens[S, T],
f reader.Kleisli[context.Context, T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromReader[T]))
}
// BindReaderIOKL is a lens-based variant of BindReaderIOK.
// It combines a lens with a ReaderIO Kleisli arrow (with context.Context), focusing on a specific field
// within the state structure.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: A ReaderIO Kleisli arrow (T -> ReaderIO[context.Context, T])
//
//go:inline
func BindReaderIOKL[S, T any](
lens L.Lens[S, T],
f readerio.Kleisli[context.Context, T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromReaderIO[T]))
}
// ApIOEitherS is an applicative variant that works with IOEither values.
// Unlike BindIOEitherK, this uses applicative composition (ApS) instead of monadic
// composition (Bind), allowing independent computations to be combined.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IOEither value
//
//go:inline
func ApIOEitherS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IOResult[T],
) Operator[S1, S2] {
return F.Bind2nd(F.Flow2[ReaderIOResult[S1], ioresult.Operator[S1, S2]], ioeither.ApS(setter, fa))
}
// ApIOResultS is an applicative variant that works with IOResult values.
// This is an alias for ApIOEitherS for consistency with the Result naming convention.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IOResult value
//
//go:inline
func ApIOResultS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IOResult[T],
) Operator[S1, S2] {
return F.Bind2nd(F.Flow2[ReaderIOResult[S1], ioresult.Operator[S1, S2]], ioeither.ApS(setter, fa))
}
// ApIOS is an applicative variant that works with IO values.
// It lifts an IO value into the ReaderIOResult context using applicative composition.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IO value
//
//go:inline
func ApIOS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IO[T],
) Operator[S1, S2] {
return ApS(setter, FromIO(fa))
}
// ApReaderS is an applicative variant that works with Reader values.
// It lifts a Reader value (with context.Context) into the ReaderIOResult context using applicative composition.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A Reader value
//
//go:inline
func ApReaderS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Reader[context.Context, T],
) Operator[S1, S2] {
return ApS(setter, FromReader(fa))
}
// ApReaderIOS is an applicative variant that works with ReaderIO values.
// It lifts a ReaderIO value (with context.Context) into the ReaderIOResult context using applicative composition.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A ReaderIO value
//
//go:inline
func ApReaderIOS[S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderIO[T],
) Operator[S1, S2] {
return ApS(setter, FromReaderIO(fa))
}
// ApEitherS is an applicative variant that works with Either (Result) values.
// It lifts an Either value into the ReaderIOResult context using applicative composition.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An Either value
//
//go:inline
func ApEitherS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Result[T],
) Operator[S1, S2] {
return ApS(setter, FromEither(fa))
}
// ApResultS is an applicative variant that works with Result values.
// This is an alias for ApEitherS for consistency with the Result naming convention.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A Result value
//
//go:inline
func ApResultS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Result[T],
) Operator[S1, S2] {
return ApS(setter, FromResult(fa))
}
// ApIOEitherSL is a lens-based variant of ApIOEitherS.
// It combines a lens with an IOEither value using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IOEither value
//
//go:inline
func ApIOEitherSL[S, T any](
lens L.Lens[S, T],
fa IOResult[T],
) Operator[S, S] {
return F.Bind2nd(F.Flow2[ReaderIOResult[S], ioresult.Operator[S, S]], ioresult.ApSL(lens, fa))
}
// ApIOResultSL is a lens-based variant of ApIOResultS.
// This is an alias for ApIOEitherSL for consistency with the Result naming convention.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IOResult value
//
//go:inline
func ApIOResultSL[S, T any](
lens L.Lens[S, T],
fa IOResult[T],
) Operator[S, S] {
return F.Bind2nd(F.Flow2[ReaderIOResult[S], ioresult.Operator[S, S]], ioresult.ApSL(lens, fa))
}
// ApIOSL is a lens-based variant of ApIOS.
// It combines a lens with an IO value using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IO value
//
//go:inline
func ApIOSL[S, T any](
lens L.Lens[S, T],
fa IO[T],
) Operator[S, S] {
return ApSL(lens, FromIO(fa))
}
// ApReaderSL is a lens-based variant of ApReaderS.
// It combines a lens with a Reader value (with context.Context) using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A Reader value
//
//go:inline
func ApReaderSL[S, T any](
lens L.Lens[S, T],
fa Reader[context.Context, T],
) Operator[S, S] {
return ApSL(lens, FromReader(fa))
}
// ApReaderIOSL is a lens-based variant of ApReaderIOS.
// It combines a lens with a ReaderIO value (with context.Context) using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A ReaderIO value
//
//go:inline
func ApReaderIOSL[S, T any](
lens L.Lens[S, T],
fa ReaderIO[T],
) Operator[S, S] {
return ApSL(lens, FromReaderIO(fa))
}
// ApEitherSL is a lens-based variant of ApEitherS.
// It combines a lens with an Either value using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An Either value
//
//go:inline
func ApEitherSL[S, T any](
lens L.Lens[S, T],
fa Result[T],
) Operator[S, S] {
return ApSL(lens, FromEither(fa))
}
// ApResultSL is a lens-based variant of ApResultS.
// This is an alias for ApEitherSL for consistency with the Result naming convention.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A Result value
//
//go:inline
func ApResultSL[S, T any](
lens L.Lens[S, T],
fa Result[T],
) Operator[S, S] {
return ApSL(lens, FromResult(fa))
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -26,11 +26,11 @@ import (
"github.com/stretchr/testify/assert"
)
func getLastName(s utils.Initial) ReaderIOEither[string] {
func getLastName(s utils.Initial) ReaderIOResult[string] {
return Of("Doe")
}
func getGivenName(s utils.WithLastName) ReaderIOEither[string] {
func getGivenName(s utils.WithLastName) ReaderIOResult[string] {
return Of("John")
}
@@ -229,7 +229,7 @@ func TestApS_ChainedWithBind(t *testing.T) {
}
}
getDependentValue := func(s State) ReaderIOEither[string] {
getDependentValue := func(s State) ReaderIOResult[string] {
// This depends on the Independent field
return Of(s.Independent + "-dependent")
}

View File

@@ -13,13 +13,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/internal/bracket"
"github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
// Bracket makes sure that a resource is cleaned up in the event of an error. The release action is called regardless of
@@ -27,18 +24,9 @@ import (
func Bracket[
A, B, ANY any](
acquire ReaderIOEither[A],
acquire ReaderIOResult[A],
use Kleisli[A, B],
release func(A, Either[B]) ReaderIOEither[ANY],
) ReaderIOEither[B] {
return bracket.Bracket[ReaderIOEither[A], ReaderIOEither[B], ReaderIOEither[ANY], Either[B], A, B](
readerio.Of[context.Context, Either[B]],
MonadChain[A, B],
readerio.MonadChain[context.Context, Either[B], Either[B]],
MonadChain[ANY, B],
acquire,
use,
release,
)
release func(A, Either[B]) ReaderIOResult[ANY],
) ReaderIOResult[B] {
return RIOR.Bracket(acquire, use, release)
}

View File

@@ -13,26 +13,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
CIOE "github.com/IBM/fp-go/v2/context/ioeither"
CIOE "github.com/IBM/fp-go/v2/context/ioresult"
"github.com/IBM/fp-go/v2/ioeither"
)
// WithContext wraps an existing [ReaderIOEither] and performs a context check for cancellation before delegating.
// WithContext wraps an existing [ReaderIOResult] and performs a context check for cancellation before delegating.
// This ensures that if the context is already canceled, the computation short-circuits immediately
// without executing the wrapped computation.
//
// This is useful for adding cancellation awareness to computations that might not check the context themselves.
//
// Parameters:
// - ma: The ReaderIOEither to wrap with context checking
// - ma: The ReaderIOResult to wrap with context checking
//
// Returns a ReaderIOEither that checks for cancellation before executing.
func WithContext[A any](ma ReaderIOEither[A]) ReaderIOEither[A] {
// Returns a ReaderIOResult that checks for cancellation before executing.
func WithContext[A any](ma ReaderIOResult[A]) ReaderIOResult[A] {
return func(ctx context.Context) IOEither[A] {
if err := context.Cause(ctx); err != nil {
return ioeither.Left[A](err)

View File

@@ -0,0 +1,251 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:27.21,29.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:35.47,42.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:48.47,54.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:60.47,66.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:71.46,76.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:82.47,89.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/bracket.go:33.21,44.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/cancel.go:35.65,36.47 1 1
github.com/IBM/fp-go/v2/context/readerioresult/cancel.go:36.47,37.44 1 1
github.com/IBM/fp-go/v2/context/readerioresult/cancel.go:37.44,39.4 1 1
github.com/IBM/fp-go/v2/context/readerioresult/cancel.go:40.3,40.40 1 1
github.com/IBM/fp-go/v2/context/readerioresult/eq.go:42.84,44.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:18.91,20.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:24.93,26.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:30.101,32.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:36.103,38.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:43.36,48.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:53.36,58.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:63.36,68.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:71.98,76.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:79.101,84.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:87.101,92.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:95.129,96.68 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:96.68,102.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:106.132,107.68 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:107.68,113.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:117.132,118.68 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:118.68,124.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:129.113,131.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:135.115,137.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:143.40,150.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:156.40,163.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:169.40,176.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:179.126,185.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:188.129,194.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:197.129,203.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:206.185,207.76 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:207.76,215.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:219.188,220.76 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:220.76,228.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:232.188,233.76 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:233.76,241.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:246.125,248.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:252.127,254.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:261.44,270.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:277.44,286.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:293.44,302.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:305.154,312.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:315.157,322.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:325.157,332.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:335.241,336.84 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:336.84,346.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:350.244,351.84 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:351.84,361.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:365.244,366.84 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:366.84,376.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:381.137,383.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:387.139,389.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:397.48,408.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:416.48,427.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:435.48,446.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:449.182,457.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:460.185,468.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:471.185,479.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:482.297,483.92 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:483.92,495.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:499.300,500.92 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:500.92,512.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:516.300,517.92 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:517.92,529.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:534.149,536.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:540.151,542.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:551.52,564.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:573.52,586.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:595.52,608.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:611.210,620.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:623.213,632.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:635.213,644.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:647.353,648.100 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:648.100,662.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:666.356,667.100 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:667.100,681.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:685.356,686.100 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:686.100,700.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:705.161,707.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:711.163,713.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:723.56,738.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:748.56,763.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:773.56,788.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:791.238,801.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:804.241,814.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:817.241,827.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:830.409,831.108 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:831.108,847.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:851.412,852.108 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:852.108,868.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:872.412,873.108 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:873.108,889.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:894.173,896.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:900.175,902.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:913.60,930.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:941.60,958.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:969.60,986.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:989.266,1000.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1003.269,1014.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1017.269,1028.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1031.465,1032.116 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1032.116,1050.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1054.468,1055.116 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1055.116,1073.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1077.468,1078.116 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1078.116,1096.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1101.185,1103.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1107.187,1109.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1121.64,1140.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1152.64,1171.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1183.64,1202.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1205.294,1217.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1220.297,1232.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1235.297,1247.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1250.521,1251.124 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1251.124,1271.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1275.524,1276.124 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1276.124,1296.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1300.524,1301.124 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1301.124,1321.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1326.197,1328.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1332.199,1334.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1347.68,1368.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1381.68,1402.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1415.68,1436.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1439.322,1452.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1455.325,1468.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1471.325,1484.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1487.577,1488.132 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1488.132,1510.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1514.580,1515.132 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1515.132,1537.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1541.580,1542.132 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1542.132,1564.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1569.210,1571.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1575.212,1577.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1591.74,1614.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1628.74,1651.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1665.74,1688.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1691.356,1705.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1708.359,1722.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1725.359,1739.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1742.645,1743.144 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1743.144,1767.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1771.648,1772.144 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1772.144,1796.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1800.648,1801.144 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1801.144,1825.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:36.61,43.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:52.64,59.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:68.64,75.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:85.61,93.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:103.63,108.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:42.55,44.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:52.45,54.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:62.42,64.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:74.78,76.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:85.75,87.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:97.72,99.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:108.69,110.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:120.96,122.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:131.93,133.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:143.101,145.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:154.71,156.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:165.39,167.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:169.93,173.56 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:173.56,174.32 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:174.32,174.47 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:189.98,194.47 3 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:194.47,196.44 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:196.44,198.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:200.3,200.27 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:200.27,202.45 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:202.45,204.5 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:207.4,213.47 5 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:227.95,229.17 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:229.17,231.3 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:232.2,232.28 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:243.98,245.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:254.91,256.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:265.94,267.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:276.94,278.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:288.95,290.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:299.73,301.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:307.44,309.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:319.95,321.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:330.95,332.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:342.100,344.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:353.100,355.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:364.116,366.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:375.75,377.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:386.47,388.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:398.51,400.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:406.39,407.47 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:407.47,408.27 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:408.27,411.4 2 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:423.87,425.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:434.87,436.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:446.92,448.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:457.92,459.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:468.115,470.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:479.85,480.54 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:480.54,481.48 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:481.48,482.28 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:482.28,487.12 3 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:488.30,489.22 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:490.23,491.47 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:505.59,511.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:520.66,522.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:531.83,533.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:543.97,545.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:554.64,556.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:566.62,568.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:577.78,579.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:589.80,591.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:600.76,602.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:612.136,614.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:623.91,625.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:634.71,636.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/resource.go:58.151,63.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/semigroup.go:39.41,43.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/sync.go:46.78,54.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:31.89,39.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:48.103,56.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:65.71,67.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:75.112,83.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:92.124,100.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:108.94,110.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:120.95,128.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:137.92,145.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:148.106,156.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:165.74,167.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:170.118,178.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:181.115,189.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:192.127,200.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:203.97,205.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:215.95,223.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:232.92,240.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:243.106,251.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:260.74,262.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:265.115,273.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:276.127,284.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:287.118,295.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:304.97,306.2 1 0

View File

@@ -13,13 +13,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Package readerioeither provides a specialized version of [readerioeither.ReaderIOEither] that uses
// package readerioresult provides a specialized version of [readerioeither.ReaderIOResult] that uses
// [context.Context] as the context type and [error] as the left (error) type. This package is designed
// for typical Go applications where context-aware, effectful computations with error handling are needed.
//
// # Core Concept
//
// ReaderIOEither[A] represents a computation that:
// ReaderIOResult[A] represents a computation that:
// - Depends on a [context.Context] (Reader aspect)
// - Performs side effects (IO aspect)
// - Can fail with an [error] (Either aspect)
@@ -27,7 +27,7 @@
//
// The type is defined as:
//
// ReaderIOEither[A] = func(context.Context) func() Either[error, A]
// ReaderIOResult[A] = func(context.Context) func() Either[error, A]
//
// This combines three powerful functional programming concepts:
// - Reader: Dependency injection via context
@@ -50,7 +50,7 @@
// - [Left]: Create failed computations
// - [FromEither], [FromIO], [FromIOEither]: Convert from other types
// - [TryCatch]: Wrap error-returning functions
// - [Eitherize0-10]: Convert standard Go functions to ReaderIOEither
// - [Eitherize0-10]: Convert standard Go functions to ReaderIOResult
//
// Transformation:
// - [Map]: Transform success values
@@ -90,15 +90,15 @@
// import (
// "context"
// "fmt"
// RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
// RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
// F "github.com/IBM/fp-go/v2/function"
// )
//
// // Define a computation that reads from context and may fail
// func fetchUser(id string) RIOE.ReaderIOEither[User] {
// func fetchUser(id string) RIOE.ReaderIOResult[User] {
// return F.Pipe2(
// RIOE.Ask(),
// RIOE.Chain(func(ctx context.Context) RIOE.ReaderIOEither[User] {
// RIOE.Chain(func(ctx context.Context) RIOE.ReaderIOResult[User] {
// return RIOE.TryCatch(func(ctx context.Context) func() (User, error) {
// return func() (User, error) {
// return userService.Get(ctx, id)
@@ -138,8 +138,8 @@
// openFile("data.txt"),
// closeFile,
// ),
// func(use func(func(*os.File) RIOE.ReaderIOEither[string]) RIOE.ReaderIOEither[string]) RIOE.ReaderIOEither[string] {
// return use(func(file *os.File) RIOE.ReaderIOEither[string] {
// func(use func(func(*os.File) RIOE.ReaderIOResult[string]) RIOE.ReaderIOResult[string]) RIOE.ReaderIOResult[string] {
// return use(func(file *os.File) RIOE.ReaderIOResult[string] {
// return readContent(file)
// })
// },
@@ -166,4 +166,4 @@
// result := computation(ctx)() // Returns Left with cancellation error
//
//go:generate go run ../.. contextreaderioeither --count 10 --filename gen.go
package readerioeither
package readerioresult

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -22,14 +22,14 @@ import (
RIOE "github.com/IBM/fp-go/v2/readerioeither"
)
// Eq implements the equals predicate for values contained in the [ReaderIOEither] monad.
// It creates an equality checker that can compare two ReaderIOEither values by executing them
// Eq implements the equals predicate for values contained in the [ReaderIOResult] monad.
// It creates an equality checker that can compare two ReaderIOResult values by executing them
// with a given context and comparing their results using the provided Either equality checker.
//
// Parameters:
// - eq: Equality checker for Either[A] values
//
// Returns a function that takes a context and returns an equality checker for ReaderIOEither[A].
// Returns a function that takes a context and returns an equality checker for ReaderIOResult[A].
//
// Example:
//
@@ -41,6 +41,6 @@ import (
// equal := eqRIE(ctx).Equals(Right[int](42), Right[int](42)) // true
//
//go:inline
func Eq[A any](eq eq.Eq[Either[A]]) func(context.Context) eq.Eq[ReaderIOEither[A]] {
func Eq[A any](eq eq.Eq[Either[A]]) func(context.Context) eq.Eq[ReaderIOResult[A]] {
return RIOE.Eq[context.Context](eq)
}

