1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-12-07 23:03:15 +02:00

Compare commits

...

29 Commits

Author SHA1 Message Date
Dr. Carsten Leue
77dde302ef Merge branch 'main' of github.com:IBM/fp-go 2025-11-18 10:59:57 +01:00
Dr. Carsten Leue
909d626019 fix: serveral performance improvements
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 10:58:24 +01:00
renovate[bot]
b01a8f2aff chore(deps): update actions/checkout action to v4.3.1 (#145)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2025-11-18 06:31:59 +00:00
Dr. Carsten Leue
8a2e9539b1 fix: add result
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 20:36:06 +01:00
Dr. Carsten Leue
03d9720a29 fix: optimize performance for option
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 12:19:24 +01:00
Dr. Carsten Leue
57794ccb34 fix: add idiomatic go options package
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 11:10:27 +01:00
Dr. Carsten Leue
404eb875d3 fix: add idiomatic version
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-16 17:27:16 +01:00
Dr. Carsten Leue
ed108812d6 fix: modernize codebase
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-15 17:00:22 +01:00
Dr. Carsten Leue
ab868315d4 fix: traverse
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-15 12:13:37 +01:00
Dr. Carsten Leue
02d0be9dad fix: add traversal for sequences
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 14:12:44 +01:00
Dr. Carsten Leue
2c1d8196b4 fix: support go iterators and cleanup types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 12:56:12 +01:00
Dr. Carsten Leue
17eb8ae66f fix: add Chain...Left methods
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 16:51:15 +01:00
Dr. Carsten Leue
b70e481e7d fix: some minor improvements
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 12:56:51 +01:00
Dr. Carsten Leue
3c3bb7c166 fix: improve lens implementation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 12:15:52 +01:00
Dr. Carsten Leue
d3007cbbfa fix: improve lens generator
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:39:18 +01:00
Dr. Carsten Leue
5aa0e1ea2e fix: handle non comparable types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:35:56 +01:00
Dr. Carsten Leue
d586428cb0 fix: examples
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:05:57 +01:00
Dr. Carsten Leue
d2dbce6e8b fix: improve lens handling
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 18:23:57 +01:00
Dr. Carsten Leue
6f7ec0768d fix: improve lens generation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 17:28:20 +01:00
Dr. Carsten Leue
ca813b673c fix: better tests and doc
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 16:24:12 +01:00
Dr. Carsten Leue
af271e7d10 fix: better endo and lens
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 15:03:55 +01:00
Dr. Carsten Leue
567315a31c fix: make a distinction between Chain and Compose for endomorphism
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 13:51:00 +01:00
Dr. Carsten Leue
311ed55f06 fix: add Read method to Readers
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 11:59:20 +01:00
Dr. Carsten Leue
23333ce52c doc: improve doc
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 11:08:18 +01:00
Dr. Carsten Leue
eb7fc9f77b fix: better tests for Lazy
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 10:46:07 +01:00
Dr. Carsten Leue
fd0550e71b fix: better test coverage
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 10:35:53 +01:00
Dr. Carsten Leue
13063bbd88 fix: doc and tests
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 16:36:12 +01:00
Dr. Carsten Leue
4f8a557072 fix: simplify type hints
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 15:24:45 +01:00
Dr. Carsten Leue
a4e790ac3d fix: improve bind
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 13:05:55 +01:00
435 changed files with 45394 additions and 4676 deletions

View File

@@ -28,7 +28,7 @@ jobs:
fail-fast: false # Continue with other versions if one fails
steps:
# full checkout for semantic-release
- uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
@@ -66,7 +66,7 @@ jobs:
matrix:
go-version: ['1.24.x', '1.25.x']
steps:
- uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
@@ -126,7 +126,7 @@ jobs:
steps:
# full checkout for semantic-release
- name: Full checkout
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0

View File

@@ -0,0 +1,11 @@
{
"permissions": {
"allow": [
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\monad\"\" && ls -la \"c:dfp-gov2internalapplicative\"\")",
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\chain\"\" && ls -la \"c:dfp-gov2internalfunctor\"\")",
"Bash(go build:*)"
],
"deny": [],
"ask": []
}
}

482
v2/BENCHMARK_COMPARISON.md Normal file
View File

@@ -0,0 +1,482 @@
# Benchmark Comparison: Idiomatic vs Standard Either/Result
**Date:** 2025-11-18
**System:** AMD Ryzen 7 PRO 7840U w/ Radeon 780M Graphics (16 cores)
**Go Version:** go1.23+
This document provides a detailed performance comparison between the optimized `either` package and the `idiomatic/result` package after recent optimizations to the either package.
## Executive Summary
After optimizations to the `either` package, the performance characteristics have changed significantly:
### Key Findings
1. **Constructors & Predicates**: Both packages now perform comparably (~1-2 ns/op) with **zero heap allocations**
2. **Zero-allocation insight**: The `Either` struct (24 bytes) does NOT escape to heap - Go returns it by value on the stack
3. **Core Operations**: Idiomatic package has a **consistent advantage** of 1.2x - 2.3x for most operations
4. **Complex Operations**: Idiomatic package shows **massive advantages**:
- ChainFirst (Right): **32.4x faster** (87.6 ns → 2.7 ns, 72 B → 0 B)
- Pipeline operations: **2-3x faster** with lower allocations
5. **All simple operations**: Both maintain **zero heap allocations** (0 B/op, 0 allocs/op)
### Winner by Category
| Category | Winner | Reason |
|----------|--------|--------|
| Constructors | **TIE** | Both ~1.3-1.8 ns/op |
| Predicates | **TIE** | Both ~1.2-1.5 ns/op |
| Simple Transformations | **Idiomatic** | 1.2-2x faster |
| Monadic Operations | **Idiomatic** | 1.2-2.3x faster |
| Complex Chains | **Idiomatic** | 32x faster, zero allocs |
| Pipelines | **Idiomatic** | 2-2.4x faster, fewer allocs |
| Extraction | **Idiomatic** | 6x faster (GetOrElse) |
## Detailed Benchmark Results
### Constructor Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Left | 1.76 | **1.35** | **1.3x** ✓ | 0 B/op | 0 B/op |
| Right | 1.38 | 1.43 | 1.0x | 0 B/op | 0 B/op |
| Of | 1.68 | **1.22** | **1.4x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Both packages perform extremely well with **zero heap allocations**. Idiomatic has a slight edge on Left and Of.
**Important Clarification: Neither Package Escapes to Heap**
A common misconception is that struct-based Either escapes to heap while tuples stay on stack. The benchmarks prove this is FALSE:
```go
// Either package - NO heap allocation
type Either[E, A any] struct {
r A // 8 bytes
l E // 8 bytes
isLeft bool // 1 byte + 7 padding
} // Total: 24 bytes
func Of[E, A any](value A) Either[E, A] {
return Right[E](value) // Returns 24-byte struct BY VALUE
}
// Benchmark result: 0 B/op, 0 allocs/op ✓
```
**Why Either doesn't escape:**
1. **Small struct** - At 24 bytes, it's below Go's escape threshold (~64 bytes)
2. **Return by value** - Go returns small structs on the stack
3. **Inlining** - The `//go:inline` directive eliminates function overhead
4. **No pointers** - No pointer escapes in normal usage
**Idiomatic package:**
```go
// Returns native tuple - always stack allocated
func Right[A any](a A) (A, error) {
return a, nil // 16 bytes total (8 + 8)
}
// Benchmark result: 0 B/op, 0 allocs/op ✓
```
**Both achieve zero allocations** - the performance difference comes from other factors like function composition overhead, not from constructor allocations.
### Predicate Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| IsLeft | 1.45 | **1.35** | **1.1x** ✓ | 0 B/op | 0 B/op |
| IsRight | 1.47 | 1.51 | 1.0x | 0 B/op | 0 B/op |
**Analysis:** Virtually identical performance. The optimizations brought them to parity.
### Fold Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadFold (Right) | 2.71 | - | - | 0 B/op | - |
| MonadFold (Left) | 2.26 | - | - | 0 B/op | - |
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | 0 B/op | 0 B/op |
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package is 1.5x faster for curried Fold operations.
### Unwrap Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Unwrap (Right) | 1.27 | N/A | Either-specific |
| Unwrap (Left) | 1.24 | N/A | Either-specific |
| UnwrapError (Right) | 1.27 | N/A | Either-specific |
| UnwrapError (Left) | 1.27 | N/A | Either-specific |
| ToError (Right) | N/A | 1.40 | Idiomatic-specific |
| ToError (Left) | N/A | 1.84 | Idiomatic-specific |
**Analysis:** Both provide fast unwrapping. Idiomatic's tuple return is naturally unwrapped.
### Map Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadMap (Right) | 2.96 | - | - | 0 B/op | - |
| MonadMap (Left) | 1.99 | - | - | 0 B/op | - |
| Map (Right) | 5.13 | **4.34** | **1.2x** ✓ | 0 B/op | 0 B/op |
| Map (Left) | 4.19 | **2.48** | **1.7x** ✓ | 0 B/op | 0 B/op |
| MapLeft (Right) | 3.93 | **2.22** | **1.8x** ✓ | 0 B/op | 0 B/op |
| MapLeft (Left) | 7.22 | **3.51** | **2.1x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic is consistently faster across all Map variants, especially for error path (Left).
### BiMap Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| BiMap (Right) | 16.79 | **3.82** | **4.4x** ✓ | 0 B/op | 0 B/op |
| BiMap (Left) | 11.47 | **3.47** | **3.3x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package shows significant advantage for BiMap operations (3-4x faster).
### Chain (Monadic Bind) Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadChain (Right) | 2.89 | - | - | 0 B/op | - |
| MonadChain (Left) | 2.03 | - | - | 0 B/op | - |
| Chain (Right) | 5.44 | **2.34** | **2.3x** ✓ | 0 B/op | 0 B/op |
| Chain (Left) | 4.44 | **2.53** | **1.8x** ✓ | 0 B/op | 0 B/op |
| ChainFirst (Right) | 87.62 | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | 0 B, 0 allocs |
| ChainFirst (Left) | 3.94 | **2.48** | **1.6x** ✓ | 0 B/op | 0 B/op |
**Analysis:**
- Idiomatic is 2x faster for standard Chain operations
- **ChainFirst shows the most dramatic difference**: 32.4x faster with zero allocations vs 72 bytes!
### Flatten Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Flatten (Right) | 8.73 | N/A | Either-specific nested structure |
| Flatten (Left) | 8.86 | N/A | Either-specific nested structure |
**Analysis:** Flatten is specific to Either's nested structure handling.
### Applicative Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadAp (RR) | 3.81 | - | - | 0 B/op | - |
| MonadAp (RL) | 3.07 | - | - | 0 B/op | - |
| MonadAp (LR) | 3.08 | - | - | 0 B/op | - |
| Ap (RR) | 6.99 | - | - | 0 B/op | - |
**Analysis:** MonadAp is fast in Either. Idiomatic package doesn't expose direct Ap benchmarks.
### Alternative Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Alt (RR) | 5.72 | **2.40** | **2.4x** ✓ | 0 B/op | 0 B/op |
| Alt (LR) | 4.89 | **2.39** | **2.0x** ✓ | 0 B/op | 0 B/op |
| OrElse (Right) | 5.28 | **2.40** | **2.2x** ✓ | 0 B/op | 0 B/op |
| OrElse (Left) | 3.99 | **2.42** | **1.6x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package is consistently 2x faster for alternative operations.
### GetOrElse Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | 0 B/op | 0 B/op |
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package shows dramatic advantage for value extraction (3-6x faster).
### TryCatch Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| TryCatch (Success) | 2.39 | N/A | Either-specific |
| TryCatch (Error) | 3.40 | N/A | Either-specific |
| TryCatchError (Success) | 3.32 | N/A | Either-specific |
| TryCatchError (Error) | 6.44 | N/A | Either-specific |
**Analysis:** TryCatch/TryCatchError are Either-specific for wrapping (value, error) tuples.
### Other Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Swap (Right) | 2.30 | - | - | 0 B/op | - |
| Swap (Left) | 3.05 | - | - | 0 B/op | - |
| MapTo (Right) | - | 1.60 | - | - | 0 B/op |
| MapTo (Left) | - | 1.73 | - | - | 0 B/op |
| ChainTo (Right) | - | 2.66 | - | - | 0 B/op |
| ChainTo (Left) | - | 2.85 | - | - | 0 B/op |
| Reduce (Right) | - | 2.34 | - | - | 0 B/op |
| Reduce (Left) | - | 1.40 | - | - | 0 B/op |
| Flap (Right) | - | 3.86 | - | - | 0 B/op |
| Flap (Left) | - | 2.58 | - | - | 0 B/op |
### FromPredicate Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| FromPredicate (Pass) | - | 3.38 | - | - | 0 B/op |
| FromPredicate (Fail) | - | 5.03 | - | - | 0 B/op |
**Analysis:** FromPredicate in idiomatic shows good performance for validation patterns.
### Option Conversion
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| ToOption (Right) | - | 1.17 | - | - | 0 B/op |
| ToOption (Left) | - | 1.21 | - | - | 0 B/op |
| FromOption (Some) | - | 2.68 | - | - | 0 B/op |
| FromOption (None) | - | 3.72 | - | - | 0 B/op |
**Analysis:** Very fast conversion between Result and Option in idiomatic package.
## Pipeline Benchmarks
These benchmarks measure realistic composition scenarios using F.Pipe.
### Simple Map Pipeline
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
| Pipeline Map (Left) | 116.8 | **47.2** | **2.5x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
### Chain Pipeline
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
| Pipeline Chain (Left) | 86.4 | **25.7** | **3.4x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
### Complex Pipeline (Map → Chain → Map)
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Complex (Right) | 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
| Complex (Left) | 288.1 | **115.8** | **2.5x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
**Analysis:**
- Idiomatic package shows **2-3.4x speedup** for realistic pipelines
- Significantly fewer allocations in all pipeline scenarios
- The gap widens as pipelines become more complex
## Array/Collection Operations
### TraverseArray
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| TraverseArray (Success) | - | 32.3 | 48 B, 1 alloc |
| TraverseArray (Error) | - | 28.3 | 48 B, 1 alloc |
**Analysis:** Idiomatic package provides efficient array traversal with minimal allocations.
## Validation (ApV)
### ApV Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| ApV (BothRight) | - | 1.17 | - | - | 0 B/op |
| ApV (BothLeft) | - | 141.5 | - | - | 48 B, 2 allocs |
**Analysis:** Idiomatic's validation applicative shows fast success path, with allocations only when accumulating errors.
## String Formatting
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| String/ToString (Right) | 139.9 | **81.8** | **1.7x** ✓ | 16 B, 1 alloc | 16 B, 1 alloc |
| String/ToString (Left) | 161.6 | **72.7** | **2.2x** ✓ | 48 B, 1 alloc | 24 B, 1 alloc |
**Analysis:** Idiomatic package formats strings faster with fewer allocations for Left values.
## Do-Notation
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Do | 2.03 | - | Either-specific |
| Bind | 153.4 | - | 96 B, 4 allocs |
| Let | 33.5 | - | 16 B, 1 alloc |
**Analysis:** Do-notation is specific to Either package for monadic composition patterns.
## Summary Statistics
### Simple Operations (< 10 ns/op)
**Either Package:**
- Count: 24 operations
- Average: 3.2 ns/op
- Range: 1.24 - 9.01 ns/op
**Idiomatic Package:**
- Count: 36 operations
- Average: 2.1 ns/op
- Range: 1.17 - 5.03 ns/op
**Winner:** Idiomatic (1.5x faster average)
### Complex Operations (Pipelines, allocations)
**Either Package:**
- Pipeline Map: 112.7 ns/op (72 B, 3 allocs)
- Pipeline Chain: 74.4 ns/op (48 B, 2 allocs)
- Complex: 279.8 ns/op (192 B, 8 allocs)
- ChainFirst: 87.6 ns/op (72 B, 3 allocs)
**Idiomatic Package:**
- Pipeline Map: 46.5 ns/op (48 B, 2 allocs)
- Pipeline Chain: 26.1 ns/op (24 B, 1 allocs)
- Complex: 116.3 ns/op (120 B, 5 allocs)
- ChainFirst: 2.71 ns/op (0 B, 0 allocs)
**Winner:** Idiomatic (2-32x faster, significantly fewer allocations)
### Allocation Analysis
**Either Package:**
- Zero-allocation operations: Most simple operations
- Operations with allocations: Pipelines, Bind, Do-notation, ChainFirst
**Idiomatic Package:**
- Zero-allocation operations: Almost all operations except pipelines and validation
- Significantly fewer allocations in pipeline scenarios
- ChainFirst: **Zero allocations** (vs 72 B in Either)
## Performance Characteristics
### Where Either Package Excels
1. **Comparable to Idiomatic**: After optimizations, Either matches Idiomatic for constructors and predicates
2. **Feature Richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
3. **Type Flexibility**: Full Either[E, A] with custom error types
### Where Idiomatic Package Excels
1. **Core Operations**: 1.2-2.3x faster for Map, Chain, Fold
2. **Complex Operations**: 32x faster for ChainFirst
3. **Pipelines**: 2-3.4x faster with fewer allocations
4. **Extraction**: 3-6x faster for GetOrElse
5. **Alternative**: 2x faster for Alt/OrElse
6. **BiMap**: 3-4x faster
7. **Consistency**: More predictable performance profile
## Real-World Performance Impact
### Hot Path Example (1 million operations)
```go
// Map operation (very common)
// Either: 5.13 ns/op × 1M = 5.13 ms
// Idiomatic: 4.34 ns/op × 1M = 4.34 ms
// Savings: 0.79 ms per million operations
// Chain operation (common in pipelines)
// Either: 5.44 ns/op × 1M = 5.44 ms
// Idiomatic: 2.34 ns/op × 1M = 2.34 ms
// Savings: 3.10 ms per million operations
// Pipeline Complex (realistic composition)
// Either: 279.8 ns/op × 1M = 279.8 ms
// Idiomatic: 116.3 ns/op × 1M = 116.3 ms
// Savings: 163.5 ms per million operations
```
### Memory Impact
For 1 million ChainFirst operations:
- Either: 72 MB allocated
- Idiomatic: 0 MB allocated
- **Savings: 72 MB + reduced GC pressure**
## Recommendations
### Use Idiomatic Package When:
1. **Performance is Critical**
- Hot paths in your application
- High-throughput services (>10k req/s)
- Complex operation chains
- Memory-constrained environments
2. **Natural Go Integration**
- Working with stdlib (value, error) patterns
- Team familiar with Go idioms
- Simple migration from existing code
- Want zero-cost abstractions
3. **Pipeline-Heavy Code**
- 2-3.4x faster pipelines
- Significantly fewer allocations
- Better CPU cache utilization
### Use Either Package When:
1. **Feature Requirements**
- Need custom error types (Either[E, A])
- Using Do-notation for complex compositions
- Need Flatten, Swap, or other Either-specific operations
- Porting from FP languages (Scala, Haskell)
2. **Type Safety Over Performance**
- Explicit Either semantics
- Algebraic data type guarantees
- Teaching/learning FP concepts
3. **Moderate Performance Needs**
- After optimizations, Either is quite fast
- Difference matters only at high scale
- Code clarity > micro-optimizations
### Hybrid Approach
```go
// Use Either for complex type safety
import "github.com/IBM/fp-go/v2/either"
type ValidationError struct { Field, Message string }
validated := either.Either[ValidationError, Input]{...}
// Convert to Idiomatic for hot path
import "github.com/IBM/fp-go/v2/idiomatic/result"
value, err := either.UnwrapError(either.MapLeft(toError)(validated))
processed, err := result.Chain(hotPathProcessing)(value, err)
```
## Conclusion
After optimizations to the Either package:
1. **Both packages achieve zero heap allocations for constructors** - The Either struct (24 bytes) does NOT escape to heap
2. **Simple operations** are now **comparable** between both packages (~1-2 ns/op, 0 B/op)
3. **Core transformations** favor Idiomatic by **1.2-2.3x**
4. **Complex operations** heavily favor Idiomatic by **2-32x**
5. **Memory efficiency** strongly favors Idiomatic (especially ChainFirst: 72 B → 0 B)
6. **Real-world pipelines** show **2-3.4x speedup** with Idiomatic
### Key Insight: No Heap Escape Myth
A critical finding: **Both packages avoid heap allocations for simple operations.** The Either struct is small enough (24 bytes) that Go returns it by value on the stack, not the heap. The `0 B/op, 0 allocs/op` benchmarks confirm this.
The performance differences come from:
- **Function composition overhead** in complex operations
- **Currying and closure creation** in pipelines
- **Tuple simplicity** vs struct field access
Not from constructor allocations—both are equally efficient there.
### Final Verdict
The idiomatic package provides a compelling performance advantage for production workloads while maintaining zero-cost functional programming abstractions. The Either package remains excellent for type safety, feature richness, and scenarios where explicit Either[E, A] semantics are valuable.
**Bottom Line:**
- For **high-performance Go services**: idiomatic package is the clear winner (1.2-32x faster)
- For **type-safe, feature-rich FP**: Either package is excellent (comparable simple ops, more features)
- **Both avoid heap allocations** for constructors—choose based on your performance vs features trade-off

View File

@@ -0,0 +1,344 @@
# Deep Chaining Performance Analysis
## Executive Summary
The **only remaining performance gap** between `v2/option` and `idiomatic/option` is in **deep chaining operations** (multiple sequential transformations). This document demonstrates the problem, explains the root cause, and provides recommendations.
## Benchmark Results
### v2/option (Struct-based)
```
BenchmarkChain_3Steps 8.17 ns/op 0 allocs
BenchmarkChain_5Steps 16.57 ns/op 0 allocs
BenchmarkChain_10Steps 47.01 ns/op 0 allocs
BenchmarkMap_5Steps 0.28 ns/op 0 allocs ⚡
```
### idiomatic/option (Tuple-based)
```
BenchmarkChain_3Steps 0.22 ns/op 0 allocs ⚡
BenchmarkChain_5Steps 0.22 ns/op 0 allocs ⚡
BenchmarkChain_10Steps 0.21 ns/op 0 allocs ⚡
BenchmarkMap_5Steps 0.22 ns/op 0 allocs ⚡
```
### Performance Comparison
| Steps | v2/option | idiomatic/option | Slowdown |
|-------|-----------|------------------|----------|
| 3 | 8.17 ns | 0.22 ns | **37x slower** |
| 5 | 16.57 ns | 0.22 ns | **75x slower** |
| 10 | 47.01 ns | 0.21 ns | **224x slower** |
**Key Finding**: The performance gap **increases linearly** with chain depth!
---
## Visual Example: The Problem
### Scenario: Processing User Input
```go
// Process user input through multiple validation steps
input := "42"
// v2/option - Nested MonadChain
result := MonadChain(
MonadChain(
MonadChain(
Some(input),
validateNotEmpty, // Step 1
),
parseToInt, // Step 2
),
validateRange, // Step 3
)
```
### What Happens Under the Hood
#### v2/option (Struct Construction Overhead)
```go
// Step 0: Initial value
Some(input)
// Creates: Option[string]{value: "42", isSome: true}
// Memory: HEAP allocation
// Step 1: Validate not empty
MonadChain(opt, validateNotEmpty)
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
// Output: Option[string]{value: "42", isSome: true} ← NEW heap allocation
// Memory: 2 heap allocations
// Step 2: Parse to int
MonadChain(opt, parseToInt)
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
// Memory: 3 heap allocations
// Step 3: Validate range
MonadChain(opt, validateRange)
// Input: Option[int]{value: 42, isSome: true} ← Read from heap
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
// Memory: 4 heap allocations TOTAL
// Each step:
// 1. Reads Option struct from memory
// 2. Checks isSome field
// 3. Calls function
// 4. Creates NEW Option struct
// 5. Writes to memory
```
#### idiomatic/option (Zero Allocation)
```go
// Step 0: Initial value
s, ok := Some(input)
// Creates: ("42", true)
// Memory: STACK only (registers)
// Step 1: Validate not empty
v1, ok1 := Chain(validateNotEmpty)(s, ok)
// Input: ("42", true) ← Values in registers
// Output: ("42", true) ← Values in registers
// Memory: ZERO allocations
// Step 2: Parse to int
v2, ok2 := Chain(parseToInt)(v1, ok1)
// Input: ("42", true) ← Values in registers
// Output: (42, true) ← Values in registers
// Memory: ZERO allocations
// Step 3: Validate range
v3, ok3 := Chain(validateRange)(v2, ok2)
// Input: (42, true) ← Values in registers
// Output: (42, true) ← Values in registers
// Memory: ZERO allocations TOTAL
// Each step:
// 1. Reads values from registers (no memory access!)
// 2. Checks bool flag
// 3. Calls function
// 4. Returns new tuple (stays in registers)
// 5. Compiler optimizes everything away!
```
---
## Assembly-Level Difference
### v2/option - Struct Overhead
```asm
; Every chain step does:
MOV RAX, [heap_ptr] ; Load struct from heap
TEST BYTE [RAX+8], 1 ; Check isSome field
JZ none_case ; Branch if None
MOV RDI, [RAX] ; Load value from struct
CALL transform_func ; Call the function
CALL malloc ; Allocate new struct ⚠️
MOV [new_ptr], result ; Store result
MOV [new_ptr+8], 1 ; Set isSome = true
```
### idiomatic/option - Optimized Away
```asm
; All steps compiled to:
MOV EAX, 42 ; The final result!
; Everything else optimized away! ⚡
```
**Compiler insight**: With tuples, the Go compiler can:
1. **Inline everything** - No function call overhead
2. **Eliminate branches** - Constant propagation removes `if ok` checks
3. **Use registers only** - Values never touch memory
4. **Dead code elimination** - Removes unnecessary operations
---
## Real-World Example with Timings
### Example: User Registration Validation Chain
```go
// Validate: email → trim → lowercase → check format → check uniqueness
```
#### v2/option Performance
```go
func ValidateEmail_v2(email string) Option[string] {
return MonadChain(
MonadChain(
MonadChain(
MonadChain(
Some(email),
trimWhitespace, // ~2 ns
),
toLowerCase, // ~2 ns
),
validateFormat, // ~2 ns
),
checkUniqueness, // ~2 ns
)
}
// Total: ~8-16 ns (matches our 5-step benchmark: 16.57 ns)
```
#### idiomatic/option Performance
```go
func ValidateEmail_idiomatic(email string) (string, bool) {
v1, ok1 := Chain(trimWhitespace)(email, true)
v2, ok2 := Chain(toLowerCase)(v1, ok1)
v3, ok3 := Chain(validateFormat)(v2, ok2)
return Chain(checkUniqueness)(v3, ok3)
}
// Total: ~0.22 ns (entire chain optimized to single operation!)
```
**Impact**: For 1 million validations:
- v2/option: 16.57 ms
- idiomatic/option: 0.22 ms
- **Difference: 75x faster = saved 16.35 ms**
---
## Why Map is Fast in v2/option
Interestingly, `Map` (pure transformations) is **much faster** than `Chain`:
```
v2/option:
- BenchmarkChain_5Steps: 16.57 ns
- BenchmarkMap_5Steps: 0.28 ns ← 59x FASTER!
```
**Reason**: Map transformations can be **inlined and fused** by the compiler:
```go
// This:
Map(f5)(Map(f4)(Map(f3)(Map(f2)(Map(f1)(opt)))))
// Becomes (after compiler optimization):
Some(f5(f4(f3(f2(f1(value)))))) // Single struct construction!
// While Chain cannot be optimized the same way:
MonadChain(MonadChain(...)) // Must construct at each step
```
---
## When Does This Matter?
### ⚠️ **Rarely Critical** (99% of use cases)
Even 10-step chains only cost **47 nanoseconds**. For context:
- Database query: **~1,000,000 ns** (1 ms)
- HTTP request: **~10,000,000 ns** (10 ms)
- File I/O: **~100,000 ns** (0.1 ms)
**The 47 ns overhead is negligible compared to real I/O operations.**
### ⚡ **Can Matter** (High-throughput scenarios)
1. **In-memory data processing pipelines**
```go
// Processing 10 million records with 5-step validation
v2/option: 165 ms
idiomatic/option: 2 ms
Difference: 163 ms saved ⚡
```
2. **Real-time stream processing**
- Processing 100k events/second with chained transformations
- 16.57 ns × 100,000 = 1.66 ms vs 0.22 ns × 100,000 = 0.022 ms
- Can affect throughput for high-frequency trading, gaming, etc.
3. **Tight inner loops with chained logic**
```go
for i := 0; i < 1_000_000; i++ {
result := Chain(f1).Chain(f2).Chain(f3).Chain(f4)(data[i])
}
// v2/option: 16 ms
// idiomatic: 0.22 ms
```
---
## Root Cause Summary
| Aspect | v2/option | idiomatic/option | Why? |
|--------|-----------|------------------|------|
| **Intermediate values** | `Option[T]` struct | `(T, bool)` tuple | Struct requires memory, tuple can use registers |
| **Memory allocation** | 1 per step | 0 total | Heap vs stack |
| **Compiler optimization** | Limited | Aggressive | Structs block inlining |
| **Cache impact** | Heap reads | Register-only | Memory bandwidth saved |
| **Branch prediction** | Struct checks | Optimized away | Compiler removes branches |
---
## Recommendations
### ✅ **Use v2/option When:**
- I/O-bound operations (database, network, files)
- User-facing applications (latency dominated by I/O)
- Need JSON marshaling, TryCatch, SequenceArray
- Chain depth < 5 steps (overhead < 20 ns - negligible)
- Code clarity > microsecond performance
### ✅ **Use idiomatic/option When:**
- CPU-bound data processing
- High-throughput stream processing
- Tight inner loops with chaining
- In-memory analytics
- Performance-critical paths
- Chain depth > 5 steps
### ✅ **Mitigation for v2/option:**
If you need v2/option but want better chain performance:
1. **Use Map instead of Chain** when possible:
```go
// Bad (16.57 ns):
MonadChain(MonadChain(MonadChain(opt, f1), f2), f3)
// Good (0.28 ns):
Map(f3)(Map(f2)(Map(f1)(opt)))
```
2. **Batch operations**:
```go
// Instead of chaining many steps:
validate := func(x T) Option[T] {
// Combine multiple checks in one function
if check1(x) && check2(x) && check3(x) {
return Some(transform(x))
}
return None[T]()
}
```
3. **Profile first**:
- Only optimize hot paths
- 47 ns is often acceptable
- Don't premature optimize
---
## Conclusion
**The deep chaining performance gap is:**
- ✅ **Real and measurable** (37-224x slower)
- ✅ **Well understood** (struct construction overhead)
- ⚠️ **Rarely critical** (nanosecond differences usually don't matter)
- ✅ **Easy to work around** (use Map, batch operations)
- ✅ **Worth it for the API benefits** (JSON, methods, helpers)
**For 99% of applications, v2/option's performance is excellent.** The gap only matters in specialized high-throughput scenarios where you should probably use idiomatic/option anyway.
The optimizations already applied (`//go:inline`, direct field access) brought v2/option to **competitive parity** for all practical purposes. The remaining gap is a **fundamental design trade-off**, not a fixable bug.

816
v2/IDIOMATIC_COMPARISON.md Normal file
View File

@@ -0,0 +1,816 @@
# Idiomatic vs Standard Package Comparison
> **Latest Update:** 2025-11-18 - Updated with fresh benchmarks after `either` package optimizations
This document provides a comprehensive comparison between the `idiomatic` packages and the standard fp-go packages (`result` and `option`).
**See also:** [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md) for detailed performance analysis.
## Table of Contents
1. [Overview](#overview)
2. [Design Differences](#design-differences)
3. [Performance Comparison](#performance-comparison)
4. [API Comparison](#api-comparison)
5. [When to Use Each](#when-to-use-each)
## Overview
The fp-go library provides two approaches to functional programming patterns in Go:
- **Standard Packages** (`result`, `either`, `option`): Use struct wrappers for algebraic data types
- **Idiomatic Packages** (`idiomatic/result`, `idiomatic/option`): Use native Go tuples for the same patterns
### Key Insight
After recent optimizations to the `either` package, both approaches now offer excellent performance:
- **Simple operations** (~1-5 ns/op): Both packages perform comparably
- **Core transformations**: Idiomatic is **1.2-2.3x faster**
- **Complex operations**: Idiomatic is **2-32x faster** with significantly fewer allocations
- **Real-world pipelines**: Idiomatic shows **2-3.4x speedup**
The idiomatic packages provide:
- Consistently better performance across most operations
- Zero allocations for complex operations (ChainFirst: 72 B → 0 B)
- More familiar Go idioms
- Seamless integration with existing Go code
## Design Differences
### Data Representation
#### Standard Result Package
```go
// Uses Either[error, A] which is a struct wrapper
type Result[A any] = Either[error, A]
type Either[E, A any] struct {
r A
l E
isLeft bool
}
// Creating values - ZERO heap allocations (struct returned by value)
success := result.Right[error](42) // Returns Either struct by value (0 B/op)
failure := result.Left[int](err) // Returns Either struct by value (0 B/op)
// Benchmarks confirm:
// BenchmarkRight-16 871258489 1.384 ns/op 0 B/op 0 allocs/op
// BenchmarkLeft-16 683089270 1.761 ns/op 0 B/op 0 allocs/op
```
#### Idiomatic Result Package
```go
// Uses native Go tuples (value, error)
type Kleisli[A, B any] = func(A) (B, error)
type Operator[A, B any] = func(A, error) (B, error)
// Creating values - ZERO allocations (tuples on stack)
success := result.Right(42) // Returns (42, nil) - 0 B/op
failure := result.Left[int](err) // Returns (0, err) - 0 B/op
// Benchmarks confirm:
// BenchmarkRight-16 789879016 1.427 ns/op 0 B/op 0 allocs/op
// BenchmarkLeft-16 895412131 1.349 ns/op 0 B/op 0 allocs/op
```
### Type Signatures
#### Standard Result
```go
// Functions take and return Result[T] structs
func Map[A, B any](f func(A) B) func(Result[A]) Result[B]
func Chain[A, B any](f Kleisli[A, B]) func(Result[A]) Result[B]
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(Result[A]) B
// Usage requires wrapping/unwrapping
result := result.Right[error](42)
mapped := result.Map(double)(result)
value, err := result.UnwrapError(mapped)
```
#### Idiomatic Result
```go
// Functions work directly with tuples
func Map[A, B any](f func(A) B) func(A, error) (B, error)
func Chain[A, B any](f Kleisli[A, B]) func(A, error) (B, error)
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(A, error) B
// Usage works naturally with Go's error handling
value, err := result.Right(42)
value, err = result.Map(double)(value, err)
// Can use directly: if err != nil { ... }
```
### Memory Layout
#### Standard Result (struct-based)
```
Either[error, int] struct (returned by value):
┌─────────────────────┐
│ r: int (8B) │ Stack allocation: 24 bytes
│ l: error (8B) │ NO heap allocation when returned by value
│ isLeft: bool (1B) │ Benchmarks show 0 B/op, 0 allocs/op
│ padding (7B) │
└─────────────────────┘
Key insight: Go returns small structs (<= ~64 bytes) by value on the stack.
The Either struct (24 bytes) does NOT escape to heap in normal usage.
```
#### Idiomatic Result (tuple-based)
```
(int, error) tuple:
┌─────────────────────┐
│ int: 8 bytes │ Stack allocation: 16 bytes
│ error: 8 bytes │ NO heap allocation
└─────────────────────┘
Both approaches achieve zero heap allocations for constructor operations!
```
### Why Both Have Zero Allocations
Both packages avoid heap allocations for simple operations:
**Standard Either/Result:**
- `Either` struct is small (24 bytes)
- Go returns by value on the stack
- Inlining eliminates function call overhead
- Result: `0 B/op, 0 allocs/op`
**Idiomatic Result:**
- Tuples are native Go multi-value returns
- Always on stack, never heap
- Even simpler than structs
- Result: `0 B/op, 0 allocs/op`
**When Either WOULD escape to heap:**
```go
// Taking address of local Either
func bad1() *Either[error, int] {
e := Right[error](42)
return &e // ESCAPES: pointer to local
}
// Storing in interface
func bad2() interface{} {
return Right[error](42) // ESCAPES: interface boxing
}
// Closure capture with pointer receiver
func bad3() func() Either[error, int] {
e := Right[error](42)
return func() Either[error, int] {
return e // May escape depending on usage
}
}
```
In normal functional composition (Map, Chain, Fold), neither package causes heap allocations for simple operations.
## Performance Comparison
> **Latest benchmarks:** 2025-11-18 after `either` package optimizations
>
> For detailed analysis, see [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md)
### Quick Summary (Either vs Idiomatic)
Both packages now show **excellent performance** after optimizations:
| Category | Either | Idiomatic | Winner | Speedup |
|----------|--------|-----------|--------|---------|
| **Constructors** | 1.4-1.8 ns/op | 1.2-1.4 ns/op | **TIE** | ~1.0-1.3x |
| **Predicates** | 1.5 ns/op | 1.3-1.5 ns/op | **TIE** | ~1.0x |
| **Map Operations** | 4.2-7.2 ns/op | 2.5-4.3 ns/op | **Idiomatic** | 1.2-2.1x |
| **Chain Operations** | 4.4-5.4 ns/op | 2.3-2.5 ns/op | **Idiomatic** | 1.8-2.3x |
| **ChainFirst** | **87.6 ns/op** (72 B) | **2.7 ns/op** (0 B) | **Idiomatic** | **32.4x** ✓✓✓ |
| **BiMap** | 11.5-16.8 ns/op | 3.5-3.8 ns/op | **Idiomatic** | 3.3-4.4x |
| **Alt/OrElse** | 4.0-5.7 ns/op | 2.4 ns/op | **Idiomatic** | 1.6-2.4x |
| **GetOrElse** | 6.3-9.0 ns/op | 1.5-2.1 ns/op | **Idiomatic** | 3.1-6.1x |
| **Pipelines** | 75-280 ns/op | 26-116 ns/op | **Idiomatic** | 2.4-3.4x |
### Constructor Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|-----------|----------------|-------------------|---------|--------|
| Left | 1.76 | **1.35** | 1.3x | Idiomatic ✓ |
| Right | 1.38 | 1.43 | ~1.0x | Tie |
| Of | 1.68 | **1.22** | 1.4x | Idiomatic ✓ |
**Analysis:** After optimizations, both packages have comparable constructor performance.
### Core Transformation Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|------------------|----------------|-------------------|---------|--------|
| Map (Right) | 5.13 | **4.34** | 1.2x | Idiomatic ✓ |
| Map (Left) | 4.19 | **2.48** | 1.7x | Idiomatic ✓ |
| MapLeft (Right) | 3.93 | **2.22** | 1.8x | Idiomatic ✓ |
| MapLeft (Left) | 7.22 | **3.51** | 2.1x | Idiomatic ✓ |
| Chain (Right) | 5.44 | **2.34** | 2.3x | Idiomatic ✓ |
| Chain (Left) | 4.44 | **2.53** | 1.8x | Idiomatic ✓ |
### Complex Operations - The Big Difference
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------------------|----------------|-------------------|---------|---------------|-------------|
| **ChainFirst (Right)** | **87.62** | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | **0 B, 0 allocs** |
| ChainFirst (Left) | 3.94 | 2.48 | 1.6x | 0 B | 0 B |
| BiMap (Right) | 16.79 | **3.82** | 4.4x | 0 B | 0 B |
| BiMap (Left) | 11.47 | **3.47** | 3.3x | 0 B | 0 B |
**Critical Insight:** ChainFirst shows the most dramatic difference - **32x faster** with **zero allocations** in idiomatic.
### Pipeline Benchmarks (Real-World Scenarios)
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 alloc |
| Pipeline Complex (Right)| 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
**Analysis:** In realistic composition scenarios, idiomatic is consistently 2-3x faster with fewer allocations.
### Extraction Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|-----------|----------------|-------------------|---------|--------|
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | Idiomatic |
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | Idiomatic |
| Alt (Right) | 5.72 | **2.40** | **2.4x** ✓ | Idiomatic |
| Alt (Left) | 4.89 | **2.39** | **2.0x** ✓ | Idiomatic |
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | Idiomatic |
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | Idiomatic |
**Analysis:** Idiomatic shows significant advantages (1.5-6x) for value extraction operations.
### Key Findings After Optimizations
1. **Both packages are now fast** - Simple operations are in the 1-5 ns/op range for both
2. **Idiomatic leads in most operations** - 1.2-2.3x faster for common transformations
3. **ChainFirst is the standout** - 32x faster with zero allocations in idiomatic
4. **Pipelines favor idiomatic** - 2-3.4x faster in realistic composition scenarios
5. **Memory efficiency** - Idiomatic consistently uses fewer allocations
### Performance Summary
**Idiomatic Advantages:**
- **Core operations**: 1.2-2.3x faster for Map, Chain, Fold
- **Complex operations**: 3-32x faster with zero allocations
- **Pipelines**: 2-3.4x faster with significantly fewer allocations
- **Extraction**: 1.5-6x faster for GetOrElse, Alt, Fold
- **Consistency**: Predictable, fast performance across all operations
**Either Advantages:**
- **Comparable performance**: After optimizations, matches idiomatic for simple operations
- **Feature richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
- **Type flexibility**: Full Either[E, A] with custom error types
- **Zero allocations**: Most simple operations have zero allocations
## API Comparison
### Creating Values
#### Standard Result
```go
import "github.com/IBM/fp-go/v2/result"
// Create success/failure
success := result.Right[error](42)
failure := result.Left[int](errors.New("oops"))
// Type annotation required
var r result.Result[int] = result.Right[error](42)
```
#### Idiomatic Result
```go
import "github.com/IBM/fp-go/v2/idiomatic/result"
// Create success/failure (more concise)
success := result.Right(42) // (42, nil)
failure := result.Left[int](errors.New("oops")) // (0, error)
// Native Go pattern
value, err := result.Right(42)
if err != nil {
// handle error
}
```
### Transforming Values
#### Standard Result
```go
// Map transforms the success value
double := result.Map(func(x int) int { return x * 2 })
result := double(result.Right[error](21)) // Right(42)
// Chain sequences operations
validate := result.Chain(func(x int) result.Result[int] {
if x > 0 {
return result.Right[error](x * 2)
}
return result.Left[int](errors.New("negative"))
})
```
#### Idiomatic Result
```go
// Map transforms the success value
double := result.Map(func(x int) int { return x * 2 })
value, err := double(21, nil) // (42, nil)
// Chain sequences operations
validate := result.Chain(func(x int) (int, error) {
if x > 0 {
return x * 2, nil
}
return 0, errors.New("negative")
})
```
### Pattern Matching
#### Standard Result
```go
// Fold extracts the value
output := result.Fold(
func(err error) string { return "Error: " + err.Error() },
func(n int) string { return fmt.Sprintf("Value: %d", n) },
)(myResult)
// GetOrElse with default
value := result.GetOrElse(func(err error) int { return 0 })(myResult)
```
#### Idiomatic Result
```go
// Fold extracts the value (same API, different input)
output := result.Fold(
func(err error) string { return "Error: " + err.Error() },
func(n int) string { return fmt.Sprintf("Value: %d", n) },
)(value, err)
// GetOrElse with default
value := result.GetOrElse(func(err error) int { return 0 })(value, err)
// Or use native Go pattern
if err != nil {
value = 0
}
```
### Integration with Existing Code
#### Standard Result
```go
// Converting from (value, error) to Result
func doSomething() (int, error) {
return 42, nil
}
result := result.TryCatchError(doSomething())
// Converting back to (value, error)
value, err := result.UnwrapError(result)
```
#### Idiomatic Result
```go
// Direct compatibility with (value, error)
func doSomething() (int, error) {
return 42, nil
}
// No conversion needed!
value, err := doSomething()
value, err = result.Map(double)(value, err)
```
### Pipeline Composition
#### Standard Result
```go
import F "github.com/IBM/fp-go/v2/function"
output := F.Pipe3(
result.Right[error](10),
result.Map(double),
result.Chain(validate),
result.Map(format),
)
// Need to unwrap at the end
value, err := result.UnwrapError(output)
```
#### Idiomatic Result
```go
import F "github.com/IBM/fp-go/v2/function"
value, err := F.Pipe3(
result.Right(10),
result.Map(double),
result.Chain(validate),
result.Map(format),
)
// Already in (value, error) form
if err != nil {
// handle error
}
```
## Detailed Design Comparison
### Type System
#### Standard Result
**Strengths:**
- Full algebraic data type semantics
- Explicit Either[E, A] allows custom error types
- Type-safe by construction
- Clear separation of error and success channels
**Weaknesses:**
- Requires wrapper structs (memory overhead)
- Less familiar to Go developers
- Needs conversion functions for Go's standard library
- More verbose type annotations
#### Idiomatic Result
**Strengths:**
- Native Go idioms (value, error) pattern
- Zero wrapper overhead
- Seamless stdlib integration
- Familiar to all Go developers
- Terser syntax
**Weaknesses:**
- Error type fixed to `error`
- Less explicit about Either semantics
- Cannot use custom error types without conversion
- Slightly less type-safe (can accidentally ignore bool/error)
### Monad Laws
Both packages satisfy the monad laws, but enforce them differently:
#### Standard Result
```go
// Left identity: return a >>= f ≡ f a
assert.Equal(
result.Chain(f)(result.Of(a)),
f(a),
)
// Right identity: m >>= return ≡ m
assert.Equal(
result.Chain(result.Of[int])(m),
m,
)
// Associativity: (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)
assert.Equal(
result.Chain(g)(result.Chain(f)(m)),
result.Chain(func(x int) result.Result[int] {
return result.Chain(g)(f(x))
})(m),
)
```
#### Idiomatic Result
```go
// Same laws, different syntax
// Left identity
a, aerr := result.Of(val)
b, berr := result.Chain(f)(a, aerr)
c, cerr := f(val)
assert.Equal((b, berr), (c, cerr))
// Right identity
value, err := m()
identity := result.Chain(result.Of[int])
assert.Equal(identity(value, err), (value, err))
// Associativity (same structure, tuple-based)
```
### Error Handling Philosophy
#### Standard Result
```go
// Explicit error handling through types
func processUser(id int) result.Result[User] {
user := fetchUser(id) // Returns Result[User]
return F.Pipe2(
user,
result.Chain(validateUser),
result.Chain(enrichUser),
)
}
// Must explicitly unwrap
user, err := result.UnwrapError(processUser(42))
if err != nil {
log.Error(err)
}
```
#### Idiomatic Result
```go
// Natural Go error handling
func processUser(id int) (User, error) {
user, err := fetchUser(id) // Returns (User, error)
return F.Pipe2(
(user, err),
result.Chain(validateUser),
result.Chain(enrichUser),
)
}
// Already in Go form
user, err := processUser(42)
if err != nil {
log.Error(err)
}
```
### Composition Patterns
#### Standard Result
```go
// Applicative composition
import A "github.com/IBM/fp-go/v2/apply"
type Config struct {
Host string
Port int
DB string
}
config := A.SequenceT3(
result.FromPredicate(validHost, hostError)(host),
result.FromPredicate(validPort, portError)(port),
result.FromPredicate(validDB, dbError)(db),
)(func(h string, p int, d string) Config {
return Config{h, p, d}
})
```
#### Idiomatic Result
```go
// Direct tuple composition
config, err := func() (Config, error) {
host, err := result.FromPredicate(validHost, hostError)(host)
if err != nil {
return Config{}, err
}
port, err := result.FromPredicate(validPort, portError)(port)
if err != nil {
return Config{}, err
}
db, err := result.FromPredicate(validDB, dbError)(db)
if err != nil {
return Config{}, err
}
return Config{host, port, db}, nil
}()
```
## When to Use Each
### Use Idiomatic Result When (Recommended for Most Cases):
1. **Performance Matters**
- Any production service (web servers, APIs, microservices)
- Hot paths and high-throughput scenarios (>1000 req/s)
- Complex operation chains (**32x faster** ChainFirst)
- Real-world pipelines (**2-3x faster**)
- Memory-constrained environments (zero allocations)
- Want **1.2-6x speedup** across most operations
2. **Go Integration** ⭐⭐
- Working with existing Go codebases
- Interfacing with standard library (native (value, error))
- Team familiar with Go, new to FP
- Want zero-cost functional abstractions
- Seamless error handling patterns
3. **Pragmatic Functional Programming**
- Value performance AND functional patterns
- Prefer Go idioms over FP terminology
- Simpler function signatures
- Lower cognitive overhead
- Production-ready patterns
4. **Real-World Applications**
- Web servers, REST APIs, gRPC services
- CLI tools and command-line applications
- Data processing pipelines
- Any latency-sensitive application
- Systems with tight performance budgets
**Performance Gains:** Use idiomatic for 1.2-32x speedup depending on operation, with consistently lower allocations.
### Use Standard Either/Result When:
1. **Type Safety & Flexibility**
- Need explicit Either[E, A] with **custom error types**
- Building domain-specific error hierarchies
- Want to distinguish different error categories at type level
- Type system enforcement is critical
2. **Advanced FP Features**
- Using Do-notation for complex monadic compositions
- Need operations like Flatten, Swap, Bind, Let
- Leveraging advanced type classes (Semigroup, Monoid)
- Want the complete FP toolkit
3. **FP Expertise & Education**
- Porting code from other FP languages (Scala, Haskell)
- Teaching functional programming concepts
- Team has strong FP background
- Explicit algebraic data types preferred
- Code review benefits from FP terminology
4. **Performance is Acceptable**
- After optimizations, Either is **quite fast** (1-5 ns/op for simple operations)
- Difference matters mainly at high scale (millions of operations)
- Code clarity > micro-optimizations
- Simple operations dominate your workload
**Note:** Either package is now performant enough for most use cases. Choose it for features, not performance concerns.
### Hybrid Approach
You can use both packages together:
```go
import (
stdResult "github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/idiomatic/result"
)
// Use standard for complex types
type ValidationError struct {
Field string
Error string
}
func validateInput(input string) stdResult.Either[ValidationError, Input] {
// ... validation logic
}
// Convert to idiomatic for performance
func processInput(input string) (Output, error) {
validated := validateInput(input)
value, err := stdResult.UnwrapError(
stdResult.MapLeft(toError)(validated),
)
// Use idiomatic for hot path
return result.Chain(heavyProcessing)(value, err)
}
```
## Migration Guide
### From Standard to Idiomatic
```go
// Before (standard)
import "github.com/IBM/fp-go/v2/result"
func process(x int) result.Result[int] {
return F.Pipe2(
result.Right[error](x),
result.Map(double),
result.Chain(validate),
)
}
// After (idiomatic)
import "github.com/IBM/fp-go/v2/idiomatic/result"
func process(x int) (int, error) {
return F.Pipe2(
result.Right(x),
result.Map(double),
result.Chain(validate),
)
}
```
### Key Changes
1. **Type signatures**: `Result[T]``(T, error)`
2. **Kleisli**: `func(A) Result[B]``func(A) (B, error)`
3. **Operator**: `func(Result[A]) Result[B]``func(A, error) (B, error)`
4. **Return values**: Function calls return tuples, not wrapped values
5. **Pattern matching**: Same Fold/GetOrElse API, different inputs
## Conclusion
### Performance Summary (After Either Optimizations)
The latest benchmark results show a clear pattern:
**Both packages are now fast**, but idiomatic consistently leads:
- **Constructors & Predicates**: Both ~1-2 ns/op (essentially tied)
- **Core transformations**: Idiomatic **1.2-2.3x faster** (Map, Chain, Fold)
- **Complex operations**: Idiomatic **3-32x faster** (BiMap, ChainFirst)
- **Pipelines**: Idiomatic **2-3.4x faster** with fewer allocations
- **Extraction**: Idiomatic **1.5-6x faster** (GetOrElse, Alt)
**Key Insight:** The idiomatic package delivers **consistently better performance** across the board while maintaining zero-cost abstractions. The Either package is now fast enough for most use cases, but idiomatic is the performance winner.
### Updated Recommendation Matrix
| Scenario | Recommendation | Reason |
|----------|---------------|--------|
| **New Go project** | **Idiomatic** ⭐ | Natural Go patterns, 1.2-6x faster, better integration |
| **Production services** | **Idiomatic** ⭐⭐ | 2-3x faster pipelines, zero allocations, proven performance |
| **Performance critical** | **Idiomatic** ⭐⭐⭐ | 32x faster complex ops, minimal allocations |
| **Microservices/APIs** | **Idiomatic** ⭐⭐ | High throughput, familiar patterns, better performance |
| **CLI Tools** | **Idiomatic** ⭐ | Low overhead, Go idioms, fast |
| Custom error types | Standard/Either | Need Either[E, A] with domain types |
| Learning FP | Standard/Either | Clearer ADT semantics, educational |
| FP-heavy codebase | Standard/Either | Consistency, Do-notation, full FP toolkit |
| Library/Framework | Either way | Both are good; choose based on API style |
### Real-World Impact
For a service handling 10,000 requests/second with typical pipeline operations:
```
Either package: 280 ns/op × 10M req/day = 2,800 seconds = 46.7 minutes
Idiomatic package: 116 ns/op × 10M req/day = 1,160 seconds = 19.3 minutes
Time saved: 27.4 minutes of CPU time per day
```
At scale, this translates to:
- Lower latency (2-3x faster response times for FP operations)
- Reduced CPU usage (fewer cores needed)
- Lower memory pressure (significantly fewer allocations)
- Better resource utilization
### Final Recommendation
**For most Go projects:** Use **idiomatic packages**
- 1.2-32x faster across operations
- Native Go idioms
- Zero-cost abstractions
- Production-proven performance
- Easier integration
**For specialized needs:** Use **standard Either/Result**
- Need custom error types Either[E, A]
- Want Do-notation and advanced FP features
- Porting from FP languages
- Educational/learning context
- FP-heavy existing codebase
### Bottom Line
After optimizations, both packages are excellent:
- **Either/Result**: Fast enough for most use cases, feature-rich, type-safe
- **Idiomatic**: **Faster in practice** (1.2-32x), native Go, zero-cost FP
The idiomatic packages now represent the **best of both worlds**: full functional programming capabilities with Go's native performance and idioms. Unless you specifically need Either[E, A]'s custom error types or advanced FP features, **idiomatic is the recommended choice** for production Go services.
Both maintain the core benefits of functional programming—choose based on whether you prioritize performance & Go integration (idiomatic) or type flexibility & FP features (either).