View File

@@ -18,7 +18,7 @@ package exec
import (
"context"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/exec"
F "github.com/IBM/fp-go/v2/function"
GE "github.com/IBM/fp-go/v2/internal/exec"
@@ -30,7 +30,7 @@ var (
Command = F.Curry3(command)
)
func command(name string, args []string, in []byte) RIOE.ReaderIOEither[exec.CommandOutput] {
func command(name string, args []string, in []byte) RIOE.ReaderIOResult[exec.CommandOutput] {
return func(ctx context.Context) IOE.IOEither[error, exec.CommandOutput] {
return IOE.TryCatchError(func() (exec.CommandOutput, error) {
return GE.Exec(ctx, name, args, in)

View File

@@ -20,7 +20,7 @@ import (
"io"
"os"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
ET "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/file"
@@ -44,7 +44,7 @@ var (
)
// Close closes an object
func Close[C io.Closer](c C) RIOE.ReaderIOEither[any] {
func Close[C io.Closer](c C) RIOE.ReaderIOResult[any] {
return F.Pipe2(
c,
IOEF.Close[C],
@@ -53,8 +53,8 @@ func Close[C io.Closer](c C) RIOE.ReaderIOEither[any] {
}
// ReadFile reads a file in the scope of a context
func ReadFile(path string) RIOE.ReaderIOEither[[]byte] {
return RIOE.WithResource[[]byte](Open(path), Close[*os.File])(func(r *os.File) RIOE.ReaderIOEither[[]byte] {
func ReadFile(path string) RIOE.ReaderIOResult[[]byte] {
return RIOE.WithResource[[]byte](Open(path), Close[*os.File])(func(r *os.File) RIOE.ReaderIOResult[[]byte] {
return func(ctx context.Context) IOE.IOEither[error, []byte] {
return func() ET.Either[error, []byte] {
return file.ReadAll(ctx, r)

View File

@@ -19,7 +19,7 @@ import (
"context"
"fmt"
R "github.com/IBM/fp-go/v2/context/readerioeither"
R "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
J "github.com/IBM/fp-go/v2/json"

View File

@@ -18,7 +18,7 @@ package file
import (
"os"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
IO "github.com/IBM/fp-go/v2/io"
IOF "github.com/IBM/fp-go/v2/io/file"
@@ -38,7 +38,7 @@ var (
)
// CreateTemp created a temp file with proper parametrization
func CreateTemp(dir, pattern string) RIOE.ReaderIOEither[*os.File] {
func CreateTemp(dir, pattern string) RIOE.ReaderIOResult[*os.File] {
return F.Pipe2(
IOEF.CreateTemp(dir, pattern),
RIOE.FromIOEither[*os.File],
@@ -47,6 +47,6 @@ func CreateTemp(dir, pattern string) RIOE.ReaderIOEither[*os.File] {
}
// WithTempFile creates a temporary file, then invokes a callback to create a resource based on the file, then close and remove the temp file
func WithTempFile[A any](f func(*os.File) RIOE.ReaderIOEither[A]) RIOE.ReaderIOEither[A] {
func WithTempFile[A any](f func(*os.File) RIOE.ReaderIOResult[A]) RIOE.ReaderIOResult[A] {
return RIOE.WithResource[A](onCreateTempFile, onReleaseTempFile)(f)
}

View File

@@ -20,7 +20,7 @@ import (
"os"
"testing"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/stretchr/testify/assert"
@@ -35,7 +35,7 @@ func TestWithTempFile(t *testing.T) {
func TestWithTempFileOnClosedFile(t *testing.T) {
res := WithTempFile(func(f *os.File) RIOE.ReaderIOEither[[]byte] {
res := WithTempFile(func(f *os.File) RIOE.ReaderIOResult[[]byte] {
return F.Pipe2(
f,
onWriteAll[*os.File]([]byte("Carsten")),

View File

@@ -19,12 +19,12 @@ import (
"context"
"io"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
)
func onWriteAll[W io.Writer](data []byte) func(w W) RIOE.ReaderIOEither[[]byte] {
return func(w W) RIOE.ReaderIOEither[[]byte] {
func onWriteAll[W io.Writer](data []byte) func(w W) RIOE.ReaderIOResult[[]byte] {
return func(w W) RIOE.ReaderIOResult[[]byte] {
return F.Pipe1(
RIOE.TryCatch(func(_ context.Context) func() ([]byte, error) {
return func() ([]byte, error) {
@@ -38,9 +38,9 @@ func onWriteAll[W io.Writer](data []byte) func(w W) RIOE.ReaderIOEither[[]byte]
}
// WriteAll uses a generator function to create a stream, writes data to it and closes it
func WriteAll[W io.WriteCloser](data []byte) func(acquire RIOE.ReaderIOEither[W]) RIOE.ReaderIOEither[[]byte] {
func WriteAll[W io.WriteCloser](data []byte) func(acquire RIOE.ReaderIOResult[W]) RIOE.ReaderIOResult[[]byte] {
onWrite := onWriteAll[W](data)
return func(onCreate RIOE.ReaderIOEither[W]) RIOE.ReaderIOEither[[]byte] {
return func(onCreate RIOE.ReaderIOResult[W]) RIOE.ReaderIOResult[[]byte] {
return RIOE.WithResource[[]byte](
onCreate,
Close[W])(
@@ -50,7 +50,7 @@ func WriteAll[W io.WriteCloser](data []byte) func(acquire RIOE.ReaderIOEither[W]
}
// Write uses a generator function to create a stream, writes data to it and closes it
func Write[R any, W io.WriteCloser](acquire RIOE.ReaderIOEither[W]) func(use func(W) RIOE.ReaderIOEither[R]) RIOE.ReaderIOEither[R] {
func Write[R any, W io.WriteCloser](acquire RIOE.ReaderIOResult[W]) func(use func(W) RIOE.ReaderIOResult[R]) RIOE.ReaderIOResult[R] {
return RIOE.WithResource[R](
acquire,
Close[W])

View File

@@ -14,12 +14,12 @@
// limitations under the License.
// Package builder provides utilities for building HTTP requests in a functional way
// using the ReaderIOEither monad. It integrates with the http/builder package to
// using the ReaderIOResult monad. It integrates with the http/builder package to
// create composable, type-safe HTTP request builders with proper error handling
// and context support.
//
// The main function, Requester, converts a Builder from the http/builder package
// into a ReaderIOEither that produces HTTP requests. This allows for:
// into a ReaderIOResult that produces HTTP requests. This allows for:
// - Immutable request building with method chaining
// - Automatic header management including Content-Length
// - Support for requests with and without bodies
@@ -31,7 +31,7 @@
// import (
// "context"
// B "github.com/IBM/fp-go/v2/http/builder"
// RB "github.com/IBM/fp-go/v2/context/readerioeither/http/builder"
// RB "github.com/IBM/fp-go/v2/context/readerioresult/http/builder"
// )
//
// builder := F.Pipe3(
@@ -51,17 +51,17 @@ import (
"net/http"
"strconv"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOEH "github.com/IBM/fp-go/v2/context/readerioeither/http"
E "github.com/IBM/fp-go/v2/either"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
RIOEH "github.com/IBM/fp-go/v2/context/readerioresult/http"
F "github.com/IBM/fp-go/v2/function"
R "github.com/IBM/fp-go/v2/http/builder"
H "github.com/IBM/fp-go/v2/http/headers"
LZ "github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
// Requester converts an http/builder.Builder into a ReaderIOEither that produces HTTP requests.
// Requester converts an http/builder.Builder into a ReaderIOResult that produces HTTP requests.
// It handles both requests with and without bodies, automatically managing headers including
// Content-Length for requests with bodies.
//
@@ -86,14 +86,14 @@ import (
// - builder: A pointer to an http/builder.Builder containing request configuration
//
// Returns:
// - A Requester (ReaderIOEither[*http.Request]) that, when executed with a context,
// - A Requester (ReaderIOResult[*http.Request]) that, when executed with a context,
// produces either an error or a configured *http.Request
//
// Example with body:
//
// import (
// B "github.com/IBM/fp-go/v2/http/builder"
// RB "github.com/IBM/fp-go/v2/context/readerioeither/http/builder"
// RB "github.com/IBM/fp-go/v2/context/readerioresult/http/builder"
// )
//
// builder := F.Pipe3(
@@ -116,7 +116,7 @@ import (
// result := requester(context.Background())()
func Requester(builder *R.Builder) RIOEH.Requester {
withBody := F.Curry3(func(data []byte, url string, method string) RIOE.ReaderIOEither[*http.Request] {
withBody := F.Curry3(func(data []byte, url string, method string) RIOE.ReaderIOResult[*http.Request] {
return RIOE.TryCatch(func(ctx context.Context) func() (*http.Request, error) {
return func() (*http.Request, error) {
req, err := http.NewRequestWithContext(ctx, method, url, bytes.NewReader(data))
@@ -129,7 +129,7 @@ func Requester(builder *R.Builder) RIOEH.Requester {
})
})
withoutBody := F.Curry2(func(url string, method string) RIOE.ReaderIOEither[*http.Request] {
withoutBody := F.Curry2(func(url string, method string) RIOE.ReaderIOResult[*http.Request] {
return RIOE.TryCatch(func(ctx context.Context) func() (*http.Request, error) {
return func() (*http.Request, error) {
req, err := http.NewRequestWithContext(ctx, method, url, nil)
@@ -143,10 +143,10 @@ func Requester(builder *R.Builder) RIOEH.Requester {
return F.Pipe5(
builder.GetBody(),
O.Fold(LZ.Of(E.Of[error](withoutBody)), E.Map[error](withBody)),
E.Ap[func(string) RIOE.ReaderIOEither[*http.Request]](builder.GetTargetURL()),
E.Flap[error, RIOE.ReaderIOEither[*http.Request]](builder.GetMethod()),
E.GetOrElse(RIOE.Left[*http.Request]),
O.Fold(LZ.Of(result.Of(withoutBody)), result.Map(withBody)),
result.Ap[RIOE.Kleisli[string, *http.Request]](builder.GetTargetURL()),
result.Flap[RIOE.ReaderIOResult[*http.Request]](builder.GetMethod()),
result.GetOrElse(RIOE.Left[*http.Request]),
RIOE.Map(func(req *http.Request) *http.Request {
req.Header = H.Monoid.Concat(req.Header, builder.GetHeaders())
return req

View File

@@ -21,7 +21,7 @@ import (
"net/url"
"testing"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
R "github.com/IBM/fp-go/v2/http/builder"

View File

@@ -0,0 +1,15 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:117.52,119.103 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:119.103,120.80 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:120.80,121.41 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:121.41,123.19 2 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:123.19,126.6 2 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:127.5,127.20 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:132.2,132.93 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:132.93,133.80 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:133.80,134.41 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:134.41,136.19 2 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:136.19,138.6 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:139.5,139.20 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:144.2,150.50 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:150.50,153.4 2 1

View File

@@ -0,0 +1,11 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:111.76,116.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:134.49,136.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:161.90,162.65 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:162.65,166.76 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:166.76,176.5 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:198.73,203.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:222.74,227.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:234.76,236.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:245.74,254.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:281.76,286.2 1 1

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Package http provides functional HTTP client utilities built on top of ReaderIOEither monad.
// Package http provides functional HTTP client utilities built on top of ReaderIOResult monad.
// It offers a composable way to make HTTP requests with context support, error handling,
// and response parsing capabilities. The package follows functional programming principles
// to ensure type-safe, testable, and maintainable HTTP operations.
@@ -36,7 +36,7 @@ import (
"net/http"
B "github.com/IBM/fp-go/v2/bytes"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
H "github.com/IBM/fp-go/v2/http"
IOE "github.com/IBM/fp-go/v2/ioeither"
@@ -50,13 +50,13 @@ type (
// It represents a computation that, given a context, produces either an error
// or an HTTP request. This allows for composable request building with proper
// error handling and context propagation.
Requester = RIOE.ReaderIOEither[*http.Request]
Requester = RIOE.ReaderIOResult[*http.Request]
// Client is an interface for executing HTTP requests in a functional way.
// It wraps the standard http.Client and provides a Do method that works
// with the ReaderIOEither monad for composable, type-safe HTTP operations.
// with the ReaderIOResult monad for composable, type-safe HTTP operations.
Client interface {
// Do executes an HTTP request and returns the response wrapped in a ReaderIOEither.
// Do executes an HTTP request and returns the response wrapped in a ReaderIOResult.
// It takes a Requester (which builds the request) and returns a computation that,
// when executed with a context, performs the HTTP request and returns either
// an error or the HTTP response.
@@ -65,8 +65,8 @@ type (
// - req: A Requester that builds the HTTP request
//
// Returns:
// - A ReaderIOEither that produces either an error or an *http.Response
Do(Requester) RIOE.ReaderIOEither[*http.Response]
// - A ReaderIOResult that produces either an error or an *http.Response
Do(Requester) RIOE.ReaderIOResult[*http.Response]
}
// client is the internal implementation of the Client interface.
@@ -108,7 +108,7 @@ var (
MakeGetRequest = makeRequest("GET", nil)
)
func (client client) Do(req Requester) RIOE.ReaderIOEither[*http.Response] {
func (client client) Do(req Requester) RIOE.ReaderIOResult[*http.Response] {
return F.Pipe1(
req,
RIOE.ChainIOEitherK(client.doIOE),
@@ -117,7 +117,7 @@ func (client client) Do(req Requester) RIOE.ReaderIOEither[*http.Response] {
// MakeClient creates a functional HTTP client wrapper around a standard http.Client.
// The returned Client provides methods for executing HTTP requests in a functional,
// composable way using the ReaderIOEither monad.
// composable way using the ReaderIOResult monad.
//
// Parameters:
// - httpClient: A standard *http.Client to wrap (e.g., http.DefaultClient)
@@ -149,7 +149,7 @@ func MakeClient(httpClient *http.Client) Client {
// - client: The HTTP client to use for executing the request
//
// Returns:
// - A function that takes a Requester and returns a ReaderIOEither[FullResponse]
// - A function that takes a Requester and returns a ReaderIOResult[FullResponse]
// where FullResponse is a tuple of (*http.Response, []byte)
//
// Example:
@@ -158,8 +158,8 @@ func MakeClient(httpClient *http.Client) Client {
// request := MakeGetRequest("https://api.example.com/data")
// fullResp := ReadFullResponse(client)(request)
// result := fullResp(context.Background())()
func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOEither[H.FullResponse] {
return func(req Requester) RIOE.ReaderIOEither[H.FullResponse] {
func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOResult[H.FullResponse] {
return func(req Requester) RIOE.ReaderIOResult[H.FullResponse] {
return F.Flow3(
client.Do(req),
IOE.ChainEitherK(H.ValidateResponse),
@@ -186,7 +186,7 @@ func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOEither[H.FullR
// - client: The HTTP client to use for executing the request
//
// Returns:
// - A function that takes a Requester and returns a ReaderIOEither[[]byte]
// - A function that takes a Requester and returns a ReaderIOResult[[]byte]
// containing the response body as bytes
//
// Example:
@@ -195,7 +195,7 @@ func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOEither[H.FullR
// request := MakeGetRequest("https://api.example.com/data")
// readBytes := ReadAll(client)
// result := readBytes(request)(context.Background())()
func ReadAll(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
func ReadAll(client Client) func(Requester) RIOE.ReaderIOResult[[]byte] {
return F.Flow2(
ReadFullResponse(client),
RIOE.Map(H.Body),
@@ -210,7 +210,7 @@ func ReadAll(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
// - client: The HTTP client to use for executing the request
//
// Returns:
// - A function that takes a Requester and returns a ReaderIOEither[string]
// - A function that takes a Requester and returns a ReaderIOResult[string]
// containing the response body as a string
//
// Example:
@@ -219,7 +219,7 @@ func ReadAll(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
// request := MakeGetRequest("https://api.example.com/text")
// readText := ReadText(client)
// result := readText(request)(context.Background())()
func ReadText(client Client) func(Requester) RIOE.ReaderIOEither[string] {
func ReadText(client Client) func(Requester) RIOE.ReaderIOResult[string] {
return F.Flow2(
ReadAll(client),
RIOE.Map(B.ToString),
@@ -231,7 +231,7 @@ func ReadText(client Client) func(Requester) RIOE.ReaderIOEither[string] {
// Deprecated: Use [ReadJSON] instead. This function is kept for backward compatibility
// but will be removed in a future version. The capitalized version follows Go naming
// conventions for acronyms.
func ReadJson[A any](client Client) func(Requester) RIOE.ReaderIOEither[A] {
func ReadJson[A any](client Client) func(Requester) RIOE.ReaderIOResult[A] {
return ReadJSON[A](client)
}
@@ -242,7 +242,7 @@ func ReadJson[A any](client Client) func(Requester) RIOE.ReaderIOEither[A] {
// 3. Reads the response body as bytes
//
// This function is used internally by ReadJSON to ensure proper JSON response handling.
func readJSON(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
func readJSON(client Client) func(Requester) RIOE.ReaderIOResult[[]byte] {
return F.Flow3(
ReadFullResponse(client),
RIOE.ChainFirstEitherK(F.Flow2(
@@ -264,7 +264,7 @@ func readJSON(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
// - client: The HTTP client to use for executing the request
//
// Returns:
// - A function that takes a Requester and returns a ReaderIOEither[A]
// - A function that takes a Requester and returns a ReaderIOResult[A]
// containing the parsed JSON data
//
// Example:
@@ -278,7 +278,7 @@ func readJSON(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
// request := MakeGetRequest("https://api.example.com/user/1")
// readUser := ReadJSON[User](client)
// result := readUser(request)(context.Background())()
func ReadJSON[A any](client Client) func(Requester) RIOE.ReaderIOEither[A] {
func ReadJSON[A any](client Client) func(Requester) RIOE.ReaderIOResult[A] {
return F.Flow2(
readJSON(client),
RIOE.ChainEitherK(J.Unmarshal[A]),

View File

@@ -22,7 +22,7 @@ import (
H "net/http"
R "github.com/IBM/fp-go/v2/context/readerioeither"
R "github.com/IBM/fp-go/v2/context/readerioresult"
E "github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/errors"
F "github.com/IBM/fp-go/v2/function"
@@ -66,7 +66,7 @@ func (b simpleRequestBuilder) WithHeader(key, value string) simpleRequestBuilder
return b
}
func (b simpleRequestBuilder) Build() R.ReaderIOEither[*H.Request] {
func (b simpleRequestBuilder) Build() R.ReaderIOResult[*H.Request] {
return func(ctx context.Context) IOE.IOEither[error, *H.Request] {
return IOE.TryCatchError(func() (*H.Request, error) {
req, err := H.NewRequestWithContext(ctx, b.method, b.url, nil)

View File

@@ -13,96 +13,75 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/monoid"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
type (
Monoid[A any] = monoid.Monoid[ReaderIOEither[A]]
Monoid[A any] = monoid.Monoid[ReaderIOResult[A]]
)
// ApplicativeMonoid returns a [Monoid] that concatenates [ReaderIOEither] instances via their applicative.
// ApplicativeMonoid returns a [Monoid] that concatenates [ReaderIOResult] instances via their applicative.
// This uses the default applicative behavior (parallel or sequential based on useParallel flag).
//
// The monoid combines two ReaderIOEither values by applying the underlying monoid's combine operation
// The monoid combines two ReaderIOResult values by applying the underlying monoid's combine operation
// to their success values using applicative application.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderIOEither[A].
// Returns a Monoid for ReaderIOResult[A].
func ApplicativeMonoid[A any](m monoid.Monoid[A]) Monoid[A] {
return monoid.ApplicativeMonoid(
Of[A],
MonadMap[A, func(A) A],
MonadAp[A, A],
m,
)
return RIOR.ApplicativeMonoid[context.Context](m)
}
// ApplicativeMonoidSeq returns a [Monoid] that concatenates [ReaderIOEither] instances via their applicative.
// ApplicativeMonoidSeq returns a [Monoid] that concatenates [ReaderIOResult] instances via their applicative.
// This explicitly uses sequential execution for combining values.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderIOEither[A] with sequential execution.
// Returns a Monoid for ReaderIOResult[A] with sequential execution.
func ApplicativeMonoidSeq[A any](m monoid.Monoid[A]) Monoid[A] {
return monoid.ApplicativeMonoid(
Of[A],
MonadMap[A, func(A) A],
MonadApSeq[A, A],
m,
)
return RIOR.ApplicativeMonoidSeq[context.Context](m)
}
// ApplicativeMonoidPar returns a [Monoid] that concatenates [ReaderIOEither] instances via their applicative.
// ApplicativeMonoidPar returns a [Monoid] that concatenates [ReaderIOResult] instances via their applicative.
// This explicitly uses parallel execution for combining values.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderIOEither[A] with parallel execution.
// Returns a Monoid for ReaderIOResult[A] with parallel execution.
func ApplicativeMonoidPar[A any](m monoid.Monoid[A]) Monoid[A] {
return monoid.ApplicativeMonoid(
Of[A],
MonadMap[A, func(A) A],
MonadApPar[A, A],
m,
)
return RIOR.ApplicativeMonoidPar[context.Context](m)
}
// AlternativeMonoid is the alternative [Monoid] for [ReaderIOEither].
// This combines ReaderIOEither values using the alternative semantics,
// AlternativeMonoid is the alternative [Monoid] for [ReaderIOResult].
// This combines ReaderIOResult values using the alternative semantics,
// where the second value is only evaluated if the first fails.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderIOEither[A] with alternative semantics.
// Returns a Monoid for ReaderIOResult[A] with alternative semantics.
func AlternativeMonoid[A any](m monoid.Monoid[A]) Monoid[A] {
return monoid.AlternativeMonoid(
Of[A],
MonadMap[A, func(A) A],
MonadAp[A, A],
MonadAlt[A],
m,
)
return RIOR.AlternativeMonoid[context.Context](m)
}
// AltMonoid is the alternative [Monoid] for a [ReaderIOEither].
// AltMonoid is the alternative [Monoid] for a [ReaderIOResult].
// This creates a monoid where the empty value is provided lazily,
// and combination uses the Alt operation (try first, fallback to second on failure).
//
// Parameters:
// - zero: Lazy computation that provides the empty/identity value
//
// Returns a Monoid for ReaderIOEither[A] with Alt-based combination.
func AltMonoid[A any](zero Lazy[ReaderIOEither[A]]) Monoid[A] {
return monoid.AltMonoid(
zero,
MonadAlt[A],
)
// Returns a Monoid for ReaderIOResult[A] with Alt-based combination.
func AltMonoid[A any](zero Lazy[ReaderIOResult[A]]) Monoid[A] {
return RIOR.AltMonoid(zero)
}

View File

@@ -0,0 +1,960 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
"time"
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/errors"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/readeroption"
)
const (
// useParallel is the feature flag to control if we use the parallel or the sequential implementation of ap
useParallel = true
)
// FromEither converts an [Either] into a [ReaderIOResult].
// The resulting computation ignores the context and immediately returns the Either value.
//
// Parameters:
// - e: The Either value to lift into ReaderIOResult
//
// Returns a ReaderIOResult that produces the given Either value.
//
//go:inline
func FromEither[A any](e Either[A]) ReaderIOResult[A] {
return RIOR.FromEither[context.Context](e)
}
// FromEither converts an [Either] into a [ReaderIOResult].
// The resulting computation ignores the context and immediately returns the Either value.
//
// Parameters:
// - e: The Either value to lift into ReaderIOResult
//
// Returns a ReaderIOResult that produces the given Either value.
//
//go:inline
func FromResult[A any](e Result[A]) ReaderIOResult[A] {
return RIOR.FromEither[context.Context](e)
}
// Left creates a [ReaderIOResult] that represents a failed computation with the given error.
//
// Parameters:
// - l: The error value
//
// Returns a ReaderIOResult that always fails with the given error.
func Left[A any](l error) ReaderIOResult[A] {
return RIOR.Left[context.Context, A](l)
}
// Right creates a [ReaderIOResult] that represents a successful computation with the given value.
//
// Parameters:
// - r: The success value
//
// Returns a ReaderIOResult that always succeeds with the given value.
//
//go:inline
func Right[A any](r A) ReaderIOResult[A] {
return RIOR.Right[context.Context](r)
}
// MonadMap transforms the success value of a [ReaderIOResult] using the provided function.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIOResult to transform
// - f: The transformation function
//
// Returns a new ReaderIOResult with the transformed value.
//
//go:inline
func MonadMap[A, B any](fa ReaderIOResult[A], f func(A) B) ReaderIOResult[B] {
return RIOR.MonadMap(fa, f)
}
// Map transforms the success value of a [ReaderIOResult] using the provided function.
// This is the curried version of [MonadMap], useful for composition.
//
// Parameters:
// - f: The transformation function
//
// Returns a function that transforms a ReaderIOResult.
//
//go:inline
func Map[A, B any](f func(A) B) Operator[A, B] {
return RIOR.Map[context.Context](f)
}
// MonadMapTo replaces the success value of a [ReaderIOResult] with a constant value.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIOResult to transform
// - b: The constant value to use
//
// Returns a new ReaderIOResult with the constant value.
//
//go:inline
func MonadMapTo[A, B any](fa ReaderIOResult[A], b B) ReaderIOResult[B] {
return RIOR.MonadMapTo(fa, b)
}
// MapTo replaces the success value of a [ReaderIOResult] with a constant value.
// This is the curried version of [MonadMapTo].
//
// Parameters:
// - b: The constant value to use
//
// Returns a function that transforms a ReaderIOResult.
//
//go:inline
func MapTo[A, B any](b B) Operator[A, B] {
return RIOR.MapTo[context.Context, A](b)
}
// MonadChain sequences two [ReaderIOResult] computations, where the second depends on the result of the first.
// If the first computation fails, the second is not executed.
//
// Parameters:
// - ma: The first ReaderIOResult
// - f: Function that produces the second ReaderIOResult based on the first's result
//
// Returns a new ReaderIOResult representing the sequenced computation.
//
//go:inline
func MonadChain[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIOResult[B] {
return RIOR.MonadChain(ma, f)
}
// Chain sequences two [ReaderIOResult] computations, where the second depends on the result of the first.
// This is the curried version of [MonadChain], useful for composition.
//
// Parameters:
// - f: Function that produces the second ReaderIOResult based on the first's result
//
// Returns a function that sequences ReaderIOResult computations.
//
//go:inline
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return RIOR.Chain(f)
}
// MonadChainFirst sequences two [ReaderIOResult] computations but returns the result of the first.
// The second computation is executed for its side effects only.
//
// Parameters:
// - ma: The first ReaderIOResult
// - f: Function that produces the second ReaderIOResult
//
// Returns a ReaderIOResult with the result of the first computation.
//
//go:inline
func MonadChainFirst[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirst(ma, f)
}
//go:inline
func MonadTap[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadTap(ma, f)
}
// ChainFirst sequences two [ReaderIOResult] computations but returns the result of the first.
// This is the curried version of [MonadChainFirst].
//
// Parameters:
// - f: Function that produces the second ReaderIOResult
//
// Returns a function that sequences ReaderIOResult computations.
//
//go:inline
func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIOR.ChainFirst(f)
}
//go:inline
func Tap[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIOR.Tap(f)
}
// Of creates a [ReaderIOResult] that always succeeds with the given value.
// This is the same as [Right] and represents the monadic return operation.
//
// Parameters:
// - a: The value to wrap
//
// Returns a ReaderIOResult that always succeeds with the given value.
//
//go:inline
func Of[A any](a A) ReaderIOResult[A] {
return RIOR.Of[context.Context](a)
}
func withCancelCauseFunc[A any](cancel context.CancelCauseFunc, ma IOResult[A]) IOResult[A] {
return function.Pipe3(
ma,
ioresult.Swap[A],
ioeither.ChainFirstIOK[A](func(err error) func() any {
return io.FromImpure(func() { cancel(err) })
}),
ioeither.Swap[A],
)
}
// MonadApPar implements parallel applicative application for [ReaderIOResult].
// It executes both computations in parallel and creates a sub-context that will be canceled
// if either operation fails. This provides automatic cancellation propagation.
//
// Parameters:
// - fab: ReaderIOResult containing a function
// - fa: ReaderIOResult containing a value
//
// Returns a ReaderIOResult with the function applied to the value.
func MonadApPar[B, A any](fab ReaderIOResult[func(A) B], fa ReaderIOResult[A]) ReaderIOResult[B] {
// context sensitive input
cfab := WithContext(fab)
cfa := WithContext(fa)
return func(ctx context.Context) IOResult[B] {
// quick check for cancellation
if err := context.Cause(ctx); err != nil {
return ioeither.Left[B](err)
}
return func() Result[B] {
// quick check for cancellation
if err := context.Cause(ctx); err != nil {
return either.Left[B](err)
}
// create sub-contexts for fa and fab, so they can cancel one other
ctxSub, cancelSub := context.WithCancelCause(ctx)
defer cancelSub(nil) // cancel has to be called in all paths
fabIOE := withCancelCauseFunc(cancelSub, cfab(ctxSub))
faIOE := withCancelCauseFunc(cancelSub, cfa(ctxSub))
return ioresult.MonadApPar(fabIOE, faIOE)()
}
}
}
// MonadAp implements applicative application for [ReaderIOResult].
// By default, it uses parallel execution ([MonadApPar]) but can be configured to use
// sequential execution ([MonadApSeq]) via the useParallel constant.
//
// Parameters:
// - fab: ReaderIOResult containing a function
// - fa: ReaderIOResult containing a value
//
// Returns a ReaderIOResult with the function applied to the value.
func MonadAp[B, A any](fab ReaderIOResult[func(A) B], fa ReaderIOResult[A]) ReaderIOResult[B] {
// dispatch to the configured version
if useParallel {
return MonadApPar(fab, fa)
}
return MonadApSeq(fab, fa)
}
// MonadApSeq implements sequential applicative application for [ReaderIOResult].
// It executes the function computation first, then the value computation.
//
// Parameters:
// - fab: ReaderIOResult containing a function
// - fa: ReaderIOResult containing a value
//
// Returns a ReaderIOResult with the function applied to the value.
//
//go:inline
func MonadApSeq[B, A any](fab ReaderIOResult[func(A) B], fa ReaderIOResult[A]) ReaderIOResult[B] {
return RIOR.MonadApSeq(fab, fa)
}
// Ap applies a function wrapped in a [ReaderIOResult] to a value wrapped in a ReaderIOResult.
// This is the curried version of [MonadAp], using the default execution mode.
//
// Parameters:
// - fa: ReaderIOResult containing a value
//
// Returns a function that applies a ReaderIOResult function to the value.
//
//go:inline
func Ap[B, A any](fa ReaderIOResult[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadAp[B, A], fa)
}
// ApSeq applies a function wrapped in a [ReaderIOResult] to a value sequentially.
// This is the curried version of [MonadApSeq].
//
// Parameters:
// - fa: ReaderIOResult containing a value
//
// Returns a function that applies a ReaderIOResult function to the value sequentially.
//
//go:inline
func ApSeq[B, A any](fa ReaderIOResult[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApSeq[B, A], fa)
}
// ApPar applies a function wrapped in a [ReaderIOResult] to a value in parallel.
// This is the curried version of [MonadApPar].
//
// Parameters:
// - fa: ReaderIOResult containing a value
//
// Returns a function that applies a ReaderIOResult function to the value in parallel.
//
//go:inline
func ApPar[B, A any](fa ReaderIOResult[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApPar[B, A], fa)
}
// FromPredicate creates a [ReaderIOResult] from a predicate function.
// If the predicate returns true, the value is wrapped in Right; otherwise, Left with the error from onFalse.
//
// Parameters:
// - pred: Predicate function to test the value
// - onFalse: Function to generate an error when predicate fails
//
// Returns a function that converts a value to ReaderIOResult based on the predicate.
//
//go:inline
func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) Kleisli[A, A] {
return RIOR.FromPredicate[context.Context](pred, onFalse)
}
// OrElse provides an alternative [ReaderIOResult] computation if the first one fails.
// The alternative is only executed if the first computation results in a Left (error).
//
// Parameters:
// - onLeft: Function that produces an alternative ReaderIOResult from the error
//
// Returns a function that provides fallback behavior for failed computations.
//
//go:inline
func OrElse[A any](onLeft Kleisli[error, A]) Operator[A, A] {
return RIOR.OrElse(onLeft)
}
// Ask returns a [ReaderIOResult] that provides access to the context.
// This is useful for accessing the [context.Context] within a computation.
//
// Returns a ReaderIOResult that produces the context.
//
//go:inline
func Ask() ReaderIOResult[context.Context] {
return RIOR.Ask[context.Context]()
}
// MonadChainEitherK chains a function that returns an [Either] into a [ReaderIOResult] computation.
// This is useful for integrating pure Either-returning functions into ReaderIOResult workflows.
//
// Parameters:
// - ma: The ReaderIOResult to chain from
// - f: Function that produces an Either
//
// Returns a new ReaderIOResult with the chained computation.
//
//go:inline
func MonadChainEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B]) ReaderIOResult[B] {
return RIOR.MonadChainEitherK(ma, f)
}
// ChainEitherK chains a function that returns an [Either] into a [ReaderIOResult] computation.
// This is the curried version of [MonadChainEitherK].
//
// Parameters:
// - f: Function that produces an Either
//
// Returns a function that chains the Either-returning function.
//
//go:inline
func ChainEitherK[A, B any](f func(A) Either[B]) Operator[A, B] {
return RIOR.ChainEitherK[context.Context](f)
}
// MonadChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// The Either-returning function is executed for its validation/side effects only.
//
// Parameters:
// - ma: The ReaderIOResult to chain from
// - f: Function that produces an Either
//
// Returns a ReaderIOResult with the original value if both computations succeed.
//
//go:inline
func MonadChainFirstEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstEitherK(ma, f)
}
//go:inline
func MonadTapEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B]) ReaderIOResult[A] {
return RIOR.MonadTapEitherK(ma, f)
}
// ChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// This is the curried version of [MonadChainFirstEitherK].
//
// Parameters:
// - f: Function that produces an Either
//
// Returns a function that chains the Either-returning function.
//
//go:inline
func ChainFirstEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return RIOR.ChainFirstEitherK[context.Context](f)
}
//go:inline
func TapEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return RIOR.TapEitherK[context.Context](f)
}
// ChainOptionK chains a function that returns an [Option] into a [ReaderIOResult] computation.
// If the Option is None, the provided error function is called.
//
// Parameters:
// - onNone: Function to generate an error when Option is None
//
// Returns a function that chains Option-returning functions into ReaderIOResult.
//
//go:inline
func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operator[A, B] {
return RIOR.ChainOptionK[context.Context, A, B](onNone)
}
// FromIOEither converts an [IOResult] into a [ReaderIOResult].
// The resulting computation ignores the context.
//
// Parameters:
// - t: The IOResult to convert
//
// Returns a ReaderIOResult that executes the IOResult.
//
//go:inline
func FromIOEither[A any](t IOResult[A]) ReaderIOResult[A] {
return RIOR.FromIOEither[context.Context](t)
}
//go:inline
func FromIOResult[A any](t IOResult[A]) ReaderIOResult[A] {
return RIOR.FromIOResult[context.Context](t)
}
// FromIO converts an [IO] into a [ReaderIOResult].
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - t: The IO to convert
//
// Returns a ReaderIOResult that executes the IO and wraps the result in Right.
//
//go:inline
func FromIO[A any](t IO[A]) ReaderIOResult[A] {
return RIOR.FromIO[context.Context](t)
}
//go:inline
func FromReader[A any](t Reader[context.Context, A]) ReaderIOResult[A] {
return RIOR.FromReader(t)
}
//go:inline
func FromReaderIO[A any](t ReaderIO[A]) ReaderIOResult[A] {
return RIOR.FromReaderIO(t)
}
// FromLazy converts a [Lazy] computation into a [ReaderIOResult].
// The Lazy computation always succeeds, so it's wrapped in Right.
// This is an alias for [FromIO] since Lazy and IO have the same structure.
//
// Parameters:
// - t: The Lazy computation to convert
//
// Returns a ReaderIOResult that executes the Lazy computation and wraps the result in Right.
//
//go:inline
func FromLazy[A any](t Lazy[A]) ReaderIOResult[A] {
return RIOR.FromIO[context.Context](t)
}
// Never returns a [ReaderIOResult] that blocks indefinitely until the context is canceled.
// This is useful for creating computations that wait for external cancellation signals.
//
// Returns a ReaderIOResult that waits for context cancellation and returns the cancellation error.
func Never[A any]() ReaderIOResult[A] {
return func(ctx context.Context) IOResult[A] {
return func() Either[A] {
<-ctx.Done()
return either.Left[A](context.Cause(ctx))
}
}
}
// MonadChainIOK chains a function that returns an [IO] into a [ReaderIOResult] computation.
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - ma: The ReaderIOResult to chain from
// - f: Function that produces an IO
//
// Returns a new ReaderIOResult with the chained IO computation.
//
//go:inline
func MonadChainIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderIOResult[B] {
return RIOR.MonadChainIOK(ma, f)
}
// ChainIOK chains a function that returns an [IO] into a [ReaderIOResult] computation.
// This is the curried version of [MonadChainIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainIOK[A, B any](f func(A) IO[B]) Operator[A, B] {
return RIOR.ChainIOK[context.Context](f)
}
// MonadChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// The IO computation is executed for its side effects only.
//
// Parameters:
// - ma: The ReaderIOResult to chain from
// - f: Function that produces an IO
//
// Returns a ReaderIOResult with the original value after executing the IO.
//
//go:inline
func MonadChainFirstIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstIOK(ma, f)
}
//go:inline
func MonadTapIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderIOResult[A] {
return RIOR.MonadTapIOK(ma, f)
}
// ChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// This is the curried version of [MonadChainFirstIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainFirstIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIOR.ChainFirstIOK[context.Context](f)
}
//go:inline
func TapIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIOR.TapIOK[context.Context](f)
}
// ChainIOEitherK chains a function that returns an [IOResult] into a [ReaderIOResult] computation.
// This is useful for integrating IOResult-returning functions into ReaderIOResult workflows.
//
// Parameters:
// - f: Function that produces an IOResult
//
// Returns a function that chains the IOResult-returning function.
//
//go:inline
func ChainIOEitherK[A, B any](f func(A) IOResult[B]) Operator[A, B] {
return RIOR.ChainIOEitherK[context.Context](f)
}
// Delay creates an operation that delays execution by the specified duration.
// The computation waits for either the delay to expire or the context to be canceled.
//
// Parameters:
// - delay: The duration to wait before executing the computation
//
// Returns a function that delays a ReaderIOResult computation.
func Delay[A any](delay time.Duration) Operator[A, A] {
return func(ma ReaderIOResult[A]) ReaderIOResult[A] {
return func(ctx context.Context) IOResult[A] {
return func() Either[A] {
// manage the timeout
timeoutCtx, cancelTimeout := context.WithTimeout(ctx, delay)
defer cancelTimeout()
// whatever comes first
select {
case <-timeoutCtx.Done():
return ma(ctx)()
case <-ctx.Done():
return either.Left[A](context.Cause(ctx))
}
}
}
}
}
// Timer returns the current time after waiting for the specified delay.
// This is useful for creating time-based computations.
//
// Parameters:
// - delay: The duration to wait before returning the time
//
// Returns a ReaderIOResult that produces the current time after the delay.
func Timer(delay time.Duration) ReaderIOResult[time.Time] {
return function.Pipe2(
io.Now,
FromIO[time.Time],
Delay[time.Time](delay),
)
}
// Defer creates a [ReaderIOResult] by lazily generating a new computation each time it's executed.
// This is useful for creating computations that should be re-evaluated on each execution.
//
// Parameters:
// - gen: Lazy generator function that produces a ReaderIOResult
//
// Returns a ReaderIOResult that generates a fresh computation on each execution.
//
//go:inline
func Defer[A any](gen Lazy[ReaderIOResult[A]]) ReaderIOResult[A] {
return RIOR.Defer(gen)
}
// TryCatch wraps a function that returns a tuple (value) into a [ReaderIOResult].
// This is the standard way to convert Go error-returning functions into ReaderIOResult.
//
// Parameters:
// - f: Function that takes a context and returns a function producing (value)
//
// Returns a ReaderIOResult that wraps the error-returning function.
//
//go:inline
func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOResult[A] {
return RIOR.TryCatch(f, errors.Identity)
}
// MonadAlt provides an alternative [ReaderIOResult] if the first one fails.
// The alternative is lazily evaluated only if needed.
//
// Parameters:
// - first: The primary ReaderIOResult to try
// - second: Lazy alternative ReaderIOResult to use if first fails
//
// Returns a ReaderIOResult that tries the first, then the second if first fails.
//
//go:inline
func MonadAlt[A any](first ReaderIOResult[A], second Lazy[ReaderIOResult[A]]) ReaderIOResult[A] {
return RIOR.MonadAlt(first, second)
}
// Alt provides an alternative [ReaderIOResult] if the first one fails.
// This is the curried version of [MonadAlt].
//
// Parameters:
// - second: Lazy alternative ReaderIOResult to use if first fails
//
// Returns a function that provides fallback behavior.
//
//go:inline
func Alt[A any](second Lazy[ReaderIOResult[A]]) Operator[A, A] {
return RIOR.Alt(second)
}
// Memoize computes the value of the provided [ReaderIOResult] monad lazily but exactly once.
// The context used to compute the value is the context of the first call, so do not use this
// method if the value has a functional dependency on the content of the context.
//
// Parameters:
// - rdr: The ReaderIOResult to memoize
//
// Returns a ReaderIOResult that caches its result after the first execution.
//
//go:inline
func Memoize[A any](rdr ReaderIOResult[A]) ReaderIOResult[A] {
return RIOR.Memoize(rdr)
}
// Flatten converts a nested [ReaderIOResult] into a flat [ReaderIOResult].
// This is equivalent to [MonadChain] with the identity function.
//
// Parameters:
// - rdr: The nested ReaderIOResult to flatten
//
// Returns a flattened ReaderIOResult.
//
//go:inline
func Flatten[A any](rdr ReaderIOResult[ReaderIOResult[A]]) ReaderIOResult[A] {
return RIOR.Flatten(rdr)
}
// MonadFlap applies a value to a function wrapped in a [ReaderIOResult].
// This is the reverse of [MonadAp], useful in certain composition scenarios.
//
// Parameters:
// - fab: ReaderIOResult containing a function
// - a: The value to apply to the function
//
// Returns a ReaderIOResult with the function applied to the value.
//
//go:inline
func MonadFlap[B, A any](fab ReaderIOResult[func(A) B], a A) ReaderIOResult[B] {
return RIOR.MonadFlap(fab, a)
}
// Flap applies a value to a function wrapped in a [ReaderIOResult].
// This is the curried version of [MonadFlap].
//
// Parameters:
// - a: The value to apply to the function
//
// Returns a function that applies the value to a ReaderIOResult function.
//
//go:inline
func Flap[B, A any](a A) Operator[func(A) B, B] {
return RIOR.Flap[context.Context, B](a)
}
// Fold handles both success and error cases of a [ReaderIOResult] by providing handlers for each.
// Both handlers return ReaderIOResult, allowing for further composition.
//
// Parameters:
// - onLeft: Handler for error case
// - onRight: Handler for success case
//
// Returns a function that folds a ReaderIOResult into a new ReaderIOResult.
//
//go:inline
func Fold[A, B any](onLeft Kleisli[error, B], onRight Kleisli[A, B]) Operator[A, B] {
return RIOR.Fold(onLeft, onRight)
}
// GetOrElse extracts the value from a [ReaderIOResult], providing a default via a function if it fails.
// The result is a [ReaderIO] that always succeeds.
//
// Parameters:
// - onLeft: Function to provide a default value from the error
//
// Returns a function that converts a ReaderIOResult to a ReaderIO.
//
//go:inline
func GetOrElse[A any](onLeft func(error) ReaderIO[A]) func(ReaderIOResult[A]) ReaderIO[A] {
return RIOR.GetOrElse(onLeft)
}
// OrLeft transforms the error of a [ReaderIOResult] using the provided function.
// The success value is left unchanged.
//
// Parameters:
// - onLeft: Function to transform the error
//
// Returns a function that transforms the error of a ReaderIOResult.
//
//go:inline
func OrLeft[A any](onLeft func(error) ReaderIO[error]) Operator[A, A] {
return RIOR.OrLeft[A](onLeft)
}
//go:inline
func FromReaderEither[A any](ma ReaderEither[context.Context, error, A]) ReaderIOResult[A] {
return RIOR.FromReaderEither(ma)
}
//go:inline
func FromReaderResult[A any](ma ReaderResult[A]) ReaderIOResult[A] {
return RIOR.FromReaderEither(ma)
}
//go:inline
func FromReaderOption[A any](onNone func() error) Kleisli[ReaderOption[context.Context, A], A] {
return RIOR.FromReaderOption[context.Context, A](onNone)
}
//go:inline
func MonadChainReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderK(ma, f)
}
//go:inline
func ChainReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderK(f)
}
//go:inline
func MonadChainFirstReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderK(ma, f)
}
//go:inline
func MonadTapReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderK(ma, f)
}
//go:inline
func ChainFirstReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderK(f)
}
//go:inline
func TapReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderK(f)
}
//go:inline
func MonadChainReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderResultK(ma, f)
}
//go:inline
func ChainReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, B] {
return RIOR.ChainReaderResultK(f)
}
//go:inline
func MonadChainFirstReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderResultK(ma, f)
}
//go:inline
func MonadTapReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderResultK(ma, f)
}
//go:inline
func ChainFirstReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderResultK(f)
}
//go:inline
func TapReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, A] {
return RIOR.TapReaderResultK(f)
}
//go:inline
func MonadChainReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderIOK(ma, f)
}
//go:inline
func ChainReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderIOK(f)
}
//go:inline
func MonadChainFirstReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderIOK(ma, f)
}
//go:inline
func MonadTapReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderIOK(ma, f)
}
//go:inline
func ChainFirstReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderIOK(f)
}
//go:inline
func TapReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderIOK(f)
}
//go:inline
func ChainReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func ChainFirstReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func TapReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func Read[A any](r context.Context) func(ReaderIOResult[A]) IOResult[A] {
return RIOR.Read[A](r)
}
// MonadChainLeft chains a computation on the left (error) side of a [ReaderIOResult].
// If the input is a Left value, it applies the function f to transform the error and potentially
// change the error type. If the input is a Right value, it passes through unchanged.
//
//go:inline
func MonadChainLeft[A any](fa ReaderIOResult[A], f Kleisli[error, A]) ReaderIOResult[A] {
return RIOR.MonadChainLeft(fa, f)
}
// ChainLeft is the curried version of [MonadChainLeft].
// It returns a function that chains a computation on the left (error) side of a [ReaderIOResult].
//
//go:inline
func ChainLeft[A any](f Kleisli[error, A]) func(ReaderIOResult[A]) ReaderIOResult[A] {
return RIOR.ChainLeft(f)
}
// MonadChainFirstLeft chains a computation on the left (error) side but always returns the original error.
// If the input is a Left value, it applies the function f to the error and executes the resulting computation,
// but always returns the original Left error regardless of what f returns (Left or Right).
// If the input is a Right value, it passes through unchanged without calling f.
//
// This is useful for side effects on errors (like logging or metrics) where you want to perform an action
// when an error occurs but always propagate the original error, ensuring the error path is preserved.
//
//go:inline
func MonadChainFirstLeft[A, B any](ma ReaderIOResult[A], f Kleisli[error, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstLeft(ma, f)
}
//go:inline
func MonadTapLeft[A, B any](ma ReaderIOResult[A], f Kleisli[error, B]) ReaderIOResult[A] {
return RIOR.MonadTapLeft(ma, f)
}
// ChainFirstLeft is the curried version of [MonadChainFirstLeft].
// It returns a function that chains a computation on the left (error) side while always preserving the original error.
//
// This is particularly useful for adding error handling side effects (like logging, metrics, or notifications)
// in a functional pipeline. The original error is always returned regardless of what f returns (Left or Right),
// ensuring the error path is preserved.
//
//go:inline
func ChainFirstLeft[A, B any](f Kleisli[error, B]) Operator[A, A] {
return RIOR.ChainFirstLeft[A](f)
}
//go:inline
func TapLeft[A, B any](f Kleisli[error, B]) Operator[A, A] {
return RIOR.TapLeft[A](f)
}