View File

@@ -2,25 +2,152 @@
[![Go Reference](https://pkg.go.dev/badge/github.com/IBM/fp-go/v2.svg)](https://pkg.go.dev/github.com/IBM/fp-go/v2)
[![Coverage Status](https://coveralls.io/repos/github/IBM/fp-go/badge.svg?branch=main&flag=v2)](https://coveralls.io/github/IBM/fp-go?branch=main)
[![Go Report Card](https://goreportcard.com/badge/github.com/IBM/fp-go/v2)](https://goreportcard.com/report/github.com/IBM/fp-go/v2)
Version 2 of fp-go leverages [generic type aliases](https://github.com/golang/go/issues/46477) introduced in Go 1.24, providing a more ergonomic and streamlined API.
**fp-go** is a comprehensive functional programming library for Go, bringing type-safe functional patterns inspired by [fp-ts](https://gcanti.github.io/fp-ts/) to the Go ecosystem. Version 2 leverages [generic type aliases](https://github.com/golang/go/issues/46477) introduced in Go 1.24, providing a more ergonomic and streamlined API.
## 📚 Table of Contents
- [Overview](#-overview)
- [Features](#-features)
- [Requirements](#-requirements)
- [Breaking Changes](#-breaking-changes)
- [Installation](#-installation)
- [Quick Start](#-quick-start)
- [Breaking Changes](#️-breaking-changes)
- [Key Improvements](#-key-improvements)
- [Migration Guide](#-migration-guide)
- [Installation](#-installation)
- [What's New](#-whats-new)
- [Documentation](#-documentation)
- [Contributing](#-contributing)
- [License](#-license)
## 🎯 Overview
fp-go brings the power of functional programming to Go with:
- **Type-safe abstractions** - Monads, Functors, Applicatives, and more
- **Composable operations** - Build complex logic from simple, reusable functions
- **Error handling** - Elegant error management with `Either`, `Result`, and `IOEither`
- **Lazy evaluation** - Control when and how computations execute
- **Optics** - Powerful lens, prism, and traversal operations for immutable data manipulation
## ✨ Features
- 🔒 **Type Safety** - Leverage Go's generics for compile-time guarantees
- 🧩 **Composability** - Chain operations naturally with functional composition
- 📦 **Rich Type System** - `Option`, `Either`, `Result`, `IO`, `Reader`, and more
- 🎯 **Practical** - Designed for real-world Go applications
- 🚀 **Performance** - Zero-cost abstractions where possible
- 📖 **Well-documented** - Comprehensive API documentation and examples
- 🧪 **Battle-tested** - Extensive test coverage
## 🔧 Requirements
- **Go 1.24 or later** (for generic type alias support)
## ⚠️ Breaking Changes
## 📦 Installation
### 1. Generic Type Aliases
```bash
go get github.com/IBM/fp-go/v2
```
## 🚀 Quick Start
### Working with Option
```go
package main
import (
"fmt"
"github.com/IBM/fp-go/v2/option"
)
func main() {
// Create an Option
some := option.Some(42)
none := option.None[int]()
// Map over values
doubled := option.Map(N.Mul(2))(some)
fmt.Println(option.GetOrElse(0)(doubled)) // Output: 84
// Chain operations
result := option.Chain(func(x int) option.Option[string] {
if x > 0 {
return option.Some(fmt.Sprintf("Positive: %d", x))
}
return option.None[string]()
})(some)
fmt.Println(option.GetOrElse("No value")(result)) // Output: Positive: 42
}
```
### Error Handling with Result
```go
package main
import (
"errors"
"fmt"
"github.com/IBM/fp-go/v2/result"
)
func divide(a, b int) result.Result[int] {
if b == 0 {
return result.Error[int](errors.New("division by zero"))
}
return result.Ok(a / b)
}
func main() {
res := divide(10, 2)
// Pattern match on the result
result.Fold(
func(err error) { fmt.Println("Error:", err) },
func(val int) { fmt.Println("Result:", val) },
)(res)
// Output: Result: 5
// Or use GetOrElse for a default value
value := result.GetOrElse(0)(divide(10, 0))
fmt.Println("Value:", value) // Output: Value: 0
}
```
### Composing IO Operations
```go
package main
import (
"fmt"
"github.com/IBM/fp-go/v2/io"
)
func main() {
// Define pure IO operations
readInput := io.MakeIO(func() string {
return "Hello, fp-go!"
})
// Transform the result
uppercase := io.Map(func(s string) string {
return fmt.Sprintf(">>> %s <<<", s)
})(readInput)
// Execute the IO operation
result := uppercase()
fmt.Println(result) // Output: >>> Hello, fp-go! <<<
}
```
### From V1 to V2
#### 1. Generic Type Aliases
V2 uses [generic type aliases](https://github.com/golang/go/issues/46477) which require Go 1.24+. This is the most significant change and enables cleaner type definitions.
@@ -34,7 +161,7 @@ type ReaderIOEither[R, E, A any] RD.Reader[R, IOE.IOEither[E, A]]
type ReaderIOEither[R, E, A any] = RD.Reader[R, IOE.IOEither[E, A]]
```
### 2. Generic Type Parameter Ordering
#### 2. Generic Type Parameter Ordering
Type parameters that **cannot** be inferred from function arguments now come first, improving type inference.
@@ -52,7 +179,7 @@ func Ap[B, R, E, A any](fa ReaderIOEither[R, E, A]) func(ReaderIOEither[R, E, fu
This change allows the Go compiler to infer more types automatically, reducing the need for explicit type parameters.
### 3. Pair Monad Semantics
#### 3. Pair Monad Semantics
Monadic operations for `Pair` now operate on the **second argument** to align with the [Haskell definition](https://hackage.haskell.org/package/TypeCompose-0.9.14/docs/Data-Pair.html).
@@ -60,7 +187,7 @@ Monadic operations for `Pair` now operate on the **second argument** to align wi
```go
// Operations on first element
pair := MakePair(1, "hello")
result := Map(func(x int) int { return x * 2 })(pair) // Pair(2, "hello")
result := Map(N.Mul(2))(pair) // Pair(2, "hello")
```
**V2:**
@@ -70,6 +197,36 @@ pair := MakePair(1, "hello")
result := Map(func(s string) string { return s + "!" })(pair) // Pair(1, "hello!")
```
#### 4. Endomorphism Compose Semantics
The `Compose` function for endomorphisms now follows **mathematical function composition** (right-to-left execution), aligning with standard functional programming conventions.
**V1:**
```go
// Compose executed left-to-right
double := N.Mul(2)
increment := func(x int) int { return x + 1 }
composed := Compose(double, increment)
result := composed(5) // (5 * 2) + 1 = 11
```
**V2:**
```go
// Compose executes RIGHT-TO-LEFT (mathematical composition)
double := N.Mul(2)
increment := func(x int) int { return x + 1 }
composed := Compose(double, increment)
result := composed(5) // (5 + 1) * 2 = 12
// Use MonadChain for LEFT-TO-RIGHT execution
chained := MonadChain(double, increment)
result2 := chained(5) // (5 * 2) + 1 = 11
```
**Key Difference:**
- `Compose(f, g)` now means `f ∘ g`, which applies `g` first, then `f` (right-to-left)
- `MonadChain(f, g)` applies `f` first, then `g` (left-to-right)
## ✨ Key Improvements
### 1. Simplified Type Declarations
@@ -91,16 +248,16 @@ func processData(input string) ET.Either[error, OPT.Option[int]] {
**V2 Approach:**
```go
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/option"
)
// Define type aliases once
type Either[A any] = either.Either[error, A]
type Result[A any] = result.Result[A]
type Option[A any] = option.Option[A]
// Use them throughout your codebase
func processData(input string) Either[Option[int]] {
func processData(input string) Result[Option[int]] {
// implementation
}
```
@@ -211,7 +368,7 @@ If you're using `Pair`, update operations to work on the second element:
```go
pair := MakePair(42, "data")
// Map operates on first element
result := Map(func(x int) int { return x * 2 })(pair)
result := Map(N.Mul(2))(pair)
```
**After (V2):**
@@ -230,20 +387,14 @@ Create project-wide type aliases for common patterns:
package myapp
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
)
type Either[A any] = either.Either[error, A]
type Result[A any] = result.Result[A]
type Option[A any] = option.Option[A]
type IOEither[A any] = ioeither.IOEither[error, A]
```
## 📦 Installation
```bash
go get github.com/IBM/fp-go/v2
type IOResult[A any] = ioresult.IOResult[A]
```
## 🆕 What's New
@@ -277,25 +428,37 @@ func process() IOET.IOEither[error, string] {
**V2 Simplified Example:**
```go
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/ioeither"
"strconv"
"github.com/IBM/fp-go/v2/ioresult"
)
type IOEither[A any] = ioeither.IOEither[error, A]
type IOResult[A any] = ioresult.IOResult[A]
func process() IOEither[string] {
return ioeither.Map(
func process() IOResult[string] {
return ioresult.Map(
strconv.Itoa,
)(fetchData())
}
```
## 📚 Additional Resources
## 📚 Documentation
- [Main README](../README.md) - Core concepts and design philosophy
- [API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2)
- [Code Samples](../samples/)
- [Go 1.24 Release Notes](https://tip.golang.org/doc/go1.24)
- **[API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2)** - Complete API reference
- **[Code Samples](./samples/)** - Practical examples and use cases
- **[Go 1.24 Release Notes](https://tip.golang.org/doc/go1.24)** - Information about generic type aliases
### Core Modules
- **Option** - Represent optional values without nil
- **Either** - Type-safe error handling with left/right values
- **Result** - Simplified Either with error as left type
- **IO** - Lazy evaluation and side effect management
- **IOEither** - Combine IO with error handling
- **Reader** - Dependency injection pattern
- **ReaderIOEither** - Combine Reader, IO, and Either for complex workflows
- **Array** - Functional array operations
- **Record** - Functional record/map operations
- **Optics** - Lens, Prism, Optional, and Traversal for immutable updates
## 🤔 Should I Migrate?
@@ -310,10 +473,25 @@ func process() IOEither[string] {
- ⚠️ Migration effort outweighs benefits for your project
- ⚠️ You need stability in production (V2 is newer)
## 🤝 Contributing
Contributions are welcome! Here's how you can help:
1. **Report bugs** - Open an issue with a clear description and reproduction steps
2. **Suggest features** - Share your ideas for improvements
3. **Submit PRs** - Fix bugs or add features (please discuss major changes first)
4. **Improve docs** - Help make the documentation clearer and more comprehensive
Please read our contribution guidelines before submitting pull requests.
## 🐛 Issues and Feedback
Found a bug or have a suggestion? Please [open an issue](https://github.com/IBM/fp-go/issues) on GitHub.
## 📄 License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
This project is licensed under the Apache License 2.0. See the [LICENSE](https://github.com/IBM/fp-go/blob/main/LICENSE) file for details.
---
**Made with ❤️ by IBM**

View File

@@ -17,11 +17,10 @@ package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
EM "github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/tuple"
)
@@ -50,16 +49,16 @@ func Replicate[A any](n int, a A) []A {
// This is the monadic version of Map that takes the array as the first parameter.
//
//go:inline
func MonadMap[A, B any](as []A, f func(a A) B) []B {
func MonadMap[A, B any](as []A, f func(A) B) []B {
return G.MonadMap[[]A, []B](as, f)
}
// MonadMapRef applies a function to a pointer to each element of an array, returning a new array with the results.
// This is useful when you need to access elements by reference without copying.
func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
func MonadMapRef[A, B any](as []A, f func(*A) B) []B {
count := len(as)
bs := make([]B, count)
for i := count - 1; i >= 0; i-- {
for i := range count {
bs[i] = f(&as[i])
}
return bs
@@ -68,7 +67,7 @@ func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
// MapWithIndex applies a function to each element and its index in an array, returning a new array with the results.
//
//go:inline
func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
func MapWithIndex[A, B any](f func(int, A) B) Operator[A, B] {
return G.MapWithIndex[[]A, []B](f)
}
@@ -77,39 +76,39 @@ func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
//
// Example:
//
// double := array.Map(func(x int) int { return x * 2 })
// double := array.Map(N.Mul(2))
// result := double([]int{1, 2, 3}) // [2, 4, 6]
//
//go:inline
func Map[A, B any](f func(a A) B) func([]A) []B {
func Map[A, B any](f func(A) B) Operator[A, B] {
return G.Map[[]A, []B](f)
}
// MapRef applies a function to a pointer to each element of an array, returning a new array with the results.
// This is the curried version that returns a function.
func MapRef[A, B any](f func(a *A) B) func([]A) []B {
func MapRef[A, B any](f func(*A) B) Operator[A, B] {
return F.Bind2nd(MonadMapRef[A, B], f)
}
func filterRef[A any](fa []A, pred func(a *A) bool) []A {
var result []A
func filterRef[A any](fa []A, pred func(*A) bool) []A {
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, a)
var result []A = make([]A, 0, count)
for i := range count {
a := &fa[i]
if pred(a) {
result = append(result, *a)
}
}
return result
}
func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
var result []B
func filterMapRef[A, B any](fa []A, pred func(*A) bool, f func(*A) B) []B {
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, f(&a))
var result []B = make([]B, 0, count)
for i := range count {
a := &fa[i]
if pred(a) {
result = append(result, f(a))
}
}
return result
@@ -118,19 +117,19 @@ func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
// Filter returns a new array with all elements from the original array that match a predicate
//
//go:inline
func Filter[A any](pred func(A) bool) EM.Endomorphism[[]A] {
func Filter[A any](pred func(A) bool) Operator[A, A] {
return G.Filter[[]A](pred)
}
// FilterWithIndex returns a new array with all elements from the original array that match a predicate
//
//go:inline
func FilterWithIndex[A any](pred func(int, A) bool) EM.Endomorphism[[]A] {
func FilterWithIndex[A any](pred func(int, A) bool) Operator[A, A] {
return G.FilterWithIndex[[]A](pred)
}
// FilterRef returns a new array with all elements from the original array that match a predicate operating on pointers.
func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
func FilterRef[A any](pred func(*A) bool) Operator[A, A] {
return F.Bind2nd(filterRef[A], pred)
}
@@ -138,7 +137,7 @@ func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
// This is the monadic version that takes the array as the first parameter.
//
//go:inline
func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
func MonadFilterMap[A, B any](fa []A, f option.Kleisli[A, B]) []B {
return G.MonadFilterMap[[]A, []B](fa, f)
}
@@ -146,33 +145,33 @@ func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
// keeping only the Some values. This is the monadic version that takes the array as the first parameter.
//
//go:inline
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) O.Option[B]) []B {
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) Option[B]) []B {
return G.MonadFilterMapWithIndex[[]A, []B](fa, f)
}
// FilterMap maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
// FilterMap maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
//
//go:inline
func FilterMap[A, B any](f func(A) O.Option[B]) func([]A) []B {
func FilterMap[A, B any](f option.Kleisli[A, B]) Operator[A, B] {
return G.FilterMap[[]A, []B](f)
}
// FilterMapWithIndex maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
// FilterMapWithIndex maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
//
//go:inline
func FilterMapWithIndex[A, B any](f func(int, A) O.Option[B]) func([]A) []B {
func FilterMapWithIndex[A, B any](f func(int, A) Option[B]) Operator[A, B] {
return G.FilterMapWithIndex[[]A, []B](f)
}
// FilterChain maps an array with an iterating function that returns an [O.Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
// FilterChain maps an array with an iterating function that returns an [Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
//
//go:inline
func FilterChain[A, B any](f func(A) O.Option[[]B]) func([]A) []B {
func FilterChain[A, B any](f option.Kleisli[A, []B]) Operator[A, B] {
return G.FilterChain[[]A](f)
}
// FilterMapRef filters an array using a predicate on pointers and maps the matching elements using a function on pointers.
func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B {
func FilterMapRef[A, B any](pred func(a *A) bool, f func(*A) B) Operator[A, B] {
return func(fa []A) []B {
return filterMapRef(fa, pred, f)
}
@@ -180,8 +179,7 @@ func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B
func reduceRef[A, B any](fa []A, f func(B, *A) B, initial B) B {
current := initial
count := len(fa)
for i := 0; i < count; i++ {
for i := range len(fa) {
current = f(current, &fa[i])
}
return current
@@ -262,6 +260,8 @@ func Empty[A any]() []A {
}
// Zero returns an empty array of type A (alias for Empty).
//
//go:inline
func Zero[A any]() []A {
return Empty[A]()
}
@@ -277,7 +277,7 @@ func Of[A any](a A) []A {
// This is the monadic version that takes the array as the first parameter (also known as FlatMap).
//
//go:inline
func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
func MonadChain[A, B any](fa []A, f Kleisli[A, B]) []B {
return G.MonadChain(fa, f)
}
@@ -290,7 +290,7 @@ func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
// result := duplicate([]int{1, 2, 3}) // [1, 1, 2, 2, 3, 3]
//
//go:inline
func Chain[A, B any](f func(A) []B) func([]A) []B {
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return G.Chain[[]A](f)
}
@@ -306,7 +306,7 @@ func MonadAp[B, A any](fab []func(A) B, fa []A) []B {
// This is the curried version.
//
//go:inline
func Ap[B, A any](fa []A) func([]func(A) B) []B {
func Ap[B, A any](fa []A) Operator[func(A) B, B] {
return G.Ap[[]B, []func(A) B](fa)
}
@@ -328,7 +328,7 @@ func MatchLeft[A, B any](onEmpty func() B, onNonEmpty func(A, []A) B) func([]A)
// Returns None if the array is empty.
//
//go:inline
func Tail[A any](as []A) O.Option[[]A] {
func Tail[A any](as []A) Option[[]A] {
return G.Tail(as)
}
@@ -336,7 +336,7 @@ func Tail[A any](as []A) O.Option[[]A] {
// Returns None if the array is empty.
//
//go:inline
func Head[A any](as []A) O.Option[A] {
func Head[A any](as []A) Option[A] {
return G.Head(as)
}
@@ -344,7 +344,7 @@ func Head[A any](as []A) O.Option[A] {
// Returns None if the array is empty.
//
//go:inline
func First[A any](as []A) O.Option[A] {
func First[A any](as []A) Option[A] {
return G.First(as)
}
@@ -352,12 +352,12 @@ func First[A any](as []A) O.Option[A] {
// Returns None if the array is empty.
//
//go:inline
func Last[A any](as []A) O.Option[A] {
func Last[A any](as []A) Option[A] {
return G.Last(as)
}
// PrependAll inserts a separator before each element of an array.
func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
func PrependAll[A any](middle A) Operator[A, A] {
return func(as []A) []A {
count := len(as)
dst := count * 2
@@ -377,7 +377,7 @@ func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
// Example:
//
// result := array.Intersperse(0)([]int{1, 2, 3}) // [1, 0, 2, 0, 3]
func Intersperse[A any](middle A) EM.Endomorphism[[]A] {
func Intersperse[A any](middle A) Operator[A, A] {
prepend := PrependAll(middle)
return func(as []A) []A {
if IsEmpty(as) {
@@ -406,7 +406,7 @@ func Flatten[A any](mma [][]A) []A {
}
// Slice extracts a subarray from index low (inclusive) to high (exclusive).
func Slice[A any](low, high int) func(as []A) []A {
func Slice[A any](low, high int) Operator[A, A] {
return array.Slice[[]A](low, high)
}
@@ -414,7 +414,7 @@ func Slice[A any](low, high int) func(as []A) []A {
// Returns None if the index is out of bounds.
//
//go:inline
func Lookup[A any](idx int) func([]A) O.Option[A] {
func Lookup[A any](idx int) func([]A) Option[A] {
return G.Lookup[[]A](idx)
}
@@ -422,7 +422,7 @@ func Lookup[A any](idx int) func([]A) O.Option[A] {
// If the index is out of bounds, the element is appended.
//
//go:inline
func UpsertAt[A any](a A) EM.Endomorphism[[]A] {
func UpsertAt[A any](a A) Operator[A, A] {
return G.UpsertAt[[]A](a)
}
@@ -468,7 +468,7 @@ func ConstNil[A any]() []A {
// SliceRight extracts a subarray from the specified start index to the end.
//
//go:inline
func SliceRight[A any](start int) EM.Endomorphism[[]A] {
func SliceRight[A any](start int) Operator[A, A] {
return G.SliceRight[[]A](start)
}
@@ -482,7 +482,7 @@ func Copy[A any](b []A) []A {
// Clone creates a deep copy of the array using the provided endomorphism to clone the values
//
//go:inline
func Clone[A any](f func(A) A) func(as []A) []A {
func Clone[A any](f func(A) A) Operator[A, A] {
return G.Clone[[]A](f)
}
@@ -510,8 +510,8 @@ func Fold[A any](m M.Monoid[A]) func([]A) A {
// Push adds an element to the end of an array (alias for Append).
//
//go:inline
func Push[A any](a A) EM.Endomorphism[[]A] {
return G.Push[EM.Endomorphism[[]A]](a)
func Push[A any](a A) Operator[A, A] {
return G.Push[Operator[A, A]](a)
}
// MonadFlap applies a value to an array of functions, producing an array of results.
@@ -526,13 +526,13 @@ func MonadFlap[B, A any](fab []func(A) B, a A) []B {
// This is the curried version.
//
//go:inline
func Flap[B, A any](a A) func([]func(A) B) []B {
func Flap[B, A any](a A) Operator[func(A) B, B] {
return G.Flap[func(A) B, []func(A) B, []B](a)
}
// Prepend adds an element to the beginning of an array, returning a new array.
//
//go:inline
func Prepend[A any](head A) EM.Endomorphism[[]A] {
return G.Prepend[EM.Endomorphism[[]A]](head)
func Prepend[A any](head A) Operator[A, A] {
return G.Prepend[Operator[A, A]](head)
}

View File

@@ -56,8 +56,8 @@ func Do[S any](
//go:inline
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) []T,
) func([]S1) []S2 {
f Kleisli[S1, T],
) Operator[S1, S2] {
return G.Bind[[]S1, []S2](setter, f)
}
@@ -79,7 +79,7 @@ func Bind[S1, S2, T any](
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) func([]S1) []S2 {
) Operator[S1, S2] {
return G.Let[[]S1, []S2](setter, f)
}
@@ -101,7 +101,7 @@ func Let[S1, S2, T any](
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) func([]S1) []S2 {
) Operator[S1, S2] {
return G.LetTo[[]S1, []S2](setter, b)
}
@@ -120,7 +120,7 @@ func LetTo[S1, S2, T any](
//go:inline
func BindTo[S1, T any](
setter func(T) S1,
) func([]T) []S1 {
) Operator[T, S1] {
return G.BindTo[[]S1, []T](setter)
}
@@ -143,6 +143,6 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa []T,
) func([]S1) []S2 {
) Operator[S1, S2] {
return G.ApS[[]S1, []S2](setter, fa)
}

View File

@@ -36,7 +36,7 @@
// generated := array.MakeBy(5, func(i int) int { return i * 2 })
//
// // Transforming arrays
// doubled := array.Map(func(x int) int { return x * 2 })(arr)
// doubled := array.Map(N.Mul(2))(arr)
// filtered := array.Filter(func(x int) bool { return x > 2 })(arr)
//
// // Combining arrays
@@ -50,7 +50,7 @@
// numbers := []int{1, 2, 3, 4, 5}
//
// // Map transforms each element
// doubled := array.Map(func(x int) int { return x * 2 })(numbers)
// doubled := array.Map(N.Mul(2))(numbers)
// // Result: [2, 4, 6, 8, 10]
//
// // Filter keeps elements matching a predicate

View File

@@ -87,6 +87,6 @@ func Example_sort() {
// [abc klm zyx]
// [zyx klm abc]
// [None[int] Some[int](42) Some[int](1337)]
// [{c {false 0}} {b {true 10}} {d {true 10}} {a {true 30}}]
// [{c {0 false}} {b {10 true}} {d {10 true}} {a {30 true}}]
}

View File

@@ -17,7 +17,7 @@ package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/option"
)
// FindFirst finds the first element which satisfies a predicate function.
@@ -30,7 +30,7 @@ import (
// result2 := findGreaterThan3([]int{1, 2, 3}) // None
//
//go:inline
func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
func FindFirst[A any](pred func(A) bool) option.Kleisli[[]A, A] {
return G.FindFirst[[]A](pred)
}
@@ -45,7 +45,7 @@ func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
// result := findEvenAtEvenIndex([]int{1, 3, 4, 5}) // Some(4)
//
//go:inline
func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
func FindFirstWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
return G.FindFirstWithIndex[[]A](pred)
}
@@ -65,7 +65,7 @@ func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
// result := parseFirst([]string{"a", "42", "b"}) // Some(42)
//
//go:inline
func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
func FindFirstMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
return G.FindFirstMap[[]A](sel)
}
@@ -73,7 +73,7 @@ func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
// The selector receives both the index and the element.
//
//go:inline
func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
func FindFirstMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
return G.FindFirstMapWithIndex[[]A](sel)
}
@@ -86,7 +86,7 @@ func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.O
// result := findGreaterThan3([]int{1, 4, 2, 5}) // Some(5)
//
//go:inline
func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
func FindLast[A any](pred func(A) bool) option.Kleisli[[]A, A] {
return G.FindLast[[]A](pred)
}
@@ -94,7 +94,7 @@ func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
// Returns Some(element) if found, None if no element matches.
//
//go:inline
func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
func FindLastWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
return G.FindLastWithIndex[[]A](pred)
}
@@ -102,7 +102,7 @@ func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
// This combines finding and mapping in a single operation, searching from the end.
//
//go:inline
func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
func FindLastMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
return G.FindLastMap[[]A](sel)
}
@@ -110,6 +110,6 @@ func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
// The selector receives both the index and the element, searching from the end.
//
//go:inline
func FindLastMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
func FindLastMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
return G.FindLastMapWithIndex[[]A](sel)
}

View File

@@ -25,8 +25,10 @@ import (
)
// Of constructs a single element array
//
//go:inline
func Of[GA ~[]A, A any](value A) GA {
return GA{value}
return array.Of[GA](value)
}
func Reduce[GA ~[]A, A, B any](f func(B, A) B, initial B) func(GA) B {
@@ -82,7 +84,7 @@ func MakeBy[AS ~[]A, F ~func(int) A, A any](n int, f F) AS {
}
// run the generator function across the input
as := make(AS, n)
for i := n - 1; i >= 0; i-- {
for i := range n {
as[i] = f(i)
}
return as
@@ -165,10 +167,9 @@ func Size[GA ~[]A, A any](as GA) int {
func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
result := make(GB, 0, len(fa))
for _, a := range fa {
O.Map(func(b B) B {
if b, ok := O.Unwrap(f(a)); ok {
result = append(result, b)
return b
})(f(a))
}
}
return result
}
@@ -176,10 +177,9 @@ func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
func filterMapWithIndex[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(int, A) O.Option[B]) GB {
result := make(GB, 0, len(fa))
for i, a := range fa {
O.Map(func(b B) B {
if b, ok := O.Unwrap(f(i, a)); ok {
result = append(result, b)
return b
})(f(i, a))
}
}
return result
}

View File

@@ -42,8 +42,7 @@ func FindFirst[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) O.Option[
func FindFirstMapWithIndex[AS ~[]A, PRED ~func(int, A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
none := O.None[B]()
return func(as AS) O.Option[B] {
count := len(as)
for i := 0; i < count; i++ {
for i := range len(as) {
out := pred(i, as[i])
if O.IsSome(out) {
return out

View File

@@ -0,0 +1,34 @@
package generic
import (
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
// Example:
//
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[GT ~[]T, T any]() M.Monoid[GT] {
return M.MakeMonoid(array.Concat[GT], Empty[GT]())
}
// Semigroup returns a Semigroup instance for arrays.
// The Semigroup combines arrays through concatenation.
//
// Example:
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[GT ~[]T, T any]() S.Semigroup[GT] {
return S.MakeSemigroup(array.Concat[GT])
}

View File

@@ -26,7 +26,7 @@ import (
func ZipWith[AS ~[]A, BS ~[]B, CS ~[]C, FCT ~func(A, B) C, A, B, C any](fa AS, fb BS, f FCT) CS {
l := N.Min(len(fa), len(fb))
res := make(CS, l)
for i := l - 1; i >= 0; i-- {
for i := range l {
res[i] = f(fa[i], fb[i])
}
return res
@@ -43,7 +43,7 @@ func Unzip[AS ~[]A, BS ~[]B, CS ~[]T.Tuple2[A, B], A, B any](cs CS) T.Tuple2[AS,
l := len(cs)
as := make(AS, l)
bs := make(BS, l)
for i := l - 1; i >= 0; i-- {
for i := range l {
t := cs[i]
as[i] = t.F1
bs[i] = t.F2

View File

@@ -18,7 +18,6 @@ package array
import (
"testing"
O "github.com/IBM/fp-go/v2/option"
OR "github.com/IBM/fp-go/v2/ord"
"github.com/stretchr/testify/assert"
)
@@ -103,39 +102,6 @@ func TestSortByKey(t *testing.T) {
assert.Equal(t, "Charlie", result[2].Name)
}
func TestMonadTraverse(t *testing.T) {
result := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 3, 5},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.Some([]int{2, 6, 10}), result)
// Test with None case
result2 := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 2, 3},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.None[[]int](), result2)
}
func TestUniqByKey(t *testing.T) {
type Person struct {
Name string

View File

@@ -16,27 +16,12 @@
package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
func concat[T any](left, right []T) []T {
// some performance checks
ll := len(left)
if ll == 0 {
return right
}
lr := len(right)
if lr == 0 {
return left
}
// need to copy
buf := make([]T, ll+lr)
copy(buf[copy(buf, left):], right)
return buf
}
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
@@ -45,8 +30,10 @@ func concat[T any](left, right []T) []T {
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[T any]() M.Monoid[[]T] {
return M.MakeMonoid(concat[T], Empty[T]())
return G.Monoid[[]T]()
}
// Semigroup returns a Semigroup instance for arrays.
@@ -56,8 +43,10 @@ func Monoid[T any]() M.Monoid[[]T] {
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[T any]() S.Semigroup[[]T] {
return S.MakeSemigroup(concat[T])
return G.Semigroup[[]T]()
}
func addLen[A any](count int, data []A) int {

View File

@@ -16,10 +16,18 @@
package array
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
)
func MonadSequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
ma []HKTA) HKTRA {
return array.MonadSequence(fof, m.Empty(), m.Concat, ma)
}
// Sequence takes an array where elements are HKT<A> (higher kinded type) and,
// using an applicative of that HKT, returns an HKT of []A.
//
@@ -55,16 +63,11 @@ import (
// option.MonadAp[[]int, int],
// )
// result := seq(opts) // Some([1, 2, 3])
func Sequence[A, HKTA, HKTRA, HKTFRA any](
_of func([]A) HKTRA,
_map func(HKTRA, func([]A) func(A) []A) HKTFRA,
_ap func(HKTFRA, HKTA) HKTRA,
func Sequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
) func([]HKTA) HKTRA {
ca := F.Curry2(Append[A])
empty := _of(Empty[A]())
return Reduce(func(fas HKTRA, fa HKTA) HKTRA {
return _ap(_map(fas, ca), fa)
}, empty)
return array.Sequence[[]HKTA](fof, m.Empty(), m.Concat)
}
// ArrayOption returns a function to convert a sequence of options into an option of a sequence.
@@ -86,10 +89,10 @@ func Sequence[A, HKTA, HKTRA, HKTFRA any](
// option.Some(3),
// }
// result2 := array.ArrayOption[int]()(opts2) // None
func ArrayOption[A any]() func([]O.Option[A]) O.Option[[]A] {
return Sequence(
O.Of[[]A],
O.MonadMap[[]A, func(A) []A],
O.MonadAp[[]A, A],
func ArrayOption[A any](ma []Option[A]) Option[[]A] {
return MonadSequence(
O.Map(Of[A]),
O.ApplicativeMonoid(Monoid[A]()),
ma,
)
}

View File

@@ -24,8 +24,7 @@ import (
)
func TestSequenceOption(t *testing.T) {
seq := ArrayOption[int]()
assert.Equal(t, O.Of([]int{1, 3}), seq([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), seq([]O.Option[int]{O.Of(1), O.None[int]()}))
assert.Equal(t, O.Of([]int{1, 3}), ArrayOption([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), ArrayOption([]O.Option[int]{O.Of(1), O.None[int]()}))
}

View File

@@ -18,6 +18,7 @@ package array
import (
"testing"
N "github.com/IBM/fp-go/v2/number"
"github.com/stretchr/testify/assert"
)
@@ -243,7 +244,7 @@ func TestSliceComposition(t *testing.T) {
t.Run("slice then map", func(t *testing.T) {
sliced := Slice[int](2, 5)(data)
mapped := Map(func(x int) int { return x * 2 })(sliced)
mapped := Map(N.Mul(2))(sliced)
assert.Equal(t, []int{4, 6, 8}, mapped)
})

View File

@@ -32,7 +32,7 @@ import (
// // Result: [1, 1, 2, 3, 4, 5, 6, 9]
//
//go:inline
func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
func Sort[T any](ord O.Ord[T]) Operator[T, T] {
return G.Sort[[]T](ord)
}
@@ -62,7 +62,7 @@ func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
// // Result: [{"Bob", 25}, {"Alice", 30}, {"Charlie", 35}]
//
//go:inline
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) Operator[T, T] {
return G.SortByKey[[]T](ord, f)
}
@@ -93,6 +93,6 @@ func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
// // Result: [{"Jones", "Bob"}, {"Smith", "Alice"}, {"Smith", "John"}]
//
//go:inline
func SortBy[T any](ord []O.Ord[T]) func(ma []T) []T {
func SortBy[T any](ord []O.Ord[T]) Operator[T, T] {
return G.SortBy[[]T](ord)
}

View File

@@ -80,3 +80,25 @@ func MonadTraverse[A, B, HKTB, HKTAB, HKTRB any](
return array.MonadTraverse(fof, fmap, fap, ta, f)
}
//go:inline
func TraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
f func(int, A) HKTB) func([]A) HKTRB {
return array.TraverseWithIndex[[]A](fof, fmap, fap, f)
}
//go:inline
func MonadTraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta []A,
f func(int, A) HKTB) HKTRB {
return array.MonadTraverseWithIndex(fof, fmap, fap, ta, f)
}

9
v2/array/types.go Normal file
View File

@@ -0,0 +1,9 @@
package array
import "github.com/IBM/fp-go/v2/option"
type (
Kleisli[A, B any] = func(A) []B
Operator[A, B any] = Kleisli[[]A, B]
Option[A any] = option.Option[A]
)

View File

@@ -46,6 +46,6 @@ func StrictUniq[A comparable](as []A) []A {
// // Result: [{"Alice", 30}, {"Bob", 25}, {"Charlie", 30}]
//
//go:inline
func Uniq[A any, K comparable](f func(A) K) func(as []A) []A {
func Uniq[A any, K comparable](f func(A) K) Operator[A, A] {
return G.Uniq[[]A](f)
}

View File

@@ -19,8 +19,8 @@ import (
"fmt"
"testing"
E "github.com/IBM/fp-go/v2/either"
EQ "github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
@@ -28,82 +28,82 @@ var (
errTest = fmt.Errorf("test failure")
// Eq is the equal predicate checking if objects are equal
Eq = EQ.FromEquals(assert.ObjectsAreEqual)
Eq = eq.FromEquals(assert.ObjectsAreEqual)
)
func wrap1[T any](wrapped func(t assert.TestingT, expected, actual any, msgAndArgs ...any) bool, t *testing.T, expected T) func(actual T) E.Either[error, T] {
return func(actual T) E.Either[error, T] {
func wrap1[T any](wrapped func(t assert.TestingT, expected, actual any, msgAndArgs ...any) bool, t *testing.T, expected T) result.Kleisli[T, T] {
return func(actual T) Result[T] {
ok := wrapped(t, expected, actual)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[T](errTest)
return result.Left[T](errTest)
}
}
// NotEqual tests if the expected and the actual values are not equal
func NotEqual[T any](t *testing.T, expected T) func(actual T) E.Either[error, T] {
func NotEqual[T any](t *testing.T, expected T) result.Kleisli[T, T] {
return wrap1(assert.NotEqual, t, expected)
}
// Equal tests if the expected and the actual values are equal
func Equal[T any](t *testing.T, expected T) func(actual T) E.Either[error, T] {
func Equal[T any](t *testing.T, expected T) result.Kleisli[T, T] {
return wrap1(assert.Equal, t, expected)
}
// Length tests if an array has the expected length
func Length[T any](t *testing.T, expected int) func(actual []T) E.Either[error, []T] {
return func(actual []T) E.Either[error, []T] {
func Length[T any](t *testing.T, expected int) result.Kleisli[[]T, []T] {
return func(actual []T) Result[[]T] {
ok := assert.Len(t, actual, expected)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[[]T](errTest)
return result.Left[[]T](errTest)
}
}
// NoError validates that there is no error
func NoError[T any](t *testing.T) func(actual E.Either[error, T]) E.Either[error, T] {
return func(actual E.Either[error, T]) E.Either[error, T] {
return E.MonadFold(actual, func(e error) E.Either[error, T] {
func NoError[T any](t *testing.T) result.Operator[T, T] {
return func(actual Result[T]) Result[T] {
return result.MonadFold(actual, func(e error) Result[T] {
assert.NoError(t, e)
return E.Left[T](e)
}, func(value T) E.Either[error, T] {
return result.Left[T](e)
}, func(value T) Result[T] {
assert.NoError(t, nil)
return E.Right[error](value)
return result.Of(value)
})
}
}
// ArrayContains tests if a value is contained in an array
func ArrayContains[T any](t *testing.T, expected T) func(actual []T) E.Either[error, []T] {
return func(actual []T) E.Either[error, []T] {
func ArrayContains[T any](t *testing.T, expected T) result.Kleisli[[]T, []T] {
return func(actual []T) Result[[]T] {
ok := assert.Contains(t, actual, expected)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[[]T](errTest)
return result.Left[[]T](errTest)
}
}
// ContainsKey tests if a key is contained in a map
func ContainsKey[T any, K comparable](t *testing.T, expected K) func(actual map[K]T) E.Either[error, map[K]T] {
return func(actual map[K]T) E.Either[error, map[K]T] {
func ContainsKey[T any, K comparable](t *testing.T, expected K) result.Kleisli[map[K]T, map[K]T] {
return func(actual map[K]T) Result[map[K]T] {
ok := assert.Contains(t, actual, expected)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[map[K]T](errTest)
return result.Left[map[K]T](errTest)
}
}
// NotContainsKey tests if a key is not contained in a map
func NotContainsKey[T any, K comparable](t *testing.T, expected K) func(actual map[K]T) E.Either[error, map[K]T] {
return func(actual map[K]T) E.Either[error, map[K]T] {
func NotContainsKey[T any, K comparable](t *testing.T, expected K) result.Kleisli[map[K]T, map[K]T] {
return func(actual map[K]T) Result[map[K]T] {
ok := assert.NotContains(t, actual, expected)
if ok {
return E.Of[error](actual)
return result.Of(actual)
}
return E.Left[map[K]T](errTest)
return result.Left[map[K]T](errTest)
}
}

7
v2/assert/types.go Normal file
View File

@@ -0,0 +1,7 @@
package assert
import "github.com/IBM/fp-go/v2/result"
type (
Result[T any] = result.Result[T]
)

7
v2/builder/builder.go Normal file
View File

@@ -0,0 +1,7 @@
package builder
type (
Builder[T any] interface {
Build() Result[T]
}
)

12
v2/builder/prism.go Normal file
View File

@@ -0,0 +1,12 @@
package builder
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/result"
)
// BuilderPrism createa a [Prism] that converts between a builder and its type
func BuilderPrism[T any, B Builder[T]](creator func(T) B) Prism[B, T] {
return prism.MakePrism(F.Flow2(B.Build, result.ToOption[T]), creator)
}

15
v2/builder/types.go Normal file
View File

@@ -0,0 +1,15 @@
package builder
import (
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
type (
Result[T any] = result.Result[T]
Prism[S, A any] = prism.Prism[S, A]
Option[T any] = option.Option[T]
)

View File

@@ -15,14 +15,163 @@
package bytes
// Empty returns an empty byte slice.
//
// This function returns the identity element for the byte slice Monoid,
// which is an empty byte slice. It's useful as a starting point for
// building byte slices or as a default value.
//
// Returns:
// - An empty byte slice ([]byte{})
//
// Properties:
// - Empty() is the identity element for Monoid.Concat
// - Monoid.Concat(Empty(), x) == x
// - Monoid.Concat(x, Empty()) == x
//
// Example - Basic usage:
//
// empty := Empty()
// fmt.Println(len(empty)) // 0
//
// Example - As identity element:
//
// data := []byte("hello")
// result1 := Monoid.Concat(Empty(), data) // []byte("hello")
// result2 := Monoid.Concat(data, Empty()) // []byte("hello")
//
// Example - Building byte slices:
//
// // Start with empty and build up
// buffer := Empty()
// buffer = Monoid.Concat(buffer, []byte("Hello"))
// buffer = Monoid.Concat(buffer, []byte(" "))
// buffer = Monoid.Concat(buffer, []byte("World"))
// // buffer: []byte("Hello World")
//
// See also:
// - Monoid.Empty(): Alternative way to get empty byte slice
// - ConcatAll(): For concatenating multiple byte slices
func Empty() []byte {
return Monoid.Empty()
}
// ToString converts a byte slice to a string.
//
// This function performs a direct conversion from []byte to string.
// The conversion creates a new string with a copy of the byte data.
//
// Parameters:
// - a: The byte slice to convert
//
// Returns:
// - A string containing the same data as the byte slice
//
// Performance Note:
//
// This conversion allocates a new string. For performance-critical code
// that needs to avoid allocations, consider using unsafe.String (Go 1.20+)
// or working directly with byte slices.
//
// Example - Basic conversion:
//
// bytes := []byte("hello")
// str := ToString(bytes)
// fmt.Println(str) // "hello"
//
// Example - Converting binary data:
//
// // ASCII codes for "Hello"
// data := []byte{0x48, 0x65, 0x6c, 0x6c, 0x6f}
// str := ToString(data)
// fmt.Println(str) // "Hello"
//
// Example - Empty byte slice:
//
// empty := Empty()
// str := ToString(empty)
// fmt.Println(str == "") // true
//
// Example - UTF-8 encoded text:
//
// utf8Bytes := []byte("Hello, 世界")
// str := ToString(utf8Bytes)
// fmt.Println(str) // "Hello, 世界"
//
// Example - Round-trip conversion:
//
// original := "test string"
// bytes := []byte(original)
// result := ToString(bytes)
// fmt.Println(original == result) // true
//
// See also:
// - []byte(string): For converting string to byte slice
// - Size(): For getting the length of a byte slice
func ToString(a []byte) string {
return string(a)
}
// Size returns the number of bytes in a byte slice.
//
// This function returns the length of the byte slice, which is the number
// of bytes it contains. This is equivalent to len(as) but provided as a
// named function for use in functional composition.
//
// Parameters:
// - as: The byte slice to measure
//
// Returns:
// - The number of bytes in the slice
//
// Example - Basic usage:
//
// data := []byte("hello")
// size := Size(data)
// fmt.Println(size) // 5
//
// Example - Empty slice:
//
// empty := Empty()
// size := Size(empty)
// fmt.Println(size) // 0
//
// Example - Binary data:
//
// binary := []byte{0x01, 0x02, 0x03, 0x04}
// size := Size(binary)
// fmt.Println(size) // 4
//
// Example - UTF-8 encoded text:
//
// // Note: Size returns byte count, not character count
// utf8 := []byte("Hello, 世界")
// byteCount := Size(utf8)
// fmt.Println(byteCount) // 13 (not 9 characters)
//
// Example - Using in functional composition:
//
// import "github.com/IBM/fp-go/v2/array"
//
// slices := [][]byte{
// []byte("a"),
// []byte("bb"),
// []byte("ccc"),
// }
//
// // Map to get sizes
// sizes := array.Map(Size)(slices)
// // sizes: []int{1, 2, 3}
//
// Example - Checking if slice is empty:
//
// data := []byte("test")
// isEmpty := Size(data) == 0
// fmt.Println(isEmpty) // false
//
// See also:
// - len(): Built-in function for getting slice length
// - ToString(): For converting byte slice to string
func Size(as []byte) int {
return len(as)
}

View File

@@ -187,6 +187,299 @@ func TestOrd(t *testing.T) {
})
}
// TestOrdProperties tests mathematical properties of Ord
func TestOrdProperties(t *testing.T) {
t.Run("reflexivity: x == x", func(t *testing.T) {
testCases := [][]byte{
[]byte{},
[]byte("a"),
[]byte("test"),
[]byte{0x01, 0x02, 0x03},
}
for _, tc := range testCases {
assert.Equal(t, 0, Ord.Compare(tc, tc),
"Compare(%v, %v) should be 0", tc, tc)
assert.True(t, Ord.Equals(tc, tc),
"Equals(%v, %v) should be true", tc, tc)
}
})
t.Run("antisymmetry: if x <= y and y <= x then x == y", func(t *testing.T) {
testCases := []struct {
a, b []byte
}{
{[]byte("abc"), []byte("abc")},
{[]byte{}, []byte{}},
{[]byte{0x01}, []byte{0x01}},
}
for _, tc := range testCases {
cmp1 := Ord.Compare(tc.a, tc.b)
cmp2 := Ord.Compare(tc.b, tc.a)
if cmp1 <= 0 && cmp2 <= 0 {
assert.True(t, Ord.Equals(tc.a, tc.b),
"If %v <= %v and %v <= %v, they should be equal", tc.a, tc.b, tc.b, tc.a)
}
}
})
t.Run("transitivity: if x <= y and y <= z then x <= z", func(t *testing.T) {
x := []byte("a")
y := []byte("b")
z := []byte("c")
cmpXY := Ord.Compare(x, y)
cmpYZ := Ord.Compare(y, z)
cmpXZ := Ord.Compare(x, z)
if cmpXY <= 0 && cmpYZ <= 0 {
assert.True(t, cmpXZ <= 0,
"If %v <= %v and %v <= %v, then %v <= %v", x, y, y, z, x, z)
}
})
t.Run("totality: either x <= y or y <= x", func(t *testing.T) {
testCases := []struct {
a, b []byte
}{
{[]byte("abc"), []byte("abd")},
{[]byte("xyz"), []byte("abc")},
{[]byte{}, []byte("a")},
{[]byte{0x01}, []byte{0x02}},
}
for _, tc := range testCases {
cmp1 := Ord.Compare(tc.a, tc.b)
cmp2 := Ord.Compare(tc.b, tc.a)
assert.True(t, cmp1 <= 0 || cmp2 <= 0,
"Either %v <= %v or %v <= %v must be true", tc.a, tc.b, tc.b, tc.a)
}
})
}
// TestEdgeCases tests edge cases and boundary conditions
func TestEdgeCases(t *testing.T) {
t.Run("very large byte slices", func(t *testing.T) {
large := make([]byte, 1000000)
for i := range large {
large[i] = byte(i % 256)
}
size := Size(large)
assert.Equal(t, 1000000, size)
str := ToString(large)
assert.Equal(t, 1000000, len(str))
})
t.Run("concatenating many slices", func(t *testing.T) {
slices := make([][]byte, 100)
for i := range slices {
slices[i] = []byte{byte(i)}
}
result := ConcatAll(slices...)
assert.Equal(t, 100, Size(result))
})
t.Run("null bytes in slice", func(t *testing.T) {
data := []byte{0x00, 0x01, 0x00, 0x02}
size := Size(data)
assert.Equal(t, 4, size)
str := ToString(data)
assert.Equal(t, 4, len(str))
})
t.Run("comparing slices with null bytes", func(t *testing.T) {
a := []byte{0x00, 0x01}
b := []byte{0x00, 0x02}
assert.Equal(t, -1, Ord.Compare(a, b))
})
}
// TestMonoidConcatPerformance tests concatenation performance characteristics
func TestMonoidConcatPerformance(t *testing.T) {
t.Run("ConcatAll vs repeated Concat", func(t *testing.T) {
slices := [][]byte{
[]byte("a"),
[]byte("b"),
[]byte("c"),
[]byte("d"),
[]byte("e"),
}
// Using ConcatAll
result1 := ConcatAll(slices...)
// Using repeated Concat
result2 := Monoid.Empty()
for _, s := range slices {
result2 = Monoid.Concat(result2, s)
}
assert.Equal(t, result1, result2)
assert.Equal(t, []byte("abcde"), result1)
})
}
// TestRoundTrip tests round-trip conversions
func TestRoundTrip(t *testing.T) {
t.Run("string to bytes to string", func(t *testing.T) {
original := "Hello, World! 世界"
bytes := []byte(original)
result := ToString(bytes)
assert.Equal(t, original, result)
})
t.Run("bytes to string to bytes", func(t *testing.T) {
original := []byte{0x48, 0x65, 0x6c, 0x6c, 0x6f}
str := ToString(original)
result := []byte(str)
assert.Equal(t, original, result)
})
}
// TestConcatAllVariadic tests ConcatAll with various argument counts
func TestConcatAllVariadic(t *testing.T) {
t.Run("zero arguments", func(t *testing.T) {
result := ConcatAll()
assert.Equal(t, []byte{}, result)
})
t.Run("one argument", func(t *testing.T) {
result := ConcatAll([]byte("test"))
assert.Equal(t, []byte("test"), result)
})
t.Run("two arguments", func(t *testing.T) {
result := ConcatAll([]byte("hello"), []byte("world"))
assert.Equal(t, []byte("helloworld"), result)
})
t.Run("many arguments", func(t *testing.T) {
result := ConcatAll(
[]byte("a"),
[]byte("b"),
[]byte("c"),
[]byte("d"),
[]byte("e"),
[]byte("f"),
[]byte("g"),
[]byte("h"),
[]byte("i"),
[]byte("j"),
)
assert.Equal(t, []byte("abcdefghij"), result)
})
}
// Benchmark tests
func BenchmarkToString(b *testing.B) {
data := []byte("Hello, World!")
b.Run("small", func(b *testing.B) {
for b.Loop() {
_ = ToString(data)
}
})
b.Run("large", func(b *testing.B) {
large := make([]byte, 10000)
for i := range large {
large[i] = byte(i % 256)
}
b.ResetTimer()
for b.Loop() {
_ = ToString(large)
}
})
}
func BenchmarkSize(b *testing.B) {
data := []byte("Hello, World!")
for b.Loop() {
_ = Size(data)
}
}
func BenchmarkMonoidConcat(b *testing.B) {
a := []byte("Hello")
c := []byte(" World")
b.Run("small slices", func(b *testing.B) {
for b.Loop() {
_ = Monoid.Concat(a, c)
}
})
b.Run("large slices", func(b *testing.B) {
large1 := make([]byte, 10000)
large2 := make([]byte, 10000)
b.ResetTimer()
for b.Loop() {
_ = Monoid.Concat(large1, large2)
}
})
}
func BenchmarkConcatAll(b *testing.B) {
slices := [][]byte{
[]byte("Hello"),
[]byte(" "),
[]byte("World"),
[]byte("!"),
}
b.Run("few slices", func(b *testing.B) {
for b.Loop() {
_ = ConcatAll(slices...)
}
})
b.Run("many slices", func(b *testing.B) {
many := make([][]byte, 100)
for i := range many {
many[i] = []byte{byte(i)}
}
b.ResetTimer()
for b.Loop() {
_ = ConcatAll(many...)
}
})
}
func BenchmarkOrdCompare(b *testing.B) {
a := []byte("abc")
c := []byte("abd")
b.Run("equal", func(b *testing.B) {
for b.Loop() {
_ = Ord.Compare(a, a)
}
})
b.Run("different", func(b *testing.B) {
for b.Loop() {
_ = Ord.Compare(a, c)
}
})
b.Run("large slices", func(b *testing.B) {
large1 := make([]byte, 10000)
large2 := make([]byte, 10000)
large2[9999] = 1
b.ResetTimer()
for b.Loop() {
_ = Ord.Compare(large1, large2)
}
})
}
// Example tests
func ExampleEmpty() {
empty := Empty()
@@ -219,3 +512,17 @@ func ExampleConcatAll() {
// Output:
}
func ExampleMonoid_concat() {
result := Monoid.Concat([]byte("Hello"), []byte(" World"))
println(string(result)) // Hello World
// Output:
}
func ExampleOrd_compare() {
cmp := Ord.Compare([]byte("abc"), []byte("abd"))
println(cmp) // -1 (abc < abd)
// Output:
}

4
v2/bytes/coverage.out Normal file
View File

@@ -0,0 +1,4 @@
mode: set
github.com/IBM/fp-go/v2/bytes/bytes.go:55.21,57.2 1 1
github.com/IBM/fp-go/v2/bytes/bytes.go:111.32,113.2 1 1
github.com/IBM/fp-go/v2/bytes/bytes.go:175.26,177.2 1 1

View File

@@ -23,12 +23,219 @@ import (
)
var (
// monoid for byte arrays
// Monoid is the Monoid instance for byte slices.
//
// This Monoid combines byte slices through concatenation, with an empty
// byte slice as the identity element. It satisfies the monoid laws:
//
// Identity laws:
// - Monoid.Concat(Monoid.Empty(), x) == x (left identity)
// - Monoid.Concat(x, Monoid.Empty()) == x (right identity)
//
// Associativity law:
// - Monoid.Concat(Monoid.Concat(a, b), c) == Monoid.Concat(a, Monoid.Concat(b, c))
//
// Operations:
// - Empty(): Returns an empty byte slice []byte{}
// - Concat(a, b []byte): Concatenates two byte slices
//
// Example - Basic concatenation:
//
// result := Monoid.Concat([]byte("Hello"), []byte(" World"))
// // result: []byte("Hello World")
//
// Example - Identity element:
//
// empty := Monoid.Empty()
// data := []byte("test")
// result1 := Monoid.Concat(empty, data) // []byte("test")
// result2 := Monoid.Concat(data, empty) // []byte("test")
//
// Example - Building byte buffers:
//
// buffer := Monoid.Empty()
// buffer = Monoid.Concat(buffer, []byte("Line 1\n"))
// buffer = Monoid.Concat(buffer, []byte("Line 2\n"))
// buffer = Monoid.Concat(buffer, []byte("Line 3\n"))
//
// Example - Associativity:
//
// a := []byte("a")
// b := []byte("b")
// c := []byte("c")
// left := Monoid.Concat(Monoid.Concat(a, b), c) // []byte("abc")
// right := Monoid.Concat(a, Monoid.Concat(b, c)) // []byte("abc")
// // left == right
//
// See also:
// - ConcatAll: For concatenating multiple byte slices at once
// - Empty(): Convenience function for getting empty byte slice
Monoid = A.Monoid[byte]()
// ConcatAll concatenates all bytes
// ConcatAll efficiently concatenates multiple byte slices into a single slice.
//
// This function takes a variadic number of byte slices and combines them
// into a single byte slice. It pre-allocates the exact amount of memory
// needed, making it more efficient than repeated concatenation.
//
// Parameters:
// - slices: Zero or more byte slices to concatenate
//
// Returns:
// - A new byte slice containing all input slices concatenated in order
//
// Performance:
//
// ConcatAll is more efficient than using Monoid.Concat repeatedly because
// it calculates the total size upfront and allocates memory once, avoiding
// multiple allocations and copies.
//
// Example - Basic usage:
//
// result := ConcatAll(
// []byte("Hello"),
// []byte(" "),
// []byte("World"),
// )
// // result: []byte("Hello World")
//
// Example - Empty input:
//
// result := ConcatAll()
// // result: []byte{}
//
// Example - Single slice:
//
// result := ConcatAll([]byte("test"))
// // result: []byte("test")
//
// Example - Building protocol messages:
//
// import "encoding/binary"
//
// header := []byte{0x01, 0x02}
// length := make([]byte, 4)
// binary.BigEndian.PutUint32(length, 100)
// payload := []byte("data")
// footer := []byte{0xFF}
//
// message := ConcatAll(header, length, payload, footer)
//
// Example - With empty slices:
//
// result := ConcatAll(
// []byte("a"),
// []byte{},
// []byte("b"),
// []byte{},
// []byte("c"),
// )
// // result: []byte("abc")
//
// Example - Building CSV line:
//
// fields := [][]byte{
// []byte("John"),
// []byte("Doe"),
// []byte("30"),
// }
// separator := []byte(",")
//
// // Interleave fields with separators
// parts := [][]byte{
// fields[0], separator,
// fields[1], separator,
// fields[2],
// }
// line := ConcatAll(parts...)
// // line: []byte("John,Doe,30")
//
// See also:
// - Monoid.Concat: For concatenating exactly two byte slices
// - bytes.Join: Standard library function for joining with separator
ConcatAll = A.ArrayConcatAll[byte]
// Ord implements the default ordering on bytes
// Ord is the Ord instance for byte slices providing lexicographic ordering.
//
// This Ord instance compares byte slices lexicographically (dictionary order),
// comparing bytes from left to right until a difference is found or one slice
// ends. It uses the standard library's bytes.Compare and bytes.Equal functions.
//
// Comparison rules:
// - Compares byte-by-byte from left to right
// - First differing byte determines the order
// - Shorter slice is less than longer slice if all bytes match
// - Empty slice is less than any non-empty slice
//
// Operations:
// - Compare(a, b []byte) int: Returns -1 if a < b, 0 if a == b, 1 if a > b
// - Equals(a, b []byte) bool: Returns true if slices are equal
//
// Example - Basic comparison:
//
// cmp := Ord.Compare([]byte("abc"), []byte("abd"))
// // cmp: -1 (abc < abd)
//
// cmp = Ord.Compare([]byte("xyz"), []byte("abc"))
// // cmp: 1 (xyz > abc)
//
// cmp = Ord.Compare([]byte("test"), []byte("test"))
// // cmp: 0 (equal)
//
// Example - Length differences:
//
// cmp := Ord.Compare([]byte("ab"), []byte("abc"))
// // cmp: -1 (shorter is less)
//
// cmp = Ord.Compare([]byte("abc"), []byte("ab"))
// // cmp: 1 (longer is greater)
//
// Example - Empty slices:
//
// cmp := Ord.Compare([]byte{}, []byte("a"))
// // cmp: -1 (empty is less)
//
// cmp = Ord.Compare([]byte{}, []byte{})
// // cmp: 0 (both empty)
//
// Example - Equality check:
//
// equal := Ord.Equals([]byte("test"), []byte("test"))
// // equal: true
//
// equal = Ord.Equals([]byte("test"), []byte("Test"))
// // equal: false (case-sensitive)
//
// Example - Sorting byte slices:
//
// import "github.com/IBM/fp-go/v2/array"
//
// data := [][]byte{
// []byte("zebra"),
// []byte("apple"),
// []byte("mango"),
// }
//
// sorted := array.Sort(Ord)(data)
// // sorted: [[]byte("apple"), []byte("mango"), []byte("zebra")]
//
// Example - Binary data comparison:
//
// cmp := Ord.Compare([]byte{0x01, 0x02}, []byte{0x01, 0x03})
// // cmp: -1 (0x02 < 0x03)
//
// Example - Finding minimum:
//
// import O "github.com/IBM/fp-go/v2/ord"
//
// a := []byte("xyz")
// b := []byte("abc")
// min := O.Min(Ord)(a, b)
// // min: []byte("abc")
//
// See also:
// - bytes.Compare: Standard library comparison function
// - bytes.Equal: Standard library equality function
// - array.Sort: For sorting slices using an Ord instance
Ord = O.MakeOrd(bytes.Compare, bytes.Equal)
)

View File

@@ -53,17 +53,20 @@ var (
// structInfo holds information about a struct that needs lens generation
type structInfo struct {
Name string
Fields []fieldInfo
Imports map[string]string // package path -> alias
Name string
TypeParams string // e.g., "[T any]" or "[K comparable, V any]" - for type declarations
TypeParamNames string // e.g., "[T]" or "[K, V]" - for type usage in function signatures
Fields []fieldInfo
Imports map[string]string // package path -> alias
}
// fieldInfo holds information about a struct field
type fieldInfo struct {
Name string
TypeName string
BaseType string // TypeName without leading * for pointer types
IsOptional bool // true if field is a pointer or has json omitempty tag
Name string
TypeName string
BaseType string // TypeName without leading * for pointer types
IsOptional bool // true if field is a pointer or has json omitempty tag
IsComparable bool // true if the type is comparable (can use ==)
}
// templateData holds data for template rendering
@@ -74,64 +77,95 @@ type templateData struct {
const lensStructTemplate = `
// {{.Name}}Lenses provides lenses for accessing fields of {{.Name}}
type {{.Name}}Lenses struct {
type {{.Name}}Lenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
{{.Name}} {{if .IsOptional}}LO.LensO[{{$.Name}}, {{.TypeName}}]{{else}}L.Lens[{{$.Name}}, {{.TypeName}}]{{end}}
{{.Name}} L.Lens[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
// optional fields
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O LO.LensO[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
}
// {{.Name}}RefLenses provides lenses for accessing fields of {{.Name}} via a reference to {{.Name}}
type {{.Name}}RefLenses struct {
type {{.Name}}RefLenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
{{.Name}} {{if .IsOptional}}LO.LensO[*{{$.Name}}, {{.TypeName}}]{{else}}L.Lens[*{{$.Name}}, {{.TypeName}}]{{end}}
{{.Name}} L.Lens[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
// optional fields
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O LO.LensO[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
}
`
const lensConstructorTemplate = `
// Make{{.Name}}Lenses creates a new {{.Name}}Lenses with lenses for all fields
func Make{{.Name}}Lenses() {{.Name}}Lenses {
func Make{{.Name}}Lenses{{.TypeParams}}() {{.Name}}Lenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
iso{{.Name}} := I.FromZero[{{.TypeName}}]()
lens{{.Name}} := L.MakeLens(
func(s {{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s {{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) {{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}}O := LO.FromIso[{{$.Name}}{{$.TypeParamNames}}](IO.FromZero[{{.TypeName}}]())(lens{{.Name}})
{{- end}}
{{- end}}
return {{.Name}}Lenses{
return {{.Name}}Lenses{{.TypeParamNames}}{
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
{{.Name}}: L.MakeLens(
func(s {{$.Name}}) O.Option[{{.TypeName}}] { return iso{{.Name}}.Get(s.{{.Name}}) },
func(s {{$.Name}}, v O.Option[{{.TypeName}}]) {{$.Name}} { s.{{.Name}} = iso{{.Name}}.ReverseGet(v); return s },
),
{{- else}}
{{.Name}}: L.MakeLens(
func(s {{$.Name}}) {{.TypeName}} { return s.{{.Name}} },
func(s {{$.Name}}, v {{.TypeName}}) {{$.Name}} { s.{{.Name}} = v; return s },
),
{{.Name}}: lens{{.Name}},
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O: lens{{.Name}}O,
{{- end}}
{{- end}}
}
}
// Make{{.Name}}RefLenses creates a new {{.Name}}RefLenses with lenses for all fields
func Make{{.Name}}RefLenses() {{.Name}}RefLenses {
func Make{{.Name}}RefLenses{{.TypeParams}}() {{.Name}}RefLenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
iso{{.Name}} := I.FromZero[{{.TypeName}}]()
{{- end}}
{{- end}}
return {{.Name}}RefLenses{
{{- range .Fields}}
{{- if .IsOptional}}
{{.Name}}: L.MakeLensRef(
func(s *{{$.Name}}) O.Option[{{.TypeName}}] { return iso{{.Name}}.Get(s.{{.Name}}) },
func(s *{{$.Name}}, v O.Option[{{.TypeName}}]) *{{$.Name}} { s.{{.Name}} = iso{{.Name}}.ReverseGet(v); return s },
),
{{- if .IsComparable}}
lens{{.Name}} := L.MakeLensStrict(
func(s *{{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- else}}
{{.Name}}: L.MakeLensRef(
func(s *{{$.Name}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}, v {{.TypeName}}) *{{$.Name}} { s.{{.Name}} = v; return s },
),
lens{{.Name}} := L.MakeLensRef(
func(s *{{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- end}}
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}}O := LO.FromIso[*{{$.Name}}{{$.TypeParamNames}}](IO.FromZero[{{.TypeName}}]())(lens{{.Name}})
{{- end}}
{{- end}}
return {{.Name}}RefLenses{{.TypeParamNames}}{
// mandatory lenses
{{- range .Fields}}
{{.Name}}: lens{{.Name}},
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O: lens{{.Name}}O,
{{- end}}
{{- end}}
}
@@ -257,6 +291,259 @@ func isPointerType(expr ast.Expr) bool {
return ok
}
// isComparableType checks if a type expression represents a comparable type.
// Comparable types in Go include:
// - Basic types (bool, numeric types, string)
// - Pointer types
// - Channel types
// - Interface types
// - Structs where all fields are comparable
// - Arrays where the element type is comparable
//
// Non-comparable types include:
// - Slices
// - Maps
// - Functions
//
// typeParams is a map of type parameter names to their constraints (e.g., "T" -> "any", "K" -> "comparable")
func isComparableType(expr ast.Expr, typeParams map[string]string) bool {
switch t := expr.(type) {
case *ast.Ident:
// Check if this is a type parameter
if constraint, isTypeParam := typeParams[t.Name]; isTypeParam {
// Type parameter - check its constraint
return constraint == "comparable"
}
// Basic types and named types
// We assume named types are comparable unless they're known non-comparable types
name := t.Name
// Known non-comparable built-in types
if name == "error" {
// error is an interface, which is comparable
return true
}
// Most basic types and named types are comparable
// We can't determine if a custom type is comparable without type checking,
// so we assume it is (conservative approach)
return true
case *ast.StarExpr:
// Pointer types are always comparable
return true
case *ast.ArrayType:
// Arrays are comparable if their element type is comparable
if t.Len == nil {
// This is a slice (no length), slices are not comparable
return false
}
// Fixed-size array, check element type
return isComparableType(t.Elt, typeParams)
case *ast.MapType:
// Maps are not comparable
return false
case *ast.FuncType:
// Functions are not comparable
return false
case *ast.InterfaceType:
// Interface types are comparable
return true
case *ast.StructType:
// Structs are comparable if all fields are comparable
// We can't easily determine this without full type information,
// so we conservatively return false for struct literals
return false
case *ast.SelectorExpr:
// Qualified identifier (e.g., pkg.Type)
// We can't determine comparability without type information
// Check for known non-comparable types from standard library
if ident, ok := t.X.(*ast.Ident); ok {
pkgName := ident.Name
typeName := t.Sel.Name
// Check for known non-comparable types
if pkgName == "context" && typeName == "Context" {
// context.Context is an interface, which is comparable
return true
}
// For other qualified types, we assume they're comparable
// This is a conservative approach
}
return true
case *ast.IndexExpr, *ast.IndexListExpr:
// Generic types - we can't determine comparability without type information
// For common generic types, we can make educated guesses
var baseExpr ast.Expr
if idx, ok := t.(*ast.IndexExpr); ok {
baseExpr = idx.X
} else if idxList, ok := t.(*ast.IndexListExpr); ok {
baseExpr = idxList.X
}
if sel, ok := baseExpr.(*ast.SelectorExpr); ok {
if ident, ok := sel.X.(*ast.Ident); ok {
pkgName := ident.Name
typeName := sel.Sel.Name
// Check for known non-comparable generic types
if pkgName == "option" && typeName == "Option" {
// Option types are not comparable (they contain a slice internally)
return false
}
if pkgName == "either" && typeName == "Either" {
// Either types are not comparable
return false
}
}
}
// For other generic types, conservatively assume not comparable
log.Printf("Not comparable type: %v\n", t)
return false
case *ast.ChanType:
// Channel types are comparable
return true
default:
// Unknown type, conservatively assume not comparable
return false
}
}
// embeddedFieldResult holds both the field info and its AST type for import extraction
type embeddedFieldResult struct {
fieldInfo fieldInfo
fieldType ast.Expr
}
// extractEmbeddedFields extracts fields from an embedded struct type
// It returns a slice of embeddedFieldResult for all exported fields in the embedded struct
// typeParamsMap contains the type parameters of the parent struct (for checking comparability)
func extractEmbeddedFields(embedType ast.Expr, fileImports map[string]string, file *ast.File, typeParamsMap map[string]string) []embeddedFieldResult {
var results []embeddedFieldResult
// Get the type name of the embedded field
var typeName string
var typeIdent *ast.Ident
switch t := embedType.(type) {
case *ast.Ident:
// Direct embedded type: type MyStruct struct { EmbeddedType }
typeName = t.Name
typeIdent = t
case *ast.StarExpr:
// Pointer embedded type: type MyStruct struct { *EmbeddedType }
if ident, ok := t.X.(*ast.Ident); ok {
typeName = ident.Name
typeIdent = ident
}
case *ast.SelectorExpr:
// Qualified embedded type: type MyStruct struct { pkg.EmbeddedType }
// We can't easily resolve this without full type information
// For now, skip these
return results
}
if typeName == "" || typeIdent == nil {
return results
}
// Find the struct definition in the same file
var embeddedStructType *ast.StructType
ast.Inspect(file, func(n ast.Node) bool {
if ts, ok := n.(*ast.TypeSpec); ok {
if ts.Name.Name == typeName {
if st, ok := ts.Type.(*ast.StructType); ok {
embeddedStructType = st
return false
}
}
}
return true
})
if embeddedStructType == nil {
// Struct not found in this file, might be from another package
return results
}
// Extract fields from the embedded struct
for _, field := range embeddedStructType.Fields.List {
// Skip embedded fields within embedded structs (for now, to avoid infinite recursion)
if len(field.Names) == 0 {
continue
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
fieldTypeName := getTypeName(field.Type)
isOptional := false
baseType := fieldTypeName
// Check if field is optional
if isPointerType(field.Type) {
isOptional = true
baseType = strings.TrimPrefix(fieldTypeName, "*")
} else if hasOmitEmpty(field.Tag) {
isOptional = true
}
// Check if the type is comparable
isComparable := isComparableType(field.Type, typeParamsMap)
results = append(results, embeddedFieldResult{
fieldInfo: fieldInfo{
Name: name.Name,
TypeName: fieldTypeName,
BaseType: baseType,
IsOptional: isOptional,
IsComparable: isComparable,
},
fieldType: field.Type,
})
}
}
}
return results
}
// extractTypeParams extracts type parameters from a type spec
// Returns two strings: full params like "[T any]" and names only like "[T]"
func extractTypeParams(typeSpec *ast.TypeSpec) (string, string) {
if typeSpec.TypeParams == nil || len(typeSpec.TypeParams.List) == 0 {
return "", ""
}
var params []string
var names []string
for _, field := range typeSpec.TypeParams.List {
for _, name := range field.Names {
constraint := getTypeName(field.Type)
params = append(params, name.Name+" "+constraint)
names = append(names, name.Name)
}
}
fullParams := "[" + strings.Join(params, ", ") + "]"
nameParams := "[" + strings.Join(names, ", ") + "]"
return fullParams, nameParams
}
// buildTypeParamsMap creates a map of type parameter names to their constraints
// e.g., for "type Box[T any, K comparable]", returns {"T": "any", "K": "comparable"}
func buildTypeParamsMap(typeSpec *ast.TypeSpec) map[string]string {
typeParamsMap := make(map[string]string)
if typeSpec.TypeParams == nil || len(typeSpec.TypeParams.List) == 0 {
return typeParamsMap
}
for _, field := range typeSpec.TypeParams.List {
constraint := getTypeName(field.Type)
for _, name := range field.Names {
typeParamsMap[name.Name] = constraint
}
}
return typeParamsMap
}
// parseFile parses a Go file and extracts structs with lens annotations
func parseFile(filename string) ([]structInfo, string, error) {
fset := token.NewFileSet()
@@ -320,9 +607,27 @@ func parseFile(filename string) ([]structInfo, string, error) {
var fields []fieldInfo
structImports := make(map[string]string)
// Build type parameters map for this struct
typeParamsMap := buildTypeParamsMap(typeSpec)
for _, field := range structType.Fields.List {
if len(field.Names) == 0 {
// Embedded field, skip for now
// Embedded field - promote its fields
embeddedResults := extractEmbeddedFields(field.Type, fileImports, node, typeParamsMap)
for _, embResult := range embeddedResults {
// Extract imports from embedded field's type
fieldImports := make(map[string]string)
extractImports(embResult.fieldType, fieldImports)
// Resolve package names to full import paths
for pkgName := range fieldImports {
if importPath, ok := fileImports[pkgName]; ok {
structImports[importPath] = pkgName
}
}
fields = append(fields, embResult.fieldInfo)
}
continue
}
for _, name := range field.Names {
@@ -331,6 +636,7 @@ func parseFile(filename string) ([]structInfo, string, error) {
typeName := getTypeName(field.Type)
isOptional := false
baseType := typeName
isComparable := false
// Check if field is optional:
// 1. Pointer types are always optional
@@ -344,6 +650,11 @@ func parseFile(filename string) ([]structInfo, string, error) {
isOptional = true
}
// Check if the type is comparable (for non-optional fields)
// For optional fields, we don't need to check since they use LensO
isComparable = isComparableType(field.Type, typeParamsMap)
// log.Printf("field %s, type: %v, isComparable: %b\n", name, field.Type, isComparable)
// Extract imports from this field's type
fieldImports := make(map[string]string)
extractImports(field.Type, fieldImports)
@@ -356,20 +667,24 @@ func parseFile(filename string) ([]structInfo, string, error) {
}
fields = append(fields, fieldInfo{
Name: name.Name,
TypeName: typeName,
BaseType: baseType,
IsOptional: isOptional,
Name: name.Name,
TypeName: typeName,
BaseType: baseType,
IsOptional: isOptional,
IsComparable: isComparable,
})
}
}
}
if len(fields) > 0 {
typeParams, typeParamNames := extractTypeParams(typeSpec)
structs = append(structs, structInfo{
Name: typeSpec.Name.Name,
Fields: fields,
Imports: structImports,
Name: typeSpec.Name.Name,
TypeParams: typeParams,
TypeParamNames: typeParamNames,
Fields: fields,
Imports: structImports,
})
}
@@ -469,8 +784,8 @@ func generateLensHelpers(dir, filename string, verbose bool) error {
// Standard fp-go imports always needed
f.WriteString("\tL \"github.com/IBM/fp-go/v2/optics/lens\"\n")
f.WriteString("\tLO \"github.com/IBM/fp-go/v2/optics/lens/option\"\n")
f.WriteString("\tO \"github.com/IBM/fp-go/v2/option\"\n")
f.WriteString("\tI \"github.com/IBM/fp-go/v2/optics/iso/option\"\n")
// f.WriteString("\tO \"github.com/IBM/fp-go/v2/option\"\n")
f.WriteString("\tIO \"github.com/IBM/fp-go/v2/optics/iso/option\"\n")
// Add additional imports collected from field types
for importPath, alias := range allImports {

View File

@@ -168,6 +168,91 @@ func TestIsPointerType(t *testing.T) {
}
}
func TestIsComparableType(t *testing.T) {
tests := []struct {
name string
code string
expected bool
}{
{
name: "basic type - string",
code: "type T struct { F string }",
expected: true,
},
{
name: "basic type - int",
code: "type T struct { F int }",
expected: true,
},
{
name: "basic type - bool",
code: "type T struct { F bool }",
expected: true,
},
{
name: "pointer type",
code: "type T struct { F *string }",
expected: true,
},
{
name: "slice type - not comparable",
code: "type T struct { F []string }",
expected: false,
},
{
name: "map type - not comparable",
code: "type T struct { F map[string]int }",
expected: false,
},
{
name: "array type - comparable if element is",
code: "type T struct { F [5]int }",
expected: true,
},
{
name: "interface type",
code: "type T struct { F interface{} }",
expected: true,
},
{
name: "channel type",
code: "type T struct { F chan int }",
expected: true,
},
{
name: "function type - not comparable",
code: "type T struct { F func() }",
expected: false,
},
{
name: "struct literal - conservatively not comparable",
code: "type T struct { F struct{ X int } }",
expected: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
fset := token.NewFileSet()
file, err := parser.ParseFile(fset, "", "package test\n"+tt.code, 0)
require.NoError(t, err)
var fieldType ast.Expr
ast.Inspect(file, func(n ast.Node) bool {
if field, ok := n.(*ast.Field); ok && len(field.Names) > 0 {
fieldType = field.Type
return false
}
return true
})
require.NotNil(t, fieldType)
result := isComparableType(fieldType, map[string]string{})
assert.Equal(t, tt.expected, result)
})
}
}
func TestHasOmitEmpty(t *testing.T) {
tests := []struct {
name string
@@ -337,6 +422,167 @@ type Config struct {
assert.False(t, config.Fields[4].IsOptional, "Required field without omitempty should not be optional")
}
func TestParseFileWithComparableTypes(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type TypeTest struct {
Name string
Age int
Pointer *string
Slice []string
Map map[string]int
Channel chan int
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check TypeTest struct
typeTest := structs[0]
assert.Equal(t, "TypeTest", typeTest.Name)
assert.Len(t, typeTest.Fields, 6)
// Name - string is comparable
assert.Equal(t, "Name", typeTest.Fields[0].Name)
assert.Equal(t, "string", typeTest.Fields[0].TypeName)
assert.False(t, typeTest.Fields[0].IsOptional)
assert.True(t, typeTest.Fields[0].IsComparable, "string should be comparable")
// Age - int is comparable
assert.Equal(t, "Age", typeTest.Fields[1].Name)
assert.Equal(t, "int", typeTest.Fields[1].TypeName)
assert.False(t, typeTest.Fields[1].IsOptional)
assert.True(t, typeTest.Fields[1].IsComparable, "int should be comparable")
// Pointer - pointer is optional, IsComparable not checked for optional fields
assert.Equal(t, "Pointer", typeTest.Fields[2].Name)
assert.Equal(t, "*string", typeTest.Fields[2].TypeName)
assert.True(t, typeTest.Fields[2].IsOptional)
// Slice - not comparable
assert.Equal(t, "Slice", typeTest.Fields[3].Name)
assert.Equal(t, "[]string", typeTest.Fields[3].TypeName)
assert.False(t, typeTest.Fields[3].IsOptional)
assert.False(t, typeTest.Fields[3].IsComparable, "slice should not be comparable")
// Map - not comparable
assert.Equal(t, "Map", typeTest.Fields[4].Name)
assert.Equal(t, "map[string]int", typeTest.Fields[4].TypeName)
assert.False(t, typeTest.Fields[4].IsOptional)
assert.False(t, typeTest.Fields[4].IsComparable, "map should not be comparable")
// Channel - comparable (note: getTypeName returns "any" for channel types, but isComparableType correctly identifies them)
assert.Equal(t, "Channel", typeTest.Fields[5].Name)
assert.Equal(t, "any", typeTest.Fields[5].TypeName) // getTypeName doesn't handle chan types specifically
assert.False(t, typeTest.Fields[5].IsOptional)
assert.True(t, typeTest.Fields[5].IsComparable, "channel should be comparable")
}
func TestLensRefTemplatesWithComparable(t *testing.T) {
s := structInfo{
Name: "TestStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Age", TypeName: "int", IsOptional: false, IsComparable: true},
{Name: "Data", TypeName: "[]byte", IsOptional: false, IsComparable: false},
{Name: "Pointer", TypeName: "*string", IsOptional: true, IsComparable: false},
},
}
// Test constructor template for RefLenses
var constructorBuf bytes.Buffer
err := constructorTmpl.Execute(&constructorBuf, s)
require.NoError(t, err)
constructorStr := constructorBuf.String()
// Check that MakeLensStrict is used for comparable types in RefLenses
assert.Contains(t, constructorStr, "func MakeTestStructRefLenses() TestStructRefLenses")
// Name field - comparable, should use MakeLensStrict
assert.Contains(t, constructorStr, "lensName := L.MakeLensStrict(",
"comparable field Name should use MakeLensStrict in RefLenses")
// Age field - comparable, should use MakeLensStrict
assert.Contains(t, constructorStr, "lensAge := L.MakeLensStrict(",
"comparable field Age should use MakeLensStrict in RefLenses")
// Data field - not comparable, should use MakeLensRef
assert.Contains(t, constructorStr, "lensData := L.MakeLensRef(",
"non-comparable field Data should use MakeLensRef in RefLenses")
}
func TestGenerateLensHelpersWithComparable(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type TestStruct struct {
Name string
Count int
Data []byte
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content in RefLenses
assert.Contains(t, contentStr, "MakeTestStructRefLenses")
// Name and Count are comparable, should use MakeLensStrict
assert.Contains(t, contentStr, "L.MakeLensStrict",
"comparable fields should use MakeLensStrict in RefLenses")
// Data is not comparable (slice), should use MakeLensRef
assert.Contains(t, contentStr, "L.MakeLensRef",
"non-comparable fields should use MakeLensRef in RefLenses")
// Verify the pattern appears for Name field (comparable)
namePattern := "lensName := L.MakeLensStrict("
assert.Contains(t, contentStr, namePattern,
"Name field should use MakeLensStrict")
// Verify the pattern appears for Data field (not comparable)
dataPattern := "lensData := L.MakeLensRef("
assert.Contains(t, contentStr, dataPattern,
"Data field should use MakeLensRef")
}
func TestGenerateLensHelpers(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
@@ -373,11 +619,11 @@ type TestStruct struct {
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "Code generated by go generate")
assert.Contains(t, contentStr, "TestStructLens")
assert.Contains(t, contentStr, "MakeTestStructLens")
assert.Contains(t, contentStr, "TestStructLenses")
assert.Contains(t, contentStr, "MakeTestStructLenses")
assert.Contains(t, contentStr, "L.Lens[TestStruct, string]")
assert.Contains(t, contentStr, "LO.LensO[TestStruct, *int]")
assert.Contains(t, contentStr, "I.FromZero")
assert.Contains(t, contentStr, "IO.FromZero")
}
func TestGenerateLensHelpersNoAnnotations(t *testing.T) {
@@ -411,8 +657,8 @@ func TestLensTemplates(t *testing.T) {
s := structInfo{
Name: "TestStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false},
{Name: "Value", TypeName: "*int", IsOptional: true},
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Value", TypeName: "*int", IsOptional: true, IsComparable: true},
},
}
@@ -424,7 +670,9 @@ func TestLensTemplates(t *testing.T) {
structStr := structBuf.String()
assert.Contains(t, structStr, "type TestStructLenses struct")
assert.Contains(t, structStr, "Name L.Lens[TestStruct, string]")
assert.Contains(t, structStr, "Value LO.LensO[TestStruct, *int]")
assert.Contains(t, structStr, "NameO LO.LensO[TestStruct, string]")
assert.Contains(t, structStr, "Value L.Lens[TestStruct, *int]")
assert.Contains(t, structStr, "ValueO LO.LensO[TestStruct, *int]")
// Test constructor template
var constructorBuf bytes.Buffer
@@ -434,19 +682,21 @@ func TestLensTemplates(t *testing.T) {
constructorStr := constructorBuf.String()
assert.Contains(t, constructorStr, "func MakeTestStructLenses() TestStructLenses")
assert.Contains(t, constructorStr, "return TestStructLenses{")
assert.Contains(t, constructorStr, "Name: L.MakeLens(")
assert.Contains(t, constructorStr, "Value: L.MakeLens(")
assert.Contains(t, constructorStr, "I.FromZero")
assert.Contains(t, constructorStr, "Name: lensName,")
assert.Contains(t, constructorStr, "NameO: lensNameO,")
assert.Contains(t, constructorStr, "Value: lensValue,")
assert.Contains(t, constructorStr, "ValueO: lensValueO,")
assert.Contains(t, constructorStr, "IO.FromZero")
}
func TestLensTemplatesWithOmitEmpty(t *testing.T) {
s := structInfo{
Name: "ConfigStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false},
{Name: "Value", TypeName: "string", IsOptional: true}, // non-pointer with omitempty
{Name: "Count", TypeName: "int", IsOptional: true}, // non-pointer with omitempty
{Name: "Pointer", TypeName: "*string", IsOptional: true}, // pointer
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Value", TypeName: "string", IsOptional: true, IsComparable: true}, // non-pointer with omitempty
{Name: "Count", TypeName: "int", IsOptional: true, IsComparable: true}, // non-pointer with omitempty
{Name: "Pointer", TypeName: "*string", IsOptional: true, IsComparable: true}, // pointer
},
}
@@ -458,9 +708,13 @@ func TestLensTemplatesWithOmitEmpty(t *testing.T) {
structStr := structBuf.String()
assert.Contains(t, structStr, "type ConfigStructLenses struct")
assert.Contains(t, structStr, "Name L.Lens[ConfigStruct, string]")
assert.Contains(t, structStr, "Value LO.LensO[ConfigStruct, string]", "non-pointer with omitempty should use LensO")
assert.Contains(t, structStr, "Count LO.LensO[ConfigStruct, int]", "non-pointer with omitempty should use LensO")
assert.Contains(t, structStr, "Pointer LO.LensO[ConfigStruct, *string]")
assert.Contains(t, structStr, "NameO LO.LensO[ConfigStruct, string]")
assert.Contains(t, structStr, "Value L.Lens[ConfigStruct, string]")
assert.Contains(t, structStr, "ValueO LO.LensO[ConfigStruct, string]", "comparable non-pointer with omitempty should have optional lens")
assert.Contains(t, structStr, "Count L.Lens[ConfigStruct, int]")
assert.Contains(t, structStr, "CountO LO.LensO[ConfigStruct, int]", "comparable non-pointer with omitempty should have optional lens")
assert.Contains(t, structStr, "Pointer L.Lens[ConfigStruct, *string]")
assert.Contains(t, structStr, "PointerO LO.LensO[ConfigStruct, *string]")
// Test constructor template
var constructorBuf bytes.Buffer
@@ -469,9 +723,9 @@ func TestLensTemplatesWithOmitEmpty(t *testing.T) {
constructorStr := constructorBuf.String()
assert.Contains(t, constructorStr, "func MakeConfigStructLenses() ConfigStructLenses")
assert.Contains(t, constructorStr, "isoValue := I.FromZero[string]()")
assert.Contains(t, constructorStr, "isoCount := I.FromZero[int]()")
assert.Contains(t, constructorStr, "isoPointer := I.FromZero[*string]()")
assert.Contains(t, constructorStr, "IO.FromZero[string]()")
assert.Contains(t, constructorStr, "IO.FromZero[int]()")
assert.Contains(t, constructorStr, "IO.FromZero[*string]()")
}
func TestLensCommandFlags(t *testing.T) {
@@ -480,7 +734,7 @@ func TestLensCommandFlags(t *testing.T) {
assert.Equal(t, "lens", cmd.Name)
assert.Equal(t, "generate lens code for annotated structs", cmd.Usage)
assert.Contains(t, strings.ToLower(cmd.Description), "fp-go:lens")
assert.Contains(t, strings.ToLower(cmd.Description), "lenso")
assert.Contains(t, strings.ToLower(cmd.Description), "lenso", "Description should mention LensO for optional lenses")
// Check flags
assert.Len(t, cmd.Flags, 3)
@@ -501,3 +755,330 @@ func TestLensCommandFlags(t *testing.T) {
assert.True(t, hasFilename, "should have filename flag")
assert.True(t, hasVerbose, "should have verbose flag")
}
func TestParseFileWithEmbeddedStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// Base struct to be embedded
type Base struct {
ID int
Name string
}
// fp-go:Lens
type Extended struct {
Base
Extra string
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Extended struct
extended := structs[0]
assert.Equal(t, "Extended", extended.Name)
assert.Len(t, extended.Fields, 3, "Should have 3 fields: ID, Name (from Base), and Extra")
// Check that embedded fields are promoted
fieldNames := make(map[string]bool)
for _, field := range extended.Fields {
fieldNames[field.Name] = true
}
assert.True(t, fieldNames["ID"], "Should have promoted ID field from Base")
assert.True(t, fieldNames["Name"], "Should have promoted Name field from Base")
assert.True(t, fieldNames["Extra"], "Should have Extra field")
}
func TestGenerateLensHelpersWithEmbeddedStruct(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// Base struct to be embedded
type Address struct {
Street string
City string
}
// fp-go:Lens
type Person struct {
Address
Name string
Age int
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "PersonLenses")
assert.Contains(t, contentStr, "MakePersonLenses")
// Check that embedded fields are included
assert.Contains(t, contentStr, "Street L.Lens[Person, string]", "Should have lens for embedded Street field")
assert.Contains(t, contentStr, "City L.Lens[Person, string]", "Should have lens for embedded City field")
assert.Contains(t, contentStr, "Name L.Lens[Person, string]", "Should have lens for Name field")
assert.Contains(t, contentStr, "Age L.Lens[Person, int]", "Should have lens for Age field")
// Check that optional lenses are also generated for embedded fields
assert.Contains(t, contentStr, "StreetO LO.LensO[Person, string]")
assert.Contains(t, contentStr, "CityO LO.LensO[Person, string]")
}
func TestParseFileWithPointerEmbeddedStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// Base struct to be embedded
type Metadata struct {
CreatedAt string
UpdatedAt string
}
// fp-go:Lens
type Document struct {
*Metadata
Title string
Content string
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Document struct
doc := structs[0]
assert.Equal(t, "Document", doc.Name)
assert.Len(t, doc.Fields, 4, "Should have 4 fields: CreatedAt, UpdatedAt (from *Metadata), Title, and Content")
// Check that embedded fields are promoted
fieldNames := make(map[string]bool)
for _, field := range doc.Fields {
fieldNames[field.Name] = true
}
assert.True(t, fieldNames["CreatedAt"], "Should have promoted CreatedAt field from *Metadata")
assert.True(t, fieldNames["UpdatedAt"], "Should have promoted UpdatedAt field from *Metadata")
assert.True(t, fieldNames["Title"], "Should have Title field")
assert.True(t, fieldNames["Content"], "Should have Content field")
}
func TestParseFileWithGenericStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type Container[T any] struct {
Value T
Count int
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Container struct
container := structs[0]
assert.Equal(t, "Container", container.Name)
assert.Equal(t, "[T any]", container.TypeParams, "Should have type parameter [T any]")
assert.Len(t, container.Fields, 2)
assert.Equal(t, "Value", container.Fields[0].Name)
assert.Equal(t, "T", container.Fields[0].TypeName)
assert.Equal(t, "Count", container.Fields[1].Name)
assert.Equal(t, "int", container.Fields[1].TypeName)
}
func TestParseFileWithMultipleTypeParams(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type Pair[K comparable, V any] struct {
Key K
Value V
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Pair struct
pair := structs[0]
assert.Equal(t, "Pair", pair.Name)
assert.Equal(t, "[K comparable, V any]", pair.TypeParams, "Should have type parameters [K comparable, V any]")
assert.Len(t, pair.Fields, 2)
assert.Equal(t, "Key", pair.Fields[0].Name)
assert.Equal(t, "K", pair.Fields[0].TypeName)
assert.Equal(t, "Value", pair.Fields[1].Name)
assert.Equal(t, "V", pair.Fields[1].TypeName)
}
func TestGenerateLensHelpersWithGenericStruct(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type Box[T any] struct {
Content T
Label string
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content with type parameters
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "type BoxLenses[T any] struct", "Should have generic BoxLenses type")
assert.Contains(t, contentStr, "type BoxRefLenses[T any] struct", "Should have generic BoxRefLenses type")
assert.Contains(t, contentStr, "func MakeBoxLenses[T any]() BoxLenses[T]", "Should have generic constructor")
assert.Contains(t, contentStr, "func MakeBoxRefLenses[T any]() BoxRefLenses[T]", "Should have generic ref constructor")
// Check that fields use the generic type parameter
assert.Contains(t, contentStr, "Content L.Lens[Box[T], T]", "Should have lens for generic Content field")
assert.Contains(t, contentStr, "Label L.Lens[Box[T], string]", "Should have lens for Label field")
// Check optional lenses - only for comparable types
// T any is not comparable, so ContentO should NOT be generated
assert.NotContains(t, contentStr, "ContentO LO.LensO[Box[T], T]", "T any is not comparable, should not have optional lens")
// string is comparable, so LabelO should be generated
assert.Contains(t, contentStr, "LabelO LO.LensO[Box[T], string]", "string is comparable, should have optional lens")
}
func TestGenerateLensHelpersWithComparableTypeParam(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type ComparableBox[T comparable] struct {
Key T
Value string
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content with type parameters
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "type ComparableBoxLenses[T comparable] struct", "Should have generic ComparableBoxLenses type")
assert.Contains(t, contentStr, "type ComparableBoxRefLenses[T comparable] struct", "Should have generic ComparableBoxRefLenses type")
// Check that Key field (with comparable constraint) uses MakeLensStrict in RefLenses
assert.Contains(t, contentStr, "lensKey := L.MakeLensStrict(", "Key field with comparable constraint should use MakeLensStrict")
// Check that Value field (string, always comparable) also uses MakeLensStrict
assert.Contains(t, contentStr, "lensValue := L.MakeLensStrict(", "Value field (string) should use MakeLensStrict")
// Verify that MakeLensRef is NOT used (since both fields are comparable)
assert.NotContains(t, contentStr, "L.MakeLensRef(", "Should not use MakeLensRef when all fields are comparable")
}

11
v2/constant/monoid.go Normal file
View File

@@ -0,0 +1,11 @@
package constant
import (
"github.com/IBM/fp-go/v2/function"
M "github.com/IBM/fp-go/v2/monoid"
)
// Monoid returns a [M.Monoid] that returns a constant value in all operations
func Monoid[A any](a A) M.Monoid[A] {
return M.MakeMonoid(function.Constant2[A, A](a), a)
}

View File

@@ -96,7 +96,7 @@ func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Operator[S1, S2] {
return RIOR.Bind[context.Context](setter, f)
return RIOR.Bind(setter, f)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
@@ -256,7 +256,7 @@ func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Operator[S, S] {
return RIOR.BindL[context.Context](lens, f)
return RIOR.BindL(lens, f)
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
@@ -334,6 +334,8 @@ func LetToL[S, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IOEither Kleisli arrow (S1 -> IOEither[error, T])
//
//go:inline
func BindIOEitherK[S1, S2, T any](
setter func(T) func(S1) S2,
f ioresult.Kleisli[S1, T],
@@ -347,6 +349,8 @@ func BindIOEitherK[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IOResult Kleisli arrow (S1 -> IOResult[T])
//
//go:inline
func BindIOResultK[S1, S2, T any](
setter func(T) func(S1) S2,
f ioresult.Kleisli[S1, T],
@@ -360,6 +364,8 @@ func BindIOResultK[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IO Kleisli arrow (S1 -> IO[T])
//
//go:inline
func BindIOK[S1, S2, T any](
setter func(T) func(S1) S2,
f io.Kleisli[S1, T],
@@ -373,6 +379,8 @@ func BindIOK[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A Reader Kleisli arrow (S1 -> Reader[context.Context, T])
//
//go:inline
func BindReaderK[S1, S2, T any](
setter func(T) func(S1) S2,
f reader.Kleisli[context.Context, S1, T],
@@ -386,6 +394,8 @@ func BindReaderK[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A ReaderIO Kleisli arrow (S1 -> ReaderIO[context.Context, T])
//
//go:inline
func BindReaderIOK[S1, S2, T any](
setter func(T) func(S1) S2,
f readerio.Kleisli[context.Context, S1, T],
@@ -399,6 +409,8 @@ func BindReaderIOK[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An Either Kleisli arrow (S1 -> Either[error, T])
//
//go:inline
func BindEitherK[S1, S2, T any](
setter func(T) func(S1) S2,
f result.Kleisli[S1, T],
@@ -412,6 +424,8 @@ func BindEitherK[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A Result Kleisli arrow (S1 -> Result[T])
//
//go:inline
func BindResultK[S1, S2, T any](
setter func(T) func(S1) S2,
f result.Kleisli[S1, T],
@@ -426,6 +440,8 @@ func BindResultK[S1, S2, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IOEither Kleisli arrow (T -> IOEither[error, T])
//
//go:inline
func BindIOEitherKL[S, T any](
lens L.Lens[S, T],
f ioresult.Kleisli[T, T],
@@ -439,6 +455,8 @@ func BindIOEitherKL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IOResult Kleisli arrow (T -> IOResult[T])
//
//go:inline
func BindIOResultKL[S, T any](
lens L.Lens[S, T],
f ioresult.Kleisli[T, T],
@@ -453,6 +471,8 @@ func BindIOResultKL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IO Kleisli arrow (T -> IO[T])
//
//go:inline
func BindIOKL[S, T any](
lens L.Lens[S, T],
f io.Kleisli[T, T],
@@ -467,6 +487,8 @@ func BindIOKL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: A Reader Kleisli arrow (T -> Reader[context.Context, T])
//
//go:inline
func BindReaderKL[S, T any](
lens L.Lens[S, T],
f reader.Kleisli[context.Context, T, T],
@@ -481,6 +503,8 @@ func BindReaderKL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: A ReaderIO Kleisli arrow (T -> ReaderIO[context.Context, T])
//
//go:inline
func BindReaderIOKL[S, T any](
lens L.Lens[S, T],
f readerio.Kleisli[context.Context, T, T],
@@ -495,6 +519,8 @@ func BindReaderIOKL[S, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IOEither value
//
//go:inline
func ApIOEitherS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IOResult[T],
@@ -508,6 +534,8 @@ func ApIOEitherS[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IOResult value
//
//go:inline
func ApIOResultS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IOResult[T],
@@ -521,6 +549,8 @@ func ApIOResultS[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IO value
//
//go:inline
func ApIOS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IO[T],
@@ -534,11 +564,13 @@ func ApIOS[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A Reader value
//
//go:inline
func ApReaderS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Reader[context.Context, T],
) Operator[S1, S2] {
return ApS(setter, FromReader[T](fa))
return ApS(setter, FromReader(fa))
}
// ApReaderIOS is an applicative variant that works with ReaderIO values.
@@ -547,11 +579,13 @@ func ApReaderS[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A ReaderIO value
//
//go:inline
func ApReaderIOS[S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderIO[T],
) Operator[S1, S2] {
return ApS(setter, FromReaderIO[T](fa))
return ApS(setter, FromReaderIO(fa))
}
// ApEitherS is an applicative variant that works with Either (Result) values.
@@ -560,11 +594,13 @@ func ApReaderIOS[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An Either value
//
//go:inline
func ApEitherS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Result[T],
) Operator[S1, S2] {
return ApS(setter, FromEither[T](fa))
return ApS(setter, FromEither(fa))
}
// ApResultS is an applicative variant that works with Result values.
@@ -573,11 +609,13 @@ func ApEitherS[S1, S2, T any](
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A Result value
//
//go:inline
func ApResultS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Result[T],
) Operator[S1, S2] {
return ApS(setter, FromResult[T](fa))
return ApS(setter, FromResult(fa))
}
// ApIOEitherSL is a lens-based variant of ApIOEitherS.
@@ -586,6 +624,8 @@ func ApResultS[S1, S2, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IOEither value
//
//go:inline
func ApIOEitherSL[S, T any](
lens L.Lens[S, T],
fa IOResult[T],
@@ -599,6 +639,8 @@ func ApIOEitherSL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IOResult value
//
//go:inline
func ApIOResultSL[S, T any](
lens L.Lens[S, T],
fa IOResult[T],
@@ -612,6 +654,8 @@ func ApIOResultSL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IO value
//
//go:inline
func ApIOSL[S, T any](
lens L.Lens[S, T],
fa IO[T],
@@ -625,11 +669,13 @@ func ApIOSL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A Reader value
//
//go:inline
func ApReaderSL[S, T any](
lens L.Lens[S, T],
fa Reader[context.Context, T],
) Operator[S, S] {
return ApSL(lens, FromReader[T](fa))
return ApSL(lens, FromReader(fa))
}
// ApReaderIOSL is a lens-based variant of ApReaderIOS.
@@ -638,11 +684,13 @@ func ApReaderSL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A ReaderIO value
//
//go:inline
func ApReaderIOSL[S, T any](
lens L.Lens[S, T],
fa ReaderIO[T],
) Operator[S, S] {
return ApSL(lens, FromReaderIO[T](fa))
return ApSL(lens, FromReaderIO(fa))
}
// ApEitherSL is a lens-based variant of ApEitherS.
@@ -651,11 +699,13 @@ func ApReaderIOSL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An Either value
//
//go:inline
func ApEitherSL[S, T any](
lens L.Lens[S, T],
fa Result[T],
) Operator[S, S] {
return ApSL(lens, FromEither[T](fa))
return ApSL(lens, FromEither(fa))
}
// ApResultSL is a lens-based variant of ApResultS.
@@ -664,9 +714,11 @@ func ApEitherSL[S, T any](
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A Result value
//
//go:inline
func ApResultSL[S, T any](
lens L.Lens[S, T],
fa Result[T],
) Operator[S, S] {
return ApSL(lens, FromResult[T](fa))
return ApSL(lens, FromResult(fa))
}

View File

@@ -53,12 +53,12 @@ import (
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
RIOEH "github.com/IBM/fp-go/v2/context/readerioresult/http"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
R "github.com/IBM/fp-go/v2/http/builder"
H "github.com/IBM/fp-go/v2/http/headers"
LZ "github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
// Requester converts an http/builder.Builder into a ReaderIOResult that produces HTTP requests.
@@ -143,10 +143,10 @@ func Requester(builder *R.Builder) RIOEH.Requester {
return F.Pipe5(
builder.GetBody(),
O.Fold(LZ.Of(E.Of[error](withoutBody)), E.Map[error](withBody)),
E.Ap[func(string) RIOE.ReaderIOResult[*http.Request]](builder.GetTargetURL()),
E.Flap[error, RIOE.ReaderIOResult[*http.Request]](builder.GetMethod()),
E.GetOrElse(RIOE.Left[*http.Request]),
O.Fold(LZ.Of(result.Of(withoutBody)), result.Map(withBody)),
result.Ap[RIOE.Kleisli[string, *http.Request]](builder.GetTargetURL()),
result.Flap[RIOE.ReaderIOResult[*http.Request]](builder.GetMethod()),
result.GetOrElse(RIOE.Left[*http.Request]),
RIOE.Map(func(req *http.Request) *http.Request {
req.Header = H.Monoid.Concat(req.Header, builder.GetHeaders())
return req

View File

@@ -83,5 +83,5 @@ func AlternativeMonoid[A any](m monoid.Monoid[A]) Monoid[A] {
//
// Returns a Monoid for ReaderIOResult[A] with Alt-based combination.
func AltMonoid[A any](zero Lazy[ReaderIOResult[A]]) Monoid[A] {
return RIOR.AltMonoid[context.Context](zero)
return RIOR.AltMonoid(zero)
}

View File

@@ -19,13 +19,17 @@ import (
"context"
"time"
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/errors"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/readeroption"
)
const (
@@ -78,7 +82,7 @@ func Left[A any](l error) ReaderIOResult[A] {
//
//go:inline
func Right[A any](r A) ReaderIOResult[A] {
return RIOR.Right[context.Context, A](r)
return RIOR.Right[context.Context](r)
}
// MonadMap transforms the success value of a [ReaderIOResult] using the provided function.
@@ -176,6 +180,11 @@ func MonadChainFirst[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIORe
return RIOR.MonadChainFirst(ma, f)
}
//go:inline
func MonadTap[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadTap(ma, f)
}
// ChainFirst sequences two [ReaderIOResult] computations but returns the result of the first.
// This is the curried version of [MonadChainFirst].
//
@@ -189,6 +198,11 @@ func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIOR.ChainFirst(f)
}
//go:inline
func Tap[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIOR.Tap(f)
}
// Of creates a [ReaderIOResult] that always succeeds with the given value.
// This is the same as [Right] and represents the monadic return operation.
//
@@ -399,6 +413,11 @@ func MonadChainFirstEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B])
return RIOR.MonadChainFirstEitherK(ma, f)
}
//go:inline
func MonadTapEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B]) ReaderIOResult[A] {
return RIOR.MonadTapEitherK(ma, f)
}
// ChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// This is the curried version of [MonadChainFirstEitherK].
//
@@ -412,6 +431,11 @@ func ChainFirstEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return RIOR.ChainFirstEitherK[context.Context](f)
}
//go:inline
func TapEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return RIOR.TapEitherK[context.Context](f)
}
// ChainOptionK chains a function that returns an [Option] into a [ReaderIOResult] computation.
// If the Option is None, the provided error function is called.
//
@@ -458,12 +482,12 @@ func FromIO[A any](t IO[A]) ReaderIOResult[A] {
//go:inline
func FromReader[A any](t Reader[context.Context, A]) ReaderIOResult[A] {
return RIOR.FromReader[context.Context](t)
return RIOR.FromReader(t)
}
//go:inline
func FromReaderIO[A any](t ReaderIO[A]) ReaderIOResult[A] {
return RIOR.FromReaderIO[context.Context](t)
return RIOR.FromReaderIO(t)
}
// FromLazy converts a [Lazy] computation into a [ReaderIOResult].
@@ -534,6 +558,11 @@ func MonadChainFirstIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderI
return RIOR.MonadChainFirstIOK(ma, f)
}
//go:inline
func MonadTapIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderIOResult[A] {
return RIOR.MonadTapIOK(ma, f)
}
// ChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// This is the curried version of [MonadChainFirstIOK].
//
@@ -547,6 +576,11 @@ func ChainFirstIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIOR.ChainFirstIOK[context.Context](f)
}
//go:inline
func TapIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIOR.TapIOK[context.Context](f)
}
// ChainIOEitherK chains a function that returns an [IOResult] into a [ReaderIOResult] computation.
// This is useful for integrating IOResult-returning functions into ReaderIOResult workflows.
//
@@ -624,7 +658,7 @@ func Defer[A any](gen Lazy[ReaderIOResult[A]]) ReaderIOResult[A] {
//
//go:inline
func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOResult[A] {
return RIOR.TryCatch(f, errors.IdentityError)
return RIOR.TryCatch(f, errors.Identity)
}
// MonadAlt provides an alternative [ReaderIOResult] if the first one fails.
@@ -747,3 +781,180 @@ func GetOrElse[A any](onLeft func(error) ReaderIO[A]) func(ReaderIOResult[A]) Re
func OrLeft[A any](onLeft func(error) ReaderIO[error]) Operator[A, A] {
return RIOR.OrLeft[A](onLeft)
}
//go:inline
func FromReaderEither[A any](ma ReaderEither[context.Context, error, A]) ReaderIOResult[A] {
return RIOR.FromReaderEither(ma)
}
//go:inline
func FromReaderResult[A any](ma ReaderResult[A]) ReaderIOResult[A] {
return RIOR.FromReaderEither(ma)
}
//go:inline
func FromReaderOption[A any](onNone func() error) Kleisli[ReaderOption[context.Context, A], A] {
return RIOR.FromReaderOption[context.Context, A](onNone)
}
//go:inline
func MonadChainReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderK(ma, f)
}
//go:inline
func ChainReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderK(f)
}
//go:inline
func MonadChainFirstReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderK(ma, f)
}
//go:inline
func MonadTapReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderK(ma, f)
}
//go:inline
func ChainFirstReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderK(f)
}
//go:inline
func TapReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderK(f)
}
//go:inline
func MonadChainReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderResultK(ma, f)
}
//go:inline
func ChainReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, B] {
return RIOR.ChainReaderResultK(f)
}
//go:inline
func MonadChainFirstReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderResultK(ma, f)
}
//go:inline
func MonadTapReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderResultK(ma, f)
}
//go:inline
func ChainFirstReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderResultK(f)
}
//go:inline
func TapReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, A] {
return RIOR.TapReaderResultK(f)
}
//go:inline
func MonadChainReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderIOK(ma, f)
}
//go:inline
func ChainReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderIOK(f)
}
//go:inline
func MonadChainFirstReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderIOK(ma, f)
}
//go:inline
func MonadTapReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderIOK(ma, f)
}
//go:inline
func ChainFirstReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderIOK(f)
}
//go:inline
func TapReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderIOK(f)
}
//go:inline
func ChainReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func ChainFirstReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func TapReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func Read[A any](r context.Context) func(ReaderIOResult[A]) IOResult[A] {
return RIOR.Read[A](r)
}
// MonadChainLeft chains a computation on the left (error) side of a [ReaderIOResult].
// If the input is a Left value, it applies the function f to transform the error and potentially
// change the error type. If the input is a Right value, it passes through unchanged.
//
//go:inline
func MonadChainLeft[A any](fa ReaderIOResult[A], f Kleisli[error, A]) ReaderIOResult[A] {
return RIOR.MonadChainLeft(fa, f)
}
// ChainLeft is the curried version of [MonadChainLeft].
// It returns a function that chains a computation on the left (error) side of a [ReaderIOResult].
//
//go:inline
func ChainLeft[A any](f Kleisli[error, A]) func(ReaderIOResult[A]) ReaderIOResult[A] {
return RIOR.ChainLeft(f)
}
// MonadChainFirstLeft chains a computation on the left (error) side but always returns the original error.
// If the input is a Left value, it applies the function f to the error and executes the resulting computation,
// but always returns the original Left error regardless of what f returns (Left or Right).
// If the input is a Right value, it passes through unchanged without calling f.
//
// This is useful for side effects on errors (like logging or metrics) where you want to perform an action
// when an error occurs but always propagate the original error, ensuring the error path is preserved.
//
//go:inline
func MonadChainFirstLeft[A, B any](ma ReaderIOResult[A], f Kleisli[error, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstLeft(ma, f)
}
//go:inline
func MonadTapLeft[A, B any](ma ReaderIOResult[A], f Kleisli[error, B]) ReaderIOResult[A] {
return RIOR.MonadTapLeft(ma, f)
}
// ChainFirstLeft is the curried version of [MonadChainFirstLeft].
// It returns a function that chains a computation on the left (error) side while always preserving the original error.
//
// This is particularly useful for adding error handling side effects (like logging, metrics, or notifications)
// in a functional pipeline. The original error is always returned regardless of what f returns (Left or Right),
// ensuring the error path is preserved.
//
//go:inline
func ChainFirstLeft[A, B any](f Kleisli[error, B]) Operator[A, A] {
return RIOR.ChainFirstLeft[A](f)
}
//go:inline
func TapLeft[A, B any](f Kleisli[error, B]) Operator[A, A] {
return RIOR.TapLeft[A](f)
}

View File

@@ -24,6 +24,7 @@ import (
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
IOE "github.com/IBM/fp-go/v2/ioeither"
N "github.com/IBM/fp-go/v2/number"
)
var (
@@ -37,21 +38,21 @@ var (
// Benchmark core constructors
func BenchmarkLeft(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Left[int](benchErr)
}
}
func BenchmarkRight(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Right(42)
}
}
func BenchmarkOf(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Of(42)
}
}
@@ -60,7 +61,7 @@ func BenchmarkFromEither_Right(b *testing.B) {
either := E.Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromEither(either)
}
}
@@ -69,7 +70,7 @@ func BenchmarkFromEither_Left(b *testing.B) {
either := E.Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromEither(either)
}
}
@@ -77,7 +78,7 @@ func BenchmarkFromEither_Left(b *testing.B) {
func BenchmarkFromIO(b *testing.B) {
io := func() int { return 42 }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromIO(io)
}
}
@@ -85,7 +86,7 @@ func BenchmarkFromIO(b *testing.B) {
func BenchmarkFromIOEither_Right(b *testing.B) {
ioe := IOE.Of[error](42)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromIOEither(ioe)
}
}
@@ -93,7 +94,7 @@ func BenchmarkFromIOEither_Right(b *testing.B) {
func BenchmarkFromIOEither_Left(b *testing.B) {
ioe := IOE.Left[int](benchErr)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromIOEither(ioe)
}
}
@@ -103,7 +104,7 @@ func BenchmarkExecute_Right(b *testing.B) {
rioe := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -112,7 +113,7 @@ func BenchmarkExecute_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -123,7 +124,7 @@ func BenchmarkExecute_WithContext(b *testing.B) {
defer cancel()
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(ctx)()
}
}
@@ -131,40 +132,40 @@ func BenchmarkExecute_WithContext(b *testing.B) {
// Benchmark functor operations
func BenchmarkMonadMap_Right(b *testing.B) {
rioe := Right(42)
mapper := func(a int) int { return a * 2 }
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadMap(rioe, mapper)
}
}
func BenchmarkMonadMap_Left(b *testing.B) {
rioe := Left[int](benchErr)
mapper := func(a int) int { return a * 2 }
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadMap(rioe, mapper)
}
}
func BenchmarkMap_Right(b *testing.B) {
rioe := Right(42)
mapper := Map(func(a int) int { return a * 2 })
mapper := Map(N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
func BenchmarkMap_Left(b *testing.B) {
rioe := Left[int](benchErr)
mapper := Map(func(a int) int { return a * 2 })
mapper := Map(N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
@@ -174,7 +175,7 @@ func BenchmarkMapTo_Right(b *testing.B) {
mapper := MapTo[int](99)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
@@ -185,7 +186,7 @@ func BenchmarkMonadChain_Right(b *testing.B) {
chainer := func(a int) ReaderIOResult[int] { return Right(a * 2) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadChain(rioe, chainer)
}
}
@@ -195,7 +196,7 @@ func BenchmarkMonadChain_Left(b *testing.B) {
chainer := func(a int) ReaderIOResult[int] { return Right(a * 2) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadChain(rioe, chainer)
}
}
@@ -205,7 +206,7 @@ func BenchmarkChain_Right(b *testing.B) {
chainer := Chain(func(a int) ReaderIOResult[int] { return Right(a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -215,7 +216,7 @@ func BenchmarkChain_Left(b *testing.B) {
chainer := Chain(func(a int) ReaderIOResult[int] { return Right(a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -225,7 +226,7 @@ func BenchmarkChainFirst_Right(b *testing.B) {
chainer := ChainFirst(func(a int) ReaderIOResult[string] { return Right("logged") })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -235,7 +236,7 @@ func BenchmarkChainFirst_Left(b *testing.B) {
chainer := ChainFirst(func(a int) ReaderIOResult[string] { return Right("logged") })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -244,7 +245,7 @@ func BenchmarkFlatten_Right(b *testing.B) {
nested := Right(Right(42))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Flatten(nested)
}
}
@@ -253,28 +254,28 @@ func BenchmarkFlatten_Left(b *testing.B) {
nested := Left[ReaderIOResult[int]](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Flatten(nested)
}
}
// Benchmark applicative operations
func BenchmarkMonadApSeq_RightRight(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
func BenchmarkMonadApSeq_RightLeft(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
@@ -284,27 +285,27 @@ func BenchmarkMonadApSeq_LeftRight(b *testing.B) {
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
func BenchmarkMonadApPar_RightRight(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
func BenchmarkMonadApPar_RightLeft(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
@@ -314,30 +315,30 @@ func BenchmarkMonadApPar_LeftRight(b *testing.B) {
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
// Benchmark execution of applicative operations
func BenchmarkExecuteApSeq_RightRight(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApSeq(fab, fa)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
func BenchmarkExecuteApPar_RightRight(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApPar(fab, fa)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -348,7 +349,7 @@ func BenchmarkAlt_RightRight(b *testing.B) {
alternative := Alt(func() ReaderIOResult[int] { return Right(99) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = alternative(rioe)
}
}
@@ -358,7 +359,7 @@ func BenchmarkAlt_LeftRight(b *testing.B) {
alternative := Alt(func() ReaderIOResult[int] { return Right(99) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = alternative(rioe)
}
}
@@ -368,7 +369,7 @@ func BenchmarkOrElse_Right(b *testing.B) {
recover := OrElse(func(e error) ReaderIOResult[int] { return Right(0) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = recover(rioe)
}
}
@@ -378,7 +379,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
recover := OrElse(func(e error) ReaderIOResult[int] { return Right(0) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = recover(rioe)
}
}
@@ -389,7 +390,7 @@ func BenchmarkChainEitherK_Right(b *testing.B) {
chainer := ChainEitherK(func(a int) Either[int] { return E.Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -399,7 +400,7 @@ func BenchmarkChainEitherK_Left(b *testing.B) {
chainer := ChainEitherK(func(a int) Either[int] { return E.Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -409,7 +410,7 @@ func BenchmarkChainIOK_Right(b *testing.B) {
chainer := ChainIOK(func(a int) func() int { return func() int { return a * 2 } })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -419,7 +420,7 @@ func BenchmarkChainIOK_Left(b *testing.B) {
chainer := ChainIOK(func(a int) func() int { return func() int { return a * 2 } })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -429,7 +430,7 @@ func BenchmarkChainIOEitherK_Right(b *testing.B) {
chainer := ChainIOEitherK(func(a int) IOEither[int] { return IOE.Of[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -439,7 +440,7 @@ func BenchmarkChainIOEitherK_Left(b *testing.B) {
chainer := ChainIOEitherK(func(a int) IOEither[int] { return IOE.Of[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -447,7 +448,7 @@ func BenchmarkChainIOEitherK_Left(b *testing.B) {
// Benchmark context operations
func BenchmarkAsk(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Ask()
}
}
@@ -455,7 +456,7 @@ func BenchmarkAsk(b *testing.B) {
func BenchmarkDefer(b *testing.B) {
gen := func() ReaderIOResult[int] { return Right(42) }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Defer(gen)
}
}
@@ -463,7 +464,7 @@ func BenchmarkDefer(b *testing.B) {
func BenchmarkMemoize(b *testing.B) {
rioe := Right(42)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Memoize(rioe)
}
}
@@ -472,14 +473,14 @@ func BenchmarkMemoize(b *testing.B) {
func BenchmarkDelay_Construction(b *testing.B) {
rioe := Right(42)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Delay[int](time.Millisecond)(rioe)
}
}
func BenchmarkTimer_Construction(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Timer(time.Millisecond)
}
}
@@ -490,7 +491,7 @@ func BenchmarkTryCatch_Success(b *testing.B) {
return func() (int, error) { return 42, nil }
}
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = TryCatch(f)
}
}
@@ -500,7 +501,7 @@ func BenchmarkTryCatch_Error(b *testing.B) {
return func() (int, error) { return 0, benchErr }
}
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = TryCatch(f)
}
}
@@ -512,7 +513,7 @@ func BenchmarkExecuteTryCatch_Success(b *testing.B) {
rioe := TryCatch(f)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -524,7 +525,7 @@ func BenchmarkExecuteTryCatch_Error(b *testing.B) {
rioe := TryCatch(f)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -534,10 +535,10 @@ func BenchmarkPipeline_Map_Right(b *testing.B) {
rioe := Right(21)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
)
}
}
@@ -546,10 +547,10 @@ func BenchmarkPipeline_Map_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
)
}
}
@@ -558,10 +559,10 @@ func BenchmarkPipeline_Chain_Right(b *testing.B) {
rioe := Right(21)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain(func(x int) ReaderIOResult[int] { return Right[int](x * 2) }),
Chain(func(x int) ReaderIOResult[int] { return Right(x * 2) }),
)
}
}
@@ -570,10 +571,10 @@ func BenchmarkPipeline_Chain_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain(func(x int) ReaderIOResult[int] { return Right[int](x * 2) }),
Chain(func(x int) ReaderIOResult[int] { return Right(x * 2) }),
)
}
}
@@ -582,12 +583,12 @@ func BenchmarkPipeline_Complex_Right(b *testing.B) {
rioe := Right(10)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe3(
rioe,
Map(func(x int) int { return x * 2 }),
Chain(func(x int) ReaderIOResult[int] { return Right[int](x + 1) }),
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(N.Mul(2)),
)
}
}
@@ -596,12 +597,12 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe3(
rioe,
Map(func(x int) int { return x * 2 }),
Chain(func(x int) ReaderIOResult[int] { return Right[int](x + 1) }),
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(N.Mul(2)),
)
}
}
@@ -609,13 +610,13 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
rioe := F.Pipe3(
Right(10),
Map(func(x int) int { return x * 2 }),
Chain(func(x int) ReaderIOResult[int] { return Right[int](x + 1) }),
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(N.Mul(2)),
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -624,7 +625,7 @@ func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
func BenchmarkDo(b *testing.B) {
type State struct{ value int }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Do(State{})
}
}
@@ -642,7 +643,7 @@ func BenchmarkBind_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = binder(initial)
}
}
@@ -658,7 +659,7 @@ func BenchmarkLet_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = letter(initial)
}
}
@@ -674,7 +675,7 @@ func BenchmarkApS_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = aps(initial)
}
}
@@ -687,7 +688,7 @@ func BenchmarkTraverseArray_Empty(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -699,7 +700,7 @@ func BenchmarkTraverseArray_Small(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -714,7 +715,7 @@ func BenchmarkTraverseArray_Medium(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -726,7 +727,7 @@ func BenchmarkTraverseArraySeq_Small(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -738,7 +739,7 @@ func BenchmarkTraverseArrayPar_Small(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -751,7 +752,7 @@ func BenchmarkSequenceArray_Small(b *testing.B) {
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = SequenceArray(arr)
}
}
@@ -763,7 +764,7 @@ func BenchmarkExecuteTraverseArray_Small(b *testing.B) {
})(arr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = rioe(benchCtx)()
}
}
@@ -775,7 +776,7 @@ func BenchmarkExecuteTraverseArraySeq_Small(b *testing.B) {
})(arr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = rioe(benchCtx)()
}
}
@@ -787,7 +788,7 @@ func BenchmarkExecuteTraverseArrayPar_Small(b *testing.B) {
})(arr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = rioe(benchCtx)()
}
}
@@ -800,7 +801,7 @@ func BenchmarkTraverseRecord_Small(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(rec)
}
}
@@ -813,7 +814,7 @@ func BenchmarkSequenceRecord_Small(b *testing.B) {
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = SequenceRecord(rec)
}
}
@@ -826,7 +827,7 @@ func BenchmarkWithResource_Success(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = WithResource[int](acquire, release)(body)
}
}
@@ -839,7 +840,7 @@ func BenchmarkExecuteWithResource_Success(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -852,7 +853,7 @@ func BenchmarkExecuteWithResource_ErrorInBody(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -865,13 +866,13 @@ func BenchmarkExecute_CanceledContext(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(ctx)()
}
}
func BenchmarkExecuteApPar_CanceledContext(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApPar(fab, fa)
ctx, cancel := context.WithCancel(benchCtx)
@@ -879,9 +880,7 @@ func BenchmarkExecuteApPar_CanceledContext(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(ctx)()
}
}
// Made with Bob

File diff suppressed because it is too large Load Diff

View File

@@ -284,3 +284,160 @@ func TestWithResourceErrorInRelease(t *testing.T) {
assert.Equal(t, 0, countRelease)
assert.Equal(t, E.Left[int](err), res)
}
func TestMonadChainFirstLeft(t *testing.T) {
ctx := context.Background()
// Test with Left value - function returns Left, always preserves original error
t.Run("Left value with function returning Left preserves original error", func(t *testing.T) {
sideEffectCalled := false
originalErr := fmt.Errorf("original error")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("new error")) // This error is ignored
},
)
actualResult := result(ctx)()
assert.True(t, sideEffectCalled)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Left value - function returns Right, still returns original Left
t.Run("Left value with function returning Right still returns original Left", func(t *testing.T) {
var capturedError error
originalErr := fmt.Errorf("validation failed")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
capturedError = e
return Right(999) // This Right value is ignored
},
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, capturedError)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Right value - should pass through without calling function
t.Run("Right value passes through", func(t *testing.T) {
sideEffectCalled := false
result := MonadChainFirstLeft(
Right(42),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("should not be called"))
},
)
assert.False(t, sideEffectCalled)
assert.Equal(t, E.Right[error](42), result(ctx)())
})
// Test that side effects are executed but original error is always preserved
t.Run("Side effects executed but original error preserved", func(t *testing.T) {
effectCount := 0
originalErr := fmt.Errorf("original error")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
effectCount++
// Try to return Right, but original Left should still be returned
return Right(999)
},
)
actualResult := result(ctx)()
assert.Equal(t, 1, effectCount)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
}
func TestChainFirstLeft(t *testing.T) {
ctx := context.Background()
// Test with Left value - function returns Left, always preserves original error
t.Run("Left value with function returning Left preserves error", func(t *testing.T) {
var captured error
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Left[int](fmt.Errorf("ignored error"))
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, captured)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Left value - function returns Right, still returns original Left
t.Run("Left value with function returning Right still returns original Left", func(t *testing.T) {
var captured error
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Right(42) // This Right is ignored
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, captured)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Right value - should pass through without calling function
t.Run("Right value passes through", func(t *testing.T) {
called := false
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
called = true
return Right(0)
})
result := F.Pipe1(
Right(100),
chainFn,
)
assert.False(t, called)
assert.Equal(t, E.Right[error](100), result(ctx)())
})
// Test that original error is always preserved regardless of what f returns
t.Run("Original error always preserved", func(t *testing.T) {
originalErr := fmt.Errorf("original")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
// Try to return Right, but original Left should still be returned
return Right(999)
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
assert.Equal(t, E.Left[int](originalErr), result(ctx)())
})
// Test logging with Left preservation
t.Run("Logging with Left preservation", func(t *testing.T) {
errorLog := []string{}
originalErr := fmt.Errorf("step1")
logError := ChainFirstLeft[string](func(e error) ReaderIOResult[string] {
errorLog = append(errorLog, "Logged: "+e.Error())
return Left[string](fmt.Errorf("log entry")) // This is ignored
})
result := F.Pipe2(
Left[string](originalErr),
logError,
ChainLeft(func(e error) ReaderIOResult[string] {
return Left[string](fmt.Errorf("step2"))
}),
)
actualResult := result(ctx)()
assert.Equal(t, []string{"Logged: step1"}, errorLog)
assert.Equal(t, E.Left[string](fmt.Errorf("step2")), actualResult)
})
}

View File

@@ -16,8 +16,8 @@
package readerioresult
import (
"github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
"github.com/IBM/fp-go/v2/internal/record"
)
@@ -29,7 +29,7 @@ import (
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -46,7 +46,7 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -118,7 +118,7 @@ func SequenceRecord[K comparable, A any](ma map[K]ReaderIOResult[A]) ReaderIORes
//
// Returns a ReaderIOResult containing an array of transformed values.
func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B] {
return array.MonadTraverse[[]A](
return array.MonadTraverse(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
@@ -135,22 +135,20 @@ func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArraySeq[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
@@ -168,7 +166,7 @@ func SequenceArraySeq[A any](ma []ReaderIOResult[A]) ReaderIOResult[[]A] {
// MonadTraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOResult[map[K]B] {
return record.MonadTraverse[map[K]A](
return record.MonadTraverse(
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
ApSeq[map[K]B, B],
@@ -213,7 +211,7 @@ func SequenceRecordSeq[K comparable, A any](ma map[K]ReaderIOResult[A]) ReaderIO
//
// Returns a ReaderIOResult containing an array of transformed values.
func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B] {
return array.MonadTraverse[[]A](
return array.MonadTraverse(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
@@ -230,22 +228,20 @@ func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayPar[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}
@@ -285,7 +281,7 @@ func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIORes
// MonadTraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOResult[map[K]B] {
return record.MonadTraverse[map[K]A](
return record.MonadTraverse(
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
ApPar[map[K]B, B],

View File

@@ -19,14 +19,17 @@ import (
"context"
"github.com/IBM/fp-go/v2/context/ioresult"
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readereither"
"github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/readeroption"
"github.com/IBM/fp-go/v2/result"
)
@@ -119,4 +122,8 @@ type (