View File

@@ -0,0 +1,878 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
"errors"
"fmt"
"testing"
"time"
E "github.com/IBM/fp-go/v2/either"
IOG "github.com/IBM/fp-go/v2/io"
IOE "github.com/IBM/fp-go/v2/ioeither"
M "github.com/IBM/fp-go/v2/monoid"
N "github.com/IBM/fp-go/v2/number"
O "github.com/IBM/fp-go/v2/option"
R "github.com/IBM/fp-go/v2/reader"
"github.com/stretchr/testify/assert"
)
func TestFromEither(t *testing.T) {
t.Run("Right value", func(t *testing.T) {
either := E.Right[error]("success")
result := FromEither(either)
assert.Equal(t, E.Right[error]("success"), result(context.Background())())
})
t.Run("Left value", func(t *testing.T) {
err := errors.New("test error")
either := E.Left[string](err)
result := FromEither(either)
assert.Equal(t, E.Left[string](err), result(context.Background())())
})
}
func TestFromResult(t *testing.T) {
t.Run("Success", func(t *testing.T) {
result := FromResult(E.Right[error](42))
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("Error", func(t *testing.T) {
err := errors.New("test error")
result := FromResult(E.Left[int](err))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestLeft(t *testing.T) {
err := errors.New("test error")
result := Left[string](err)
assert.Equal(t, E.Left[string](err), result(context.Background())())
}
func TestRight(t *testing.T) {
result := Right("success")
assert.Equal(t, E.Right[error]("success"), result(context.Background())())
}
func TestOf(t *testing.T) {
result := Of(42)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestMonadMap(t *testing.T) {
t.Run("Map over Right", func(t *testing.T) {
result := MonadMap(Of(5), N.Mul(2))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("Map over Left", func(t *testing.T) {
err := errors.New("test error")
result := MonadMap(Left[int](err), N.Mul(2))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMap(t *testing.T) {
t.Run("Map with success", func(t *testing.T) {
mapper := Map(N.Mul(2))
result := mapper(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("Map with error", func(t *testing.T) {
err := errors.New("test error")
mapper := Map(N.Mul(2))
result := mapper(Left[int](err))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMonadMapTo(t *testing.T) {
t.Run("MapTo with success", func(t *testing.T) {
result := MonadMapTo(Of("original"), 42)
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("MapTo with error", func(t *testing.T) {
err := errors.New("test error")
result := MonadMapTo(Left[string](err), 42)
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMapTo(t *testing.T) {
mapper := MapTo[string](42)
result := mapper(Of("original"))
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestMonadChain(t *testing.T) {
t.Run("Chain with success", func(t *testing.T) {
result := MonadChain(Of(5), func(x int) ReaderIOResult[int] {
return Of(x * 2)
})
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("Chain with error in first", func(t *testing.T) {
err := errors.New("test error")
result := MonadChain(Left[int](err), func(x int) ReaderIOResult[int] {
return Of(x * 2)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
t.Run("Chain with error in second", func(t *testing.T) {
err := errors.New("test error")
result := MonadChain(Of(5), func(x int) ReaderIOResult[int] {
return Left[int](err)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestChain(t *testing.T) {
chainer := Chain(func(x int) ReaderIOResult[int] {
return Of(x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestMonadChainFirst(t *testing.T) {
t.Run("ChainFirst keeps first value", func(t *testing.T) {
result := MonadChainFirst(Of(5), func(x int) ReaderIOResult[string] {
return Of("ignored")
})
assert.Equal(t, E.Right[error](5), result(context.Background())())
})
t.Run("ChainFirst propagates error from second", func(t *testing.T) {
err := errors.New("test error")
result := MonadChainFirst(Of(5), func(x int) ReaderIOResult[string] {
return Left[string](err)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestChainFirst(t *testing.T) {
chainer := ChainFirst(func(x int) ReaderIOResult[string] {
return Of("ignored")
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](5), result(context.Background())())
}
func TestMonadApSeq(t *testing.T) {
t.Run("ApSeq with success", func(t *testing.T) {
fab := Of(N.Mul(2))
fa := Of(5)
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ApSeq with error in function", func(t *testing.T) {
err := errors.New("test error")
fab := Left[func(int) int](err)
fa := Of(5)
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
t.Run("ApSeq with error in value", func(t *testing.T) {
err := errors.New("test error")
fab := Of(N.Mul(2))
fa := Left[int](err)
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestApSeq(t *testing.T) {
fa := Of(5)
fab := Of(N.Mul(2))
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestApPar(t *testing.T) {
t.Run("ApPar with success", func(t *testing.T) {
fa := Of(5)
fab := Of(N.Mul(2))
result := MonadApPar(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ApPar with cancelled context", func(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
cancel()
fa := Of(5)
fab := Of(N.Mul(2))
result := MonadApPar(fab, fa)
res := result(ctx)()
assert.True(t, E.IsLeft(res))
})
}
func TestFromPredicate(t *testing.T) {
t.Run("Predicate true", func(t *testing.T) {
pred := FromPredicate(
func(x int) bool { return x > 0 },
func(x int) error { return fmt.Errorf("value %d is not positive", x) },
)
result := pred(5)
assert.Equal(t, E.Right[error](5), result(context.Background())())
})
t.Run("Predicate false", func(t *testing.T) {
pred := FromPredicate(
func(x int) bool { return x > 0 },
func(x int) error { return fmt.Errorf("value %d is not positive", x) },
)
result := pred(-5)
res := result(context.Background())()
assert.True(t, E.IsLeft(res))
})
}
func TestOrElse(t *testing.T) {
t.Run("OrElse with success", func(t *testing.T) {
fallback := OrElse(func(err error) ReaderIOResult[int] {
return Of(42)
})
result := fallback(Of(10))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("OrElse with error", func(t *testing.T) {
err := errors.New("test error")
fallback := OrElse(func(err error) ReaderIOResult[int] {
return Of(42)
})
result := fallback(Left[int](err))
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
}
func TestAsk(t *testing.T) {
result := Ask()
ctx := context.Background()
res := result(ctx)()
assert.True(t, E.IsRight(res))
ctxResult := E.ToOption(res)
assert.True(t, O.IsSome(ctxResult))
}
func TestMonadChainEitherK(t *testing.T) {
t.Run("ChainEitherK with success", func(t *testing.T) {
result := MonadChainEitherK(Of(5), func(x int) Either[int] {
return E.Right[error](x * 2)
})
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ChainEitherK with error", func(t *testing.T) {
err := errors.New("test error")
result := MonadChainEitherK(Of(5), func(x int) Either[int] {
return E.Left[int](err)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestChainEitherK(t *testing.T) {
chainer := ChainEitherK(func(x int) Either[int] {
return E.Right[error](x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestMonadChainFirstEitherK(t *testing.T) {
t.Run("ChainFirstEitherK keeps first value", func(t *testing.T) {
result := MonadChainFirstEitherK(Of(5), func(x int) Either[string] {
return E.Right[error]("ignored")
})
assert.Equal(t, E.Right[error](5), result(context.Background())())
})
t.Run("ChainFirstEitherK propagates error", func(t *testing.T) {
err := errors.New("test error")
result := MonadChainFirstEitherK(Of(5), func(x int) Either[string] {
return E.Left[string](err)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestChainFirstEitherK(t *testing.T) {
chainer := ChainFirstEitherK(func(x int) Either[string] {
return E.Right[error]("ignored")
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](5), result(context.Background())())
}
func TestChainOptionK(t *testing.T) {
t.Run("ChainOptionK with Some", func(t *testing.T) {
chainer := ChainOptionK[int, int](func() error {
return errors.New("none error")
})(func(x int) Option[int] {
return O.Some(x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ChainOptionK with None", func(t *testing.T) {
chainer := ChainOptionK[int, int](func() error {
return errors.New("none error")
})(func(x int) Option[int] {
return O.None[int]()
})
result := chainer(Of(5))
res := result(context.Background())()
assert.True(t, E.IsLeft(res))
})
}
func TestFromIOEither(t *testing.T) {
t.Run("FromIOEither with success", func(t *testing.T) {
ioe := IOE.Of[error](42)
result := FromIOEither(ioe)
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("FromIOEither with error", func(t *testing.T) {
err := errors.New("test error")
ioe := IOE.Left[int](err)
result := FromIOEither(ioe)
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestFromIOResult(t *testing.T) {
ioe := IOE.Of[error](42)
result := FromIOResult(ioe)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestFromIO(t *testing.T) {
io := IOG.Of(42)
result := FromIO(io)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestFromReader(t *testing.T) {
reader := R.Of[context.Context](42)
result := FromReader(reader)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestFromLazy(t *testing.T) {
lazy := func() int { return 42 }
result := FromLazy(lazy)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestNever(t *testing.T) {
t.Run("Never with cancelled context", func(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
result := Never[int]()
// Cancel immediately
cancel()
res := result(ctx)()
assert.True(t, E.IsLeft(res))
})
t.Run("Never with timeout", func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer cancel()
result := Never[int]()
res := result(ctx)()
assert.True(t, E.IsLeft(res))
})
}
func TestMonadChainIOK(t *testing.T) {
result := MonadChainIOK(Of(5), func(x int) IOG.IO[int] {
return IOG.Of(x * 2)
})
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestChainIOK(t *testing.T) {
chainer := ChainIOK(func(x int) IOG.IO[int] {
return IOG.Of(x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestMonadChainFirstIOK(t *testing.T) {
result := MonadChainFirstIOK(Of(5), func(x int) IOG.IO[string] {
return IOG.Of("ignored")
})
assert.Equal(t, E.Right[error](5), result(context.Background())())
}
func TestChainFirstIOK(t *testing.T) {
chainer := ChainFirstIOK(func(x int) IOG.IO[string] {
return IOG.Of("ignored")
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](5), result(context.Background())())
}
func TestChainIOEitherK(t *testing.T) {
t.Run("ChainIOEitherK with success", func(t *testing.T) {
chainer := ChainIOEitherK(func(x int) IOResult[int] {
return IOE.Of[error](x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ChainIOEitherK with error", func(t *testing.T) {
err := errors.New("test error")
chainer := ChainIOEitherK(func(x int) IOResult[int] {
return IOE.Left[int](err)
})
result := chainer(Of(5))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestDelay(t *testing.T) {
t.Run("Delay with success", func(t *testing.T) {
start := time.Now()
delayed := Delay[int](100 * time.Millisecond)
result := delayed(Of(42))
res := result(context.Background())()
elapsed := time.Since(start)
assert.True(t, E.IsRight(res))
assert.GreaterOrEqual(t, elapsed, 100*time.Millisecond)
})
t.Run("Delay with cancelled context", func(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
delayed := Delay[int](100 * time.Millisecond)
result := delayed(Of(42))
// Cancel after starting but before delay completes
cancel()
res := result(ctx)()
// The result might be either Left (if cancelled) or Right (if completed before cancel)
// This is a race condition, so we just verify it completes
assert.True(t, E.IsLeft(res) || E.IsRight(res))
})
}
func TestDefer(t *testing.T) {
counter := 0
deferred := Defer(func() ReaderIOResult[int] {
counter++
return Of(counter)
})
// First execution
res1 := deferred(context.Background())()
assert.True(t, E.IsRight(res1))
// Second execution should generate a new computation
res2 := deferred(context.Background())()
assert.True(t, E.IsRight(res2))
// Counter should be incremented for each execution
assert.Equal(t, 2, counter)
}
func TestTryCatch(t *testing.T) {
t.Run("TryCatch with success", func(t *testing.T) {
result := TryCatch(func(ctx context.Context) func() (int, error) {
return func() (int, error) {
return 42, nil
}
})
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("TryCatch with error", func(t *testing.T) {
err := errors.New("test error")
result := TryCatch(func(ctx context.Context) func() (int, error) {
return func() (int, error) {
return 0, err
}
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMonadAlt(t *testing.T) {
t.Run("Alt with first success", func(t *testing.T) {
first := Of(42)
second := func() ReaderIOResult[int] { return Of(100) }
result := MonadAlt(first, second)
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("Alt with first error", func(t *testing.T) {
err := errors.New("test error")
first := Left[int](err)
second := func() ReaderIOResult[int] { return Of(100) }
result := MonadAlt(first, second)
assert.Equal(t, E.Right[error](100), result(context.Background())())
})
}
func TestAlt(t *testing.T) {
err := errors.New("test error")
alternative := Alt(func() ReaderIOResult[int] { return Of(100) })
result := alternative(Left[int](err))
assert.Equal(t, E.Right[error](100), result(context.Background())())
}
func TestMemoize(t *testing.T) {
counter := 0
computation := Memoize(FromLazy(func() int {
counter++
return counter
}))
// First execution
res1 := computation(context.Background())()
assert.True(t, E.IsRight(res1))
val1 := E.ToOption(res1)
v1, _ := O.Unwrap(val1)
assert.Equal(t, 1, v1)
// Second execution should return cached value
res2 := computation(context.Background())()
assert.True(t, E.IsRight(res2))
val2 := E.ToOption(res2)
v2, _ := O.Unwrap(val2)
assert.Equal(t, 1, v2)
// Counter should only be incremented once
assert.Equal(t, 1, counter)
}
func TestFlatten(t *testing.T) {
nested := Of(Of(42))
result := Flatten(nested)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestMonadFlap(t *testing.T) {
fab := Of(N.Mul(2))
result := MonadFlap(fab, 5)
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestFlap(t *testing.T) {
flapper := Flap[int](5)
result := flapper(Of(N.Mul(2)))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestFold(t *testing.T) {
t.Run("Fold with success", func(t *testing.T) {
folder := Fold(
func(err error) ReaderIOResult[string] {
return Of("error: " + err.Error())
},
func(x int) ReaderIOResult[string] {
return Of(fmt.Sprintf("success: %d", x))
},
)
result := folder(Of(42))
assert.Equal(t, E.Right[error]("success: 42"), result(context.Background())())
})
t.Run("Fold with error", func(t *testing.T) {
err := errors.New("test error")
folder := Fold(
func(err error) ReaderIOResult[string] {
return Of("error: " + err.Error())
},
func(x int) ReaderIOResult[string] {
return Of(fmt.Sprintf("success: %d", x))
},
)
result := folder(Left[int](err))
assert.Equal(t, E.Right[error]("error: test error"), result(context.Background())())
})
}
func TestGetOrElse(t *testing.T) {
t.Run("GetOrElse with success", func(t *testing.T) {
getter := GetOrElse(func(err error) ReaderIO[int] {
return func(ctx context.Context) IOG.IO[int] {
return IOG.Of(0)
}
})
result := getter(Of(42))
assert.Equal(t, 42, result(context.Background())())
})
t.Run("GetOrElse with error", func(t *testing.T) {
err := errors.New("test error")
getter := GetOrElse(func(err error) ReaderIO[int] {
return func(ctx context.Context) IOG.IO[int] {
return IOG.Of(0)
}
})
result := getter(Left[int](err))
assert.Equal(t, 0, result(context.Background())())
})
}
func TestWithContext(t *testing.T) {
t.Run("WithContext with valid context", func(t *testing.T) {
computation := WithContext(Of(42))
result := computation(context.Background())()
assert.Equal(t, E.Right[error](42), result)
})
t.Run("WithContext with cancelled context", func(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
cancel()
computation := WithContext(Of(42))
result := computation(ctx)()
assert.True(t, E.IsLeft(result))
})
}
func TestEitherize0(t *testing.T) {
f := func(ctx context.Context) (int, error) {
return 42, nil
}
eitherized := Eitherize0(f)
result := eitherized()
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestUneitherize0(t *testing.T) {
f := func() ReaderIOResult[int] {
return Of(42)
}
uneitherized := Uneitherize0(f)
result, err := uneitherized(context.Background())
assert.NoError(t, err)
assert.Equal(t, 42, result)
}
func TestEitherize1(t *testing.T) {
f := func(ctx context.Context, x int) (int, error) {
return x * 2, nil
}
eitherized := Eitherize1(f)
result := eitherized(5)
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestUneitherize1(t *testing.T) {
f := func(x int) ReaderIOResult[int] {
return Of(x * 2)
}
uneitherized := Uneitherize1(f)
result, err := uneitherized(context.Background(), 5)
assert.NoError(t, err)
assert.Equal(t, 10, result)
}
func TestSequenceT2(t *testing.T) {
result := SequenceT2(Of(1), Of(2))
res := result(context.Background())()
assert.True(t, E.IsRight(res))
tuple := E.ToOption(res)
assert.True(t, O.IsSome(tuple))
t1, _ := O.Unwrap(tuple)
assert.Equal(t, 1, t1.F1)
assert.Equal(t, 2, t1.F2)
}
func TestSequenceSeqT2(t *testing.T) {
result := SequenceSeqT2(Of(1), Of(2))
res := result(context.Background())()
assert.True(t, E.IsRight(res))
}
func TestSequenceParT2(t *testing.T) {
result := SequenceParT2(Of(1), Of(2))
res := result(context.Background())()
assert.True(t, E.IsRight(res))
}
func TestTraverseArray(t *testing.T) {
t.Run("TraverseArray with success", func(t *testing.T) {
arr := []int{1, 2, 3}
traverser := TraverseArray(func(x int) ReaderIOResult[int] {
return Of(x * 2)
})
result := traverser(arr)
res := result(context.Background())()
assert.True(t, E.IsRight(res))
arrOpt := E.ToOption(res)
assert.True(t, O.IsSome(arrOpt))
resultArr, _ := O.Unwrap(arrOpt)
assert.Equal(t, []int{2, 4, 6}, resultArr)
})
t.Run("TraverseArray with error", func(t *testing.T) {
arr := []int{1, 2, 3}
err := errors.New("test error")
traverser := TraverseArray(func(x int) ReaderIOResult[int] {
if x == 2 {
return Left[int](err)
}
return Of(x * 2)
})
result := traverser(arr)
res := result(context.Background())()
assert.True(t, E.IsLeft(res))
})
}
func TestSequenceArray(t *testing.T) {
arr := []ReaderIOResult[int]{Of(1), Of(2), Of(3)}
result := SequenceArray(arr)
res := result(context.Background())()
assert.True(t, E.IsRight(res))
arrOpt := E.ToOption(res)
assert.True(t, O.IsSome(arrOpt))
resultArr, _ := O.Unwrap(arrOpt)
assert.Equal(t, []int{1, 2, 3}, resultArr)
}
func TestTraverseRecord(t *testing.T) {
rec := map[string]int{"a": 1, "b": 2}
result := TraverseRecord[string](func(x int) ReaderIOResult[int] {
return Of(x * 2)
})(rec)
res := result(context.Background())()
assert.True(t, E.IsRight(res))
recOpt := E.ToOption(res)
assert.True(t, O.IsSome(recOpt))
resultRec, _ := O.Unwrap(recOpt)
assert.Equal(t, 2, resultRec["a"])
assert.Equal(t, 4, resultRec["b"])
}
func TestSequenceRecord(t *testing.T) {
rec := map[string]ReaderIOResult[int]{
"a": Of(1),
"b": Of(2),
}
result := SequenceRecord(rec)
res := result(context.Background())()
assert.True(t, E.IsRight(res))
recOpt := E.ToOption(res)
assert.True(t, O.IsSome(recOpt))
resultRec, _ := O.Unwrap(recOpt)
assert.Equal(t, 1, resultRec["a"])
assert.Equal(t, 2, resultRec["b"])
}
func TestAltSemigroup(t *testing.T) {
sg := AltSemigroup[int]()
err := errors.New("test error")
result := sg.Concat(Left[int](err), Of(42))
res := result(context.Background())()
assert.Equal(t, E.Right[error](42), res)
}
func TestApplicativeMonoid(t *testing.T) {
// Test with int addition monoid
intAddMonoid := ApplicativeMonoid(M.MakeMonoid(
func(a, b int) int { return a + b },
0,
))
result := intAddMonoid.Concat(Of(5), Of(10))
res := result(context.Background())()
assert.Equal(t, E.Right[error](15), res)
}
func TestBracket(t *testing.T) {
t.Run("Bracket with success", func(t *testing.T) {
var acquired, released bool
acquire := FromLazy(func() int {
acquired = true
return 42
})
use := func(x int) ReaderIOResult[int] {
return Of(x * 2)
}
release := func(x int, result Either[int]) ReaderIOResult[any] {
return FromLazy(func() any {
released = true
return nil
})
}
result := Bracket(acquire, use, release)
res := result(context.Background())()
assert.True(t, acquired)
assert.True(t, released)
assert.Equal(t, E.Right[error](84), res)
})
t.Run("Bracket with error in use", func(t *testing.T) {
var acquired, released bool
err := errors.New("use error")
acquire := FromLazy(func() int {
acquired = true
return 42
})
use := func(x int) ReaderIOResult[int] {
return Left[int](err)
}
release := func(x int, result Either[int]) ReaderIOResult[any] {
return FromLazy(func() any {
released = true
return nil
})
}
result := Bracket(acquire, use, release)
res := result(context.Background())()
assert.True(t, acquired)
assert.True(t, released)
assert.Equal(t, E.Left[int](err), res)
})
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -143,7 +143,7 @@ func TestCanceledApply(t *testing.T) {
applied := F.Pipe1(
fct,
Ap[string, string](errValue),
Ap[string](errValue),
)
res := applied(context.Background())()
@@ -156,7 +156,7 @@ func TestRegularApply(t *testing.T) {
applied := F.Pipe1(
fct,
Ap[string, string](value),
Ap[string](value),
)
res := applied(context.Background())()
@@ -171,14 +171,14 @@ func TestWithResourceNoErrors(t *testing.T) {
return countAcquire
})
release := func(int) ReaderIOEither[int] {
release := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countRelease++
return countRelease
})
}
body := func(int) ReaderIOEither[int] {
body := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countBody++
return countBody
@@ -203,7 +203,7 @@ func TestWithResourceErrorInBody(t *testing.T) {
return countAcquire
})
release := func(int) ReaderIOEither[int] {
release := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countRelease++
return countRelease
@@ -211,7 +211,7 @@ func TestWithResourceErrorInBody(t *testing.T) {
}
err := fmt.Errorf("error in body")
body := func(int) ReaderIOEither[int] {
body := func(int) ReaderIOResult[int] {
return Left[int](err)
}
@@ -231,14 +231,14 @@ func TestWithResourceErrorInAcquire(t *testing.T) {
err := fmt.Errorf("error in acquire")
acquire := Left[int](err)
release := func(int) ReaderIOEither[int] {
release := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countRelease++
return countRelease
})
}
body := func(int) ReaderIOEither[int] {
body := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countBody++
return countBody
@@ -264,11 +264,11 @@ func TestWithResourceErrorInRelease(t *testing.T) {
})
err := fmt.Errorf("error in release")
release := func(int) ReaderIOEither[int] {
release := func(int) ReaderIOResult[int] {
return Left[int](err)
}
body := func(int) ReaderIOEither[int] {
body := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countBody++
return countBody
@@ -284,3 +284,160 @@ func TestWithResourceErrorInRelease(t *testing.T) {
assert.Equal(t, 0, countRelease)
assert.Equal(t, E.Left[int](err), res)
}
func TestMonadChainFirstLeft(t *testing.T) {
ctx := context.Background()
// Test with Left value - function returns Left, always preserves original error
t.Run("Left value with function returning Left preserves original error", func(t *testing.T) {
sideEffectCalled := false
originalErr := fmt.Errorf("original error")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("new error")) // This error is ignored
},
)
actualResult := result(ctx)()
assert.True(t, sideEffectCalled)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Left value - function returns Right, still returns original Left
t.Run("Left value with function returning Right still returns original Left", func(t *testing.T) {
var capturedError error
originalErr := fmt.Errorf("validation failed")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
capturedError = e
return Right(999) // This Right value is ignored
},
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, capturedError)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Right value - should pass through without calling function
t.Run("Right value passes through", func(t *testing.T) {
sideEffectCalled := false
result := MonadChainFirstLeft(
Right(42),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("should not be called"))
},
)
assert.False(t, sideEffectCalled)
assert.Equal(t, E.Right[error](42), result(ctx)())
})
// Test that side effects are executed but original error is always preserved
t.Run("Side effects executed but original error preserved", func(t *testing.T) {
effectCount := 0
originalErr := fmt.Errorf("original error")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
effectCount++
// Try to return Right, but original Left should still be returned
return Right(999)
},
)
actualResult := result(ctx)()
assert.Equal(t, 1, effectCount)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
}
func TestChainFirstLeft(t *testing.T) {
ctx := context.Background()
// Test with Left value - function returns Left, always preserves original error
t.Run("Left value with function returning Left preserves error", func(t *testing.T) {
var captured error
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Left[int](fmt.Errorf("ignored error"))
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, captured)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Left value - function returns Right, still returns original Left
t.Run("Left value with function returning Right still returns original Left", func(t *testing.T) {
var captured error
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Right(42) // This Right is ignored
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, captured)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Right value - should pass through without calling function
t.Run("Right value passes through", func(t *testing.T) {
called := false
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
called = true
return Right(0)
})
result := F.Pipe1(
Right(100),
chainFn,
)
assert.False(t, called)
assert.Equal(t, E.Right[error](100), result(ctx)())
})
// Test that original error is always preserved regardless of what f returns
t.Run("Original error always preserved", func(t *testing.T) {
originalErr := fmt.Errorf("original")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
// Try to return Right, but original Left should still be returned
return Right(999)
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
assert.Equal(t, E.Left[int](originalErr), result(ctx)())
})
// Test logging with Left preservation
t.Run("Logging with Left preservation", func(t *testing.T) {
errorLog := []string{}
originalErr := fmt.Errorf("step1")
logError := ChainFirstLeft[string](func(e error) ReaderIOResult[string] {
errorLog = append(errorLog, "Logged: "+e.Error())
return Left[string](fmt.Errorf("log entry")) // This is ignored
})
result := F.Pipe2(
Left[string](originalErr),
logError,
ChainLeft(func(e error) ReaderIOResult[string] {
return Left[string](fmt.Errorf("step2"))
}),
)
actualResult := result(ctx)()
assert.Equal(t, []string{"Logged: step1"}, errorLog)
assert.Equal(t, E.Left[string](fmt.Errorf("step2")), actualResult)
})
}

View File

@@ -13,13 +13,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/function"
RIE "github.com/IBM/fp-go/v2/readerioeither"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
// WithResource constructs a function that creates a resource, then operates on it and then releases the resource.
@@ -32,22 +29,22 @@ import (
// - onRelease: Releases the resource (always called, even on error)
//
// Parameters:
// - onCreate: ReaderIOEither that creates the resource
// - onCreate: ReaderIOResult that creates the resource
// - onRelease: Function to release the resource
//
// Returns a function that takes a resource-using function and returns a ReaderIOEither.
// Returns a function that takes a resource-using function and returns a ReaderIOResult.
//
// Example:
//
// file := WithResource(
// openFile("data.txt"),
// func(f *os.File) ReaderIOEither[any] {
// func(f *os.File) ReaderIOResult[any] {
// return TryCatch(func(ctx context.Context) func() (any, error) {
// return func() (any, error) { return nil, f.Close() }
// })
// },
// )
// result := file(func(f *os.File) ReaderIOEither[string] {
// result := file(func(f *os.File) ReaderIOResult[string] {
// return TryCatch(func(ctx context.Context) func() (string, error) {
// return func() (string, error) {
// data, err := io.ReadAll(f)
@@ -55,9 +52,6 @@ import (
// }
// })
// })
func WithResource[A, R, ANY any](onCreate ReaderIOEither[R], onRelease func(R) ReaderIOEither[ANY]) Kleisli[Kleisli[R, A], A] {
return function.Flow2(
function.Bind2nd(function.Flow2[func(R) ReaderIOEither[A], Operator[A, A], R, ReaderIOEither[A], ReaderIOEither[A]], WithContext[A]),
RIE.WithResource[A, context.Context, error, R](WithContext(onCreate), onRelease),
)
func WithResource[A, R, ANY any](onCreate ReaderIOResult[R], onRelease Kleisli[R, ANY]) Kleisli[Kleisli[R, A], A] {
return RIOR.WithResource[A](onCreate, onRelease)
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -37,7 +37,7 @@ var (
)
)
func closeFile(f *os.File) ReaderIOEither[string] {
func closeFile(f *os.File) ReaderIOResult[string] {
return F.Pipe1(
TryCatch(func(_ context.Context) func() (string, error) {
return func() (string, error) {
@@ -52,7 +52,7 @@ func ExampleWithResource() {
stringReader := WithResource[string](openFile("data/file.txt"), closeFile)
rdr := stringReader(func(f *os.File) ReaderIOEither[string] {
rdr := stringReader(func(f *os.File) ReaderIOResult[string] {
return F.Pipe2(
TryCatch(func(_ context.Context) func() ([]byte, error) {
return func() ([]byte, error) {

View File

@@ -13,21 +13,21 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"github.com/IBM/fp-go/v2/semigroup"
)
type (
Semigroup[A any] = semigroup.Semigroup[ReaderIOEither[A]]
Semigroup[A any] = semigroup.Semigroup[ReaderIOResult[A]]
)
// AltSemigroup is a [Semigroup] that tries the first item and then the second one using an alternative.
// This creates a semigroup where combining two ReaderIOEither values means trying the first one,
// This creates a semigroup where combining two ReaderIOResult values means trying the first one,
// and if it fails, trying the second one. This is useful for implementing fallback behavior.
//
// Returns a Semigroup for ReaderIOEither[A] with Alt-based combination.
// Returns a Semigroup for ReaderIOResult[A] with Alt-based combination.
//
// Example:
//

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -29,9 +29,9 @@ import (
// The lock parameter should return a CancelFunc that releases the lock when called.
//
// Parameters:
// - lock: ReaderIOEither that acquires a lock and returns a CancelFunc to release it
// - lock: ReaderIOResult that acquires a lock and returns a CancelFunc to release it
//
// Returns a function that wraps a ReaderIOEither with lock protection.
// Returns a function that wraps a ReaderIOResult with lock protection.
//
// Example:
//
@@ -43,9 +43,9 @@ import (
// }
// })
// protectedOp := WithLock(lock)(myOperation)
func WithLock[A any](lock ReaderIOEither[context.CancelFunc]) Operator[A, A] {
func WithLock[A any](lock ReaderIOResult[context.CancelFunc]) Operator[A, A] {
return function.Flow2(
function.Constant1[context.CancelFunc, ReaderIOEither[A]],
function.Constant1[context.CancelFunc, ReaderIOResult[A]],
WithResource[A](lock, function.Flow2(
io.FromImpure[context.CancelFunc],
FromIO[any],

View File

@@ -13,23 +13,23 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
"github.com/IBM/fp-go/v2/internal/record"
)
// TraverseArray transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// TraverseArray transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This uses the default applicative behavior (parallel or sequential based on useParallel flag).
//
// Parameters:
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a function that transforms an array into a ReaderIOEither of an array.
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -38,15 +38,15 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
)
}
// TraverseArrayWithIndex transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// TraverseArrayWithIndex transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// The transformation function receives both the index and the element.
//
// Parameters:
// - f: Function that transforms each element with its index into a ReaderIOEither
// - f: Function that transforms each element with its index into a ReaderIOResult
//
// Returns a function that transforms an array into a ReaderIOEither of an array.
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -55,23 +55,23 @@ func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[
)
}
// SequenceArray converts a homogeneous sequence of ReaderIOEither into a ReaderIOEither of sequence.
// SequenceArray converts a homogeneous sequence of ReaderIOResult into a ReaderIOResult of sequence.
// This is equivalent to TraverseArray with the identity function.
//
// Parameters:
// - ma: Array of ReaderIOEither values
// - ma: Array of ReaderIOResult values
//
// Returns a ReaderIOEither containing an array of values.
func SequenceArray[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
return TraverseArray(function.Identity[ReaderIOEither[A]])(ma)
// Returns a ReaderIOResult containing an array of values.
func SequenceArray[A any](ma []ReaderIOResult[A]) ReaderIOResult[[]A] {
return TraverseArray(function.Identity[ReaderIOResult[A]])(ma)
}
// TraverseRecord transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]].
// TraverseRecord transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]].
//
// Parameters:
// - f: Function that transforms each value into a ReaderIOEither
// - f: Function that transforms each value into a ReaderIOResult
//
// Returns a function that transforms a map into a ReaderIOEither of a map.
// Returns a function that transforms a map into a ReaderIOResult of a map.
func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A](
Of[map[K]B],
@@ -82,14 +82,14 @@ func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, ma
)
}
// TraverseRecordWithIndex transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]].
// TraverseRecordWithIndex transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]].
// The transformation function receives both the key and the value.
//
// Parameters:
// - f: Function that transforms each key-value pair into a ReaderIOEither
// - f: Function that transforms each key-value pair into a ReaderIOResult
//
// Returns a function that transforms a map into a ReaderIOEither of a map.
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
// Returns a function that transforms a map into a ReaderIOResult of a map.
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) ReaderIOResult[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A](
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
@@ -99,26 +99,26 @@ func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) ReaderIOEither
)
}
// SequenceRecord converts a homogeneous map of ReaderIOEither into a ReaderIOEither of map.
// SequenceRecord converts a homogeneous map of ReaderIOResult into a ReaderIOResult of map.
//
// Parameters:
// - ma: Map of ReaderIOEither values
// - ma: Map of ReaderIOResult values
//
// Returns a ReaderIOEither containing a map of values.
func SequenceRecord[K comparable, A any](ma map[K]ReaderIOEither[A]) ReaderIOEither[map[K]A] {
return TraverseRecord[K](function.Identity[ReaderIOEither[A]])(ma)
// Returns a ReaderIOResult containing a map of values.
func SequenceRecord[K comparable, A any](ma map[K]ReaderIOResult[A]) ReaderIOResult[map[K]A] {
return TraverseRecord[K](function.Identity[ReaderIOResult[A]])(ma)
}
// MonadTraverseArraySeq transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// MonadTraverseArraySeq transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This explicitly uses sequential execution.
//
// Parameters:
// - as: The array to traverse
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a ReaderIOEither containing an array of transformed values.
func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B] {
return array.MonadTraverse[[]A](
// Returns a ReaderIOResult containing an array of transformed values.
func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B] {
return array.MonadTraverse(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
@@ -127,48 +127,46 @@ func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B
)
}
// TraverseArraySeq transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// TraverseArraySeq transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This is the curried version of [MonadTraverseArraySeq] with sequential execution.
//
// Parameters:
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a function that transforms an array into a ReaderIOEither of an array.
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArraySeq[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]]
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
// SequenceArraySeq converts a homogeneous sequence of ReaderIOEither into a ReaderIOEither of sequence.
// SequenceArraySeq converts a homogeneous sequence of ReaderIOResult into a ReaderIOResult of sequence.
// This explicitly uses sequential execution.
//
// Parameters:
// - ma: Array of ReaderIOEither values
// - ma: Array of ReaderIOResult values
//
// Returns a ReaderIOEither containing an array of values.
func SequenceArraySeq[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
return MonadTraverseArraySeq(ma, function.Identity[ReaderIOEither[A]])
// Returns a ReaderIOResult containing an array of values.
func SequenceArraySeq[A any](ma []ReaderIOResult[A]) ReaderIOResult[[]A] {
return MonadTraverseArraySeq(ma, function.Identity[ReaderIOResult[A]])
}
// MonadTraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOEither[map[K]B] {
return record.MonadTraverse[map[K]A](
// MonadTraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOResult[map[K]B] {
return record.MonadTraverse(
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
ApSeq[map[K]B, B],
@@ -177,7 +175,7 @@ func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f Kleisli[A, B])
)
}
// TraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
// TraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func TraverseRecordSeq[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A](
Of[map[K]B],
@@ -188,8 +186,8 @@ func TraverseRecordSeq[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A,
)
}
// TraverseRecordWithIndexSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func TraverseRecordWithIndexSeq[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
// TraverseRecordWithIndexSeq uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func TraverseRecordWithIndexSeq[K comparable, A, B any](f func(K, A) ReaderIOResult[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A](
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
@@ -200,20 +198,20 @@ func TraverseRecordWithIndexSeq[K comparable, A, B any](f func(K, A) ReaderIOEit
}
// SequenceRecordSeq converts a homogeneous sequence of either into an either of sequence
func SequenceRecordSeq[K comparable, A any](ma map[K]ReaderIOEither[A]) ReaderIOEither[map[K]A] {
return MonadTraverseRecordSeq(ma, function.Identity[ReaderIOEither[A]])
func SequenceRecordSeq[K comparable, A any](ma map[K]ReaderIOResult[A]) ReaderIOResult[map[K]A] {
return MonadTraverseRecordSeq(ma, function.Identity[ReaderIOResult[A]])
}
// MonadTraverseArrayPar transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// MonadTraverseArrayPar transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This explicitly uses parallel execution.
//
// Parameters:
// - as: The array to traverse
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a ReaderIOEither containing an array of transformed values.
func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B] {
return array.MonadTraverse[[]A](
// Returns a ReaderIOResult containing an array of transformed values.
func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B] {
return array.MonadTraverse(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
@@ -222,46 +220,44 @@ func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B
)
}
// TraverseArrayPar transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// TraverseArrayPar transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This is the curried version of [MonadTraverseArrayPar] with parallel execution.
//
// Parameters:
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a function that transforms an array into a ReaderIOEither of an array.
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayPar[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]]
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}
// SequenceArrayPar converts a homogeneous sequence of ReaderIOEither into a ReaderIOEither of sequence.
// SequenceArrayPar converts a homogeneous sequence of ReaderIOResult into a ReaderIOResult of sequence.
// This explicitly uses parallel execution.
//
// Parameters:
// - ma: Array of ReaderIOEither values
// - ma: Array of ReaderIOResult values
//
// Returns a ReaderIOEither containing an array of values.
func SequenceArrayPar[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
return MonadTraverseArrayPar(ma, function.Identity[ReaderIOEither[A]])
// Returns a ReaderIOResult containing an array of values.
func SequenceArrayPar[A any](ma []ReaderIOResult[A]) ReaderIOResult[[]A] {
return MonadTraverseArrayPar(ma, function.Identity[ReaderIOResult[A]])
}
// TraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
// TraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func TraverseRecordPar[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A](
Of[map[K]B],
@@ -272,8 +268,8 @@ func TraverseRecordPar[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A,
)
}
// TraverseRecordWithIndexPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
// TraverseRecordWithIndexPar uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOResult[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A](
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
@@ -283,9 +279,9 @@ func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOEit
)
}
// MonadTraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOEither[map[K]B] {
return record.MonadTraverse[map[K]A](
// MonadTraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOResult[map[K]B] {
return record.MonadTraverse(
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
ApPar[map[K]B, B],
@@ -294,13 +290,13 @@ func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f Kleisli[A, B])
)
}
// SequenceRecordPar converts a homogeneous map of ReaderIOEither into a ReaderIOEither of map.
// SequenceRecordPar converts a homogeneous map of ReaderIOResult into a ReaderIOResult of map.
// This explicitly uses parallel execution.
//
// Parameters:
// - ma: Map of ReaderIOEither values
// - ma: Map of ReaderIOResult values
//
// Returns a ReaderIOEither containing a map of values.
func SequenceRecordPar[K comparable, A any](ma map[K]ReaderIOEither[A]) ReaderIOEither[map[K]A] {
return MonadTraverseRecordPar(ma, function.Identity[ReaderIOEither[A]])
// Returns a ReaderIOResult containing a map of values.
func SequenceRecordPar[K comparable, A any](ma map[K]ReaderIOResult[A]) ReaderIOResult[map[K]A] {
return MonadTraverseRecordPar(ma, function.Identity[ReaderIOResult[A]])
}