// // Apply the transformation
// result := toUpper(computation)
Operator[A, B any] = Kleisli[ReaderIOResult[A], B]
ReaderResult[A any] = readerresult.ReaderResult[A]
ReaderEither[R, E, A any] = readereither.ReaderEither[R, E, A]
ReaderOption[R, A any] = readeroption.ReaderOption[R, A]
)

View File

@@ -92,3 +92,8 @@ func MonadFlap[B, A any](fab ReaderResult[func(A) B], a A) ReaderResult[B] {
func Flap[B, A any](a A) Operator[func(A) B, B] {
return readereither.Flap[context.Context, error, B](a)
}
//go:inline
func Read[A any](r context.Context) func(ReaderResult[A]) Result[A] {
return readereither.Read[error, A](r)
}

View File

@@ -23,11 +23,13 @@ import (
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readereither"
"github.com/IBM/fp-go/v2/result"
)
type (
Option[A any] = option.Option[A]
Either[A any] = either.Either[error, A]
Result[A any] = result.Result[A]
// ReaderResult is a specialization of the Reader monad for the typical golang scenario
ReaderResult[A any] = readereither.ReaderEither[context.Context, error, A]

8340
v2/coverage.out Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -19,7 +19,7 @@ import (
DIE "github.com/IBM/fp-go/v2/di/erasure"
F "github.com/IBM/fp-go/v2/function"
IO "github.com/IBM/fp-go/v2/io"
IOE "github.com/IBM/fp-go/v2/ioeither"
IOR "github.com/IBM/fp-go/v2/ioresult"
)
var (
@@ -34,5 +34,5 @@ var (
var RunMain = F.Flow3(
DIE.MakeInjector,
Main,
IOE.Fold(IO.Of[error], F.Constant1[any](IO.Of[error](nil))),
IOR.Fold(IO.Of[error], F.Constant1[any](IO.Of[error](nil))),
)

View File

@@ -64,8 +64,8 @@ Creating and using dependencies:
dbProvider := di.MakeProvider1(
DBToken,
ConfigToken.Identity(),
func(cfg Config) IOE.IOEither[error, Database] {
return IOE.Of[error](NewDatabase(cfg))
func(cfg Config) IOResult[Database] {
return ioresult.Of(NewDatabase(cfg))
},
)
@@ -73,8 +73,8 @@ Creating and using dependencies:
APIToken,
ConfigToken.Identity(),
DBToken.Identity(),
func(cfg Config, db Database) IOE.IOEither[error, APIService] {
return IOE.Of[error](NewAPIService(cfg, db))
func(cfg Config, db Database) IOResult[APIService] {
return ioresult.Of(NewAPIService(cfg, db))
},
)
@@ -116,7 +116,7 @@ MakeProvider0 - No dependencies:
provider := di.MakeProvider0(
token,
IOE.Of[error](value),
ioresult.Of(value),
)
MakeProvider1 - One dependency:
@@ -124,8 +124,8 @@ MakeProvider1 - One dependency:
provider := di.MakeProvider1(
resultToken,
dep1Token.Identity(),
func(dep1 Dep1Type) IOE.IOEither[error, ResultType] {
return IOE.Of[error](createResult(dep1))
func(dep1 Dep1Type) IOResult[ResultType] {
return ioresult.Of(createResult(dep1))
},
)
@@ -135,8 +135,8 @@ MakeProvider2 - Two dependencies:
resultToken,
dep1Token.Identity(),
dep2Token.Identity(),
func(dep1 Dep1Type, dep2 Dep2Type) IOE.IOEither[error, ResultType] {
return IOE.Of[error](createResult(dep1, dep2))
func(dep1 Dep1Type, dep2 Dep2Type) IOResult[ResultType] {
return ioresult.Of(createResult(dep1, dep2))
},
)
@@ -153,7 +153,7 @@ provider is registered:
token := di.MakeTokenWithDefault0(
"ServiceName",
IOE.Of[error](defaultImplementation),
ioresult.Of(defaultImplementation),
)
// Or with dependencies
@@ -161,8 +161,8 @@ provider is registered:
"ServiceName",
dep1Token.Identity(),
dep2Token.Identity(),
func(dep1 Dep1Type, dep2 Dep2Type) IOE.IOEither[error, ResultType] {
return IOE.Of[error](createDefault(dep1, dep2))
func(dep1 Dep1Type, dep2 Dep2Type) IOResult[ResultType] {
return ioresult.Of(createDefault(dep1, dep2))
},
)
@@ -208,8 +208,8 @@ The framework provides a convenient pattern for running applications:
mainProvider := di.MakeProvider1(
di.InjMain,
APIToken.Identity(),
func(api APIService) IOE.IOEither[error, any] {
return IOE.Of[error](api.Start())
func(api APIService) IOResult[any] {
return ioresult.Of(api.Start())
},
)
@@ -247,8 +247,8 @@ Example 1: Configuration-based Service
clientProvider := di.MakeProvider1(
ClientToken,
ConfigToken.Identity(),
func(cfg Config) IOE.IOEither[error, HTTPClient] {
return IOE.Of[error](HTTPClient{config: cfg})
func(cfg Config) IOResult[HTTPClient] {
return ioresult.Of(HTTPClient{config: cfg})
},
)
@@ -263,8 +263,8 @@ Example 2: Optional Dependencies
serviceProvider := di.MakeProvider1(
ServiceToken,
CacheToken.Option(), // Optional dependency
func(cache O.Option[Cache]) IOE.IOEither[error, Service] {
return IOE.Of[error](NewService(cache))
func(cache Option[Cache]) IOResult[Service] {
return ioresult.Of(NewService(cache))
},
)
@@ -279,8 +279,8 @@ Example 3: Lazy Dependencies
reporterProvider := di.MakeProvider1(
ReporterToken,
DBToken.IOEither(), // Lazy dependency
func(dbIO IOE.IOEither[error, Database]) IOE.IOEither[error, Reporter] {
return IOE.Of[error](NewReporter(dbIO))
func(dbIO IOResult[Database]) IOResult[Reporter] {
return ioresult.Of(NewReporter(dbIO))
},
)

View File

@@ -20,7 +20,7 @@ import (
"github.com/IBM/fp-go/v2/errors"
F "github.com/IBM/fp-go/v2/function"
I "github.com/IBM/fp-go/v2/identity"
IOE "github.com/IBM/fp-go/v2/ioeither"
IOR "github.com/IBM/fp-go/v2/ioresult"
L "github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/option"
R "github.com/IBM/fp-go/v2/record"
@@ -42,8 +42,8 @@ var (
missingProviderError = F.Flow4(
Dependency.String,
errors.OnSome[string]("no provider for dependency [%s]"),
IOE.Left[any, error],
F.Constant1[InjectableFactory, IOE.IOEither[error, any]],
IOR.Left[any],
F.Constant1[InjectableFactory, IOResult[any]],
)
// missingProviderErrorOrDefault returns the default [ProviderFactory] or an error
@@ -56,7 +56,7 @@ var (
emptyMulti any = A.Empty[any]()
// emptyMultiDependency returns a [ProviderFactory] for an empty, multi dependency
emptyMultiDependency = F.Constant1[Dependency](F.Constant1[InjectableFactory](IOE.Of[error](emptyMulti)))
emptyMultiDependency = F.Constant1[Dependency](F.Constant1[InjectableFactory](IOR.Of(emptyMulti)))
// handleMissingProvider covers the case of a missing provider. It either
// returns an error or an empty multi value provider
@@ -93,21 +93,21 @@ var (
// isMultiDependency tests if a dependency is a container dependency
func isMultiDependency(dep Dependency) bool {
return dep.Flag()&Multi == Multi
return dep.Flag()&MULTI == MULTI
}
// isItemProvider tests if a provivder provides a single item
func isItemProvider(provider Provider) bool {
return provider.Provides().Flag()&Item == Item
return provider.Provides().Flag()&ITEM == ITEM
}
// itemProviderFactory combines multiple factories into one, returning an array
func itemProviderFactory(fcts []ProviderFactory) ProviderFactory {
return func(inj InjectableFactory) IOE.IOEither[error, any] {
return func(inj InjectableFactory) IOResult[any] {
return F.Pipe2(
fcts,
IOE.TraverseArray(I.Flap[IOE.IOEither[error, any]](inj)),
IOE.Map[error](F.ToAny[[]any]),
IOR.TraverseArray(I.Flap[IOResult[any]](inj)),
IOR.Map(F.ToAny[[]any]),
)
}
}
@@ -118,7 +118,7 @@ func itemProviderFactory(fcts []ProviderFactory) ProviderFactory {
// makes sure to transitively resolve the required dependencies.
func MakeInjector(providers []Provider) InjectableFactory {
type Result = IOE.IOEither[error, any]
type Result = IOResult[any]
type LazyResult = L.Lazy[Result]
// resolved stores the values resolved so far, key is the string ID
@@ -148,11 +148,11 @@ func MakeInjector(providers []Provider) InjectableFactory {
T.Map2(F.Flow3(
Dependency.Id,
R.Lookup[ProviderFactory, string],
I.Ap[O.Option[ProviderFactory]](factoryByID),
I.Ap[Option[ProviderFactory]](factoryByID),
), handleMissingProvider),
T.Tupled2(O.MonadGetOrElse[ProviderFactory]),
I.Ap[IOE.IOEither[error, any]](injFct),
IOE.Memoize[error, any],
I.Ap[IOResult[any]](injFct),
IOR.Memoize[any],
)
}

View File

@@ -19,25 +19,23 @@ import (
"fmt"
A "github.com/IBM/fp-go/v2/array"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
I "github.com/IBM/fp-go/v2/identity"
IO "github.com/IBM/fp-go/v2/io"
IOE "github.com/IBM/fp-go/v2/ioeither"
IOO "github.com/IBM/fp-go/v2/iooption"
Int "github.com/IBM/fp-go/v2/number/integer"
O "github.com/IBM/fp-go/v2/option"
R "github.com/IBM/fp-go/v2/record"
"github.com/IBM/fp-go/v2/result"
)
type (
// InjectableFactory is a factory function that can create an untyped instance of a service based on its [Dependency] identifier
InjectableFactory = func(Dependency) IOE.IOEither[error, any]
ProviderFactory = func(InjectableFactory) IOE.IOEither[error, any]
InjectableFactory = func(Dependency) IOResult[any]
ProviderFactory = func(InjectableFactory) IOResult[any]
paramIndex = map[int]int
paramValue = map[int]any
handler = func(paramIndex) func([]IOE.IOEither[error, any]) IOE.IOEither[error, paramValue]
handler = func(paramIndex) func([]IOResult[any]) IOResult[paramValue]
mapping = map[int]paramIndex
Provider interface {
@@ -83,50 +81,50 @@ var (
mergeMaps = R.UnionLastMonoid[int, any]()
collectParams = R.CollectOrd[any, any](Int.Ord)(F.SK[int, any])
mapDeps = F.Curry2(A.MonadMap[Dependency, IOE.IOEither[error, any]])
mapDeps = F.Curry2(A.MonadMap[Dependency, IOResult[any]])
handlers = map[int]handler{
Identity: func(mp paramIndex) func([]IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
return func(res []IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
IDENTITY: func(mp paramIndex) func([]IOResult[any]) IOResult[paramValue] {
return func(res []IOResult[any]) IOResult[paramValue] {
return F.Pipe1(
mp,
IOE.TraverseRecord[int](getAt(res)),
)
}
},
Option: func(mp paramIndex) func([]IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
return func(res []IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
OPTION: func(mp paramIndex) func([]IOResult[any]) IOResult[paramValue] {
return func(res []IOResult[any]) IOResult[paramValue] {
return F.Pipe3(
mp,
IO.TraverseRecord[int](getAt(res)),
IO.Map(R.Map[int](F.Flow2(
E.ToOption[error, any],
F.ToAny[O.Option[any]],
result.ToOption[any],
F.ToAny[Option[any]],
))),
IOE.FromIO[error, paramValue],
)
}
},
IOEither: func(mp paramIndex) func([]IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
return func(res []IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
IOEITHER: func(mp paramIndex) func([]IOResult[any]) IOResult[paramValue] {
return func(res []IOResult[any]) IOResult[paramValue] {
return F.Pipe2(
mp,
R.Map[int](F.Flow2(
getAt(res),
F.ToAny[IOE.IOEither[error, any]],
F.ToAny[IOResult[any]],
)),
IOE.Of[error, paramValue],
)
}
},
IOOption: func(mp paramIndex) func([]IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
return func(res []IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
IOOPTION: func(mp paramIndex) func([]IOResult[any]) IOResult[paramValue] {
return func(res []IOResult[any]) IOResult[paramValue] {
return F.Pipe2(
mp,
R.Map[int](F.Flow3(
getAt(res),
IOE.ToIOOption[error, any],
F.ToAny[IOO.IOOption[any]],
F.ToAny[IOOption[any]],
)),
IOE.Of[error, paramValue],
)
@@ -141,23 +139,23 @@ func getAt[T any](ar []T) func(idx int) T {
}
}
func handleMapping(mp mapping) func(res []IOE.IOEither[error, any]) IOE.IOEither[error, []any] {
func handleMapping(mp mapping) func(res []IOResult[any]) IOResult[[]any] {
preFct := F.Pipe1(
mp,
R.Collect(func(idx int, p paramIndex) func([]IOE.IOEither[error, any]) IOE.IOEither[error, paramValue] {
R.Collect(func(idx int, p paramIndex) func([]IOResult[any]) IOResult[paramValue] {
return handlers[idx](p)
}),
)
doFct := F.Flow2(
I.Flap[IOE.IOEither[error, paramValue], []IOE.IOEither[error, any]],
IOE.TraverseArray[error, func([]IOE.IOEither[error, any]) IOE.IOEither[error, paramValue], paramValue],
I.Flap[IOResult[paramValue], []IOResult[any]],
IOE.TraverseArray[error, func([]IOResult[any]) IOResult[paramValue], paramValue],
)
postFct := IOE.Map[error](F.Flow2(
A.Fold(mergeMaps),
collectParams,
))
return func(res []IOE.IOEither[error, any]) IOE.IOEither[error, []any] {
return func(res []IOResult[any]) IOResult[[]any] {
return F.Pipe2(
preFct,
doFct(res),
@@ -170,7 +168,7 @@ func handleMapping(mp mapping) func(res []IOE.IOEither[error, any]) IOE.IOEither
// a function that accepts the resolved dependencies to return a result
func MakeProviderFactory(
deps []Dependency,
fct func(param ...any) IOE.IOEither[error, any]) ProviderFactory {
fct func(param ...any) IOResult[any]) ProviderFactory {
return F.Flow3(
mapDeps(deps),

View File

@@ -17,20 +17,18 @@ package erasure
import (
"fmt"
O "github.com/IBM/fp-go/v2/option"
)
const (
BehaviourMask = 0x0f
Identity = 0 // required dependency
Option = 1 // optional dependency
IOEither = 2 // lazy and required
IOOption = 3 // lazy and optional
IDENTITY = 0 // required dependency
OPTION = 1 // optional dependency
IOEITHER = 2 // lazy and required
IOOPTION = 3 // lazy and optional
TypeMask = 0xf0
Multi = 1 << 4 // array of implementations
Item = 2 << 4 // item of a multi token
MULTI = 1 << 4 // array of implementations
ITEM = 2 << 4 // item of a multi token
)
// Dependency describes the relationship to a service
@@ -41,5 +39,5 @@ type Dependency interface {
// Flag returns a tag that identifies the behaviour of the dependency
Flag() int
// ProviderFactory optionally returns an attached [ProviderFactory] that represents the default for this dependency
ProviderFactory() O.Option[ProviderFactory]
ProviderFactory() Option[ProviderFactory]
}

13
v2/di/erasure/types.go Normal file
View File

@@ -0,0 +1,13 @@
package erasure
import (
"github.com/IBM/fp-go/v2/iooption"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/option"
)
type (
Option[T any] = option.Option[T]
IOResult[T any] = ioresult.IOResult[T]
IOOption[T any] = iooption.IOOption[T]
)

File diff suppressed because it is too large Load Diff

View File

@@ -19,14 +19,14 @@ import (
DIE "github.com/IBM/fp-go/v2/di/erasure"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/identity"
IOE "github.com/IBM/fp-go/v2/ioeither"
RIOE "github.com/IBM/fp-go/v2/readerioeither"
IOR "github.com/IBM/fp-go/v2/ioresult"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
// Resolve performs a type safe resolution of a dependency
func Resolve[T any](token InjectionToken[T]) RIOE.ReaderIOEither[DIE.InjectableFactory, error, T] {
func Resolve[T any](token InjectionToken[T]) RIOR.ReaderIOResult[DIE.InjectableFactory, T] {
return F.Flow2(
identity.Ap[IOE.IOEither[error, any]](asDependency(token)),
IOE.ChainEitherK(token.Unerase),
identity.Ap[IOResult[any]](asDependency(token)),
IOR.ChainResultK(token.Unerase),
)
}

View File

@@ -22,9 +22,10 @@ import (
"github.com/IBM/fp-go/v2/errors"
F "github.com/IBM/fp-go/v2/function"
IOE "github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
)
func lookupAt[T any](idx int, token Dependency[T]) func(params []any) E.Either[error, T] {
func lookupAt[T any](idx int, token Dependency[T]) func(params []any) Result[T] {
return F.Flow3(
A.Lookup[any](idx),
E.FromOption[any](errors.OnNone("No parameter at position %d", idx)),
@@ -32,7 +33,7 @@ func lookupAt[T any](idx int, token Dependency[T]) func(params []any) E.Either[e
)
}
func eraseTuple[A, R any](f func(A) IOE.IOEither[error, R]) func(E.Either[error, A]) IOE.IOEither[error, any] {
func eraseTuple[A, R any](f func(A) IOResult[R]) func(Result[A]) IOResult[any] {
return F.Flow3(
IOE.FromEither[error, A],
IOE.Chain(f),
@@ -40,8 +41,8 @@ func eraseTuple[A, R any](f func(A) IOE.IOEither[error, R]) func(E.Either[error,
)
}
func eraseProviderFactory0[R any](f IOE.IOEither[error, R]) func(params ...any) IOE.IOEither[error, any] {
return func(_ ...any) IOE.IOEither[error, any] {
func eraseProviderFactory0[R any](f IOResult[R]) func(params ...any) IOResult[any] {
return func(_ ...any) IOResult[any] {
return F.Pipe1(
f,
IOE.Map[error](F.ToAny[R]),
@@ -50,7 +51,7 @@ func eraseProviderFactory0[R any](f IOE.IOEither[error, R]) func(params ...any)
}
func MakeProviderFactory0[R any](
fct IOE.IOEither[error, R],
fct IOResult[R],
) DIE.ProviderFactory {
return DIE.MakeProviderFactory(
A.Empty[DIE.Dependency](),
@@ -59,13 +60,13 @@ func MakeProviderFactory0[R any](
}
// MakeTokenWithDefault0 creates a unique [InjectionToken] for a specific type with an attached default [DIE.Provider]
func MakeTokenWithDefault0[R any](name string, fct IOE.IOEither[error, R]) InjectionToken[R] {
func MakeTokenWithDefault0[R any](name string, fct IOResult[R]) InjectionToken[R] {
return MakeTokenWithDefault[R](name, MakeProviderFactory0(fct))
}
func MakeProvider0[R any](
token InjectionToken[R],
fct IOE.IOEither[error, R],
fct IOResult[R],
) DIE.Provider {
return DIE.MakeProvider(
token,
@@ -75,5 +76,5 @@ func MakeProvider0[R any](
// ConstProvider simple implementation for a provider with a constant value
func ConstProvider[R any](token InjectionToken[R], value R) DIE.Provider {
return MakeProvider0[R](token, IOE.Of[error](value))
return MakeProvider0(token, ioresult.Of(value))
}

View File

@@ -25,7 +25,8 @@ import (
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
IOE "github.com/IBM/fp-go/v2/ioeither"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
@@ -39,19 +40,19 @@ func TestSimpleProvider(t *testing.T) {
var staticCount int
staticValue := func(value string) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
staticValue := func(value string) IOResult[string] {
return func() Result[string] {
staticCount++
return E.Of[error](fmt.Sprintf("Static based on [%s], at [%s]", value, time.Now()))
return result.Of(fmt.Sprintf("Static based on [%s], at [%s]", value, time.Now()))
}
}
var dynamicCount int
dynamicValue := func(value string) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
dynamicValue := func(value string) IOResult[string] {
return func() Result[string] {
dynamicCount++
return E.Of[error](fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
return result.Of(fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
}
}
@@ -81,19 +82,19 @@ func TestOptionalProvider(t *testing.T) {
var staticCount int
staticValue := func(value string) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
staticValue := func(value string) IOResult[string] {
return func() Result[string] {
staticCount++
return E.Of[error](fmt.Sprintf("Static based on [%s], at [%s]", value, time.Now()))
return result.Of(fmt.Sprintf("Static based on [%s], at [%s]", value, time.Now()))
}
}
var dynamicCount int
dynamicValue := func(value O.Option[string]) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
dynamicValue := func(value Option[string]) IOResult[string] {
return func() Result[string] {
dynamicCount++
return E.Of[error](fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
return result.Of(fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
}
}
@@ -123,10 +124,10 @@ func TestOptionalProviderMissingDependency(t *testing.T) {
var dynamicCount int
dynamicValue := func(value O.Option[string]) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
dynamicValue := func(value Option[string]) IOResult[string] {
return func() Result[string] {
dynamicCount++
return E.Of[error](fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
return result.Of(fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
}
}
@@ -151,10 +152,10 @@ func TestProviderMissingDependency(t *testing.T) {
var dynamicCount int
dynamicValue := func(value string) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
dynamicValue := func(value string) IOResult[string] {
return func() Result[string] {
dynamicCount++
return E.Of[error](fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
return result.Of(fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
}
}
@@ -179,31 +180,31 @@ func TestEagerAndLazyProvider(t *testing.T) {
var staticCount int
staticValue := func(value string) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
staticValue := func(value string) IOResult[string] {
return func() Result[string] {
staticCount++
return E.Of[error](fmt.Sprintf("Static based on [%s], at [%s]", value, time.Now()))
return result.Of(fmt.Sprintf("Static based on [%s], at [%s]", value, time.Now()))
}
}
var dynamicCount int
dynamicValue := func(value string) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
dynamicValue := func(value string) IOResult[string] {
return func() Result[string] {
dynamicCount++
return E.Of[error](fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
return result.Of(fmt.Sprintf("Dynamic based on [%s] at [%s]", value, time.Now()))
}
}
var lazyEagerCount int
lazyEager := func(laz IOE.IOEither[error, string], eager string) IOE.IOEither[error, string] {
lazyEager := func(laz IOResult[string], eager string) IOResult[string] {
return F.Pipe1(
laz,
IOE.Chain(func(lazValue string) IOE.IOEither[error, string] {
return func() E.Either[error, string] {
IOE.Chain(func(lazValue string) IOResult[string] {
return func() Result[string] {
lazyEagerCount++
return E.Of[error](fmt.Sprintf("Dynamic based on [%s], [%s] at [%s]", lazValue, eager, time.Now()))
return result.Of(fmt.Sprintf("Dynamic based on [%s], [%s] at [%s]", lazValue, eager, time.Now()))
}
}),
)
@@ -248,7 +249,7 @@ func TestItemProvider(t *testing.T) {
value := multiInj()
assert.Equal(t, E.Of[error](A.From("Value1", "Value2")), value)
assert.Equal(t, result.Of(A.From("Value1", "Value2")), value)
}
func TestEmptyItemProvider(t *testing.T) {
@@ -269,7 +270,7 @@ func TestEmptyItemProvider(t *testing.T) {
value := multiInj()
assert.Equal(t, E.Of[error](A.Empty[string]()), value)
assert.Equal(t, result.Of(A.Empty[string]()), value)
}
func TestDependencyOnMultiProvider(t *testing.T) {
@@ -283,8 +284,8 @@ func TestDependencyOnMultiProvider(t *testing.T) {
p1 := ConstProvider(INJ_KEY1, "Value3")
p2 := ConstProvider(INJ_KEY2, "Value4")
fromMulti := func(val string, multi []string) IOE.IOEither[error, string] {
return IOE.Of[error](fmt.Sprintf("Val: %s, Multi: %s", val, multi))
fromMulti := func(val string, multi []string) IOResult[string] {
return ioresult.Of(fmt.Sprintf("Val: %s, Multi: %s", val, multi))
}
p3 := MakeProvider2(INJ_KEY3, INJ_KEY1.Identity(), injMulti.Container().Identity(), fromMulti)
@@ -295,19 +296,19 @@ func TestDependencyOnMultiProvider(t *testing.T) {
v := r3(inj)()
assert.Equal(t, E.Of[error]("Val: Value3, Multi: [Value1 Value2]"), v)
assert.Equal(t, result.Of("Val: Value3, Multi: [Value1 Value2]"), v)
}
func TestTokenWithDefaultProvider(t *testing.T) {
// token without a default
injToken1 := MakeToken[string]("Token1")
// token with a default
injToken2 := MakeTokenWithDefault0("Token2", IOE.Of[error]("Carsten"))
injToken2 := MakeTokenWithDefault0("Token2", ioresult.Of("Carsten"))
// dependency
injToken3 := MakeToken[string]("Token3")
p3 := MakeProvider1(injToken3, injToken2.Identity(), func(data string) IOE.IOEither[error, string] {
return IOE.Of[error](fmt.Sprintf("Token: %s", data))
p3 := MakeProvider1(injToken3, injToken2.Identity(), func(data string) IOResult[string] {
return ioresult.Of(fmt.Sprintf("Token: %s", data))
})
// populate the injector
@@ -320,19 +321,19 @@ func TestTokenWithDefaultProvider(t *testing.T) {
// inj1 should not be available
assert.True(t, E.IsLeft(r1(inj)()))
// r3 should work
assert.Equal(t, E.Of[error]("Token: Carsten"), r3(inj)())
assert.Equal(t, result.Of("Token: Carsten"), r3(inj)())
}
func TestTokenWithDefaultProviderAndOverride(t *testing.T) {
// token with a default
injToken2 := MakeTokenWithDefault0("Token2", IOE.Of[error]("Carsten"))
injToken2 := MakeTokenWithDefault0("Token2", ioresult.Of("Carsten"))
// dependency
injToken3 := MakeToken[string]("Token3")
p2 := ConstProvider(injToken2, "Override")
p3 := MakeProvider1(injToken3, injToken2.Identity(), func(data string) IOE.IOEither[error, string] {
return IOE.Of[error](fmt.Sprintf("Token: %s", data))
p3 := MakeProvider1(injToken3, injToken2.Identity(), func(data string) IOResult[string] {
return ioresult.Of(fmt.Sprintf("Token: %s", data))
})
// populate the injector
@@ -342,5 +343,5 @@ func TestTokenWithDefaultProviderAndOverride(t *testing.T) {
r3 := Resolve(injToken3)
// r3 should work
assert.Equal(t, E.Of[error]("Token: Override"), r3(inj)())
assert.Equal(t, result.Of("Token: Override"), r3(inj)())
}

View File

@@ -21,10 +21,7 @@ import (
"sync/atomic"
DIE "github.com/IBM/fp-go/v2/di/erasure"
E "github.com/IBM/fp-go/v2/either"
IO "github.com/IBM/fp-go/v2/io"
IOE "github.com/IBM/fp-go/v2/ioeither"
IOO "github.com/IBM/fp-go/v2/iooption"
O "github.com/IBM/fp-go/v2/option"
)
@@ -33,7 +30,7 @@ import (
type Dependency[T any] interface {
DIE.Dependency
// Unerase converts a value with erased type signature into a strongly typed value
Unerase(val any) E.Either[error, T]
Unerase(val any) Result[T]
}
// InjectionToken uniquely identifies a dependency by giving it an Id, Type and name
@@ -42,17 +39,17 @@ type InjectionToken[T any] interface {
// Identity idenifies this dependency as a mandatory, required dependency, it will be resolved eagerly and injected as `T`.
// If the dependency cannot be resolved, the resolution process fails
Identity() Dependency[T]
// Option identifies this dependency as optional, it will be resolved eagerly and injected as [O.Option[T]].
// Option identifies this dependency as optional, it will be resolved eagerly and injected as [Option[T]].
// If the dependency cannot be resolved, the resolution process continues and the dependency is represented as [O.None[T]]
Option() Dependency[O.Option[T]]
// IOEither identifies this dependency as mandatory but it will be resolved lazily as a [IOE.IOEither[error, T]]. This
Option() Dependency[Option[T]]
// IOEither identifies this dependency as mandatory but it will be resolved lazily as a [IOResult[T]]. This
// value is memoized to make sure the dependency is a singleton.
// If the dependency cannot be resolved, the resolution process fails
IOEither() Dependency[IOE.IOEither[error, T]]
// IOOption identifies this dependency as optional but it will be resolved lazily as a [IOO.IOOption[T]]. This
IOEither() Dependency[IOResult[T]]
// IOOption identifies this dependency as optional but it will be resolved lazily as a [IOOption[T]]. This
// value is memoized to make sure the dependency is a singleton.
// If the dependency cannot be resolved, the resolution process continues and the dependency is represented as the none value.
IOOption() Dependency[IOO.IOOption[T]]
IOOption() Dependency[IOOption[T]]
}
// MultiInjectionToken uniquely identifies a dependency by giving it an Id, Type and name that can have multiple implementations.
@@ -79,12 +76,12 @@ type tokenBase struct {
name string
id string
flag int
providerFactory O.Option[DIE.ProviderFactory]
providerFactory Option[DIE.ProviderFactory]
}
type token[T any] struct {
base *tokenBase
toType func(val any) E.Either[error, T]
toType func(val any) Result[T]
}
func (t *token[T]) Id() string {
@@ -99,26 +96,26 @@ func (t *token[T]) String() string {
return t.base.name
}
func (t *token[T]) Unerase(val any) E.Either[error, T] {
func (t *token[T]) Unerase(val any) Result[T] {
return t.toType(val)
}
func (t *token[T]) ProviderFactory() O.Option[DIE.ProviderFactory] {
func (t *token[T]) ProviderFactory() Option[DIE.ProviderFactory] {
return t.base.providerFactory
}
func makeTokenBase(name string, id string, typ int, providerFactory O.Option[DIE.ProviderFactory]) *tokenBase {
func makeTokenBase(name string, id string, typ int, providerFactory Option[DIE.ProviderFactory]) *tokenBase {
return &tokenBase{name, id, typ, providerFactory}
}
func makeToken[T any](name string, id string, typ int, unerase func(val any) E.Either[error, T], providerFactory O.Option[DIE.ProviderFactory]) Dependency[T] {
func makeToken[T any](name string, id string, typ int, unerase func(val any) Result[T], providerFactory Option[DIE.ProviderFactory]) Dependency[T] {
return &token[T]{makeTokenBase(name, id, typ, providerFactory), unerase}
}
type injectionToken[T any] struct {
token[T]
option Dependency[O.Option[T]]
ioeither Dependency[IOE.IOEither[error, T]]
iooption Dependency[IOO.IOOption[T]]
option Dependency[Option[T]]
ioeither Dependency[IOResult[T]]
iooption Dependency[IOOption[T]]
}
type multiInjectionToken[T any] struct {
@@ -130,19 +127,19 @@ func (i *injectionToken[T]) Identity() Dependency[T] {
return i
}
func (i *injectionToken[T]) Option() Dependency[O.Option[T]] {
func (i *injectionToken[T]) Option() Dependency[Option[T]] {
return i.option
}
func (i *injectionToken[T]) IOEither() Dependency[IOE.IOEither[error, T]] {
func (i *injectionToken[T]) IOEither() Dependency[IOResult[T]] {
return i.ioeither
}
func (i *injectionToken[T]) IOOption() Dependency[IOO.IOOption[T]] {
func (i *injectionToken[T]) IOOption() Dependency[IOOption[T]] {
return i.iooption
}
func (i *injectionToken[T]) ProviderFactory() O.Option[DIE.ProviderFactory] {
func (i *injectionToken[T]) ProviderFactory() Option[DIE.ProviderFactory] {
return i.base.providerFactory
}
@@ -155,14 +152,14 @@ func (m *multiInjectionToken[T]) Item() InjectionToken[T] {
}
// makeToken create a unique [InjectionToken] for a specific type
func makeInjectionToken[T any](name string, providerFactory O.Option[DIE.ProviderFactory]) InjectionToken[T] {
func makeInjectionToken[T any](name string, providerFactory Option[DIE.ProviderFactory]) InjectionToken[T] {
id := genID()
toIdentity := toType[T]()
return &injectionToken[T]{
token[T]{makeTokenBase(name, id, DIE.Identity, providerFactory), toIdentity},
makeToken[O.Option[T]](fmt.Sprintf("Option[%s]", name), id, DIE.Option, toOptionType(toIdentity), providerFactory),
makeToken[IOE.IOEither[error, T]](fmt.Sprintf("IOEither[%s]", name), id, DIE.IOEither, toIOEitherType(toIdentity), providerFactory),
makeToken[IOO.IOOption[T]](fmt.Sprintf("IOOption[%s]", name), id, DIE.IOOption, toIOOptionType(toIdentity), providerFactory),
token[T]{makeTokenBase(name, id, DIE.IDENTITY, providerFactory), toIdentity},
makeToken(fmt.Sprintf("Option[%s]", name), id, DIE.OPTION, toOptionType(toIdentity), providerFactory),
makeToken(fmt.Sprintf("IOEither[%s]", name), id, DIE.IOEITHER, toIOEitherType(toIdentity), providerFactory),
makeToken(fmt.Sprintf("IOOption[%s]", name), id, DIE.IOOPTION, toIOOptionType(toIdentity), providerFactory),
}
}
@@ -187,17 +184,17 @@ func MakeMultiToken[T any](name string) MultiInjectionToken[T] {
providerFactory := O.None[DIE.ProviderFactory]()
// container
container := &injectionToken[[]T]{
token[[]T]{makeTokenBase(containerName, id, DIE.Multi|DIE.Identity, providerFactory), toContainer},
makeToken[O.Option[[]T]](fmt.Sprintf("Option[%s]", containerName), id, DIE.Multi|DIE.Option, toOptionType(toContainer), providerFactory),
makeToken[IOE.IOEither[error, []T]](fmt.Sprintf("IOEither[%s]", containerName), id, DIE.Multi|DIE.IOEither, toIOEitherType(toContainer), providerFactory),
makeToken[IOO.IOOption[[]T]](fmt.Sprintf("IOOption[%s]", containerName), id, DIE.Multi|DIE.IOOption, toIOOptionType(toContainer), providerFactory),
token[[]T]{makeTokenBase(containerName, id, DIE.MULTI|DIE.IDENTITY, providerFactory), toContainer},
makeToken(fmt.Sprintf("Option[%s]", containerName), id, DIE.MULTI|DIE.OPTION, toOptionType(toContainer), providerFactory),
makeToken(fmt.Sprintf("IOEither[%s]", containerName), id, DIE.OPTION|DIE.IOEITHER, toIOEitherType(toContainer), providerFactory),
makeToken(fmt.Sprintf("IOOption[%s]", containerName), id, DIE.OPTION|DIE.IOOPTION, toIOOptionType(toContainer), providerFactory),
}
// item
item := &injectionToken[T]{
token[T]{makeTokenBase(itemName, id, DIE.Item|DIE.Identity, providerFactory), toItem},
makeToken[O.Option[T]](fmt.Sprintf("Option[%s]", itemName), id, DIE.Item|DIE.Option, toOptionType(toItem), providerFactory),
makeToken[IOE.IOEither[error, T]](fmt.Sprintf("IOEither[%s]", itemName), id, DIE.Item|DIE.IOEither, toIOEitherType(toItem), providerFactory),
makeToken[IOO.IOOption[T]](fmt.Sprintf("IOOption[%s]", itemName), id, DIE.Item|DIE.IOOption, toIOOptionType(toItem), providerFactory),
token[T]{makeTokenBase(itemName, id, DIE.ITEM|DIE.IDENTITY, providerFactory), toItem},
makeToken(fmt.Sprintf("Option[%s]", itemName), id, DIE.ITEM|DIE.OPTION, toOptionType(toItem), providerFactory),
makeToken(fmt.Sprintf("IOEither[%s]", itemName), id, DIE.ITEM|DIE.IOEITHER, toIOEitherType(toItem), providerFactory),
makeToken(fmt.Sprintf("IOOption[%s]", itemName), id, DIE.ITEM|DIE.IOOPTION, toIOOptionType(toItem), providerFactory),
}
// returns the token
return &multiInjectionToken[T]{container, item}

View File

@@ -23,7 +23,9 @@ import (
F "github.com/IBM/fp-go/v2/function"
IOE "github.com/IBM/fp-go/v2/ioeither"
IOO "github.com/IBM/fp-go/v2/iooption"
"github.com/IBM/fp-go/v2/ioresult"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
@@ -75,9 +77,9 @@ func TestTokenUnerase(t *testing.T) {
token := MakeToken[int]("IntToken")
// Test successful unerase
result := token.Unerase(42)
assert.True(t, E.IsRight(result))
assert.Equal(t, E.Of[error](42), result)
res := token.Unerase(42)
assert.True(t, E.IsRight(res))
assert.Equal(t, result.Of(42), res)
// Test failed unerase (wrong type)
result2 := token.Unerase("not an int")
@@ -104,7 +106,7 @@ func TestTokenProviderFactory(t *testing.T) {
assert.True(t, O.IsNone(token1.ProviderFactory()))
// Token with default
token2 := MakeTokenWithDefault0("Token2", IOE.Of[error](42))
token2 := MakeTokenWithDefault0("Token2", ioresult.Of(42))
assert.True(t, O.IsSome(token2.ProviderFactory()))
}
@@ -148,13 +150,13 @@ func TestOptionTokenUnerase(t *testing.T) {
optionToken := token.Option()
// Test successful unerase with Some
result := optionToken.Unerase(O.Of[any](42))
assert.True(t, E.IsRight(result))
res := optionToken.Unerase(O.Of[any](42))
assert.True(t, E.IsRight(res))
// Test successful unerase with None
noneResult := optionToken.Unerase(O.None[any]())
assert.True(t, E.IsRight(noneResult))
assert.Equal(t, E.Of[error](O.None[int]()), noneResult)
assert.Equal(t, result.Of(O.None[int]()), noneResult)
// Test failed unerase (wrong type)
badResult := optionToken.Unerase(42) // Not an Option
@@ -166,7 +168,7 @@ func TestIOEitherTokenUnerase(t *testing.T) {
ioeitherToken := token.IOEither()
// Test successful unerase
ioValue := IOE.Of[error](any(42))
ioValue := ioresult.Of(any(42))
result := ioeitherToken.Unerase(ioValue)
assert.True(t, E.IsRight(result))
@@ -222,7 +224,7 @@ func TestMultiTokenContainerUnerase(t *testing.T) {
}
func TestMakeTokenWithDefault(t *testing.T) {
factory := MakeProviderFactory0(IOE.Of[error](42))
factory := MakeProviderFactory0(ioresult.Of(42))
token := MakeTokenWithDefault[int]("TokenWithDefault", factory)
assert.NotNil(t, token)
@@ -247,7 +249,7 @@ func TestMultiTokenStringRepresentation(t *testing.T) {
// Benchmark tests
func BenchmarkMakeToken(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
MakeToken[int]("BenchToken")
}
}
@@ -257,13 +259,13 @@ func BenchmarkTokenUnerase(b *testing.B) {
value := any(42)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
token.Unerase(value)
}
}
func BenchmarkMakeMultiToken(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
MakeMultiToken[int]("BenchMulti")
}
}

15
v2/di/types.go Normal file
View File

@@ -0,0 +1,15 @@
package di
import (
"github.com/IBM/fp-go/v2/context/ioresult"
"github.com/IBM/fp-go/v2/iooption"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
type (
Option[T any] = option.Option[T]
Result[T any] = result.Result[T]
IOResult[T any] = ioresult.IOResult[T]
IOOption[T any] = iooption.IOOption[T]
)

View File

@@ -23,12 +23,13 @@ import (
IOE "github.com/IBM/fp-go/v2/ioeither"
IOO "github.com/IBM/fp-go/v2/iooption"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
var (
toOptionAny = toType[O.Option[any]]()
toIOEitherAny = toType[IOE.IOEither[error, any]]()
toIOOptionAny = toType[IOO.IOOption[any]]()
toOptionAny = toType[Option[any]]()
toIOEitherAny = toType[IOResult[any]]()
toIOOptionAny = toType[IOOption[any]]()
toArrayAny = toType[[]any]()
)
@@ -38,45 +39,45 @@ func asDependency[T DIE.Dependency](t T) DIE.Dependency {
}
// toType converts an any to a T
func toType[T any]() func(t any) E.Either[error, T] {
func toType[T any]() result.Kleisli[any, T] {
return E.ToType[T](errors.OnSome[any]("Value of type [%T] cannot be converted."))
}
// toOptionType converts an any to an Option[any] and then to an Option[T]
func toOptionType[T any](item func(any) E.Either[error, T]) func(t any) E.Either[error, O.Option[T]] {
func toOptionType[T any](item result.Kleisli[any, T]) result.Kleisli[any, Option[T]] {
return F.Flow2(
toOptionAny,
E.Chain(O.Fold(
F.Nullary2(O.None[T], E.Of[error, O.Option[T]]),
F.Nullary2(O.None[T], E.Of[error, Option[T]]),
F.Flow2(
item,
E.Map[error](O.Of[T]),
result.Map(O.Of[T]),
),
)),
)
}
// toIOEitherType converts an any to an IOEither[error, any] and then to an IOEither[error, T]
func toIOEitherType[T any](item func(any) E.Either[error, T]) func(t any) E.Either[error, IOE.IOEither[error, T]] {
func toIOEitherType[T any](item result.Kleisli[any, T]) result.Kleisli[any, IOResult[T]] {
return F.Flow2(
toIOEitherAny,
E.Map[error](IOE.ChainEitherK(item)),
result.Map(IOE.ChainEitherK(item)),
)
}
// toIOOptionType converts an any to an IOOption[any] and then to an IOOption[T]
func toIOOptionType[T any](item func(any) E.Either[error, T]) func(t any) E.Either[error, IOO.IOOption[T]] {
func toIOOptionType[T any](item result.Kleisli[any, T]) result.Kleisli[any, IOOption[T]] {
return F.Flow2(
toIOOptionAny,
E.Map[error](IOO.ChainOptionK(F.Flow2(
result.Map(IOO.ChainOptionK(F.Flow2(
item,
E.ToOption[error, T],
result.ToOption[T],
))),
)
}
// toArrayType converts an any to a []T
func toArrayType[T any](item func(any) E.Either[error, T]) func(t any) E.Either[error, []T] {
func toArrayType[T any](item result.Kleisli[any, T]) result.Kleisli[any, []T] {
return F.Flow2(
toArrayAny,
E.Chain(E.TraverseArray(item)),

View File

@@ -21,8 +21,9 @@ import (
A "github.com/IBM/fp-go/v2/array"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
IOE "github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
@@ -33,13 +34,13 @@ var (
func TestToType(t *testing.T) {
// good cases
assert.Equal(t, E.Of[error](10), toInt(any(10)))
assert.Equal(t, E.Of[error]("Carsten"), toString(any("Carsten")))
assert.Equal(t, E.Of[error](O.Of("Carsten")), toType[O.Option[string]]()(any(O.Of("Carsten"))))
assert.Equal(t, E.Of[error](O.Of(any("Carsten"))), toType[O.Option[any]]()(any(O.Of(any("Carsten")))))
assert.Equal(t, result.Of(10), toInt(any(10)))
assert.Equal(t, result.Of("Carsten"), toString(any("Carsten")))
assert.Equal(t, result.Of(O.Of("Carsten")), toType[Option[string]]()(any(O.Of("Carsten"))))
assert.Equal(t, result.Of(O.Of(any("Carsten"))), toType[Option[any]]()(any(O.Of(any("Carsten")))))
// failure
assert.False(t, E.IsRight(toInt(any("Carsten"))))
assert.False(t, E.IsRight(toType[O.Option[string]]()(O.Of(any("Carsten")))))
assert.False(t, E.IsRight(toType[Option[string]]()(O.Of(any("Carsten")))))
}
func TestToOptionType(t *testing.T) {
@@ -47,17 +48,17 @@ func TestToOptionType(t *testing.T) {
toOptInt := toOptionType(toInt)
toOptString := toOptionType(toString)
// good cases
assert.Equal(t, E.Of[error](O.Of(10)), toOptInt(any(O.Of(any(10)))))
assert.Equal(t, E.Of[error](O.Of("Carsten")), toOptString(any(O.Of(any("Carsten")))))
assert.Equal(t, result.Of(O.Of(10)), toOptInt(any(O.Of(any(10)))))
assert.Equal(t, result.Of(O.Of("Carsten")), toOptString(any(O.Of(any("Carsten")))))
// bad cases
assert.False(t, E.IsRight(toOptInt(any(10))))
assert.False(t, E.IsRight(toOptInt(any(O.Of(10)))))
}
func invokeIOEither[T any](e E.Either[error, IOE.IOEither[error, T]]) E.Either[error, T] {
func invokeIOEither[T any](e Result[IOResult[T]]) Result[T] {
return F.Pipe1(
e,
E.Chain(func(ioe IOE.IOEither[error, T]) E.Either[error, T] {
E.Chain(func(ioe IOResult[T]) Result[T] {
return ioe()
}),
)
@@ -68,11 +69,11 @@ func TestToIOEitherType(t *testing.T) {
toIOEitherInt := toIOEitherType(toInt)
toIOEitherString := toIOEitherType(toString)
// good cases
assert.Equal(t, E.Of[error](10), invokeIOEither(toIOEitherInt(any(IOE.Of[error](any(10))))))
assert.Equal(t, E.Of[error]("Carsten"), invokeIOEither(toIOEitherString(any(IOE.Of[error](any("Carsten"))))))
assert.Equal(t, result.Of(10), invokeIOEither(toIOEitherInt(any(ioresult.Of(any(10))))))
assert.Equal(t, result.Of("Carsten"), invokeIOEither(toIOEitherString(any(ioresult.Of(any("Carsten"))))))
// bad cases
assert.False(t, E.IsRight(invokeIOEither(toIOEitherString(any(IOE.Of[error](any(10)))))))
assert.False(t, E.IsRight(invokeIOEither(toIOEitherString(any(IOE.Of[error]("Carsten"))))))
assert.False(t, E.IsRight(invokeIOEither(toIOEitherString(any(ioresult.Of(any(10)))))))
assert.False(t, E.IsRight(invokeIOEither(toIOEitherString(any(ioresult.Of("Carsten"))))))
assert.False(t, E.IsRight(invokeIOEither(toIOEitherString(any("Carsten")))))
}
@@ -80,5 +81,5 @@ func TestToArrayType(t *testing.T) {
// shortcuts
toArrayString := toArrayType(toString)
// good cases
assert.Equal(t, E.Of[error](A.From("a", "b")), toArrayString(any(A.From(any("a"), any("b")))))
assert.Equal(t, result.Of(A.From("a", "b")), toArrayString(any(A.From(any("a"), any("b")))))
}

190
v2/either/applicative.go Normal file
View File

@@ -0,0 +1,190 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package either
import (
"github.com/IBM/fp-go/v2/internal/applicative"
S "github.com/IBM/fp-go/v2/semigroup"
)
// eitherApplicative is the internal implementation of the Applicative type class for Either.
// It provides the basic applicative operations: Of (lift), Map (transform), and Ap (apply).
type eitherApplicative[E, A, B any] struct {
fof func(a A) Either[E, A]
fmap func(func(A) B) Operator[E, A, B]
fap func(Either[E, A]) Operator[E, func(A) B, B]
}
// Of lifts a pure value into a Right context.
func (o *eitherApplicative[E, A, B]) Of(a A) Either[E, A] {
return o.fof(a)
}
// Map applies a transformation function to the Right value, preserving Left values.
func (o *eitherApplicative[E, A, B]) Map(f func(A) B) Operator[E, A, B] {
return o.fmap(f)
}
// Ap applies a wrapped function to a wrapped value.
// The behavior depends on which Ap implementation is used (fail-fast or validation).
func (o *eitherApplicative[E, A, B]) Ap(fa Either[E, A]) Operator[E, func(A) B, B] {
return o.fap(fa)
}
// Applicative creates a standard Applicative instance for Either with fail-fast error handling.
//
// This returns a lawful Applicative that satisfies all applicative laws:
// - Identity: Ap(Of(identity))(v) == v
// - Homomorphism: Ap(Of(f))(Of(x)) == Of(f(x))
// - Interchange: Ap(Of(f))(u) == Ap(Map(f => f(y))(u))(Of(y))
// - Composition: Ap(Ap(Map(compose)(f))(g))(x) == Ap(f)(Ap(g)(x))
//
// The Applicative operations behave as follows:
// - Of: lifts a value into Right
// - Map: transforms Right values, preserves Left (standard functor)
// - Ap: fails fast - if either operand is Left, returns the first Left encountered
//
// This is the standard Either applicative that stops at the first error, making it
// suitable for computations where you want to short-circuit on failure.
//
// Example - Fail-Fast Behavior:
//
// app := either.Applicative[error, int, string]()
//
// // Both succeed - function application works
// value := either.Right[error](42)
// fn := either.Right[error](strconv.Itoa)
// result := app.Ap(value)(fn)
// // result is Right("42")
//
// // First error stops computation
// err1 := either.Left[func(int) string](errors.New("error 1"))
// err2 := either.Left[int](errors.New("error 2"))
// result2 := app.Ap(err2)(err1)
// // result2 is Left(error 1) - only first error is returned
//
// Type Parameters:
// - E: The error type (Left value)
// - A: The input value type (Right value)
// - B: The output value type after transformation
func Applicative[E, A, B any]() applicative.Applicative[A, B, Either[E, A], Either[E, B], Either[E, func(A) B]] {
return &eitherApplicative[E, A, B]{
Of[E, A],
Map[E, A, B],
Ap[B, E, A],
}
}
// ApplicativeV creates an Applicative with validation-style error accumulation.
//
// This returns a lawful Applicative that accumulates errors using a Semigroup when
// combining independent computations with Ap. This is the "validation" pattern commonly
// used for form validation, configuration validation, and parallel error collection.
//
// The returned instance satisfies all applicative laws:
// - Identity: Ap(Of(identity))(v) == v
// - Homomorphism: Ap(Of(f))(Of(x)) == Of(f(x))
// - Interchange: Ap(Of(f))(u) == Ap(Map(f => f(y))(u))(Of(y))
// - Composition: Ap(Ap(Map(compose)(f))(g))(x) == Ap(f)(Ap(g)(x))
//
// Key behaviors:
// - Of: lifts a value into Right
// - Map: transforms Right values, preserves Left (standard functor)
// - Ap: when both operands are Left, combines errors using the Semigroup
//
// Comparison with standard Applicative:
// - Applicative: Ap fails fast (returns first error)
// - ApplicativeV: Ap accumulates errors (combines all errors via Semigroup)
//
// Use cases:
// - Form validation: collect all validation errors at once
// - Configuration validation: report all configuration problems
// - Parallel independent checks: accumulate all failures
//
// Example - Error Accumulation for Form Validation:
//
// type ValidationErrors []string
//
// // Define how to combine error lists
// sg := semigroup.MakeSemigroup(func(a, b ValidationErrors) ValidationErrors {
// return append(append(ValidationErrors{}, a...), b...)
// })
//
// app := either.ApplicativeV[ValidationErrors, User, User](sg)
//
// // Validate multiple fields independently
// validateName := func(name string) Either[ValidationErrors, string] {
// if len(name) < 3 {
// return Left[string](ValidationErrors{"Name must be at least 3 characters"})
// }
// return Right[ValidationErrors](name)
// }
//
// validateAge := func(age int) Either[ValidationErrors, int] {
// if age < 18 {
// return Left[int](ValidationErrors{"Must be 18 or older"})
// }
// return Right[ValidationErrors](age)
// }
//
// validateEmail := func(email string) Either[ValidationErrors, string] {
// if !strings.Contains(email, "@") {
// return Left[string](ValidationErrors{"Invalid email format"})
// }
// return Right[ValidationErrors](email)
// }
//
// // Create a constructor function lifted into Either
// makeUser := func(name string) func(int) func(string) User {
// return func(age int) func(string) User {
// return func(email string) User {
// return User{Name: name, Age: age, Email: email}
// }
// }
// }
//
// // Apply validations - all errors are collected
// name := validateName("ab") // Left: name too short
// age := validateAge(16) // Left: age too low
// email := validateEmail("invalid") // Left: invalid email
//
// // Combine all validations using ApV
// result := app.Ap(name)(
// app.Ap(age)(
// app.Ap(email)(
// app.Of(makeUser),
// ),
// ),
// )
// // result is Left(ValidationErrors{
// // "Name must be at least 3 characters",
// // "Must be 18 or older",
// // "Invalid email format"
// // })
// // All three errors are collected!
//
// Type Parameters:
// - E: The error type that must have a Semigroup for combining errors
// - A: The input value type (Right value)
// - B: The output value type after transformation
// - sg: Semigroup instance for combining Left values when both operands of Ap are Left
func ApplicativeV[E, A, B any](sg S.Semigroup[E]) applicative.Applicative[A, B, Either[E, A], Either[E, B], Either[E, func(A) B]] {
return &eitherApplicative[E, A, B]{
Of[E, A],
Map[E, A, B],
ApV[B, A](sg),
}
}

View File

@@ -35,14 +35,18 @@ import (
// // result is Right([]int{1, 2, 3})
//
//go:inline
func TraverseArrayG[GA ~[]A, GB ~[]B, E, A, B any](f func(A) Either[E, B]) func(GA) Either[E, GB] {
return RA.Traverse[GA](
Of[E, GB],
Map[E, GB, func(B) GB],
Ap[GB, E, B],
f,
)
func TraverseArrayG[GA ~[]A, GB ~[]B, E, A, B any](f Kleisli[E, A, B]) Kleisli[E, GA, GB] {
return func(ga GA) Either[E, GB] {
bs := make(GB, len(ga))
for i, a := range ga {
b := f(a)
if b.isLeft {
return Left[GB](b.l)
}
bs[i] = b.r
}
return Of[E](bs)
}
}
// TraverseArray transforms an array by applying a function that returns an Either to each element.
@@ -59,7 +63,7 @@ func TraverseArrayG[GA ~[]A, GB ~[]B, E, A, B any](f func(A) Either[E, B]) func(
// // result is Right([]int{1, 2, 3})
//
//go:inline
func TraverseArray[E, A, B any](f func(A) Either[E, B]) func([]A) Either[E, []B] {
func TraverseArray[E, A, B any](f Kleisli[E, A, B]) Kleisli[E, []A, []B] {
return TraverseArrayG[[]A, []B](f)
}
@@ -80,14 +84,18 @@ func TraverseArray[E, A, B any](f func(A) Either[E, B]) func([]A) Either[E, []B]
// // result is Right([]string{"0:a", "1:b"})
//
//go:inline
func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, E, A, B any](f func(int, A) Either[E, B]) func(GA) Either[E, GB] {
return RA.TraverseWithIndex[GA](
Of[E, GB],
Map[E, GB, func(B) GB],
Ap[GB, E, B],
f,
)
func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, E, A, B any](f func(int, A) Either[E, B]) Kleisli[E, GA, GB] {
return func(ga GA) Either[E, GB] {
bs := make(GB, len(ga))
for i, a := range ga {
b := f(i, a)
if b.isLeft {
return Left[GB](b.l)
}
bs[i] = b.r
}
return Of[E](bs)
}
}
// TraverseArrayWithIndex transforms an array by applying an indexed function that returns an Either.
@@ -106,7 +114,7 @@ func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, E, A, B any](f func(int, A) Eithe
// // result is Right([]string{"0:a", "1:b"})
//
//go:inline
func TraverseArrayWithIndex[E, A, B any](f func(int, A) Either[E, B]) func([]A) Either[E, []B] {
func TraverseArrayWithIndex[E, A, B any](f func(int, A) Either[E, B]) Kleisli[E, []A, []B] {
return TraverseArrayWithIndexG[[]A, []B](f)
}

View File

@@ -4,16 +4,17 @@ import (
"fmt"
"testing"
A "github.com/IBM/fp-go/v2/array"
TST "github.com/IBM/fp-go/v2/internal/testing"
"github.com/stretchr/testify/assert"
)
func TestCompactArray(t *testing.T) {
ar := []Either[string, string]{
ar := A.From(
Of[string]("ok"),
Left[string]("err"),
Of[string]("ok"),
}
)
res := CompactArray(ar)
assert.Equal(t, 2, len(res))

View File

@@ -273,7 +273,7 @@ func BindL[E, S, T any](
lens Lens[S, T],
f Kleisli[E, T, T],
) Endomorphism[Either[E, S]] {
return Bind[E, S, S, T](lens.Set, function.Flow2(lens.Get, f))
return Bind(lens.Set, function.Flow2(lens.Get, f))
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
@@ -323,7 +323,7 @@ func LetL[E, S, T any](
lens Lens[S, T],
f Endomorphism[T],
) Endomorphism[Either[E, S]] {
return Let[E, S, S, T](lens.Set, function.Flow2(lens.Get, f))
return Let[E](lens.Set, function.Flow2(lens.Get, f))
}
// LetToL attaches a constant value to a context using a lens-based setter.
@@ -371,5 +371,5 @@ func LetToL[E, S, T any](
lens Lens[S, T],
b T,
) Endomorphism[Either[E, S]] {
return LetTo[E, S, S, T](lens.Set, b)
return LetTo[E](lens.Set, b)
}

View File

@@ -20,6 +20,7 @@ import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/utils"
N "github.com/IBM/fp-go/v2/number"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/stretchr/testify/assert"
)
@@ -203,7 +204,7 @@ func TestLetL(t *testing.T) {
)
t.Run("LetL with pure transformation", func(t *testing.T) {
double := func(v int) int { return v * 2 }
double := N.Mul(2)
result := F.Pipe1(
Right[error](Counter{Value: 21}),
@@ -215,7 +216,7 @@ func TestLetL(t *testing.T) {
})
t.Run("LetL with Left input", func(t *testing.T) {
double := func(v int) int { return v * 2 }
double := N.Mul(2)
result := F.Pipe1(
Left[Counter](assert.AnError),
@@ -227,8 +228,8 @@ func TestLetL(t *testing.T) {
})
t.Run("LetL with multiple transformations", func(t *testing.T) {
double := func(v int) int { return v * 2 }
addTen := func(v int) int { return v + 10 }
double := N.Mul(2)
addTen := N.Add(10)
result := F.Pipe2(
Right[error](Counter{Value: 5}),
@@ -241,7 +242,7 @@ func TestLetL(t *testing.T) {
})
t.Run("LetL with identity transformation", func(t *testing.T) {
identity := func(v int) int { return v }
identity := F.Identity[int]
result := F.Pipe1(
Right[error](Counter{Value: 42}),
@@ -315,7 +316,7 @@ func TestLensOperationsCombined(t *testing.T) {
)
t.Run("Combine LetToL and LetL", func(t *testing.T) {
double := func(v int) int { return v * 2 }
double := N.Mul(2)
result := F.Pipe2(
Right[error](Counter{Value: 100}),
@@ -328,7 +329,7 @@ func TestLensOperationsCombined(t *testing.T) {
})
t.Run("Combine LetL and BindL", func(t *testing.T) {
double := func(v int) int { return v * 2 }
double := N.Mul(2)
validate := func(v int) Either[error, int] {
if v > 100 {
return Left[int](assert.AnError)

View File

@@ -22,9 +22,9 @@ import (
type (
// Either defines a data structure that logically holds either an E or an A. The flag discriminates the cases
Either[E, A any] struct {
r A
l E
isL bool
r A
l E
isLeft bool
}
)
@@ -32,7 +32,7 @@ type (
//
//go:noinline
func (s Either[E, A]) String() string {
if !s.isL {
if !s.isLeft {
return fmt.Sprintf("Right[%T](%v)", s.r, s.r)
}
return fmt.Sprintf("Left[%T](%v)", s.l, s.l)
@@ -61,7 +61,7 @@ func (s Either[E, A]) Format(f fmt.State, c rune) {
//
//go:inline
func IsLeft[E, A any](val Either[E, A]) bool {
return val.isL
return val.isLeft
}
// IsRight tests if the Either is a Right value.
@@ -75,7 +75,7 @@ func IsLeft[E, A any](val Either[E, A]) bool {
//
//go:inline
func IsRight[E, A any](val Either[E, A]) bool {
return !val.isL
return !val.isLeft
}
// Left creates a new Either representing a Left (error/failure) value.
@@ -87,7 +87,7 @@ func IsRight[E, A any](val Either[E, A]) bool {
//
//go:inline
func Left[A, E any](value E) Either[E, A] {
return Either[E, A]{l: value, isL: true}
return Either[E, A]{l: value, isLeft: true}
}
// Right creates a new Either representing a Right (success) value.
@@ -115,7 +115,7 @@ func Right[E, A any](value A) Either[E, A] {
//
//go:inline
func MonadFold[E, A, B any](ma Either[E, A], onLeft func(e E) B, onRight func(a A) B) B {
if !ma.isL {
if !ma.isLeft {
return onRight(ma.r)
}
return onLeft(ma.l)

View File

@@ -24,7 +24,6 @@ import (
F "github.com/IBM/fp-go/v2/function"
C "github.com/IBM/fp-go/v2/internal/chain"
FC "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/option"
)
@@ -38,7 +37,7 @@ import (
//
//go:inline
func Of[E, A any](value A) Either[E, A] {
return F.Pipe1(value, Right[E, A])
return Right[E](value)
}
// FromIO executes an IO operation and wraps the result in a Right value.
@@ -48,8 +47,10 @@ func Of[E, A any](value A) Either[E, A] {
//
// getValue := func() int { return 42 }
// result := either.FromIO[error](getValue) // Right(42)
//
// go: inline
func FromIO[E any, IO ~func() A, A any](f IO) Either[E, A] {
return F.Pipe1(f(), Right[E, A])
return Of[E](f())
}
// MonadAp applies a function wrapped in Either to a value wrapped in Either.
@@ -58,17 +59,23 @@ func FromIO[E any, IO ~func() A, A any](f IO) Either[E, A] {
//
// Example:
//
// fab := either.Right[error](func(x int) int { return x * 2 })
// fab := either.Right[error](N.Mul(2))
// fa := either.Right[error](21)
// result := either.MonadAp(fab, fa) // Right(42)
func MonadAp[B, E, A any](fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
return MonadFold(fab, Left[B, E], func(ab func(A) B) Either[E, B] {
return MonadFold(fa, Left[B, E], F.Flow2(ab, Right[E, B]))
})
if fab.isLeft {
return Left[B](fab.l)
}
if fa.isLeft {
return Left[B](fa.l)
}
return Of[E](fab.r(fa.r))
}
// Ap is the curried version of [MonadAp].
// Returns a function that applies a wrapped function to the given wrapped value.
//
//go:inline
func Ap[B, E, A any](fa Either[E, A]) Operator[E, func(A) B, B] {
return F.Bind2nd(MonadAp[B, E, A], fa)
}
@@ -81,12 +88,15 @@ func Ap[B, E, A any](fa Either[E, A]) Operator[E, func(A) B, B] {
//
// result := either.MonadMap(
// either.Right[error](21),
// func(x int) int { return x * 2 },
// N.Mul(2),
// ) // Right(42)
//
//go:inline
func MonadMap[E, A, B any](fa Either[E, A], f func(a A) B) Either[E, B] {
return MonadChain(fa, F.Flow2(f, Right[E, B]))
if fa.isLeft {
return Left[B](fa.l)
}
return Of[E](f(fa.r))
}
// MonadBiMap applies two functions: one to transform a Left value, another to transform a Right value.
@@ -100,13 +110,18 @@ func MonadMap[E, A, B any](fa Either[E, A], f func(a A) B) Either[E, B] {
// func(n int) string { return fmt.Sprint(n) },
// ) // Left("error")
func MonadBiMap[E1, E2, A, B any](fa Either[E1, A], f func(E1) E2, g func(a A) B) Either[E2, B] {
return MonadFold(fa, F.Flow2(f, Left[B, E2]), F.Flow2(g, Right[E2, B]))
if fa.isLeft {
return Left[B](f(fa.l))
}
return Of[E2](g(fa.r))
}
// BiMap is the curried version of [MonadBiMap].
// Maps a pair of functions over the two type arguments of the bifunctor.
func BiMap[E1, E2, A, B any](f func(E1) E2, g func(a A) B) func(Either[E1, A]) Either[E2, B] {
return Fold(F.Flow2(f, Left[B, E2]), F.Flow2(g, Right[E2, B]))
return func(fa Either[E1, A]) Either[E2, B] {
return MonadBiMap(fa, f, g)
}
}
// MonadMapTo replaces the Right value with a constant value.
@@ -116,12 +131,15 @@ func BiMap[E1, E2, A, B any](f func(E1) E2, g func(a A) B) func(Either[E1, A]) E
//
// result := either.MonadMapTo(either.Right[error](21), "success") // Right("success")
func MonadMapTo[E, A, B any](fa Either[E, A], b B) Either[E, B] {
return MonadMap(fa, F.Constant1[A](b))
if fa.isLeft {
return Left[B](fa.l)
}
return Of[E](b)
}
// MapTo is the curried version of [MonadMapTo].
func MapTo[E, A, B any](b B) Operator[E, A, B] {
return Map[E](F.Constant1[A](b))
return F.Bind2nd(MonadMapTo[E, A], b)
}
// MonadMapLeft applies a transformation function to the Left (error) value.
@@ -139,8 +157,8 @@ func MonadMapLeft[E1, A, E2 any](fa Either[E1, A], f func(E1) E2) Either[E2, A]
// Map is the curried version of [MonadMap].
// Transforms the Right value using the provided function.
func Map[E, A, B any](f func(a A) B) func(fa Either[E, A]) Either[E, B] {
return Chain(F.Flow2(f, Right[E, B]))
func Map[E, A, B any](f func(a A) B) Operator[E, A, B] {
return F.Bind2nd(MonadMap[E], f)
}
// MapLeft is the curried version of [MonadMapLeft].
@@ -163,8 +181,11 @@ func MapLeft[A, E1, E2 any](f func(E1) E2) func(fa Either[E1, A]) Either[E2, A]
// ) // Right(42)
//
//go:inline
func MonadChain[E, A, B any](fa Either[E, A], f func(a A) Either[E, B]) Either[E, B] {
return MonadFold(fa, Left[B, E], f)
func MonadChain[E, A, B any](fa Either[E, A], f Kleisli[E, A, B]) Either[E, B] {
if fa.isLeft {
return Left[B](fa.l)
}
return f(fa.r)
}
// MonadChainFirst executes a side-effect computation but returns the original value.
@@ -179,7 +200,7 @@ func MonadChain[E, A, B any](fa Either[E, A], f func(a A) Either[E, B]) Either[E
// return either.Right[error]("logged")
// },
// ) // Right(42) - original value preserved
func MonadChainFirst[E, A, B any](ma Either[E, A], f func(a A) Either[E, B]) Either[E, A] {
func MonadChainFirst[E, A, B any](ma Either[E, A], f Kleisli[E, A, B]) Either[E, A] {
return C.MonadChainFirst(
MonadChain[E, A, A],
MonadMap[E, B, A],
@@ -225,12 +246,12 @@ func ChainTo[A, E, B any](mb Either[E, B]) Operator[E, A, B] {
// Chain is the curried version of [MonadChain].
// Sequences two computations where the second depends on the first.
func Chain[E, A, B any](f func(a A) Either[E, B]) Operator[E, A, B] {
return Fold(Left[B, E], f)
func Chain[E, A, B any](f Kleisli[E, A, B]) Operator[E, A, B] {
return F.Bind2nd(MonadChain[E], f)
}
// ChainFirst is the curried version of [MonadChainFirst].
func ChainFirst[E, A, B any](f func(a A) Either[E, B]) Operator[E, A, A] {
func ChainFirst[E, A, B any](f Kleisli[E, A, B]) Operator[E, A, A] {
return C.ChainFirst(
Chain[E, A, A],
Map[E, B, A],
@@ -271,7 +292,7 @@ func TryCatch[FE func(error) E, E, A any](val A, err error, onThrow FE) Either[E
// result := either.TryCatchError(42, nil) // Right(42)
// result := either.TryCatchError(0, errors.New("fail")) // Left(error)
func TryCatchError[A any](val A, err error) Either[error, A] {
return TryCatch(val, err, E.IdentityError)
return TryCatch(val, err, E.Identity)
}
// Sequence2 sequences two Either values using a combining function.
@@ -335,7 +356,7 @@ func FromError[A any](f func(a A) error) func(A) Either[error, A] {
// err := either.ToError(either.Left[int](errors.New("fail"))) // error
// err := either.ToError(either.Right[error](42)) // nil
func ToError[A any](e Either[error, A]) error {
return MonadFold(e, E.IdentityError, F.Constant1[A, error](nil))
return MonadFold(e, E.Identity, F.Constant1[A, error](nil))
}
// Fold is the curried version of [MonadFold].
@@ -347,6 +368,8 @@ func ToError[A any](e Either[error, A]) error {
// func(err error) string { return "Error: " + err.Error() },
// func(n int) string { return fmt.Sprintf("Value: %d", n) },
// )(either.Right[error](42)) // "Value: 42"
//
//go:inline
func Fold[E, A, B any](onLeft func(E) B, onRight func(A) B) func(Either[E, A]) B {
return func(ma Either[E, A]) B {
return MonadFold(ma, onLeft, onRight)
@@ -362,7 +385,7 @@ func Fold[E, A, B any](onLeft func(E) B, onRight func(A) B) func(Either[E, A]) B
//
//go:inline
func UnwrapError[A any](ma Either[error, A]) (A, error) {
return Unwrap[error](ma)
return Unwrap(ma)
}
// FromPredicate creates an Either based on a predicate.
@@ -381,7 +404,7 @@ func FromPredicate[E, A any](pred func(A) bool, onFalse func(A) E) func(A) Eithe
if pred(a) {
return Right[E](a)
}
return Left[A, E](onFalse(a))
return Left[A](onFalse(a))
}
}
@@ -410,10 +433,12 @@ func GetOrElse[E, A any](onLeft func(E) A) func(Either[E, A]) A {
// Reduce folds an Either into a single value using a reducer function.
// Returns the initial value for Left, or applies the reducer to the Right value.
func Reduce[E, A, B any](f func(B, A) B, initial B) func(Either[E, A]) B {
return Fold(
F.Constant1[E](initial),
F.Bind1st(f, initial),
)
return func(fa Either[E, A]) B {
if fa.isLeft {
return initial
}
return f(initial, fa.r)
}
}
// AltW provides an alternative Either if the first is Left, allowing different error types.
@@ -425,7 +450,7 @@ func Reduce[E, A, B any](f func(B, A) B, initial B) func(Either[E, A]) B {
// return either.Right[string](99)
// })
// result := alternative(either.Left[int](errors.New("fail"))) // Right(99)
func AltW[E, E1, A any](that L.Lazy[Either[E1, A]]) func(Either[E, A]) Either[E1, A] {
func AltW[E, E1, A any](that Lazy[Either[E1, A]]) func(Either[E, A]) Either[E1, A] {
return Fold(F.Ignore1of1[E](that), Right[E1, A])
}
@@ -437,7 +462,7 @@ func AltW[E, E1, A any](that L.Lazy[Either[E1, A]]) func(Either[E, A]) Either[E1
// return either.Right[error](99)
// })
// result := alternative(either.Left[int](errors.New("fail"))) // Right(99)
func Alt[E, A any](that L.Lazy[Either[E, A]]) Operator[E, A, A] {
func Alt[E, A any](that Lazy[Either[E, A]]) Operator[E, A, A] {
return AltW[E](that)
}
@@ -480,23 +505,28 @@ func Memoize[E, A any](val Either[E, A]) Either[E, A] {
// MonadSequence2 sequences two Either values using a combining function.
// Short-circuits on the first Left encountered.
func MonadSequence2[E, T1, T2, R any](e1 Either[E, T1], e2 Either[E, T2], f func(T1, T2) Either[E, R]) Either[E, R] {
return MonadFold(e1, Left[R, E], func(t1 T1) Either[E, R] {
return MonadFold(e2, Left[R, E], func(t2 T2) Either[E, R] {
return f(t1, t2)
})
})
if e1.isLeft {
return Left[R](e1.l)
}
if e2.isLeft {
return Left[R](e2.l)
}
return f(e1.r, e2.r)
}
// MonadSequence3 sequences three Either values using a combining function.
// Short-circuits on the first Left encountered.
func MonadSequence3[E, T1, T2, T3, R any](e1 Either[E, T1], e2 Either[E, T2], e3 Either[E, T3], f func(T1, T2, T3) Either[E, R]) Either[E, R] {
return MonadFold(e1, Left[R, E], func(t1 T1) Either[E, R] {
return MonadFold(e2, Left[R, E], func(t2 T2) Either[E, R] {
return MonadFold(e3, Left[R, E], func(t3 T3) Either[E, R] {
return f(t1, t2, t3)
})
})
})
if e1.isLeft {
return Left[R](e1.l)
}
if e2.isLeft {
return Left[R](e2.l)
}
if e3.isLeft {
return Left[R](e3.l)
}
return f(e1.r, e2.r, e3.r)
}
// Swap exchanges the Left and Right type parameters.
@@ -524,6 +554,6 @@ func Flap[E, B, A any](a A) Operator[E, func(A) B, B] {
// MonadAlt provides an alternative Either if the first is Left.
// This is the monadic version of [Alt].
func MonadAlt[E, A any](fa Either[E, A], that L.Lazy[Either[E, A]]) Either[E, A] {
func MonadAlt[E, A any](fa Either[E, A], that Lazy[Either[E, A]]) Either[E, A] {
return MonadFold(fa, F.Ignore1of1[E](that), Of[E, A])
}

View File

@@ -20,6 +20,7 @@ import (
"testing"
F "github.com/IBM/fp-go/v2/function"
N "github.com/IBM/fp-go/v2/number"
)
var (
@@ -33,21 +34,21 @@ var (
// Benchmark core constructors
func BenchmarkLeft(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Left[int](errBench)
}
}
func BenchmarkRight(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Right[error](42)
}
}
func BenchmarkOf(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Of[error](42)
}
}
@@ -57,7 +58,7 @@ func BenchmarkIsLeft(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchBool = IsLeft(left)
}
}
@@ -66,7 +67,7 @@ func BenchmarkIsRight(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchBool = IsRight(right)
}
}
@@ -75,10 +76,10 @@ func BenchmarkIsRight(b *testing.B) {
func BenchmarkMonadFold_Right(b *testing.B) {
right := Right[error](42)
onLeft := func(e error) int { return 0 }
onRight := func(a int) int { return a * 2 }
onRight := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = MonadFold(right, onLeft, onRight)
}
}
@@ -86,10 +87,10 @@ func BenchmarkMonadFold_Right(b *testing.B) {
func BenchmarkMonadFold_Left(b *testing.B) {
left := Left[int](errBench)
onLeft := func(e error) int { return 0 }
onRight := func(a int) int { return a * 2 }
onRight := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = MonadFold(left, onLeft, onRight)
}
}
@@ -98,11 +99,11 @@ func BenchmarkFold_Right(b *testing.B) {
right := Right[error](42)
folder := Fold(
func(e error) int { return 0 },
func(a int) int { return a * 2 },
N.Mul(2),
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = folder(right)
}
}
@@ -111,11 +112,11 @@ func BenchmarkFold_Left(b *testing.B) {
left := Left[int](errBench)
folder := Fold(
func(e error) int { return 0 },
func(a int) int { return a * 2 },
N.Mul(2),
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = folder(left)
}
}
@@ -125,7 +126,7 @@ func BenchmarkUnwrap_Right(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt, _ = Unwrap(right)
}
}
@@ -134,7 +135,7 @@ func BenchmarkUnwrap_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt, _ = Unwrap(left)
}
}
@@ -143,7 +144,7 @@ func BenchmarkUnwrapError_Right(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt, _ = UnwrapError(right)
}
}
@@ -152,7 +153,7 @@ func BenchmarkUnwrapError_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt, _ = UnwrapError(left)
}
}
@@ -160,40 +161,40 @@ func BenchmarkUnwrapError_Left(b *testing.B) {
// Benchmark functor operations
func BenchmarkMonadMap_Right(b *testing.B) {
right := Right[error](42)
mapper := func(a int) int { return a * 2 }
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadMap(right, mapper)
}
}
func BenchmarkMonadMap_Left(b *testing.B) {
left := Left[int](errBench)
mapper := func(a int) int { return a * 2 }
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadMap(left, mapper)
}
}
func BenchmarkMap_Right(b *testing.B) {
right := Right[error](42)
mapper := Map[error](func(a int) int { return a * 2 })
mapper := Map[error](N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = mapper(right)
}
}
func BenchmarkMap_Left(b *testing.B) {
left := Left[int](errBench)
mapper := Map[error](func(a int) int { return a * 2 })
mapper := Map[error](N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = mapper(left)
}
}
@@ -203,7 +204,7 @@ func BenchmarkMapLeft_Right(b *testing.B) {
mapper := MapLeft[int](error.Error)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = mapper(right)
}
}
@@ -213,7 +214,7 @@ func BenchmarkMapLeft_Left(b *testing.B) {
mapper := MapLeft[int](error.Error)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = mapper(left)
}
}
@@ -226,7 +227,7 @@ func BenchmarkBiMap_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = mapper(right)
}
}
@@ -239,7 +240,7 @@ func BenchmarkBiMap_Left(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = mapper(left)
}
}
@@ -250,7 +251,7 @@ func BenchmarkMonadChain_Right(b *testing.B) {
chainer := func(a int) Either[error, int] { return Right[error](a * 2) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadChain(right, chainer)
}
}
@@ -260,27 +261,27 @@ func BenchmarkMonadChain_Left(b *testing.B) {
chainer := func(a int) Either[error, int] { return Right[error](a * 2) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadChain(left, chainer)
}
}
func BenchmarkChain_Right(b *testing.B) {
right := Right[error](42)
chainer := Chain[error](func(a int) Either[error, int] { return Right[error](a * 2) })
chainer := Chain(func(a int) Either[error, int] { return Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = chainer(right)
}
}
func BenchmarkChain_Left(b *testing.B) {
left := Left[int](errBench)
chainer := Chain[error](func(a int) Either[error, int] { return Right[error](a * 2) })
chainer := Chain(func(a int) Either[error, int] { return Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = chainer(left)
}
}
@@ -290,17 +291,17 @@ func BenchmarkChainFirst_Right(b *testing.B) {
chainer := ChainFirst(func(a int) Either[error, string] { return Right[error]("logged") })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = chainer(right)
}
}
func BenchmarkChainFirst_Left(b *testing.B) {
left := Left[int](errBench)
chainer := ChainFirst[error](func(a int) Either[error, string] { return Right[error]("logged") })
chainer := ChainFirst(func(a int) Either[error, string] { return Right[error]("logged") })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = chainer(left)
}
}
@@ -309,7 +310,7 @@ func BenchmarkFlatten_Right(b *testing.B) {
nested := Right[error](Right[error](42))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Flatten(nested)
}
}
@@ -318,28 +319,28 @@ func BenchmarkFlatten_Left(b *testing.B) {
nested := Left[Either[error, int]](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Flatten(nested)
}
}
// Benchmark applicative operations
func BenchmarkMonadAp_RightRight(b *testing.B) {
fab := Right[error](func(a int) int { return a * 2 })
fab := Right[error](N.Mul(2))
fa := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadAp(fab, fa)
}
}
func BenchmarkMonadAp_RightLeft(b *testing.B) {
fab := Right[error](func(a int) int { return a * 2 })
fab := Right[error](N.Mul(2))
fa := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadAp(fab, fa)
}
}
@@ -349,18 +350,18 @@ func BenchmarkMonadAp_LeftRight(b *testing.B) {
fa := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadAp(fab, fa)
}
}
func BenchmarkAp_RightRight(b *testing.B) {
fab := Right[error](func(a int) int { return a * 2 })
fab := Right[error](N.Mul(2))
fa := Right[error](42)
ap := Ap[int, error, int](fa)
ap := Ap[int](fa)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = ap(fab)
}
}
@@ -371,27 +372,27 @@ func BenchmarkAlt_RightRight(b *testing.B) {
alternative := Alt(func() Either[error, int] { return Right[error](99) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = alternative(right)
}
}
func BenchmarkAlt_LeftRight(b *testing.B) {
left := Left[int](errBench)
alternative := Alt[error](func() Either[error, int] { return Right[error](99) })
alternative := Alt(func() Either[error, int] { return Right[error](99) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = alternative(left)
}
}
func BenchmarkOrElse_Right(b *testing.B) {
right := Right[error](42)
recover := OrElse[error](func(e error) Either[error, int] { return Right[error](0) })
recover := OrElse(func(e error) Either[error, int] { return Right[error](0) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = recover(right)
}
}
@@ -401,7 +402,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
recover := OrElse(func(e error) Either[error, int] { return Right[error](0) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = recover(left)
}
}
@@ -410,7 +411,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
func BenchmarkTryCatch_Success(b *testing.B) {
onThrow := func(err error) error { return err }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = TryCatch(42, nil, onThrow)
}
}
@@ -418,21 +419,21 @@ func BenchmarkTryCatch_Success(b *testing.B) {
func BenchmarkTryCatch_Error(b *testing.B) {
onThrow := func(err error) error { return err }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = TryCatch(0, errBench, onThrow)
}
}
func BenchmarkTryCatchError_Success(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = TryCatchError(42, nil)
}
}
func BenchmarkTryCatchError_Error(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = TryCatchError(0, errBench)
}
}
@@ -441,7 +442,7 @@ func BenchmarkSwap_Right(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Swap(right)
}
}
@@ -450,27 +451,27 @@ func BenchmarkSwap_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Swap(left)
}
}
func BenchmarkGetOrElse_Right(b *testing.B) {
right := Right[error](42)
getter := GetOrElse[error](func(e error) int { return 0 })
getter := GetOrElse(func(e error) int { return 0 })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = getter(right)
}
}
func BenchmarkGetOrElse_Left(b *testing.B) {
left := Left[int](errBench)
getter := GetOrElse[error](func(e error) int { return 0 })
getter := GetOrElse(func(e error) int { return 0 })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = getter(left)
}
}
@@ -480,10 +481,10 @@ func BenchmarkPipeline_Map_Right(b *testing.B) {
right := Right[error](21)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe1(
right,
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
)
}
}
@@ -492,10 +493,10 @@ func BenchmarkPipeline_Map_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe1(
left,
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
)
}
}
@@ -504,10 +505,10 @@ func BenchmarkPipeline_Chain_Right(b *testing.B) {
right := Right[error](21)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe1(
right,
Chain[error](func(x int) Either[error, int] { return Right[error](x * 2) }),
Chain(func(x int) Either[error, int] { return Right[error](x * 2) }),
)
}
}
@@ -516,10 +517,10 @@ func BenchmarkPipeline_Chain_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe1(
left,
Chain[error](func(x int) Either[error, int] { return Right[error](x * 2) }),
Chain(func(x int) Either[error, int] { return Right[error](x * 2) }),
)
}
}
@@ -528,12 +529,12 @@ func BenchmarkPipeline_Complex_Right(b *testing.B) {
right := Right[error](10)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe3(
right,
Map[error](func(x int) int { return x * 2 }),
Chain[error](func(x int) Either[error, int] { return Right[error](x + 1) }),
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
Chain(func(x int) Either[error, int] { return Right[error](x + 1) }),
Map[error](N.Mul(2)),
)
}
}
@@ -542,12 +543,12 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe3(
left,
Map[error](func(x int) int { return x * 2 }),
Chain[error](func(x int) Either[error, int] { return Right[error](x + 1) }),
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
Chain(func(x int) Either[error, int] { return Right[error](x + 1) }),
Map[error](N.Mul(2)),
)
}
}
@@ -559,7 +560,7 @@ func BenchmarkMonadSequence2_RightRight(b *testing.B) {
f := func(a, b int) Either[error, int] { return Right[error](a + b) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadSequence2(e1, e2, f)
}
}
@@ -570,7 +571,7 @@ func BenchmarkMonadSequence2_LeftRight(b *testing.B) {
f := func(a, b int) Either[error, int] { return Right[error](a + b) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadSequence2(e1, e2, f)
}
}
@@ -582,7 +583,7 @@ func BenchmarkMonadSequence3_RightRightRight(b *testing.B) {
f := func(a, b, c int) Either[error, int] { return Right[error](a + b + c) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadSequence3(e1, e2, e3, f)
}
}
@@ -591,7 +592,7 @@ func BenchmarkMonadSequence3_RightRightRight(b *testing.B) {
func BenchmarkDo(b *testing.B) {
type State struct{ value int }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Do[error](State{})
}
}
@@ -599,7 +600,7 @@ func BenchmarkDo(b *testing.B) {
func BenchmarkBind_Right(b *testing.B) {
type State struct{ value int }
initial := Do[error](State{})
binder := Bind[error, State, State](
binder := Bind(
func(v int) func(State) State {
return func(s State) State { return State{value: v} }
},
@@ -609,7 +610,7 @@ func BenchmarkBind_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = binder(initial)
}
}
@@ -617,7 +618,7 @@ func BenchmarkBind_Right(b *testing.B) {
func BenchmarkLet_Right(b *testing.B) {
type State struct{ value int }
initial := Right[error](State{value: 10})
letter := Let[error, State, State](
letter := Let[error](
func(v int) func(State) State {
return func(s State) State { return State{value: s.value + v} }
},
@@ -625,7 +626,7 @@ func BenchmarkLet_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = letter(initial)
}
}
@@ -635,7 +636,7 @@ func BenchmarkString_Right(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchString = right.String()
}
}
@@ -644,9 +645,7 @@ func BenchmarkString_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchString = left.String()
}
}
// Made with Bob

View File

@@ -201,7 +201,7 @@ func TestSwap(t *testing.T) {
// Test MonadFlap and Flap
func TestFlap(t *testing.T) {
fab := Right[error](func(x int) string { return strconv.Itoa(x) })
fab := Right[error](strconv.Itoa)
result := MonadFlap(fab, 42)
assert.Equal(t, Right[error]("42"), result)
@@ -341,7 +341,7 @@ func TestTraverseRecordWithIndex(t *testing.T) {
}
input := map[string]string{"a": "1"}
result := TraverseRecordWithIndex[string](validate)(input)
result := TraverseRecordWithIndex(validate)(input)
expected := Right[error](map[string]string{"a": "a:1"})
assert.Equal(t, expected, result)
}
@@ -615,7 +615,7 @@ func TestMonad(t *testing.T) {
assert.Equal(t, Right[error](42), result)
// Test Map
mapFn := m.Map(func(x int) string { return strconv.Itoa(x) })
mapFn := m.Map(strconv.Itoa)
result2 := mapFn(Right[error](42))
assert.Equal(t, Right[error]("42"), result2)
@@ -628,7 +628,7 @@ func TestMonad(t *testing.T) {
// Test Ap
apFn := m.Ap(Right[error](42))
result4 := apFn(Right[error](func(x int) string { return strconv.Itoa(x) }))
result4 := apFn(Right[error](strconv.Itoa))
assert.Equal(t, Right[error]("42"), result4)
}
@@ -658,7 +658,7 @@ func TestAlternativeMonoid(t *testing.T) {
// Test AltMonoid
func TestAltMonoid(t *testing.T) {
zero := func() Either[error, int] { return Left[int](errors.New("empty")) }
m := AltMonoid[error, int](zero)
m := AltMonoid(zero)
result := m.Concat(Left[int](errors.New("err1")), Right[error](42))
assert.Equal(t, Right[error](42), result)

View File

@@ -47,7 +47,7 @@ func TestMapEither(t *testing.T) {
assert.Equal(t, F.Pipe1(Right[error]("abc"), Map[error](utils.StringLen)), Right[error](3))
val2 := F.Pipe1(Left[string, string]("s"), Map[string](utils.StringLen))
val2 := F.Pipe1(Left[string]("s"), Map[string](utils.StringLen))
exp2 := Left[int]("s")
assert.Equal(t, val2, exp2)
@@ -66,18 +66,18 @@ func TestUnwrapError(t *testing.T) {
func TestReduce(t *testing.T) {
s := S.Semigroup()
s := S.Semigroup
assert.Equal(t, "foobar", F.Pipe1(Right[string]("bar"), Reduce[string](s.Concat, "foo")))
assert.Equal(t, "foo", F.Pipe1(Left[string, string]("bar"), Reduce[string](s.Concat, "foo")))
assert.Equal(t, "foo", F.Pipe1(Left[string]("bar"), Reduce[string](s.Concat, "foo")))
}
func TestAp(t *testing.T) {
f := S.Size
assert.Equal(t, Right[string](3), F.Pipe1(Right[string](f), Ap[int, string, string](Right[string]("abc"))))
assert.Equal(t, Left[int]("maError"), F.Pipe1(Right[string](f), Ap[int, string, string](Left[string, string]("maError"))))
assert.Equal(t, Left[int]("mabError"), F.Pipe1(Left[func(string) int]("mabError"), Ap[int, string, string](Left[string, string]("maError"))))
assert.Equal(t, Right[string](3), F.Pipe1(Right[string](f), Ap[int](Right[string]("abc"))))
assert.Equal(t, Left[int]("maError"), F.Pipe1(Right[string](f), Ap[int](Left[string]("maError"))))
assert.Equal(t, Left[int]("mabError"), F.Pipe1(Left[func(string) int]("mabError"), Ap[int](Left[string]("maError"))))
}
func TestAlt(t *testing.T) {
@@ -91,7 +91,7 @@ func TestChainFirst(t *testing.T) {
f := F.Flow2(S.Size, Right[string, int])
assert.Equal(t, Right[string]("abc"), F.Pipe1(Right[string]("abc"), ChainFirst(f)))
assert.Equal(t, Left[string, string]("maError"), F.Pipe1(Left[string, string]("maError"), ChainFirst(f)))
assert.Equal(t, Left[string]("maError"), F.Pipe1(Left[string]("maError"), ChainFirst(f)))
}
func TestChainOptionK(t *testing.T) {

33
v2/either/escape_test.go Normal file
View File

@@ -0,0 +1,33 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package either
// Test functions to analyze escape behavior
//go:noinline
func testOf(x int) Either[error, int] {
return Of[error](x)
}
//go:noinline
func testRight(x int) Either[error, int] {
return Right[error](x)
}
//go:noinline
func testLeft(x int) Either[int, string] {
return Left[string](x)
}

View File

@@ -22,7 +22,7 @@ import (
type eitherFunctor[E, A, B any] struct{}
func (o *eitherFunctor[E, A, B]) Map(f func(A) B) Operator[E, A, B] {
return Map[E, A, B](f)
return Map[E](f)
}
// Functor implements the functoric operations for Either.

View File

@@ -26,7 +26,7 @@ func _log[E, A any](left func(string, ...any), right func(string, ...any), prefi
return Fold(
func(e E) Either[E, A] {
left("%s: %v", prefix, e)
return Left[A, E](e)
return Left[A](e)
},
func(a A) Either[E, A] {
right("%s: %v", prefix, a)
@@ -46,7 +46,7 @@ func _log[E, A any](left func(string, ...any), right func(string, ...any), prefi
// result := F.Pipe2(
// either.Right[error](42),
// logger("Processing"),
// either.Map(func(x int) int { return x * 2 }),
// either.Map(N.Mul(2)),
// )
// // Logs: "Processing: 42"
// // result is Right(84)

View File

@@ -19,38 +19,116 @@ import (
"github.com/IBM/fp-go/v2/internal/monad"
)
type eitherMonad[E, A, B any] struct{}
func (o *eitherMonad[E, A, B]) Of(a A) Either[E, A] {
return Of[E, A](a)
// eitherMonad is the internal implementation of the Monad type class for Either.
// It extends eitherApplicative by adding the Chain operation for sequential composition.
type eitherMonad[E, A, B any] struct {
eitherApplicative[E, A, B]
fchain func(Kleisli[E, A, B]) Operator[E, A, B]
}
func (o *eitherMonad[E, A, B]) Map(f func(A) B) Operator[E, A, B] {
return Map[E, A, B](f)
// Chain sequences dependent computations, failing fast on the first Left.
func (o *eitherMonad[E, A, B]) Chain(f Kleisli[E, A, B]) Operator[E, A, B] {
return o.fchain(f)
}
func (o *eitherMonad[E, A, B]) Chain(f func(A) Either[E, B]) Operator[E, A, B] {
return Chain[E, A, B](f)
}
func (o *eitherMonad[E, A, B]) Ap(fa Either[E, A]) Operator[E, func(A) B, B] {
return Ap[B, E, A](fa)
}
// Monad implements the monadic operations for Either.
// A monad combines the capabilities of Functor (Map), Applicative (Ap), and Chain (flatMap/bind).
// This allows for sequential composition of computations that may fail.
// Monad creates a lawful Monad instance for Either with fail-fast error handling.
//
// Example:
// A monad combines the capabilities of four type classes:
// - Functor (Map): transform the Right value
// - Pointed (Of): lift a pure value into a Right
// - Applicative (Ap): apply wrapped functions (fails fast on first Left)
// - Chainable (Chain): sequence dependent computations (fails fast on first Left)
//
// The Either monad is left-biased and fails fast: once a Left is encountered,
// no further computations are performed and the Left is propagated immediately.
// This makes it ideal for error handling where you want to stop at the first error.
//
// This implementation satisfies all monad laws:
//
// Monad Laws:
// - Left Identity: Chain(f)(Of(a)) == f(a)
// - Right Identity: Chain(Of)(m) == m
// - Associativity: Chain(g)(Chain(f)(m)) == Chain(x => Chain(g)(f(x)))(m)
//
// Additionally, it satisfies all prerequisite laws from Functor, Apply, and Applicative.
//
// Relationship to Applicative:
//
// This Monad uses the standard fail-fast Applicative (see Applicative function).
// In a lawful monad, Ap can be derived from Chain and Of:
//
// Ap(fa)(ff) == Chain(f => Chain(a => Of(f(a)))(fa))(ff)
//
// The Either monad satisfies this property, making it a true lawful monad.
//
// When to use Monad vs Applicative:
// - Use Monad when you need sequential dependent operations (Chain)
// - Use Applicative when you only need independent operations (Ap, Map)
// - Both fail fast on the first error
//
// When to use Monad vs ApplicativeV:
// - Use Monad for sequential error handling (fail-fast)
// - Use ApplicativeV for parallel validation (error accumulation)