View File

@@ -13,19 +13,24 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/context/ioresult"
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readereither"
"github.com/IBM/fp-go/v2/readerio"
"github.com/IBM/fp-go/v2/readerioeither"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/readeroption"
"github.com/IBM/fp-go/v2/result"
)
type (
@@ -40,6 +45,8 @@ type (
// Either[A] is equivalent to Either[error, A] from the either package.
Either[A any] = either.Either[error, A]
Result[A any] = result.Result[A]
// Lazy represents a deferred computation that produces a value of type A when executed.
// The computation is not executed until explicitly invoked.
Lazy[A any] = lazy.Lazy[A]
@@ -56,6 +63,8 @@ type (
// IOEither[A] is equivalent to func() Either[error, A]
IOEither[A any] = ioeither.IOEither[error, A]
IOResult[A any] = ioresult.IOResult[A]
// Reader represents a computation that depends on a context of type R.
// This is used for dependency injection and accessing shared context.
//
@@ -68,21 +77,21 @@ type (
// ReaderIO[A] is equivalent to func(context.Context) func() A
ReaderIO[A any] = readerio.ReaderIO[context.Context, A]
// ReaderIOEither is the main type of this package. It represents a computation that:
// ReaderIOResult is the main type of this package. It represents a computation that:
// - Depends on a [context.Context] (Reader aspect)
// - Performs side effects (IO aspect)
// - Can fail with an [error] (Either aspect)
// - Produces a value of type A on success
//
// This is a specialization of [readerioeither.ReaderIOEither] with:
// This is a specialization of [readerioeither.ReaderIOResult] with:
// - Context type fixed to [context.Context]
// - Error type fixed to [error]
//
// The type is defined as:
// ReaderIOEither[A] = func(context.Context) func() Either[error, A]
// ReaderIOResult[A] = func(context.Context) func() Either[error, A]
//
// Example usage:
// func fetchUser(id string) ReaderIOEither[User] {
// func fetchUser(id string) ReaderIOResult[User] {
// return func(ctx context.Context) func() Either[error, User] {
// return func() Either[error, User] {
// user, err := userService.Get(ctx, id)
@@ -97,14 +106,14 @@ type (
// The computation is executed by providing a context and then invoking the result:
// ctx := context.Background()
// result := fetchUser("123")(ctx)()
ReaderIOEither[A any] = readerioeither.ReaderIOEither[context.Context, error, A]
ReaderIOResult[A any] = RIOR.ReaderIOResult[context.Context, A]
Kleisli[A, B any] = reader.Reader[A, ReaderIOEither[B]]
Kleisli[A, B any] = reader.Reader[A, ReaderIOResult[B]]
// Operator represents a transformation from one ReaderIOEither to another.
// Operator represents a transformation from one ReaderIOResult to another.
// This is useful for point-free style composition and building reusable transformations.
//
// Operator[A, B] is equivalent to Kleisli[ReaderIOEither[A], B]
// Operator[A, B] is equivalent to Kleisli[ReaderIOResult[A], B]
//
// Example usage:
// // Define a reusable transformation
@@ -112,5 +121,9 @@ type (
//
// // Apply the transformation
// result := toUpper(computation)
Operator[A, B any] = Kleisli[ReaderIOEither[A], B]
Operator[A, B any] = Kleisli[ReaderIOResult[A], B]
ReaderResult[A any] = readerresult.ReaderResult[A]
ReaderEither[R, E, A any] = readereither.ReaderEither[R, E, A]
ReaderOption[R, A any] = readeroption.ReaderOption[R, A]
)

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import "github.com/IBM/fp-go/v2/readereither"
@@ -23,11 +23,11 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
}
// TraverseArrayWithIndex transforms an array
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderEither[B]) Kleisli[[]A, []B] {
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderResult[B]) Kleisli[[]A, []B] {
return readereither.TraverseArrayWithIndex(f)
}
// SequenceArray converts a homogeneous sequence of either into an either of sequence
func SequenceArray[A any](ma []ReaderEither[A]) ReaderEither[[]A] {
func SequenceArray[A any](ma []ReaderResult[A]) ReaderResult[[]A] {
return readereither.SequenceArray(ma)
}

View File

@@ -13,11 +13,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
F "github.com/IBM/fp-go/v2/function"
L "github.com/IBM/fp-go/v2/optics/lens"
G "github.com/IBM/fp-go/v2/readereither/generic"
)
@@ -34,8 +33,8 @@ import (
// result := readereither.Do(State{})
func Do[S any](
empty S,
) ReaderEither[S] {
return G.Do[ReaderEither[S], context.Context, error, S](empty)
) ReaderResult[S] {
return G.Do[ReaderResult[S]](empty)
}
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
@@ -58,7 +57,7 @@ func Do[S any](
// func(uid string) func(State) State {
// return func(s State) State { s.UserID = uid; return s }
// },
// func(s State) readereither.ReaderEither[string] {
// func(s State) readereither.ReaderResult[string] {
// return func(ctx context.Context) either.Either[error, string] {
// if uid, ok := ctx.Value("userID").(string); ok {
// return either.Right[error](uid)
@@ -71,7 +70,7 @@ func Do[S any](
// func(tid string) func(State) State {
// return func(s State) State { s.TenantID = tid; return s }
// },
// func(s State) readereither.ReaderEither[string] {
// func(s State) readereither.ReaderResult[string] {
// // This can access s.UserID from the previous step
// return func(ctx context.Context) either.Either[error, string] {
// return either.Right[error]("tenant-" + s.UserID)
@@ -82,31 +81,31 @@ func Do[S any](
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Kleisli[ReaderEither[S1], S2] {
return G.Bind[ReaderEither[S1], ReaderEither[S2], ReaderEither[T], context.Context, error, S1, S2, T](setter, f)
) Kleisli[ReaderResult[S1], S2] {
return G.Bind[ReaderResult[S1], ReaderResult[S2]](setter, f)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Kleisli[ReaderEither[S1], S2] {
return G.Let[ReaderEither[S1], ReaderEither[S2], context.Context, error, S1, S2, T](setter, f)
) Kleisli[ReaderResult[S1], S2] {
return G.Let[ReaderResult[S1], ReaderResult[S2]](setter, f)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Kleisli[ReaderEither[S1], S2] {
return G.LetTo[ReaderEither[S1], ReaderEither[S2], context.Context, error, S1, S2, T](setter, b)
) Kleisli[ReaderResult[S1], S2] {
return G.LetTo[ReaderResult[S1], ReaderResult[S2]](setter, b)
}
// BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any](
setter func(T) S1,
) Kleisli[ReaderEither[T], S1] {
return G.BindTo[ReaderEither[S1], ReaderEither[T], context.Context, error, S1, T](setter)
) Kleisli[ReaderResult[T], S1] {
return G.BindTo[ReaderResult[S1], ReaderResult[T]](setter)
}
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
@@ -148,9 +147,9 @@ func BindTo[S1, T any](
// )
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderEither[T],
) Kleisli[ReaderEither[S1], S2] {
return G.ApS[ReaderEither[S1], ReaderEither[S2], ReaderEither[T], context.Context, error, S1, S2, T](setter, fa)
fa ReaderResult[T],
) Kleisli[ReaderResult[S1], S2] {
return G.ApS[ReaderResult[S1], ReaderResult[S2]](setter, fa)
}
// ApSL is a variant of ApS that uses a lens to focus on a specific field in the state.
@@ -159,10 +158,10 @@ func ApS[S1, S2, T any](
//
// Parameters:
// - lens: A lens that focuses on a field of type T within state S
// - fa: A ReaderEither computation that produces a value of type T
// - fa: A ReaderResult computation that produces a value of type T
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S] by setting the focused field
// - A function that transforms ReaderResult[S] to ReaderResult[S] by setting the focused field
//
// Example:
//
@@ -186,8 +185,8 @@ func ApS[S1, S2, T any](
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa ReaderEither[T],
) Kleisli[ReaderEither[S], S] {
fa ReaderResult[T],
) Kleisli[ReaderResult[S], S] {
return ApS(lens.Set, fa)
}
@@ -199,10 +198,10 @@ func ApSL[S, T any](
//
// Parameters:
// - lens: A lens that focuses on a field of type T within state S
// - f: A function that takes the current field value and returns a ReaderEither computation
// - f: A function that takes the current field value and returns a ReaderResult computation
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
// - A function that transforms ReaderResult[S] to ReaderResult[S]
//
// Example:
//
@@ -215,7 +214,7 @@ func ApSL[S, T any](
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// increment := func(v int) readereither.ReaderEither[int] {
// increment := func(v int) readereither.ReaderResult[int] {
// return func(ctx context.Context) either.Either[error, int] {
// if v >= 100 {
// return either.Left[int](errors.New("value too large"))
@@ -231,10 +230,8 @@ func ApSL[S, T any](
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[ReaderEither[S], S] {
return Bind[S, S, T](lens.Set, func(s S) ReaderEither[T] {
return f(lens.Get(s))
})
) Kleisli[ReaderResult[S], S] {
return Bind(lens.Set, F.Flow2(lens.Get, f))
}
// LetL is a variant of Let that uses a lens to focus on a specific field in the state.
@@ -245,7 +242,7 @@ func BindL[S, T any](
// - f: A pure function that transforms the field value
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
// - A function that transforms ReaderResult[S] to ReaderResult[S]
//
// Example:
//
@@ -268,10 +265,8 @@ func BindL[S, T any](
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[ReaderEither[S], S] {
return Let[S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
) Kleisli[ReaderResult[S], S] {
return Let(lens.Set, F.Flow2(lens.Get, f))
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific field in the state.
@@ -282,7 +277,7 @@ func LetL[S, T any](
// - b: The constant value to set
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
// - A function that transforms ReaderResult[S] to ReaderResult[S]
//
// Example:
//
@@ -304,6 +299,6 @@ func LetL[S, T any](
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[ReaderEither[S], S] {
return LetTo[S, S, T](lens.Set, b)
) Kleisli[ReaderResult[S], S] {
return LetTo(lens.Set, b)
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -25,11 +25,11 @@ import (
"github.com/stretchr/testify/assert"
)
func getLastName(s utils.Initial) ReaderEither[string] {
func getLastName(s utils.Initial) ReaderResult[string] {
return Of("Doe")
}
func getGivenName(s utils.WithLastName) ReaderEither[string] {
func getGivenName(s utils.WithLastName) ReaderResult[string] {
return Of("John")
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -21,8 +21,8 @@ import (
E "github.com/IBM/fp-go/v2/either"
)
// withContext wraps an existing ReaderEither and performs a context check for cancellation before deletating
func WithContext[A any](ma ReaderEither[A]) ReaderEither[A] {
// withContext wraps an existing ReaderResult and performs a context check for cancellation before deletating
func WithContext[A any](ma ReaderResult[A]) ReaderResult[A] {
return func(ctx context.Context) E.Either[error, A] {
if err := context.Cause(ctx); err != nil {
return E.Left[A](err)

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -24,7 +24,7 @@ import (
// these functions curry a golang function with the context as the firsr parameter into a either reader with the context as the last parameter
// this goes back to the advice in https://pkg.go.dev/context to put the context as a first parameter as a convention
func Curry0[A any](f func(context.Context) (A, error)) ReaderEither[A] {
func Curry0[A any](f func(context.Context) (A, error)) ReaderResult[A] {
return readereither.Curry0(f)
}

View File

@@ -18,11 +18,10 @@ package exec
import (
"context"
"github.com/IBM/fp-go/v2/context/readereither"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/exec"
"github.com/IBM/fp-go/v2/function"
INTE "github.com/IBM/fp-go/v2/internal/exec"
"github.com/IBM/fp-go/v2/result"
)
var (
@@ -32,8 +31,8 @@ var (
Command = function.Curry3(command)
)
func command(name string, args []string, in []byte) readereither.ReaderEither[exec.CommandOutput] {
return func(ctx context.Context) either.Either[error, exec.CommandOutput] {
return either.TryCatchError(INTE.Exec(ctx, name, args, in))
func command(name string, args []string, in []byte) ReaderResult[exec.CommandOutput] {
return func(ctx context.Context) Result[exec.CommandOutput] {
return result.TryCatchError(INTE.Exec(ctx, name, args, in))
}
}

View File

@@ -0,0 +1,27 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// package readerresult implements a specialization of the Reader monad assuming a golang context as the context of the monad and a standard golang error
package exec
import (
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/result"
)
type (
Result[T any] = result.Result[T]
ReaderResult[T any] = readerresult.ReaderResult[T]
)

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -24,7 +24,7 @@ import (
// these functions curry a golang function with the context as the firsr parameter into a either reader with the context as the last parameter
// this goes back to the advice in https://pkg.go.dev/context to put the context as a first parameter as a convention
func From0[A any](f func(context.Context) (A, error)) func() ReaderEither[A] {
func From0[A any](f func(context.Context) (A, error)) func() ReaderResult[A] {
return readereither.From0(f)
}
@@ -32,10 +32,10 @@ func From1[T1, A any](f func(context.Context, T1) (A, error)) Kleisli[T1, A] {
return readereither.From1(f)
}
func From2[T1, T2, A any](f func(context.Context, T1, T2) (A, error)) func(T1, T2) ReaderEither[A] {
func From2[T1, T2, A any](f func(context.Context, T1, T2) (A, error)) func(T1, T2) ReaderResult[A] {
return readereither.From2(f)
}
func From3[T1, T2, T3, A any](f func(context.Context, T1, T2, T3) (A, error)) func(T1, T2, T3) ReaderEither[A] {
func From3[T1, T2, T3, A any](f func(context.Context, T1, T2, T3) (A, error)) func(T1, T2, T3) ReaderResult[A] {
return readereither.From3(f)
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -21,19 +21,19 @@ import (
"github.com/IBM/fp-go/v2/readereither"
)
func FromEither[A any](e Either[A]) ReaderEither[A] {
func FromEither[A any](e Either[A]) ReaderResult[A] {
return readereither.FromEither[context.Context](e)
}
func Left[A any](l error) ReaderEither[A] {
func Left[A any](l error) ReaderResult[A] {
return readereither.Left[context.Context, A](l)
}
func Right[A any](r A) ReaderEither[A] {
func Right[A any](r A) ReaderResult[A] {
return readereither.Right[context.Context, error](r)
}
func MonadMap[A, B any](fa ReaderEither[A], f func(A) B) ReaderEither[B] {
func MonadMap[A, B any](fa ReaderResult[A], f func(A) B) ReaderResult[B] {
return readereither.MonadMap(fa, f)
}
@@ -41,7 +41,7 @@ func Map[A, B any](f func(A) B) Operator[A, B] {
return readereither.Map[context.Context, error](f)
}
func MonadChain[A, B any](ma ReaderEither[A], f Kleisli[A, B]) ReaderEither[B] {
func MonadChain[A, B any](ma ReaderResult[A], f Kleisli[A, B]) ReaderResult[B] {
return readereither.MonadChain(ma, f)
}
@@ -49,15 +49,15 @@ func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return readereither.Chain(f)
}
func Of[A any](a A) ReaderEither[A] {
func Of[A any](a A) ReaderResult[A] {
return readereither.Of[context.Context, error](a)
}
func MonadAp[A, B any](fab ReaderEither[func(A) B], fa ReaderEither[A]) ReaderEither[B] {
func MonadAp[A, B any](fab ReaderResult[func(A) B], fa ReaderResult[A]) ReaderResult[B] {
return readereither.MonadAp(fab, fa)
}
func Ap[A, B any](fa ReaderEither[A]) func(ReaderEither[func(A) B]) ReaderEither[B] {
func Ap[A, B any](fa ReaderResult[A]) func(ReaderResult[func(A) B]) ReaderResult[B] {
return readereither.Ap[B](fa)
}
@@ -65,19 +65,19 @@ func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) Kleisli[A, A
return readereither.FromPredicate[context.Context](pred, onFalse)
}
func OrElse[A any](onLeft Kleisli[error, A]) Kleisli[ReaderEither[A], A] {
func OrElse[A any](onLeft Kleisli[error, A]) Kleisli[ReaderResult[A], A] {
return readereither.OrElse(onLeft)
}
func Ask() ReaderEither[context.Context] {
func Ask() ReaderResult[context.Context] {
return readereither.Ask[context.Context, error]()
}
func MonadChainEitherK[A, B any](ma ReaderEither[A], f func(A) Either[B]) ReaderEither[B] {
func MonadChainEitherK[A, B any](ma ReaderResult[A], f func(A) Either[B]) ReaderResult[B] {
return readereither.MonadChainEitherK(ma, f)
}
func ChainEitherK[A, B any](f func(A) Either[B]) func(ma ReaderEither[A]) ReaderEither[B] {
func ChainEitherK[A, B any](f func(A) Either[B]) func(ma ReaderResult[A]) ReaderResult[B] {
return readereither.ChainEitherK[context.Context](f)
}
@@ -85,10 +85,15 @@ func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operato
return readereither.ChainOptionK[context.Context, A, B](onNone)
}
func MonadFlap[B, A any](fab ReaderEither[func(A) B], a A) ReaderEither[B] {
func MonadFlap[B, A any](fab ReaderResult[func(A) B], a A) ReaderResult[B] {
return readereither.MonadFlap(fab, a)
}
func Flap[B, A any](a A) Operator[func(A) B, B] {
return readereither.Flap[context.Context, error, B](a)
}
//go:inline
func Read[A any](r context.Context) func(ReaderResult[A]) Result[A] {
return readereither.Read[error, A](r)
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"github.com/IBM/fp-go/v2/readereither"
@@ -22,18 +22,18 @@ import (
// SequenceT converts n inputs of higher kinded types into a higher kinded types of n strongly typed values, represented as a tuple
func SequenceT1[A any](a ReaderEither[A]) ReaderEither[tuple.Tuple1[A]] {
func SequenceT1[A any](a ReaderResult[A]) ReaderResult[tuple.Tuple1[A]] {
return readereither.SequenceT1(a)
}
func SequenceT2[A, B any](a ReaderEither[A], b ReaderEither[B]) ReaderEither[tuple.Tuple2[A, B]] {
func SequenceT2[A, B any](a ReaderResult[A], b ReaderResult[B]) ReaderResult[tuple.Tuple2[A, B]] {
return readereither.SequenceT2(a, b)
}
func SequenceT3[A, B, C any](a ReaderEither[A], b ReaderEither[B], c ReaderEither[C]) ReaderEither[tuple.Tuple3[A, B, C]] {
func SequenceT3[A, B, C any](a ReaderResult[A], b ReaderResult[B], c ReaderResult[C]) ReaderResult[tuple.Tuple3[A, B, C]] {
return readereither.SequenceT3(a, b, c)
}
func SequenceT4[A, B, C, D any](a ReaderEither[A], b ReaderEither[B], c ReaderEither[C], d ReaderEither[D]) ReaderEither[tuple.Tuple4[A, B, C, D]] {
func SequenceT4[A, B, C, D any](a ReaderResult[A], b ReaderResult[B], c ReaderResult[C], d ReaderResult[D]) ReaderResult[tuple.Tuple4[A, B, C, D]] {
return readereither.SequenceT4(a, b, c, d)
}

View File

@@ -13,8 +13,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Package readereither implements a specialization of the Reader monad assuming a golang context as the context of the monad and a standard golang error
package readereither
// package readerresult implements a specialization of the Reader monad assuming a golang context as the context of the monad and a standard golang error
package readerresult
import (
"context"
@@ -23,14 +23,16 @@ import (
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readereither"
"github.com/IBM/fp-go/v2/result"
)
type (
Option[A any] = option.Option[A]
Either[A any] = either.Either[error, A]
// ReaderEither is a specialization of the Reader monad for the typical golang scenario
ReaderEither[A any] = readereither.ReaderEither[context.Context, error, A]
Result[A any] = result.Result[A]
// ReaderResult is a specialization of the Reader monad for the typical golang scenario
ReaderResult[A any] = readereither.ReaderEither[context.Context, error, A]
Kleisli[A, B any] = reader.Reader[A, ReaderEither[B]]
Operator[A, B any] = Kleisli[ReaderEither[A], B]
Kleisli[A, B any] = reader.Reader[A, ReaderResult[B]]
Operator[A, B any] = Kleisli[ReaderResult[A], B]
)

View File

@@ -0,0 +1,209 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"github.com/IBM/fp-go/v2/function"
A "github.com/IBM/fp-go/v2/internal/apply"
C "github.com/IBM/fp-go/v2/internal/chain"
F "github.com/IBM/fp-go/v2/internal/functor"
)
// Do starts a do-notation chain for building computations in a fluent style.
// This is typically used with Bind, Let, and other combinators to compose
// stateful, context-dependent computations that can fail.
//
// Example:
//
// type State struct {
// name string
// age int
// }
// result := function.Pipe2(
// statereaderioresult.Do[AppState](State{}),
// statereaderioresult.Bind(...),
// statereaderioresult.Let(...),
// )
//
//go:inline
func Do[ST, A any](
empty A,
) StateReaderIOResult[ST, A] {
return Of[ST](empty)
}
// Bind executes a computation and binds its result to a field in the accumulator state.
// This is used in do-notation to sequence dependent computations.
//
// Example:
//
// result := function.Pipe2(
// statereaderioresult.Do[AppState](State{}),
// statereaderioresult.Bind(
// func(name string) func(State) State {
// return func(s State) State { return State{name: name, age: s.age} }
// },
// func(s State) statereaderioresult.StateReaderIOResult[AppState, string] {
// return statereaderioresult.Of[AppState]("John")
// },
// ),
// )
//
//go:inline
func Bind[ST, S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[ST, S1, T],
) Operator[ST, S1, S2] {
return C.Bind(
Chain[ST, S1, S2],
Map[ST, T, S2],
setter,
f,
)
}
// Let computes a derived value and binds it to a field in the accumulator state.
// Unlike Bind, this does not execute a monadic computation, just a pure function.
//
// Example:
//
// result := function.Pipe2(
// statereaderioresult.Do[AppState](State{age: 25}),
// statereaderioresult.Let(
// func(isAdult bool) func(State) State {
// return func(s State) State { return State{age: s.age, isAdult: isAdult} }
// },
// func(s State) bool { return s.age >= 18 },
// ),
// )
//
//go:inline
func Let[ST, S1, S2, T any](
key func(T) func(S1) S2,
f func(S1) T,
) Operator[ST, S1, S2] {
return F.Let(
Map[ST, S1, S2],
key,
f,
)
}
// LetTo binds a constant value to a field in the accumulator state.
//
// Example:
//
// result := function.Pipe2(
// statereaderioresult.Do[AppState](State{}),
// statereaderioresult.LetTo(
// func(status string) func(State) State {
// return func(s State) State { return State{...s, status: status} }
// },
// "active",
// ),
// )
//
//go:inline
func LetTo[ST, S1, S2, T any](
key func(T) func(S1) S2,
b T,
) Operator[ST, S1, S2] {
return F.LetTo(
Map[ST, S1, S2],
key,
b,
)
}
// BindTo wraps a value in a simple constructor, typically used to start a do-notation chain
// after getting an initial value.
//
// Example:
//
// result := function.Pipe2(
// statereaderioresult.Of[AppState](42),
// statereaderioresult.BindTo[AppState](func(x int) State { return State{value: x} }),
// )
//
//go:inline
func BindTo[ST, S1, T any](
setter func(T) S1,
) Operator[ST, T, S1] {
return C.BindTo(
Map[ST, T, S1],
setter,
)
}
// ApS applies a computation in sequence and binds the result to a field.
// This is the applicative version of Bind.
//
//go:inline
func ApS[ST, S1, S2, T any](
setter func(T) func(S1) S2,
fa StateReaderIOResult[ST, T],
) Operator[ST, S1, S2] {
return A.ApS(
Ap[S2, ST, T],
Map[ST, S1, func(T) S2],
setter,
fa,
)
}
// ApSL is a lens-based variant of ApS for working with nested structures.
// It uses a lens to focus on a specific field in the state.
//
//go:inline
func ApSL[ST, S, T any](
lens Lens[S, T],
fa StateReaderIOResult[ST, T],
) Endomorphism[StateReaderIOResult[ST, S]] {
return ApS(lens.Set, fa)
}
// BindL is a lens-based variant of Bind for working with nested structures.
// It uses a lens to focus on a specific field in the state.
//
//go:inline
func BindL[ST, S, T any](
lens Lens[S, T],
f Kleisli[ST, T, T],
) Endomorphism[StateReaderIOResult[ST, S]] {
return Bind(lens.Set, function.Flow2(lens.Get, f))
}
// LetL is a lens-based variant of Let for working with nested structures.
// It uses a lens to focus on a specific field in the state.
//
//go:inline
func LetL[ST, S, T any](
lens Lens[S, T],
f Endomorphism[T],
) Endomorphism[StateReaderIOResult[ST, S]] {
return Let[ST](lens.Set, function.Flow2(lens.Get, f))
}
// LetToL is a lens-based variant of LetTo for working with nested structures.
// It uses a lens to focus on a specific field in the state.
//
//go:inline
func LetToL[ST, S, T any](
lens Lens[S, T],
b T,
) Endomorphism[StateReaderIOResult[ST, S]] {
return LetTo[ST](lens.Set, b)
}

View File

@@ -0,0 +1,147 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package statereaderioresult provides a functional programming abstraction that combines
// four powerful concepts: State, Reader, IO, and Result monads, specialized for Go's context.Context.
//
// # StateReaderIOResult
//
// StateReaderIOResult[S, A] represents a computation that:
// - Manages state of type S (State)
// - Depends on a [context.Context] (Reader)
// - Performs side effects (IO)
// - Can fail with an [error] or succeed with a value of type A (Result)
//
// This is a specialization of StateReaderIOEither with:
// - Context type fixed to [context.Context]
// - Error type fixed to [error]
//
// This is particularly useful for:
// - Stateful computations with dependency injection using Go contexts
// - Error handling in effectful computations with state
// - Composing operations that need access to context, manage state, and can fail
// - Working with Go's standard context patterns (cancellation, deadlines, values)
//
// # Core Operations
//
// Construction:
// - Of/Right: Create a successful computation with a value
// - Left: Create a failed computation with an error
// - FromState: Lift a State into StateReaderIOResult
// - FromIO: Lift an IO into StateReaderIOResult
// - FromResult: Lift a Result into StateReaderIOResult
// - FromIOResult: Lift an IOResult into StateReaderIOResult
// - FromReaderIOResult: Lift a ReaderIOResult into StateReaderIOResult
//
// Transformation:
// - Map: Transform the success value
// - Chain: Sequence dependent computations (monadic bind)
// - Flatten: Flatten nested StateReaderIOResult
//
// Combination:
// - Ap: Apply a function in a context to a value in a context
//
// Context Access:
// - Asks: Get a value derived from the context
// - Local: Run a computation with a modified context
//
// Kleisli Arrows:
// - FromResultK: Lift a Result-returning function to a Kleisli arrow
// - FromIOK: Lift an IO-returning function to a Kleisli arrow
// - FromIOResultK: Lift an IOResult-returning function to a Kleisli arrow
// - FromReaderIOResultK: Lift a ReaderIOResult-returning function to a Kleisli arrow
// - ChainResultK: Chain with a Result-returning function
// - ChainIOResultK: Chain with an IOResult-returning function
// - ChainReaderIOResultK: Chain with a ReaderIOResult-returning function
//
// Do Notation (Monadic Composition):
// - Do: Start a do-notation chain
// - Bind: Bind a value from a computation
// - BindTo: Bind a value to a simple constructor
// - Let: Compute a derived value
// - LetTo: Set a constant value
// - ApS: Apply in sequence (for applicative composition)
// - BindL/ApSL/LetL/LetToL: Lens-based variants for working with nested structures
//
// # Example Usage
//
// type AppState struct {
// RequestCount int
// LastError error
// }
//
// // A computation that manages state, depends on context, performs IO, and can fail
// func processRequest(data string) statereaderioresult.StateReaderIOResult[AppState, string] {
// return func(state AppState) readerioresult.ReaderIOResult[pair.Pair[AppState, string]] {
// return func(ctx context.Context) ioresult.IOResult[pair.Pair[AppState, string]] {
// return func() result.Result[pair.Pair[AppState, string]] {
// // Check context for cancellation
// if ctx.Err() != nil {
// return result.Error[pair.Pair[AppState, string]](ctx.Err())
// }
// // Update state
// newState := AppState{RequestCount: state.RequestCount + 1}
// // Perform IO operations
// return result.Of(pair.MakePair(newState, "processed: " + data))
// }
// }
// }
// }
//
// // Compose operations using do-notation
// result := function.Pipe3(
// statereaderioresult.Do[AppState](State{}),
// statereaderioresult.Bind(
// func(result string) func(State) State { return func(s State) State { return State{result: result} } },
// func(s State) statereaderioresult.StateReaderIOResult[AppState, string] {
// return processRequest(s.input)
// },
// ),
// statereaderioresult.Map[AppState](func(s State) string { return s.result }),
// )
//
// // Execute with initial state and context
// initialState := AppState{RequestCount: 0}
// ctx := context.Background()
// outcome := result(initialState)(ctx)() // Returns result.Result[pair.Pair[AppState, string]]
//
// # Context Integration
//
// This package is designed to work seamlessly with Go's context.Context:
//
// // Using context values
// getUserID := statereaderioresult.Asks[AppState, string](func(ctx context.Context) statereaderioresult.StateReaderIOResult[AppState, string] {
// userID, ok := ctx.Value("userID").(string)
// if !ok {
// return statereaderioresult.Left[AppState, string](errors.New("missing userID"))
// }
// return statereaderioresult.Of[AppState](userID)
// })
//
// // Using context cancellation
// withTimeout := statereaderioresult.Local[AppState, string](func(ctx context.Context) context.Context {
// ctx, _ = context.WithTimeout(ctx, 5*time.Second)
// return ctx
// })
//
// # Monad Laws
//
// StateReaderIOResult satisfies the monad laws:
// - Left Identity: Of(a) >>= f ≡ f(a)
// - Right Identity: m >>= Of ≡ m
// - Associativity: (m >>= f) >>= g ≡ m >>= (x => f(x) >>= g)
//
// These laws are verified in the testing subpackage.
package statereaderioresult

View File

@@ -0,0 +1,41 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"context"
"github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/function"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
// Eq implements the equals predicate for values contained in the [StateReaderIOResult] monad
func Eq[S, A any](eqr eq.Eq[ReaderIOResult[Pair[S, A]]]) func(S) eq.Eq[StateReaderIOResult[S, A]] {
return func(s S) eq.Eq[StateReaderIOResult[S, A]] {
return eq.FromEquals(func(l, r StateReaderIOResult[S, A]) bool {
return eqr.Equals(l(s), r(s))
})
}
}
// FromStrictEquals constructs an [eq.Eq] from the canonical comparison function
func FromStrictEquals[S comparable, A comparable]() func(context.Context) func(S) eq.Eq[StateReaderIOResult[S, A]] {
return function.Flow2(
RIOR.FromStrictEquals[context.Context, Pair[S, A]](),
Eq[S, A],
)
}

View File

@@ -0,0 +1,103 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"github.com/IBM/fp-go/v2/internal/applicative"
"github.com/IBM/fp-go/v2/internal/functor"
"github.com/IBM/fp-go/v2/internal/monad"
"github.com/IBM/fp-go/v2/internal/pointed"
)
type stateReaderIOResultPointed[
S, A any,
] struct{}
type stateReaderIOResultFunctor[
S, A, B any,
] struct{}
type stateReaderIOResultApplicative[
S, A, B any,
] struct{}
type stateReaderIOResultMonad[
S, A, B any,
] struct{}
func (o *stateReaderIOResultPointed[S, A]) Of(a A) StateReaderIOResult[S, A] {
return Of[S](a)
}
func (o *stateReaderIOResultMonad[S, A, B]) Of(a A) StateReaderIOResult[S, A] {
return Of[S](a)
}
func (o *stateReaderIOResultApplicative[S, A, B]) Of(a A) StateReaderIOResult[S, A] {
return Of[S](a)
}
func (o *stateReaderIOResultMonad[S, A, B]) Map(f func(A) B) Operator[S, A, B] {
return Map[S](f)
}
func (o *stateReaderIOResultApplicative[S, A, B]) Map(f func(A) B) Operator[S, A, B] {
return Map[S](f)
}
func (o *stateReaderIOResultFunctor[S, A, B]) Map(f func(A) B) Operator[S, A, B] {
return Map[S](f)
}
func (o *stateReaderIOResultMonad[S, A, B]) Chain(f Kleisli[S, A, B]) Operator[S, A, B] {
return Chain(f)
}
func (o *stateReaderIOResultMonad[S, A, B]) Ap(fa StateReaderIOResult[S, A]) Operator[S, func(A) B, B] {
return Ap[B](fa)
}
func (o *stateReaderIOResultApplicative[S, A, B]) Ap(fa StateReaderIOResult[S, A]) Operator[S, func(A) B, B] {
return Ap[B](fa)
}
// Pointed implements the [pointed.Pointed] operations for [StateReaderIOResult]
func Pointed[
S, A any,
]() pointed.Pointed[A, StateReaderIOResult[S, A]] {
return &stateReaderIOResultPointed[S, A]{}
}
// Functor implements the [functor.Functor] operations for [StateReaderIOResult]
func Functor[
S, A, B any,
]() functor.Functor[A, B, StateReaderIOResult[S, A], StateReaderIOResult[S, B]] {
return &stateReaderIOResultFunctor[S, A, B]{}
}
// Applicative implements the [applicative.Applicative] operations for [StateReaderIOResult]
func Applicative[
S, A, B any,
]() applicative.Applicative[A, B, StateReaderIOResult[S, A], StateReaderIOResult[S, B], StateReaderIOResult[S, func(A) B]] {
return &stateReaderIOResultApplicative[S, A, B]{}
}
// Monad implements the [monad.Monad] operations for [StateReaderIOResult]
func Monad[
S, A, B any,
]() monad.Monad[A, B, StateReaderIOResult[S, A], StateReaderIOResult[S, B], StateReaderIOResult[S, func(A) B]] {
return &stateReaderIOResultMonad[S, A, B]{}
}

View File

@@ -0,0 +1,101 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import "github.com/IBM/fp-go/v2/statereaderioeither"
// WithResource constructs a function that creates a resource with state management, operates on it,
// and then releases the resource. This ensures proper resource cleanup even in the presence of errors,
// following the Resource Acquisition Is Initialization (RAII) pattern.
//
// The state is threaded through all operations: resource creation, usage, and release.
//
// The resource lifecycle with state management is:
// 1. onCreate: Acquires the resource (may modify state)
// 2. use: Operates on the resource with current state (provided as argument to the returned function)
// 3. onRelease: Releases the resource with current state (called regardless of success or failure)
//
// Type parameters:
// - A: The type of the result produced by using the resource
// - S: The state type that is threaded through all operations
// - RES: The resource type
// - ANY: The type returned by the release function (typically ignored)
//
// Parameters:
// - onCreate: A stateful computation that acquires the resource
// - onRelease: A stateful function that releases the resource, called with the resource and current state,
// executed regardless of errors
//
// Returns:
//
// A function that takes a resource-using function and returns a StateReaderIOResult that manages
// the resource lifecycle with state
//
// Example:
//
// type AppState struct {
// openFiles int
// }
//
// // Resource creation that updates state
// openFile := func(filename string) StateReaderIOResult[AppState, *File] {
// return func(state AppState) ReaderIOResult[Pair[AppState, *File]] {
// return func(ctx context.Context) IOResult[Pair[AppState, *File]] {
// return func() Result[Pair[AppState, *File]] {
// file, err := os.Open(filename)
// if err != nil {
// return result.Error[Pair[AppState, *File]](err)
// }
// newState := AppState{openFiles: state.openFiles + 1}
// return result.Of(pair.MakePair(newState, file))
// }
// }
// }
// }
//
// // Resource release that updates state
// closeFile := func(f *File) StateReaderIOResult[AppState, int] {
// return func(state AppState) ReaderIOResult[Pair[AppState, int]] {
// return func(ctx context.Context) IOResult[Pair[AppState, int]] {
// return func() Result[Pair[AppState, int]] {
// f.Close()
// newState := AppState{openFiles: state.openFiles - 1}
// return result.Of(pair.MakePair(newState, 0))
// }
// }
// }
// }
//
// // Use the resource with automatic cleanup
// withFile := WithResource(
// openFile("data.txt"),
// closeFile,
// )
//
// result := withFile(func(f *File) StateReaderIOResult[AppState, string] {
// return readContent(f) // File will be closed automatically
// })
//
// // Execute the computation
// initialState := AppState{openFiles: 0}
// ctx := context.Background()
// outcome := result(initialState)(ctx)()
func WithResource[A, S, RES, ANY any](
onCreate StateReaderIOResult[S, RES],
onRelease Kleisli[S, RES, ANY],
) Kleisli[S, Kleisli[S, RES, A], A] {
return statereaderioeither.WithResource[A](onCreate, onRelease)
}

Some files were not shown because too many files have changed in this diff Show More