// - Note: There is no "MonadV" because Chain inherently fails fast
//
// Example - Sequential Dependent Operations:
//
// m := either.Monad[error, int, string]()
//
// // Chain allows each step to depend on the previous result
// result := m.Chain(func(x int) either.Either[error, string] {
// if x > 0 {
// return either.Right[error](strconv.Itoa(x))
// }
// return either.Left[string](errors.New("negative"))
// return either.Left[string](errors.New("value must be positive"))
// })(either.Right[error](42))
// // result is Right("42")
//
// // Fails fast on first error
// result2 := m.Chain(func(x int) either.Either[error, string] {
// return either.Right[error](strconv.Itoa(x))
// })(either.Left[int](errors.New("initial error")))
// // result2 is Left("initial error") - Chain never executes
//
// Example - Combining with Applicative operations:
//
// m := either.Monad[error, int, int]()
//
// // Map transforms the value
// value := m.Map(func(x int) int { return x * 2 })(either.Right[error](21))
// // value is Right(42)
//
// // Ap applies wrapped functions (also fails fast)
// fn := either.Right[error](func(x int) int { return x + 1 })
// result := m.Ap(value)(fn)
// // result is Right(43)
//
// Example - Real-world usage with error handling:
//
// m := either.Monad[error, User, SavedUser]()
//
// // Pipeline of operations that can fail
// result := m.Chain(func(user User) either.Either[error, SavedUser] {
// // Save to database
// return saveToDatabase(user)
// })(m.Chain(func(user User) either.Either[error, User] {
// // Validate user
// return validateUser(user)
// })(either.Right[error](inputUser)))
//
// // If any step fails, the error propagates immediately
//
// Type Parameters:
// - E: The error type (Left value)
// - A: The input value type (Right value)
// - B: The output value type after transformation
func Monad[E, A, B any]() monad.Monad[A, B, Either[E, A], Either[E, B], Either[E, func(A) B]] {
return &eitherMonad[E, A, B]{}
return &eitherMonad[E, A, B]{
eitherApplicative[E, A, B]{
Of[E, A],
Map[E, A, B],
Ap[B, E, A],
},
Chain[E, A, B],
}
}

View File

@@ -16,7 +16,6 @@
package either
import (
L "github.com/IBM/fp-go/v2/lazy"
M "github.com/IBM/fp-go/v2/monoid"
)
@@ -51,7 +50,7 @@ func AlternativeMonoid[E, A any](m M.Monoid[A]) Monoid[E, A] {
// m := either.AltMonoid[error, int](zero)
// result := m.Concat(either.Left[int](errors.New("err1")), either.Right[error](42))
// // result is Right(42)
func AltMonoid[E, A any](zero L.Lazy[Either[E, A]]) Monoid[E, A] {
func AltMonoid[E, A any](zero Lazy[Either[E, A]]) Monoid[E, A] {
return M.AltMonoid(
zero,
MonadAlt[E, A],

View File

@@ -22,7 +22,7 @@ import (
type eitherPointed[E, A any] struct{}
func (o *eitherPointed[E, A]) Of(a A) Either[E, A] {
return Of[E, A](a)
return Of[E](a)
}
// Pointed implements the pointed functor operations for Either.

View File

@@ -35,13 +35,18 @@ import (
// // result is Right(map[string]int{"a": 1, "b": 2})
//
//go:inline
func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f func(A) Either[E, B]) func(GA) Either[E, GB] {
return RR.Traverse[GA](
Of[E, GB],
Map[E, GB, func(B) GB],
Ap[GB, E, B],
f,
)
func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f Kleisli[E, A, B]) Kleisli[E, GA, GB] {
return func(ga GA) Either[E, GB] {
bs := make(GB, len(ga))
for i, a := range ga {
b := f(a)
if b.isLeft {
return Left[GB](b.l)
}
bs[i] = b.r
}
return Of[E](bs)
}
}
// TraverseRecord transforms a map by applying a function that returns an Either to each value.
@@ -58,7 +63,7 @@ func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f func
// // result is Right(map[string]int{"a": 1, "b": 2})
//
//go:inline
func TraverseRecord[K comparable, E, A, B any](f func(A) Either[E, B]) func(map[K]A) Either[E, map[K]B] {
func TraverseRecord[K comparable, E, A, B any](f Kleisli[E, A, B]) Kleisli[E, map[K]A, map[K]B] {
return TraverseRecordG[map[K]A, map[K]B](f)
}
@@ -79,13 +84,18 @@ func TraverseRecord[K comparable, E, A, B any](f func(A) Either[E, B]) func(map[
// // result is Right(map[string]string{"a": "a:1"})
//
//go:inline
func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f func(K, A) Either[E, B]) func(GA) Either[E, GB] {
return RR.TraverseWithIndex[GA](
Of[E, GB],
Map[E, GB, func(B) GB],
Ap[GB, E, B],
f,
)
func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f func(K, A) Either[E, B]) Kleisli[E, GA, GB] {
return func(ga GA) Either[E, GB] {
bs := make(GB, len(ga))
for i, a := range ga {
b := f(i, a)
if b.isLeft {
return Left[GB](b.l)
}
bs[i] = b.r
}
return Of[E](bs)
}
}
// TraverseRecordWithIndex transforms a map by applying an indexed function that returns an Either.
@@ -104,7 +114,7 @@ func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B an
// // result is Right(map[string]string{"a": "a:1"})
//
//go:inline
func TraverseRecordWithIndex[K comparable, E, A, B any](f func(K, A) Either[E, B]) func(map[K]A) Either[E, map[K]B] {
func TraverseRecordWithIndex[K comparable, E, A, B any](f func(K, A) Either[E, B]) Kleisli[E, map[K]A, map[K]B] {
return TraverseRecordWithIndexG[map[K]A, map[K]B](f)
}

View File

@@ -15,10 +15,6 @@
package either
import (
F "github.com/IBM/fp-go/v2/function"
)
// WithResource constructs a function that creates a resource, operates on it, and then releases it.
// This ensures proper resource cleanup even if operations fail.
// The resource is released immediately after the operation completes.
@@ -43,25 +39,21 @@ import (
// // Use file here
// return either.Right[error]("data")
// })
func WithResource[E, R, A, ANY any](onCreate func() Either[E, R], onRelease Kleisli[E, R, ANY]) func(func(R) Either[E, A]) Either[E, A] {
func WithResource[E, R, A, ANY any](onCreate func() Either[E, R], onRelease Kleisli[E, R, ANY]) Kleisli[E, Kleisli[E, R, A], A] {
return func(f func(R) Either[E, A]) Either[E, A] {
return MonadChain(
onCreate(), func(r R) Either[E, A] {
// run the code and make sure to release as quickly as possible
res := f(r)
released := onRelease(r)
// handle the errors
return MonadFold(
res,
Left[A, E],
func(a A) Either[E, A] {
return F.Pipe1(
released,
MapTo[E, ANY](a),
)
})
},
)
r := onCreate()
if r.isLeft {
return Left[A](r.l)
}
a := f(r.r)
n := onRelease(r.r)
if a.isLeft {
return Left[A](a.l)
}
if n.isLeft {
return Left[A](n.l)
}
return Of[E](a.r)
}
}

View File

@@ -47,7 +47,7 @@ import (
// eqString := eq.FromStrictEquals[string]()
// eqError := eq.FromStrictEquals[error]()
//
// ab := func(x int) string { return strconv.Itoa(x) }
// ab := strconv.Itoa
// bc := func(s string) bool { return len(s) > 0 }
//
// testing.AssertLaws(t, eqError, eqInt, eqString, eq.FromStrictEquals[bool](), ab, bc)(42)

View File

@@ -17,6 +17,7 @@ package either
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/option"
@@ -29,6 +30,7 @@ type (
Option[A any] = option.Option[A]
Lens[S, T any] = lens.Lens[S, T]
Endomorphism[T any] = endomorphism.Endomorphism[T]
Lazy[T any] = lazy.Lazy[T]
Kleisli[E, A, B any] = reader.Reader[A, Either[E, B]]
Operator[E, A, B any] = Kleisli[E, Either[E, A], B]

144
v2/either/validation.go Normal file
View File

@@ -0,0 +1,144 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package either
import (
F "github.com/IBM/fp-go/v2/function"
S "github.com/IBM/fp-go/v2/semigroup"
)
// MonadApV is the applicative validation functor that combines errors using a semigroup.
//
// Unlike the standard [MonadAp] which short-circuits on the first Left (error),
// MonadApV accumulates all errors using the provided semigroup's Concat operation.
// This is particularly useful for validation scenarios where you want to collect
// all validation errors rather than stopping at the first one.
//
// The function takes a semigroup for combining errors and returns a function that
// applies a wrapped function to a wrapped value, accumulating errors if both are Left.
//
// Behavior:
// - If both fab and fa are Left, combines their errors using sg.Concat
// - If only fab is Left, returns Left with fab's error
// - If only fa is Left, returns Left with fa's error
// - If both are Right, applies the function and returns Right with the result
//
// Type Parameters:
// - B: The result type after applying the function
// - E: The error type (must support the semigroup operation)
// - A: The input type to the function
//
// Parameters:
// - sg: A semigroup that defines how to combine two error values
//
// Returns:
// - A function that takes a wrapped function and a wrapped value, returning
// Either[E, B] with accumulated errors or the computed result
//
// Example:
//
// // Define a semigroup that concatenates error messages
// errorSemigroup := semigroup.MakeSemigroup(func(e1, e2 string) string {
// return e1 + "; " + e2
// })
//
// // Create the validation applicative
// applyV := either.MonadApV[int](errorSemigroup)
//
// // Both are errors - errors get combined
// fab := either.Left[func(int) int]("error1")
// fa := either.Left[int]("error2")
// result := applyV(fab, fa) // Left("error1; error2")
//
// // One error - returns that error
// fab2 := either.Right[string](N.Mul(2))
// fa2 := either.Left[int]("validation failed")
// result2 := applyV(fab2, fa2) // Left("validation failed")
//
// // Both success - applies function
// fab3 := either.Right[string](N.Mul(2))
// fa3 := either.Right[string](21)
// result3 := applyV(fab3, fa3) // Right(42)
func MonadApV[B, A, E any](sg S.Semigroup[E]) func(fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
return func(fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
if fab.isLeft {
if fa.isLeft {
return Left[B](sg.Concat(fab.l, fa.l))
}
return Left[B](fab.l)
}
if fa.isLeft {
return Left[B](fa.l)
}
return Of[E](fab.r(fa.r))
}
}
// ApV is the curried version of [MonadApV] that combines errors using a semigroup.
//
// This function provides a more convenient API for validation scenarios by currying
// the arguments. It first takes the value to validate, then returns a function that
// takes the validation function. This allows for a more natural composition style.
//
// Like [MonadApV], this accumulates all errors using the provided semigroup instead
// of short-circuiting on the first error. This is the key difference from the
// standard [Ap] function.
//
// Type Parameters:
// - B: The result type after applying the function
// - E: The error type (must support the semigroup operation)
// - A: The input type to the function
//
// Parameters:
// - sg: A semigroup that defines how to combine two error values
//
// Returns:
// - A function that takes a value Either[E, A] and returns an Operator that
// applies validation functions while accumulating errors
//
// Example:
//
// // Define a semigroup for combining validation errors
// type ValidationError struct {
// Errors []string
// }
// errorSemigroup := semigroup.MakeSemigroup(func(e1, e2 ValidationError) ValidationError {
// return ValidationError{Errors: append(e1.Errors, e2.Errors...)}
// })
//
// // Create validators
// validatePositive := func(x int) either.Either[ValidationError, int] {
// if x > 0 {
// return either.Right[ValidationError](x)
// }
// return either.Left[int](ValidationError{Errors: []string{"must be positive"}})
// }
//
// // Use ApV for validation
// applyValidation := either.ApV[int](errorSemigroup)
// value := either.Left[int](ValidationError{Errors: []string{"invalid input"}})
// validator := either.Left[func(int) int](ValidationError{Errors: []string{"invalid validator"}})
//
// result := applyValidation(value)(validator)
// // Left(ValidationError{Errors: []string{"invalid validator", "invalid input"}})
//
//go:inline
func ApV[B, A, E any](sg S.Semigroup[E]) func(Either[E, A]) Operator[E, func(A) B, B] {
apv := MonadApV[B, A, E](sg)
return func(e Either[E, A]) Operator[E, func(A) B, B] {
return F.Bind2nd(apv, e)
}
}

View File

@@ -0,0 +1,362 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package either
import (
"testing"
F "github.com/IBM/fp-go/v2/function"
N "github.com/IBM/fp-go/v2/number"
SG "github.com/IBM/fp-go/v2/semigroup"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
// TestMonadApV_BothRight tests MonadApV when both function and value are Right
func TestMonadApV_BothRight(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := MonadApV[int, int](sg)
// Both are Right - should apply function
fab := Right[string](N.Mul(2))
fa := Right[string](21)
result := applyV(fab, fa)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string](42), result)
}
// TestMonadApV_BothLeft tests MonadApV when both function and value are Left
func TestMonadApV_BothLeft(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := MonadApV[int, int](sg)
// Both are Left - should combine errors
fab := Left[func(int) int]("error1")
fa := Left[int]("error2")
result := applyV(fab, fa)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: fa error + fab error
assert.Equal(t, Left[int]("error1; error2"), result)
}
// TestMonadApV_LeftFunction tests MonadApV when function is Left and value is Right
func TestMonadApV_LeftFunction(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := MonadApV[int, int](sg)
// Function is Left, value is Right - should return function's error
fab := Left[func(int) int]("function error")
fa := Right[string](21)
result := applyV(fab, fa)
assert.True(t, IsLeft(result))
assert.Equal(t, Left[int]("function error"), result)
}
// TestMonadApV_LeftValue tests MonadApV when function is Right and value is Left
func TestMonadApV_LeftValue(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := MonadApV[int, int](sg)
// Function is Right, value is Left - should return value's error
fab := Right[string](N.Mul(2))
fa := Left[int]("value error")
result := applyV(fab, fa)
assert.True(t, IsLeft(result))
assert.Equal(t, Left[int]("value error"), result)
}
// TestMonadApV_WithSliceSemigroup tests MonadApV with a slice-based semigroup
func TestMonadApV_WithSliceSemigroup(t *testing.T) {
// Create a semigroup that concatenates slices
sg := SG.MakeSemigroup(func(a, b []string) []string {
return append(a, b...)
})
// Create the validation applicative
applyV := MonadApV[string, string](sg)
// Both are Left with slice errors
fab := Left[func(string) string]([]string{"error1", "error2"})
fa := Left[string]([]string{"error3", "error4"})
result := applyV(fab, fa)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: fa errors + fab errors
expected := Left[string]([]string{"error1", "error2", "error3", "error4"})
assert.Equal(t, expected, result)
}
// TestMonadApV_ComplexFunction tests MonadApV with a more complex function
func TestMonadApV_ComplexFunction(t *testing.T) {
// Create a semigroup for string concatenation
sg := SG.MakeSemigroup(func(a, b string) string {
return a + " | " + b
})
// Create the validation applicative
applyV := MonadApV[string, int](sg)
// Test with a function that transforms the value
fab := Right[string](func(x int) string {
if x > 0 {
return "positive"
}
return "non-positive"
})
fa := Right[string](42)
result := applyV(fab, fa)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string]("positive"), result)
}
// TestApV_BothRight tests ApV when both function and value are Right
func TestApV_BothRight(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Right - should apply function
fa := Right[string](21)
fab := Right[string](N.Mul(2))
result := applyV(fa)(fab)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string](42), result)
}
// TestApV_BothLeft tests ApV when both function and value are Left
func TestApV_BothLeft(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Left - should combine errors
fa := Left[int]("error2")
fab := Left[func(int) int]("error1")
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: fa error + fab error
assert.Equal(t, Left[int]("error1; error2"), result)
}
// TestApV_LeftFunction tests ApV when function is Left and value is Right
func TestApV_LeftFunction(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := ApV[int, int](sg)
// Function is Left, value is Right - should return function's error
fa := Right[string](21)
fab := Left[func(int) int]("function error")
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
assert.Equal(t, Left[int]("function error"), result)
}
// TestApV_LeftValue tests ApV when function is Right and value is Left
func TestApV_LeftValue(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := ApV[int, int](sg)
// Function is Right, value is Left - should return value's error
fa := Left[int]("value error")
fab := Right[string](N.Mul(2))
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
assert.Equal(t, Left[int]("value error"), result)
}
// TestApV_Composition tests ApV with function composition
func TestApV_Composition(t *testing.T) {
// Create a semigroup for string concatenation
sg := SG.MakeSemigroup(func(a, b string) string {
return a + " & " + b
})
// Create the validation applicative
applyV := ApV[string, int](sg)
// Test composition with pipe
fa := Right[string](10)
fab := Right[string](func(x int) string {
return F.Pipe1(x, func(n int) string {
if n >= 10 {
return "large"
}
return "small"
})
})
result := F.Pipe1(fa, applyV)(fab)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string]("large"), result)
}
// TestApV_WithStructSemigroup tests ApV with a custom struct semigroup
func TestApV_WithStructSemigroup(t *testing.T) {
type ValidationErrors struct {
Errors []string
}
// Create a semigroup that combines validation errors
sg := SG.MakeSemigroup(func(a, b ValidationErrors) ValidationErrors {
return ValidationErrors{
Errors: append(append([]string{}, a.Errors...), b.Errors...),
}
})
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Left with validation errors
fa := Left[int](ValidationErrors{Errors: []string{"field2: invalid"}})
fab := Left[func(int) int](ValidationErrors{Errors: []string{"field1: required"}})
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: fa errors + fab errors
expected := Left[int](ValidationErrors{
Errors: []string{"field1: required", "field2: invalid"},
})
assert.Equal(t, expected, result)
}
// TestApV_MultipleValidations tests ApV with multiple validation steps
func TestApV_MultipleValidations(t *testing.T) {
// Create a semigroup for string concatenation
sg := SG.MakeSemigroup(func(a, b string) string {
return a + ", " + b
})
// Create the validation applicative
applyV := ApV[int, int](sg)
// Simulate multiple validation failures
validation1 := Left[int]("age must be positive")
validation2 := Left[func(int) int]("name is required")
result := applyV(validation1)(validation2)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: validation1 error + validation2 error
assert.Equal(t, Left[int]("name is required, age must be positive"), result)
}
// TestMonadApV_DifferentTypes tests MonadApV with different input and output types
func TestMonadApV_DifferentTypes(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup(" + ")
// Create the validation applicative
applyV := MonadApV[string, int](sg)
// Function converts int to string
fab := Right[string](func(x int) string {
return F.Pipe1(x, func(n int) string {
if n == 0 {
return "zero"
} else if n > 0 {
return "positive"
}
return "negative"
})
})
fa := Right[string](-5)
result := applyV(fab, fa)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string]("negative"), result)
}
// TestApV_FirstSemigroup tests ApV with First semigroup (always returns first error)
func TestApV_FirstSemigroup(t *testing.T) {
// Use First semigroup which always returns the first value
sg := SG.First[string]()
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Left - should return first error
fa := Left[int]("error2")
fab := Left[func(int) int]("error1")
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
// First semigroup returns the first value, which is fab's error
assert.Equal(t, Left[int]("error1"), result)
}
// TestApV_LastSemigroup tests ApV with Last semigroup (always returns last error)
func TestApV_LastSemigroup(t *testing.T) {
// Use Last semigroup which always returns the last value
sg := SG.Last[string]()
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Left - should return last error
fa := Left[int]("error2")
fab := Left[func(int) int]("error1")
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
// Last semigroup returns the last value, which is fa's error
assert.Equal(t, Left[int]("error2"), result)
}

View File

@@ -36,16 +36,21 @@
// )
//
// // Define some endomorphisms
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
//
// // Compose them
// doubleAndIncrement := endomorphism.Compose(double, increment)
// result := doubleAndIncrement(5) // (5 * 2) + 1 = 11
// // Compose them (RIGHT-TO-LEFT execution)
// composed := endomorphism.Compose(double, increment)
// result := composed(5) // increment(5) then double: (5 + 1) * 2 = 12
//
// // Chain them (LEFT-TO-RIGHT execution)
// chained := endomorphism.MonadChain(double, increment)
// result2 := chained(5) // double(5) then increment: (5 * 2) + 1 = 11
//
// # Monoid Operations
//
// Endomorphisms form a monoid, which means you can combine multiple endomorphisms:
// Endomorphisms form a monoid, which means you can combine multiple endomorphisms.
// The monoid uses Compose, which executes RIGHT-TO-LEFT:
//
// import (
// "github.com/IBM/fp-go/v2/endomorphism"
@@ -55,22 +60,39 @@
// // Get the monoid for int endomorphisms
// monoid := endomorphism.Monoid[int]()
//
// // Combine multiple endomorphisms
// // Combine multiple endomorphisms (RIGHT-TO-LEFT execution)
// combined := M.ConcatAll(monoid)(
// func(x int) int { return x * 2 },
// func(x int) int { return x + 1 },
// func(x int) int { return x * 3 },
// N.Mul(2), // applied third
// func(x int) int { return x + 1 }, // applied second
// func(x int) int { return x * 3 }, // applied first
// )
// result := combined(5) // ((5 * 2) + 1) * 3 = 33
// result := combined(5) // (5 * 3) = 15, (15 + 1) = 16, (16 * 2) = 32
//
// # Monad Operations
//
// The package also provides monadic operations for endomorphisms:
// The package also provides monadic operations for endomorphisms.
// MonadChain executes LEFT-TO-RIGHT, unlike Compose:
//
// // Chain allows sequencing of endomorphisms
// f := func(x int) int { return x * 2 }
// // Chain allows sequencing of endomorphisms (LEFT-TO-RIGHT)
// f := N.Mul(2)
// g := func(x int) int { return x + 1 }
// chained := endomorphism.MonadChain(f, g)
// chained := endomorphism.MonadChain(f, g) // f first, then g
// result := chained(5) // (5 * 2) + 1 = 11
//
// # Compose vs Chain
//
// The key difference between Compose and Chain/MonadChain is execution order:
//
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
//
// // Compose: RIGHT-TO-LEFT (mathematical composition)
// composed := endomorphism.Compose(double, increment)
// result1 := composed(5) // increment(5) * 2 = (5 + 1) * 2 = 12
//
// // MonadChain: LEFT-TO-RIGHT (sequential application)
// chained := endomorphism.MonadChain(double, increment)
// result2 := chained(5) // double(5) + 1 = (5 * 2) + 1 = 11
//
// # Type Safety
//

View File

@@ -17,115 +17,372 @@ package endomorphism
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/identity"
)
// MonadAp applies an endomorphism to a value in a monadic context.
// MonadAp applies an endomorphism in a function to an endomorphism value.
//
// This function applies the endomorphism fab to the value fa, returning the result.
// It's the monadic application operation for endomorphisms.
// For endomorphisms, Ap composes two endomorphisms using RIGHT-TO-LEFT composition.
// This is the applicative functor operation for endomorphisms.
//
// IMPORTANT: Execution order is RIGHT-TO-LEFT (same as MonadCompose):
// - fa is applied first to the input
// - fab is applied to the result
//
// Parameters:
// - fab: An endomorphism to apply
// - fa: The value to apply the endomorphism to
// - fab: An endomorphism to apply (outer function)
// - fa: An endomorphism to apply first (inner function)
//
// Returns:
// - The result of applying fab to fa
// - A new endomorphism that applies fa, then fab
//
// Example:
//
// double := func(x int) int { return x * 2 }
// result := endomorphism.MonadAp(double, 5) // Returns: 10
func MonadAp[A any](fab Endomorphism[A], fa A) A {
return identity.MonadAp(fab, fa)
}
// Ap returns a function that applies a value to an endomorphism.
//
// This is the curried version of MonadAp. It takes a value and returns a function
// that applies that value to any endomorphism.
//
// Parameters:
// - fa: The value to be applied
//
// Returns:
// - A function that takes an endomorphism and applies fa to it
//
// Example:
//
// applyFive := endomorphism.Ap(5)
// double := func(x int) int { return x * 2 }
// result := applyFive(double) // Returns: 10
func Ap[A any](fa A) func(Endomorphism[A]) A {
return identity.Ap[A](fa)
}
// Compose composes two endomorphisms into a single endomorphism.
//
// Given two endomorphisms f1 and f2, Compose returns a new endomorphism that
// applies f1 first, then applies f2 to the result. This is function composition:
// Compose(f1, f2)(x) = f2(f1(x))
//
// Composition is associative: Compose(Compose(f, g), h) = Compose(f, Compose(g, h))
//
// Parameters:
// - f1: The first endomorphism to apply
// - f2: The second endomorphism to apply
//
// Returns:
// - A new endomorphism that is the composition of f1 and f2
//
// Example:
//
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
// doubleAndIncrement := endomorphism.Compose(double, increment)
// result := doubleAndIncrement(5) // (5 * 2) + 1 = 11
func Compose[A any](f1, f2 Endomorphism[A]) Endomorphism[A] {
return function.Flow2(f1, f2)
// result := endomorphism.MonadAp(double, increment) // Composes: double increment
// // result(5) = double(increment(5)) = double(6) = 12
func MonadAp[A any](fab Endomorphism[A], fa Endomorphism[A]) Endomorphism[A] {
return MonadCompose(fab, fa)
}
// MonadChain chains two endomorphisms together.
// Ap returns a function that applies an endomorphism to another endomorphism.
//
// This is the monadic bind operation for endomorphisms. It composes two endomorphisms
// ma and f, returning a new endomorphism that applies ma first, then f.
// MonadChain is equivalent to Compose.
// This is the curried version of MonadAp. It takes an endomorphism fa and returns
// a function that composes any endomorphism with fa using RIGHT-TO-LEFT composition.
//
// IMPORTANT: Execution order is RIGHT-TO-LEFT:
// - fa is applied first to the input
// - The endomorphism passed to the returned function is applied to the result
//
// Parameters:
// - ma: The first endomorphism in the chain
// - f: The second endomorphism in the chain
// - fa: The first endomorphism to apply (inner function)
//
// Returns:
// - A new endomorphism that chains ma and f
// - A function that takes an endomorphism and composes it with fa (right-to-left)
//
// Example:
//
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// applyIncrement := endomorphism.Ap(increment)
// double := N.Mul(2)
// composed := applyIncrement(double) // double ∘ increment
// // composed(5) = double(increment(5)) = double(6) = 12
func Ap[A any](fa Endomorphism[A]) Operator[A] {
return Compose(fa)
}
// MonadCompose composes two endomorphisms, executing them from right to left.
//
// MonadCompose creates a new endomorphism that applies f2 first, then f1.
// This follows the mathematical notation of function composition: (f1 ∘ f2)(x) = f1(f2(x))
//
// IMPORTANT: The execution order is RIGHT-TO-LEFT:
// - f2 is applied first to the input
// - f1 is applied to the result of f2
//
// This is different from Chain/MonadChain which executes LEFT-TO-RIGHT.
//
// Parameters:
// - f1: The second function to apply (outer function)
// - f2: The first function to apply (inner function)
//
// Returns:
// - A new endomorphism that applies f2, then f1
//
// Example:
//
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
//
// // MonadCompose executes RIGHT-TO-LEFT: increment first, then double
// composed := endomorphism.MonadCompose(double, increment)
// result := composed(5) // (5 + 1) * 2 = 12
//
// // Compare with Chain which executes LEFT-TO-RIGHT:
// chained := endomorphism.MonadChain(double, increment)
// result2 := chained(5) // (5 * 2) + 1 = 11
func MonadCompose[A any](f, g Endomorphism[A]) Endomorphism[A] {
return function.Flow2(g, f)
}
// MonadMap maps an endomorphism over another endomorphism using function composition.
//
// For endomorphisms, Map is equivalent to Compose (RIGHT-TO-LEFT composition).
// This is the functor map operation for endomorphisms.
//
// IMPORTANT: Execution order is RIGHT-TO-LEFT:
// - g is applied first to the input
// - f is applied to the result
//
// Parameters:
// - f: The function to map (outer function)
// - g: The endomorphism to map over (inner function)
//
// Returns:
// - A new endomorphism that applies g, then f
//
// Example:
//
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
// mapped := endomorphism.MonadMap(double, increment)
// // mapped(5) = double(increment(5)) = double(6) = 12
func MonadMap[A any](f, g Endomorphism[A]) Endomorphism[A] {
return MonadCompose(f, g)
}
// Compose returns a function that composes an endomorphism with another, executing right to left.
//
// This is the curried version of MonadCompose. It takes an endomorphism g and returns
// a function that composes any endomorphism with g, applying g first (inner function),
// then the input endomorphism (outer function).
//
// IMPORTANT: Execution order is RIGHT-TO-LEFT (mathematical composition):
// - g is applied first to the input
// - The endomorphism passed to the returned function is applied to the result of g
//
// This follows the mathematical composition notation where Compose(g)(f) = f ∘ g
//
// Parameters:
// - g: The first endomorphism to apply (inner function)
//
// Returns:
// - A function that takes an endomorphism f and composes it with g (right-to-left)
//
// Example:
//
// increment := func(x int) int { return x + 1 }
// composeWithIncrement := endomorphism.Compose(increment)
// double := N.Mul(2)
//
// // Composes double with increment (RIGHT-TO-LEFT: increment first, then double)
// composed := composeWithIncrement(double)
// result := composed(5) // (5 + 1) * 2 = 12
//
// // Compare with Chain which executes LEFT-TO-RIGHT:
// chainWithIncrement := endomorphism.Chain(increment)
// chained := chainWithIncrement(double)
// result2 := chained(5) // (5 * 2) + 1 = 11
func Compose[A any](g Endomorphism[A]) Operator[A] {
return function.Bind2nd(MonadCompose, g)
}
// Map returns a function that maps an endomorphism over another endomorphism.
//
// This is the curried version of MonadMap. It takes an endomorphism f and returns
// a function that maps f over any endomorphism using RIGHT-TO-LEFT composition.
//
// IMPORTANT: Execution order is RIGHT-TO-LEFT (same as Compose):
// - The endomorphism passed to the returned function is applied first
// - f is applied to the result
//
// For endomorphisms, Map is equivalent to Compose.
//
// Parameters:
// - f: The function to map (outer function)
//
// Returns:
// - A function that takes an endomorphism and maps f over it (right-to-left)
//
// Example:
//
// double := N.Mul(2)
// mapDouble := endomorphism.Map(double)
// increment := func(x int) int { return x + 1 }
// mapped := mapDouble(increment)
// // mapped(5) = double(increment(5)) = double(6) = 12
func Map[A any](f Endomorphism[A]) Operator[A] {
return Compose(f)
}
// MonadChain chains two endomorphisms together, executing them from left to right.
//
// This is the monadic bind operation for endomorphisms. For endomorphisms, bind is
// simply left-to-right function composition: ma is applied first, then f.
//
// IMPORTANT: The execution order is LEFT-TO-RIGHT:
// - ma is applied first to the input
// - f is applied to the result of ma
//
// This is different from MonadCompose which executes RIGHT-TO-LEFT.
//
// Parameters:
// - ma: The first endomorphism to apply
// - f: The second endomorphism to apply
//
// Returns:
// - A new endomorphism that applies ma, then f
//
// Example:
//
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
//
// // MonadChain executes LEFT-TO-RIGHT: double first, then increment
// chained := endomorphism.MonadChain(double, increment)
// result := chained(5) // (5 * 2) + 1 = 11
//
// // Compare with MonadCompose which executes RIGHT-TO-LEFT:
// composed := endomorphism.MonadCompose(increment, double)
// result2 := composed(5) // (5 * 2) + 1 = 11 (same result, different parameter order)
func MonadChain[A any](ma Endomorphism[A], f Endomorphism[A]) Endomorphism[A] {
return Compose(ma, f)
return function.Flow2(ma, f)
}
// Chain returns a function that chains an endomorphism with another.
// MonadChainFirst chains two endomorphisms but returns the result of the first.
//
// This is the curried version of MonadChain. It takes an endomorphism f and returns
// a function that chains any endomorphism with f.
// This applies ma first, then f, but discards the result of f and returns the result of ma.
// Useful for performing side-effects while preserving the original value.
//
// Parameters:
// - f: The endomorphism to chain with
// - ma: The endomorphism whose result to keep
// - f: The endomorphism to apply for its effect
//
// Returns:
// - A function that takes an endomorphism and chains it with f
// - A new endomorphism that applies both but returns ma's result
//
// Example:
//
// double := N.Mul(2)
// log := func(x int) int { fmt.Println(x); return x }
// chained := endomorphism.MonadChainFirst(double, log)
// result := chained(5) // Prints 10, returns 10
func MonadChainFirst[A any](ma Endomorphism[A], f Endomorphism[A]) Endomorphism[A] {
return func(a A) A {
result := ma(a)
f(result) // Apply f for its effect
return result // But return ma's result
}
}
// ChainFirst returns a function that chains for effect but preserves the original result.
//
// This is the curried version of MonadChainFirst.
//
// Parameters:
// - f: The endomorphism to apply for its effect
//
// Returns:
// - A function that takes an endomorphism and chains it with f, keeping the first result
//
// Example:
//
// log := func(x int) int { fmt.Println(x); return x }
// chainLog := endomorphism.ChainFirst(log)
// double := N.Mul(2)
// chained := chainLog(double)
// result := chained(5) // Prints 10, returns 10
func ChainFirst[A any](f Endomorphism[A]) Operator[A] {
return function.Bind2nd(MonadChainFirst, f)
}
// Chain returns a function that chains an endomorphism with another, executing left to right.
//
// This is the curried version of MonadChain. It takes an endomorphism f and returns
// a function that chains any endomorphism with f, applying the input endomorphism first,
// then f.
//
// IMPORTANT: Execution order is LEFT-TO-RIGHT:
// - The endomorphism passed to the returned function is applied first
// - f is applied to the result
//
// Parameters:
// - f: The second endomorphism to apply
//
// Returns:
// - A function that takes an endomorphism and chains it with f (left-to-right)
//
// Example:
//
// increment := func(x int) int { return x + 1 }
// chainWithIncrement := endomorphism.Chain(increment)
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
//
// // Chains double (first) with increment (second)
// chained := chainWithIncrement(double)
// result := chained(5) // (5 * 2) + 1 = 11
func Chain[A any](f Endomorphism[A]) Endomorphism[Endomorphism[A]] {
func Chain[A any](f Endomorphism[A]) Operator[A] {
return function.Bind2nd(MonadChain, f)
}
// Flatten collapses a nested endomorphism into a single endomorphism.
//
// Given an endomorphism that transforms endomorphisms (Endomorphism[Endomorphism[A]]),
// Flatten produces a simple endomorphism by applying the outer transformation to the
// identity function. This is the monadic join operation for the Endomorphism monad.
//
// The function applies the nested endomorphism to Identity[A] to extract the inner
// endomorphism, effectively "flattening" the two layers into one.
//
// Type Parameters:
// - A: The type being transformed by the endomorphisms
//
// Parameters:
// - mma: A nested endomorphism that transforms endomorphisms
//
// Returns:
// - An endomorphism that applies the transformation directly to values of type A
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// // An endomorphism that wraps another endomorphism
// addThenDouble := func(endo Endomorphism[Counter]) Endomorphism[Counter] {
// return func(c Counter) Counter {
// c = endo(c) // Apply the input endomorphism
// c.Value = c.Value * 2 // Then double
// return c
// }
// }
//
// flattened := Flatten(addThenDouble)
// result := flattened(Counter{Value: 5}) // Counter{Value: 10}
func Flatten[A any](mma Endomorphism[Endomorphism[A]]) Endomorphism[A] {
return mma(function.Identity[A])
}
// Join performs self-application of a function that produces endomorphisms.
//
// Given a function that takes a value and returns an endomorphism of that same type,
// Join creates an endomorphism that applies the value to itself through the function.
// This operation is also known as the W combinator (warbler) in combinatory logic,
// or diagonal application.
//
// The resulting endomorphism evaluates f(a)(a), applying the same value a to both
// the function f and the resulting endomorphism.
//
// Type Parameters:
// - A: The type being transformed
//
// Parameters:
// - f: A function that takes a value and returns an endomorphism of that type
//
// Returns:
// - An endomorphism that performs self-application: f(a)(a)
//
// Example:
//
// type Point struct {
// X, Y int
// }
//
// // Create an endomorphism based on the input point
// scaleBy := func(p Point) Endomorphism[Point] {
// return func(p2 Point) Point {
// return Point{
// X: p2.X * p.X,
// Y: p2.Y * p.Y,
// }
// }
// }
//
// selfScale := Join(scaleBy)
// result := selfScale(Point{X: 3, Y: 4}) // Point{X: 9, Y: 16}
func Join[A any](f Kleisli[A]) Endomorphism[A] {
return func(a A) A {
return f(a)(a)
}
}

View File

@@ -19,6 +19,7 @@ import (
"testing"
M "github.com/IBM/fp-go/v2/monoid"
N "github.com/IBM/fp-go/v2/number"
S "github.com/IBM/fp-go/v2/semigroup"
"github.com/stretchr/testify/assert"
)
@@ -76,84 +77,152 @@ func TestCurry3(t *testing.T) {
// TestMonadAp tests the MonadAp function
func TestMonadAp(t *testing.T) {
result := MonadAp(double, 5)
assert.Equal(t, 10, result, "MonadAp should apply endomorphism to value")
// MonadAp composes two endomorphisms (RIGHT-TO-LEFT)
// MonadAp(double, increment) means: increment first, then double
composed := MonadAp(double, increment)
result := composed(5)
assert.Equal(t, 12, result, "MonadAp should compose right-to-left: (5 + 1) * 2 = 12")
result2 := MonadAp(increment, 10)
assert.Equal(t, 11, result2, "MonadAp should work with different endomorphisms")
// Test with different order
composed2 := MonadAp(increment, double)
result2 := composed2(5)
assert.Equal(t, 11, result2, "MonadAp should compose right-to-left: (5 * 2) + 1 = 11")
result3 := MonadAp(square, 4)
assert.Equal(t, 16, result3, "MonadAp should work with square function")
// Test with square
composed3 := MonadAp(square, increment)
result3 := composed3(5)
assert.Equal(t, 36, result3, "MonadAp should compose right-to-left: (5 + 1) ^ 2 = 36")
}
// TestAp tests the Ap function
func TestAp(t *testing.T) {
applyFive := Ap(5)
// Ap is the curried version of MonadAp
// Ap(increment) returns a function that composes with increment (RIGHT-TO-LEFT)
applyIncrement := Ap(increment)
result := applyFive(double)
assert.Equal(t, 10, result, "Ap should apply value to endomorphism")
composed := applyIncrement(double)
result := composed(5)
assert.Equal(t, 12, result, "Ap should compose right-to-left: (5 + 1) * 2 = 12")
result2 := applyFive(increment)
assert.Equal(t, 6, result2, "Ap should work with different endomorphisms")
// Test with different endomorphism
composed2 := applyIncrement(square)
result2 := composed2(5)
assert.Equal(t, 36, result2, "Ap should compose right-to-left: (5 + 1) ^ 2 = 36")
applyTen := Ap(10)
result3 := applyTen(square)
assert.Equal(t, 100, result3, "Ap should work with different values")
// Test with different base endomorphism
applyDouble := Ap(double)
composed3 := applyDouble(increment)
result3 := composed3(5)
assert.Equal(t, 11, result3, "Ap should compose right-to-left: (5 * 2) + 1 = 11")
}
// TestCompose tests the Compose function
func TestCompose(t *testing.T) {
// Test basic composition: (5 * 2) + 1 = 11
doubleAndIncrement := Compose(double, increment)
result := doubleAndIncrement(5)
assert.Equal(t, 11, result, "Compose should compose endomorphisms correctly")
// TestMonadCompose tests the MonadCompose function
func TestMonadCompose(t *testing.T) {
// Test basic composition: RIGHT-TO-LEFT execution
// MonadCompose(double, increment) means: increment first, then double
composed := MonadCompose(double, increment)
result := composed(5)
assert.Equal(t, 12, result, "MonadCompose should execute right-to-left: (5 + 1) * 2 = 12")
// Test composition order: (5 + 1) * 2 = 12
incrementAndDouble := Compose(increment, double)
result2 := incrementAndDouble(5)
assert.Equal(t, 12, result2, "Compose should respect order of composition")
// Test composition order: RIGHT-TO-LEFT execution
// MonadCompose(increment, double) means: double first, then increment
composed2 := MonadCompose(increment, double)
result2 := composed2(5)
assert.Equal(t, 11, result2, "MonadCompose should execute right-to-left: (5 * 2) + 1 = 11")
// Test with three compositions: ((5 * 2) + 1) * ((5 * 2) + 1) = 121
complex := Compose(Compose(double, increment), square)
// Test with three compositions: RIGHT-TO-LEFT execution
// MonadCompose(MonadCompose(double, increment), square) means: square, then increment, then double
complex := MonadCompose(MonadCompose(double, increment), square)
result3 := complex(5)
assert.Equal(t, 121, result3, "Compose should work with nested compositions")
// 5 -> square -> 25 -> increment -> 26 -> double -> 52
assert.Equal(t, 52, result3, "MonadCompose should work with nested compositions: square(5)=25, +1=26, *2=52")
}
// TestMonadChain tests the MonadChain function
func TestMonadChain(t *testing.T) {
// MonadChain should behave like Compose
// MonadChain executes LEFT-TO-RIGHT (first arg first, second arg second)
chained := MonadChain(double, increment)
result := chained(5)
assert.Equal(t, 11, result, "MonadChain should chain endomorphisms correctly")
assert.Equal(t, 11, result, "MonadChain should execute left-to-right: (5 * 2) + 1 = 11")
chained2 := MonadChain(increment, double)
result2 := chained2(5)
assert.Equal(t, 12, result2, "MonadChain should respect order")
assert.Equal(t, 12, result2, "MonadChain should execute left-to-right: (5 + 1) * 2 = 12")
// Test with negative values
chained3 := MonadChain(negate, increment)
result3 := chained3(5)
assert.Equal(t, -4, result3, "MonadChain should work with negative values")
assert.Equal(t, -4, result3, "MonadChain should execute left-to-right: -(5) + 1 = -4")
}
// TestChain tests the Chain function
func TestChain(t *testing.T) {
// Chain(f) returns a function that applies its argument first, then f
chainWithIncrement := Chain(increment)
// chainWithIncrement(double) means: double first, then increment
chained := chainWithIncrement(double)
result := chained(5)
assert.Equal(t, 11, result, "Chain should create chaining function correctly")
assert.Equal(t, 11, result, "Chain should execute left-to-right: (5 * 2) + 1 = 11")
chainWithDouble := Chain(double)
// chainWithDouble(increment) means: increment first, then double
chained2 := chainWithDouble(increment)
result2 := chained2(5)
assert.Equal(t, 12, result2, "Chain should work with different endomorphisms")
assert.Equal(t, 12, result2, "Chain should execute left-to-right: (5 + 1) * 2 = 12")
// Test chaining with square
chainWithSquare := Chain(square)
// chainWithSquare(double) means: double first, then square
chained3 := chainWithSquare(double)
result3 := chained3(3)
assert.Equal(t, 36, result3, "Chain should work with square function")
assert.Equal(t, 36, result3, "Chain should execute left-to-right: (3 * 2) ^ 2 = 36")
}
// TestCompose tests the curried Compose function
func TestCompose(t *testing.T) {
// Compose(g) returns a function that applies g first, then its argument
composeWithIncrement := Compose(increment)
// composeWithIncrement(double) means: increment first, then double
composed := composeWithIncrement(double)
result := composed(5)
assert.Equal(t, 12, result, "Compose should execute right-to-left: (5 + 1) * 2 = 12")
composeWithDouble := Compose(double)
// composeWithDouble(increment) means: double first, then increment
composed2 := composeWithDouble(increment)
result2 := composed2(5)
assert.Equal(t, 11, result2, "Compose should execute right-to-left: (5 * 2) + 1 = 11")
// Test composing with square
composeWithSquare := Compose(square)
// composeWithSquare(double) means: square first, then double
composed3 := composeWithSquare(double)
result3 := composed3(3)
assert.Equal(t, 18, result3, "Compose should execute right-to-left: (3 ^ 2) * 2 = 18")
}
// TestMonadComposeVsCompose demonstrates the relationship between MonadCompose and Compose
func TestMonadComposeVsCompose(t *testing.T) {
double := N.Mul(2)
increment := func(x int) int { return x + 1 }
// MonadCompose takes both functions at once
monadComposed := MonadCompose(double, increment)
result1 := monadComposed(5) // (5 + 1) * 2 = 12
// Compose is the curried version - takes one function, returns a function
curriedCompose := Compose(increment)
composed := curriedCompose(double)
result2 := composed(5) // (5 + 1) * 2 = 12
assert.Equal(t, result1, result2, "MonadCompose and Compose should produce the same result")
assert.Equal(t, 12, result1, "Both should execute right-to-left: (5 + 1) * 2 = 12")
// Demonstrate that Compose(g)(f) is equivalent to MonadCompose(f, g)
assert.Equal(t, MonadCompose(double, increment)(5), Compose(increment)(double)(5),
"Compose(g)(f) should equal MonadCompose(f, g)")
}
// TestOf tests the Of function
@@ -191,12 +260,14 @@ func TestIdentity(t *testing.T) {
assert.Equal(t, 0, id(0), "Identity should work with zero")
assert.Equal(t, -10, id(-10), "Identity should work with negative values")
// Identity should be neutral for composition
composed1 := Compose(id, double)
assert.Equal(t, 10, composed1(5), "Identity should be right neutral for composition")
// Identity should be neutral for composition (RIGHT-TO-LEFT)
// Compose(id, double) means: double first, then id
composed1 := MonadCompose(id, double)
assert.Equal(t, 10, composed1(5), "Identity should be left neutral: double(5) = 10")
composed2 := Compose(double, id)
assert.Equal(t, 10, composed2(5), "Identity should be left neutral for composition")
// Compose(double, id) means: id first, then double
composed2 := MonadCompose(double, id)
assert.Equal(t, 10, composed2(5), "Identity should be right neutral: id(5) then double = 10")
// Test with strings
idStr := Identity[string]()
@@ -207,10 +278,11 @@ func TestIdentity(t *testing.T) {
func TestSemigroup(t *testing.T) {
sg := Semigroup[int]()
// Test basic concat
// Test basic concat (RIGHT-TO-LEFT execution via Compose)
// Concat(double, increment) means: increment first, then double
combined := sg.Concat(double, increment)
result := combined(5)
assert.Equal(t, 11, result, "Semigroup concat should compose endomorphisms")
assert.Equal(t, 12, result, "Semigroup concat should execute right-to-left: (5 + 1) * 2 = 12")
// Test associativity: (f . g) . h = f . (g . h)
f := double
@@ -223,10 +295,12 @@ func TestSemigroup(t *testing.T) {
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "Semigroup should be associative")
// Test with ConcatAll from semigroup package
// Test with ConcatAll from semigroup package (RIGHT-TO-LEFT)
// ConcatAll(double)(increment, square) means: square, then increment, then double
combined2 := S.ConcatAll(sg)(double)([]Endomorphism[int]{increment, square})
result2 := combined2(5)
assert.Equal(t, 121, result2, "Semigroup should work with ConcatAll")
// 5 -> square -> 25 -> increment -> 26 -> double -> 52
assert.Equal(t, 52, result2, "Semigroup ConcatAll should execute right-to-left: square(5)=25, +1=26, *2=52")
}
// TestMonoid tests the Monoid function
@@ -237,19 +311,21 @@ func TestMonoid(t *testing.T) {
empty := monoid.Empty()
assert.Equal(t, 42, empty(42), "Monoid empty should be identity")
// Test right identity: x . empty = x
// Test right identity: x . empty = x (RIGHT-TO-LEFT: empty first, then x)
// Concat(double, empty) means: empty first, then double
rightIdentity := monoid.Concat(double, empty)
assert.Equal(t, 10, rightIdentity(5), "Monoid should satisfy right identity")
assert.Equal(t, 10, rightIdentity(5), "Monoid should satisfy right identity: empty(5) then double = 10")
// Test left identity: empty . x = x
// Test left identity: empty . x = x (RIGHT-TO-LEFT: x first, then empty)
// Concat(empty, double) means: double first, then empty
leftIdentity := monoid.Concat(empty, double)
assert.Equal(t, 10, leftIdentity(5), "Monoid should satisfy left identity")
assert.Equal(t, 10, leftIdentity(5), "Monoid should satisfy left identity: double(5) then empty = 10")
// Test ConcatAll with multiple endomorphisms
// Test ConcatAll with multiple endomorphisms (RIGHT-TO-LEFT execution)
combined := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square})
result := combined(5)
// (5 * 2) = 10, (10 + 1) = 11, (11 * 11) = 121
assert.Equal(t, 121, result, "Monoid should work with ConcatAll")
// RIGHT-TO-LEFT: square(5) = 25, increment(25) = 26, double(26) = 52
assert.Equal(t, 52, result, "Monoid ConcatAll should execute right-to-left: square(5)=25, +1=26, *2=52")
// Test ConcatAll with empty list should return identity
emptyResult := M.ConcatAll(monoid)([]Endomorphism[int]{})
@@ -294,19 +370,20 @@ func TestMonoidLaws(t *testing.T) {
// TestEndomorphismWithDifferentTypes tests endomorphisms with different types
func TestEndomorphismWithDifferentTypes(t *testing.T) {
// Test with strings
toUpper := func(s string) string {
// Test with strings (RIGHT-TO-LEFT execution)
addExclamation := func(s string) string {
return s + "!"
}
addPrefix := func(s string) string {
return "Hello, " + s
}
strComposed := Compose(toUpper, addPrefix)
// Compose(addExclamation, addPrefix) means: addPrefix first, then addExclamation
strComposed := MonadCompose(addExclamation, addPrefix)
result := strComposed("World")
assert.Equal(t, "Hello, World!", result, "Endomorphism should work with strings")
assert.Equal(t, "Hello, World!", result, "Compose should execute right-to-left with strings")
// Test with float64
// Test with float64 (RIGHT-TO-LEFT execution)
doubleFloat := func(x float64) float64 {
return x * 2.0
}
@@ -314,76 +391,116 @@ func TestEndomorphismWithDifferentTypes(t *testing.T) {
return x + 1.0
}
floatComposed := Compose(doubleFloat, addOne)
// Compose(doubleFloat, addOne) means: addOne first, then doubleFloat
floatComposed := MonadCompose(doubleFloat, addOne)
resultFloat := floatComposed(5.5)
assert.Equal(t, 12.0, resultFloat, "Endomorphism should work with float64")
// 5.5 + 1.0 = 6.5, 6.5 * 2.0 = 13.0
assert.Equal(t, 13.0, resultFloat, "Compose should execute right-to-left: (5.5 + 1.0) * 2.0 = 13.0")
}
// TestComplexCompositions tests more complex composition scenarios
func TestComplexCompositions(t *testing.T) {
// Create a pipeline of transformations
pipeline := Compose(
Compose(
Compose(double, increment),
// Create a pipeline of transformations (RIGHT-TO-LEFT execution)
// Innermost Compose is evaluated first in the composition chain
pipeline := MonadCompose(
MonadCompose(
MonadCompose(double, increment),
square,
),
negate,
)
// (5 * 2) = 10, (10 + 1) = 11, (11 * 11) = 121, -(121) = -121
// RIGHT-TO-LEFT: negate(5) = -5, square(-5) = 25, increment(25) = 26, double(26) = 52
result := pipeline(5)
assert.Equal(t, -121, result, "Complex composition should work correctly")
assert.Equal(t, 52, result, "Complex composition should execute right-to-left")
// Test using monoid to build the same pipeline
// Test using monoid to build the same pipeline (RIGHT-TO-LEFT)
monoid := Monoid[int]()
pipelineMonoid := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square, negate})
resultMonoid := pipelineMonoid(5)
assert.Equal(t, -121, resultMonoid, "Monoid-based pipeline should match composition")
// RIGHT-TO-LEFT: negate(5) = -5, square(-5) = 25, increment(25) = 26, double(26) = 52
assert.Equal(t, 52, resultMonoid, "Monoid-based pipeline should match composition (right-to-left)")
}
// TestOperatorType tests the Operator type
func TestOperatorType(t *testing.T) {
// Create an operator that lifts an int endomorphism to work on the length of strings
lengthOperator := func(f Endomorphism[int]) Endomorphism[string] {
return func(s string) string {
newLen := f(len(s))
if newLen > len(s) {
// Pad with spaces
for i := len(s); i < newLen; i++ {
s += " "
}
} else if newLen < len(s) {
// Truncate
s = s[:newLen]
}
return s
// Create an operator that transforms int endomorphisms
// This operator takes an endomorphism and returns a new one that applies it twice
applyTwice := func(f Endomorphism[int]) Endomorphism[int] {
return func(x int) int {
return f(f(x))
}
}
// Use the operator
var op Operator[int, string] = lengthOperator
doubleLength := op(double)
var op Operator[int] = applyTwice
doubleDouble := op(double)
result := doubleLength("hello") // len("hello") = 5, 5 * 2 = 10
assert.Equal(t, 10, len(result), "Operator should transform endomorphisms correctly")
assert.Equal(t, "hello ", result, "Operator should pad string correctly")
result := doubleDouble(5) // double(double(5)) = double(10) = 20
assert.Equal(t, 20, result, "Operator should transform endomorphisms correctly")
// Test with increment
incrementTwice := op(increment)
result2 := incrementTwice(5) // increment(increment(5)) = increment(6) = 7
assert.Equal(t, 7, result2, "Operator should work with different endomorphisms")
}
// BenchmarkCompose benchmarks the Compose function
func BenchmarkCompose(b *testing.B) {
composed := Compose(double, increment)
composed := MonadCompose(double, increment)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = composed(5)
}
}
// BenchmarkMonoidConcatAll benchmarks ConcatAll with monoid
// TestComposeVsChain demonstrates the key difference between Compose and Chain
func TestComposeVsChain(t *testing.T) {
double := N.Mul(2)
increment := func(x int) int { return x + 1 }
// Compose executes RIGHT-TO-LEFT
// Compose(double, increment) means: increment first, then double
composed := MonadCompose(double, increment)
composedResult := composed(5) // (5 + 1) * 2 = 12
// MonadChain executes LEFT-TO-RIGHT
// MonadChain(double, increment) means: double first, then increment
chained := MonadChain(double, increment)
chainedResult := chained(5) // (5 * 2) + 1 = 11
assert.Equal(t, 12, composedResult, "Compose should execute right-to-left")
assert.Equal(t, 11, chainedResult, "MonadChain should execute left-to-right")
assert.NotEqual(t, composedResult, chainedResult, "Compose and Chain should produce different results with non-commutative operations")
// To get the same result with Compose, we need to reverse the order
composedReversed := MonadCompose(increment, double)
assert.Equal(t, chainedResult, composedReversed(5), "Compose with reversed args should match Chain")
// Demonstrate with a more complex example
square := func(x int) int { return x * x }
// Compose: RIGHT-TO-LEFT
composed3 := MonadCompose(MonadCompose(square, increment), double)
// double(5) = 10, increment(10) = 11, square(11) = 121
result1 := composed3(5)
// MonadChain: LEFT-TO-RIGHT
chained3 := MonadChain(MonadChain(double, increment), square)
// double(5) = 10, increment(10) = 11, square(11) = 121
result2 := chained3(5)
assert.Equal(t, 121, result1, "Compose should execute right-to-left")
assert.Equal(t, 121, result2, "MonadChain should execute left-to-right")
assert.Equal(t, result1, result2, "Both should produce same result when operations are in correct order")
}
func BenchmarkMonoidConcatAll(b *testing.B) {
monoid := Monoid[int]()
combined := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square})
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = combined(5)
}
}
@@ -393,7 +510,215 @@ func BenchmarkChain(b *testing.B) {
chainWithIncrement := Chain(increment)
chained := chainWithIncrement(double)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = chained(5)
}
}
// TestFunctorLaws tests that endomorphisms satisfy the functor laws
func TestFunctorLaws(t *testing.T) {
// Functor Law 1: Identity
// map(id) = id
t.Run("Identity", func(t *testing.T) {
id := Identity[int]()
endo := double
// map(id)(endo) should equal endo
mapped := MonadMap(id, endo)
testValue := 5
assert.Equal(t, endo(testValue), mapped(testValue), "map(id) should equal id")
})
// Functor Law 2: Composition
// map(f . g) = map(f) . map(g)
t.Run("Composition", func(t *testing.T) {
f := double
g := increment
endo := square
// Left side: map(f . g)(endo)
composed := MonadCompose(f, g)
left := MonadMap(composed, endo)
// Right side: map(f)(map(g)(endo))
mappedG := MonadMap(g, endo)
right := MonadMap(f, mappedG)
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "map(f . g) should equal map(f) . map(g)")
})
}
// TestApplicativeLaws tests that endomorphisms satisfy the applicative functor laws
func TestApplicativeLaws(t *testing.T) {
// Applicative Law 1: Identity
// ap(id, v) = v
t.Run("Identity", func(t *testing.T) {
id := Identity[int]()
v := double
applied := MonadAp(id, v)
testValue := 5
assert.Equal(t, v(testValue), applied(testValue), "ap(id, v) should equal v")
})
// Applicative Law 2: Composition
// ap(ap(ap(compose, u), v), w) = ap(u, ap(v, w))
t.Run("Composition", func(t *testing.T) {
u := double
v := increment
w := square
// For endomorphisms, ap is just composition
// Left side: ap(ap(ap(compose, u), v), w) = compose(compose(u, v), w)
left := MonadCompose(MonadCompose(u, v), w)
// Right side: ap(u, ap(v, w)) = compose(u, compose(v, w))
right := MonadCompose(u, MonadCompose(v, w))
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "Applicative composition law")
})
// Applicative Law 3: Homomorphism
// ap(pure(f), pure(x)) = pure(f(x))
t.Run("Homomorphism", func(t *testing.T) {
// For endomorphisms, "pure" is just the identity function that returns a constant
// This law is trivially satisfied for endomorphisms
f := double
x := 5
// ap(f, id) applied to x should equal f(x)
id := Identity[int]()
applied := MonadAp(f, id)
assert.Equal(t, f(x), applied(x), "Homomorphism law")
})
}
// TestMonadLaws tests that endomorphisms satisfy the monad laws
func TestMonadLaws(t *testing.T) {
// Monad Law 1: Left Identity
// chain(pure(a), f) = f(a)
t.Run("LeftIdentity", func(t *testing.T) {
// For endomorphisms, "pure" is the identity function
// chain(id, f) = f
id := Identity[int]()
f := double
chained := MonadChain(id, f)
testValue := 5
assert.Equal(t, f(testValue), chained(testValue), "chain(id, f) should equal f")
})
// Monad Law 2: Right Identity
// chain(m, pure) = m
t.Run("RightIdentity", func(t *testing.T) {
m := double
id := Identity[int]()
chained := MonadChain(m, id)
testValue := 5
assert.Equal(t, m(testValue), chained(testValue), "chain(m, id) should equal m")
})
// Monad Law 3: Associativity
// chain(chain(m, f), g) = chain(m, x => chain(f(x), g))
t.Run("Associativity", func(t *testing.T) {
m := square
f := double
g := increment
// Left side: chain(chain(m, f), g)
left := MonadChain(MonadChain(m, f), g)
// Right side: chain(m, chain(f, g))
// For simple endomorphisms (not Kleisli arrows), this simplifies to:
right := MonadChain(m, MonadChain(f, g))
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "Monad associativity law")
})
}
// TestMonadComposeVsMonadChain verifies the relationship between Compose and Chain
func TestMonadComposeVsMonadChain(t *testing.T) {
f := double
g := increment
// MonadCompose(f, g) should equal MonadChain(g, f)
// Because Compose is right-to-left and Chain is left-to-right
composed := MonadCompose(f, g)
chained := MonadChain(g, f)
testValue := 5
assert.Equal(t, composed(testValue), chained(testValue),
"MonadCompose(f, g) should equal MonadChain(g, f)")
}
// TestMapEqualsCompose verifies that Map is equivalent to Compose for endomorphisms
func TestMapEqualsCompose(t *testing.T) {
f := double
g := increment
// MonadMap(f, g) should equal MonadCompose(f, g)
mapped := MonadMap(f, g)
composed := MonadCompose(f, g)
testValue := 5
assert.Equal(t, composed(testValue), mapped(testValue),
"MonadMap should equal MonadCompose for endomorphisms")
// Curried versions
mapF := Map(f)
composeF := Compose(f)
mappedG := mapF(g)
composedG := composeF(g)
assert.Equal(t, composedG(testValue), mappedG(testValue),
"Map should equal Compose for endomorphisms (curried)")
}
// TestApEqualsCompose verifies that Ap is equivalent to Compose for endomorphisms
func TestApEqualsCompose(t *testing.T) {
f := double
g := increment
// MonadAp(f, g) should equal MonadCompose(f, g)
applied := MonadAp(f, g)
composed := MonadCompose(f, g)
testValue := 5
assert.Equal(t, composed(testValue), applied(testValue),
"MonadAp should equal MonadCompose for endomorphisms")
// Curried versions
apG := Ap(g)
composeG := Compose(g)
appliedF := apG(f)
composedF := composeG(f)
assert.Equal(t, composedF(testValue), appliedF(testValue),
"Ap should equal Compose for endomorphisms (curried)")
}
// TestChainFirst tests the ChainFirst operation
func TestChainFirst(t *testing.T) {
double := N.Mul(2)
// Track side effect
var sideEffect int
logEffect := func(x int) int {
sideEffect = x
return x + 100 // This result should be discarded
}
chained := MonadChainFirst(double, logEffect)
result := chained(5)
// Should return double's result (10), not logEffect's result
assert.Equal(t, 10, result, "ChainFirst should return first result")
// But side effect should have been executed with double's result
assert.Equal(t, 10, sideEffect, "ChainFirst should execute second function for effect")
}

10
v2/endomorphism/from.go Normal file
View File

@@ -0,0 +1,10 @@
package endomorphism
import (
"github.com/IBM/fp-go/v2/function"
S "github.com/IBM/fp-go/v2/semigroup"
)
func FromSemigroup[A any](s S.Semigroup[A]) Kleisli[A] {
return function.Bind2of2(s.Concat)
}

View File

@@ -35,7 +35,7 @@ import (
//
// Example:
//
// myFunc := func(x int) int { return x * 2 }
// myFunc := N.Mul(2)
// endo := endomorphism.Of(myFunc)
func Of[F ~func(A) A, A any](f F) Endomorphism[A] {
return f
@@ -75,7 +75,7 @@ func Unwrap[F ~func(A) A, A any](f Endomorphism[A]) F {
// result := id(42) // Returns: 42
//
// // Identity is neutral for composition
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// composed := endomorphism.Compose(id, double)
// // composed behaves exactly like double
func Identity[A any]() Endomorphism[A] {
@@ -88,25 +88,29 @@ func Identity[A any]() Endomorphism[A] {
// For endomorphisms, this operation is composition (Compose). This means:
// - Concat(f, Concat(g, h)) = Concat(Concat(f, g), h)
//
// IMPORTANT: Concat uses Compose, which executes RIGHT-TO-LEFT:
// - Concat(f, g) applies g first, then f
// - This is equivalent to Compose(f, g)
//
// The returned semigroup can be used with semigroup operations to combine
// multiple endomorphisms.
//
// Returns:
// - A Semigroup[Endomorphism[A]] where concat is composition
// - A Semigroup[Endomorphism[A]] where concat is composition (right-to-left)
//
// Example:
//
// import S "github.com/IBM/fp-go/v2/semigroup"
//
// sg := endomorphism.Semigroup[int]()
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
//
// // Combine using the semigroup
// // Combine using the semigroup (RIGHT-TO-LEFT execution)
// combined := sg.Concat(double, increment)
// result := combined(5) // (5 * 2) + 1 = 11
// result := combined(5) // (5 + 1) * 2 = 12 (increment first, then double)
func Semigroup[A any]() S.Semigroup[Endomorphism[A]] {
return S.MakeSemigroup(Compose[A])
return S.MakeSemigroup(MonadCompose[A])
}
// Monoid returns a Monoid for endomorphisms where concat is composition and empty is identity.
@@ -115,6 +119,10 @@ func Semigroup[A any]() S.Semigroup[Endomorphism[A]] {
// - The binary operation is composition (Compose)
// - The identity element is the identity function (Identity)
//
// IMPORTANT: Concat uses Compose, which executes RIGHT-TO-LEFT:
// - Concat(f, g) applies g first, then f
// - ConcatAll applies functions from right to left
//
// This satisfies the monoid laws:
// - Right identity: Concat(x, Empty) = x
// - Left identity: Concat(Empty, x) = x
@@ -124,20 +132,20 @@ func Semigroup[A any]() S.Semigroup[Endomorphism[A]] {
// combine multiple endomorphisms.
//
// Returns:
// - A Monoid[Endomorphism[A]] with composition and identity
// - A Monoid[Endomorphism[A]] with composition (right-to-left) and identity
//
// Example:
//
// import M "github.com/IBM/fp-go/v2/monoid"
//
// monoid := endomorphism.Monoid[int]()
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
// square := func(x int) int { return x * x }
//
// // Combine multiple endomorphisms
// // Combine multiple endomorphisms (RIGHT-TO-LEFT execution)
// combined := M.ConcatAll(monoid)(double, increment, square)
// result := combined(5) // ((5 * 2) + 1) * ((5 * 2) + 1) = 121
// result := combined(5) // square(increment(double(5))) = square(increment(10)) = square(11) = 121
func Monoid[A any]() M.Monoid[Endomorphism[A]] {
return M.MakeMonoid(Compose[A], Identity[A]())
return M.MakeMonoid(MonadCompose[A], Identity[A]())
}

View File

@@ -29,7 +29,7 @@ type (
// Example:
//
// // Simple endomorphisms on integers
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// increment := func(x int) int { return x + 1 }
//
// // Both are endomorphisms of type Endomorphism[int]
@@ -37,6 +37,8 @@ type (
// var g endomorphism.Endomorphism[int] = increment
Endomorphism[A any] = func(A) A
Kleisli[A any] = func(A) Endomorphism[A]
// Operator represents a transformation from one endomorphism to another.
//
// An Operator takes an endomorphism on type A and produces an endomorphism on type B.
@@ -52,5 +54,5 @@ type (
// return strconv.Itoa(result)
// }
// }
Operator[A, B any] = func(Endomorphism[A]) Endomorphism[B]
Operator[A any] = Endomorphism[Endomorphism[A]]
)

View File

@@ -15,7 +15,84 @@
package eq
// Contramap implements an Equals predicate based on a mapping
// Contramap creates an Eq[B] from an Eq[A] by providing a function that maps B to A.
// This is a contravariant functor operation that allows you to transform equality predicates
// by mapping the input type. It's particularly useful for comparing complex types by
// extracting comparable fields.
//
// The name "contramap" comes from category theory, where it represents a contravariant
// functor. Unlike regular map (covariant), which transforms the output, contramap
// transforms the input in the opposite direction.
//
// Type Parameters:
// - A: The type that has an existing Eq instance
// - B: The type for which we want to create an Eq instance
//
// Parameters:
// - f: A function that extracts or converts a value of type B to type A
//
// Returns:
// - A function that takes an Eq[A] and returns an Eq[B]
//
// The resulting Eq[B] compares two B values by:
// 1. Applying f to both values to get A values
// 2. Using the original Eq[A] to compare those A values
//
// Example - Compare structs by a single field:
//
// type Person struct {
// ID int
// Name string
// Age int
// }
//
// // Compare persons by ID only
// personEqByID := eq.Contramap(func(p Person) int {
// return p.ID
// })(eq.FromStrictEquals[int]())
//
// p1 := Person{ID: 1, Name: "Alice", Age: 30}
// p2 := Person{ID: 1, Name: "Bob", Age: 25}
// assert.True(t, personEqByID.Equals(p1, p2)) // Same ID, different names
//
// Example - Case-insensitive string comparison:
//
// type User struct {
// Username string
// Email string
// }
//
// caseInsensitiveEq := eq.FromEquals(func(a, b string) bool {
// return strings.EqualFold(a, b)
// })
//
// userEqByUsername := eq.Contramap(func(u User) string {
// return u.Username
// })(caseInsensitiveEq)
//
// u1 := User{Username: "Alice", Email: "alice@example.com"}
// u2 := User{Username: "ALICE", Email: "different@example.com"}
// assert.True(t, userEqByUsername.Equals(u1, u2)) // Case-insensitive match
//
// Example - Nested field access:
//
// type Address struct {
// City string
// }
//
// type Person struct {
// Name string
// Address Address
// }
//
// // Compare persons by city
// personEqByCity := eq.Contramap(func(p Person) string {
// return p.Address.City
// })(eq.FromStrictEquals[string]())
//
// Contramap Law:
// Contramap must satisfy: Contramap(f)(Contramap(g)(eq)) = Contramap(g ∘ f)(eq)
// This means contramapping twice is the same as contramapping with the composed function.
func Contramap[A, B any](f func(b B) A) func(Eq[A]) Eq[B] {
return func(fa Eq[A]) Eq[B] {
equals := fa.Equals

View File

@@ -19,38 +19,188 @@ import (
F "github.com/IBM/fp-go/v2/function"
)
// Eq represents an equality type class for type T.
// It provides a way to define custom equality semantics for any type,
// not just those that are comparable with Go's == operator.
//
// Type Parameters:
// - T: The type for which equality is defined
//
// Methods:
// - Equals(x, y T) bool: Returns true if x and y are considered equal
//
// Laws:
// An Eq instance must satisfy the equivalence relation laws:
// 1. Reflexivity: Equals(x, x) = true for all x
// 2. Symmetry: Equals(x, y) = Equals(y, x) for all x, y
// 3. Transitivity: If Equals(x, y) and Equals(y, z), then Equals(x, z)
//
// Example:
//
// // Create an equality predicate for integers
// intEq := eq.FromStrictEquals[int]()
// assert.True(t, intEq.Equals(42, 42))
// assert.False(t, intEq.Equals(42, 43))
//
// // Create a custom equality predicate
// caseInsensitiveEq := eq.FromEquals(func(a, b string) bool {
// return strings.EqualFold(a, b)
// })
// assert.True(t, caseInsensitiveEq.Equals("Hello", "HELLO"))
type Eq[T any] interface {
// Equals returns true if x and y are considered equal according to this equality predicate.
//
// Parameters:
// - x: The first value to compare
// - y: The second value to compare
//
// Returns:
// - true if x and y are equal, false otherwise
Equals(x, y T) bool
}
// eq is the internal implementation of the Eq interface.
// It wraps a comparison function to provide the Eq interface.
type eq[T any] struct {
c func(x, y T) bool
}
// Equals implements the Eq interface by delegating to the wrapped comparison function.
func (e eq[T]) Equals(x, y T) bool {
return e.c(x, y)
}
// strictEq is a helper function that uses Go's built-in == operator for comparison.
// It can only be used with comparable types.
func strictEq[A comparable](a, b A) bool {
return a == b
}
// FromStrictEquals constructs an [EQ.Eq] from the canonical comparison function
// FromStrictEquals constructs an Eq instance using Go's built-in == operator.
// This is the most common way to create an Eq for types that support ==.
//
// Type Parameters:
// - T: Must be a comparable type (supports ==)
//
// Returns:
// - An Eq[T] that uses == for equality comparison
//
// Example:
//
// intEq := eq.FromStrictEquals[int]()
// assert.True(t, intEq.Equals(42, 42))
// assert.False(t, intEq.Equals(42, 43))
//
// stringEq := eq.FromStrictEquals[string]()
// assert.True(t, stringEq.Equals("hello", "hello"))
// assert.False(t, stringEq.Equals("hello", "world"))
//
// Note: For types that are not comparable or require custom equality logic,
// use FromEquals instead.
func FromStrictEquals[T comparable]() Eq[T] {
return FromEquals(strictEq[T])
}
// FromEquals constructs an [EQ.Eq] from the comparison function
// FromEquals constructs an Eq instance from a custom comparison function.
// This allows defining equality for any type, including non-comparable types
// or types that need custom equality semantics.
//
// Type Parameters:
// - T: The type for which equality is being defined (can be any type)
//
// Parameters:
// - c: A function that takes two values of type T and returns true if they are equal
//
// Returns:
// - An Eq[T] that uses the provided function for equality comparison
//
// Example:
//
// // Case-insensitive string equality
// caseInsensitiveEq := eq.FromEquals(func(a, b string) bool {
// return strings.EqualFold(a, b)
// })
// assert.True(t, caseInsensitiveEq.Equals("Hello", "HELLO"))
//
// // Approximate float equality
// approxEq := eq.FromEquals(func(a, b float64) bool {
// return math.Abs(a-b) < 0.0001
// })
// assert.True(t, approxEq.Equals(1.0, 1.00009))
//
// // Custom struct equality (compare by specific fields)
// type Person struct { ID int; Name string }
// personEq := eq.FromEquals(func(a, b Person) bool {
// return a.ID == b.ID // Compare only by ID
// })
//
// Note: The provided function should satisfy the equivalence relation laws
// (reflexivity, symmetry, transitivity) for correct behavior.
func FromEquals[T any](c func(x, y T) bool) Eq[T] {
return eq[T]{c: c}
}
// Empty returns the equals predicate that is always true
// Empty returns an Eq instance that always returns true for any comparison.
// This is the identity element for the Eq Monoid and is useful when you need
// an equality predicate that accepts everything.
//
// Type Parameters:
// - T: The type for which the always-true equality is defined
//
// Returns:
// - An Eq[T] where Equals(x, y) always returns true
//
// Example:
//
// alwaysTrue := eq.Empty[int]()
// assert.True(t, alwaysTrue.Equals(1, 2))
// assert.True(t, alwaysTrue.Equals(42, 100))
//
// // Useful as identity in monoid operations
// monoid := eq.Monoid[string]()
// combined := monoid.Concat(eq.FromStrictEquals[string](), monoid.Empty())
// // combined behaves the same as FromStrictEquals
//
// Use cases:
// - As the identity element in Monoid operations
// - When you need a placeholder equality that accepts everything
// - In generic code that requires an Eq but doesn't need actual comparison
func Empty[T any]() Eq[T] {
return FromEquals(F.Constant2[T, T](true))
}
// Equals returns a predicate to test if one value equals the other under an equals predicate
// Equals returns a curried equality checking function.
// This is useful for partial application and functional composition.
//
// Type Parameters:
// - T: The type being compared
//
// Parameters:
// - eq: The Eq instance to use for comparison
//
// Returns:
// - A function that takes a value and returns another function that checks equality with that value
//
// Example:
//
// intEq := eq.FromStrictEquals[int]()
// equals42 := eq.Equals(intEq)(42)
//
// assert.True(t, equals42(42))
// assert.False(t, equals42(43))
//
// // Use in higher-order functions
// numbers := []int{40, 41, 42, 43, 44}
// filtered := array.Filter(equals42)(numbers)
// // filtered = [42]
//
// // Partial application
// equalsFunc := eq.Equals(intEq)
// equals10 := equalsFunc(10)
// equals20 := equalsFunc(20)
//
// This is particularly useful when working with functional programming patterns
// like map, filter, and other higher-order functions.
func Equals[T any](eq Eq[T]) func(T) func(T) bool {
return func(other T) func(T) bool {
return F.Bind2nd(eq.Equals, other)

View File

@@ -20,6 +20,65 @@ import (
S "github.com/IBM/fp-go/v2/semigroup"
)
// Semigroup returns a Semigroup instance for Eq[A].
// A Semigroup provides a way to combine two values of the same type.
// For Eq, the combination uses logical AND - two values are equal only if
// they are equal according to BOTH equality predicates.
//
// Type Parameters:
// - A: The type for which equality predicates are being combined
//
// Returns:
// - A Semigroup[Eq[A]] that combines equality predicates with logical AND
//
// The Concat operation satisfies:
// - Associativity: Concat(Concat(x, y), z) = Concat(x, Concat(y, z))
//
// Example - Combine multiple equality checks:
//
// type User struct {
// Username string
// Email string
// }
//
// usernameEq := eq.Contramap(func(u User) string {
// return u.Username
// })(eq.FromStrictEquals[string]())
//
// emailEq := eq.Contramap(func(u User) string {
// return u.Email
// })(eq.FromStrictEquals[string]())
//
// // Users are equal only if BOTH username AND email match
// userEq := eq.Semigroup[User]().Concat(usernameEq, emailEq)
//
// u1 := User{Username: "alice", Email: "alice@example.com"}
// u2 := User{Username: "alice", Email: "alice@example.com"}
// u3 := User{Username: "alice", Email: "different@example.com"}
//
// assert.True(t, userEq.Equals(u1, u2)) // Both match
// assert.False(t, userEq.Equals(u1, u3)) // Email differs
//
// Example - Combine multiple field checks:
//
// type Product struct {
// ID int
// Name string
// Price float64
// }
//
// idEq := eq.Contramap(func(p Product) int { return p.ID })(eq.FromStrictEquals[int]())
// nameEq := eq.Contramap(func(p Product) string { return p.Name })(eq.FromStrictEquals[string]())
// priceEq := eq.Contramap(func(p Product) float64 { return p.Price })(eq.FromStrictEquals[float64]())
//
// sg := eq.Semigroup[Product]()
// // All three fields must match
// productEq := sg.Concat(sg.Concat(idEq, nameEq), priceEq)
//
// Use cases:
// - Combining multiple field comparisons for struct equality
// - Building complex equality predicates from simpler ones
// - Ensuring all conditions are met (logical AND of predicates)
func Semigroup[A any]() S.Semigroup[Eq[A]] {
return S.MakeSemigroup(func(x, y Eq[A]) Eq[A] {
return FromEquals(func(a, b A) bool {
@@ -28,6 +87,67 @@ func Semigroup[A any]() S.Semigroup[Eq[A]] {
})
}
// Monoid returns a Monoid instance for Eq[A].
// A Monoid extends Semigroup with an identity element (Empty).
// For Eq, the identity is an equality predicate that always returns true.
//
// Type Parameters:
// - A: The type for which the equality monoid is defined
//
// Returns:
// - A Monoid[Eq[A]] with:
// - Concat: Combines equality predicates with logical AND (from Semigroup)
// - Empty: An equality predicate that always returns true (identity element)
//
// Monoid Laws:
// 1. Left Identity: Concat(Empty(), x) = x
// 2. Right Identity: Concat(x, Empty()) = x
// 3. Associativity: Concat(Concat(x, y), z) = Concat(x, Concat(y, z))
//
// Example - Using the identity element:
//
// monoid := eq.Monoid[int]()
// intEq := eq.FromStrictEquals[int]()
//
// // Empty is the identity - combining with it doesn't change behavior
// leftIdentity := monoid.Concat(monoid.Empty(), intEq)
// rightIdentity := monoid.Concat(intEq, monoid.Empty())
//
// assert.True(t, leftIdentity.Equals(42, 42))
// assert.False(t, leftIdentity.Equals(42, 43))
// assert.True(t, rightIdentity.Equals(42, 42))
// assert.False(t, rightIdentity.Equals(42, 43))
//
// Example - Empty always returns true:
//
// monoid := eq.Monoid[string]()
// alwaysTrue := monoid.Empty()
//
// assert.True(t, alwaysTrue.Equals("hello", "world"))
// assert.True(t, alwaysTrue.Equals("same", "same"))
// assert.True(t, alwaysTrue.Equals("", "anything"))
//
// Example - Building complex equality with fold:
//
// type Person struct {
// FirstName string
// LastName string
// Age int
// }
//
// firstNameEq := eq.Contramap(func(p Person) string { return p.FirstName })(eq.FromStrictEquals[string]())
// lastNameEq := eq.Contramap(func(p Person) string { return p.LastName })(eq.FromStrictEquals[string]())
// ageEq := eq.Contramap(func(p Person) int { return p.Age })(eq.FromStrictEquals[int]())
//
// monoid := eq.Monoid[Person]()
// // Combine all predicates - all fields must match
// personEq := monoid.Concat(monoid.Concat(firstNameEq, lastNameEq), ageEq)
//
// Use cases:
// - Providing a neutral element for equality combinations
// - Generic algorithms that require a Monoid instance
// - Folding multiple equality predicates into one
// - Default "accept everything" equality predicate
func Monoid[A any]() M.Monoid[Eq[A]] {
return M.MakeMonoid(Semigroup[A]().Concat, Empty[A]())
}

View File

@@ -23,6 +23,7 @@ import (
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
N "github.com/IBM/fp-go/v2/number"
"github.com/stretchr/testify/assert"
)
@@ -266,7 +267,7 @@ func TestEither(t *testing.T) {
erased := Erase(42)
result := F.Pipe1(
SafeUnerase[int](erased),
E.Map[error](func(x int) int { return x * 2 }),
E.Map[error](N.Mul(2)),
)
assert.True(t, E.IsRight(result))

View File

@@ -22,12 +22,12 @@ import (
F "github.com/IBM/fp-go/v2/function"
)
// IdentityError is the identity function specialized for error types.
// Identity is the identity function specialized for error types.
// It returns the error unchanged, useful in functional composition where
// an error needs to be passed through without modification.
//
// Example:
//
// err := errors.New("something went wrong")
// same := IdentityError(err) // returns the same error
var IdentityError = F.Identity[error]
// same := Identity(err) // returns the same error
var Identity = F.Identity[error]

View File

@@ -42,7 +42,10 @@ package function
// divide := func(a, b float64) float64 { return a / b }
// divideBy10 := Bind1st(divide, 10.0)
// result := divideBy10(2.0) // 5.0 (10 / 2)
//
//go:inline
func Bind1st[T1, T2, R any](f func(T1, T2) R, t1 T1) func(T2) R {
//go:inline
return func(t2 T2) R {
return f(t1, t2)
}
@@ -75,7 +78,10 @@ func Bind1st[T1, T2, R any](f func(T1, T2) R, t1 T1) func(T2) R {
// divide := func(a, b float64) float64 { return a / b }
// halve := Bind2nd(divide, 2.0)
// result := halve(10.0) // 5.0 (10 / 2)
//
//go:inline
func Bind2nd[T1, T2, R any](f func(T1, T2) R, t2 T2) func(T1) R {
//go:inline
return func(t1 T1) R {
return f(t1, t2)
}
@@ -104,6 +110,8 @@ func Bind2nd[T1, T2, R any](f func(T1, T2) R, t2 T2) func(T1) R {
//
// result := SK(42, "hello") // "hello"
// result := SK(true, 100) // 100
//
//go:inline
func SK[T1, T2 any](_ T1, t2 T2) T2 {
return t2
}

File diff suppressed because it is too large Load Diff

View File

@@ -15,7 +15,105 @@
package function
// Flip reverses the order of parameters of a curried function
// Flip reverses the order of parameters of a curried function.
//
// Given a curried function f that takes T1 then T2 and returns R,
// Flip returns a new curried function that takes T2 then T1 and returns R.
// This is useful when you have a curried function but need to apply its
// arguments in a different order.
//
// Mathematical notation:
// - Given: f: T1 → T2 → R
// - Returns: g: T2 → T1 → R where g(t2)(t1) = f(t1)(t2)
//
// Type Parameters:
// - T1: The type of the first parameter (becomes second after flip)
// - T2: The type of the second parameter (becomes first after flip)
// - R: The return type
//
// Parameters:
// - f: A curried function taking T1 then T2 and returning R
//
// Returns:
// - A new curried function taking T2 then T1 and returning R
//
// Relationship to Swap:
//
// Flip is the curried version of Swap. While Swap works with binary functions,
// Flip works with curried functions:
// - Swap: func(T1, T2) R → func(T2, T1) R
// - Flip: func(T1) func(T2) R → func(T2) func(T1) R
//
// Example - Basic usage:
//
// // Create a curried division function
// divide := Curry2(func(a, b float64) float64 { return a / b })
// // divide(10)(2) = 5.0 (10 / 2)
//
// // Flip the parameter order
// divideFlipped := Flip(divide)
// // divideFlipped(10)(2) = 0.2 (2 / 10)
//
// Example - String formatting:
//
// // Curried string formatter: format(template)(value)
// format := Curry2(func(template, value string) string {
// return fmt.Sprintf(template, value)
// })
//
// // Normal order: template first, then value
// result1 := format("Hello, %s!")("World") // "Hello, World!"
//
// // Flipped order: value first, then template
// formatFlipped := Flip(format)
// result2 := formatFlipped("Hello, %s!")("World") // "Hello, World!"
//
// // Useful for partial application in different order
// greetWorld := format("Hello, %s!")
// greetWorld("Alice") // "Hello, Alice!"
//
// formatAlice := formatFlipped("Alice")
// formatAlice("Hello, %s!") // "Hello, Alice!"
//
// Example - Practical use case with map operations:
//
// // Curried map lookup: getFrom(map)(key)
// getFrom := Curry2(func(m map[string]int, key string) int {
// return m[key]
// })
//
// data := map[string]int{"a": 1, "b": 2, "c": 3}
//
// // Create a getter for this specific map
// getValue := getFrom(data)
// getValue("a") // 1
//
// // Flip to create key-first version: get(key)(map)
// get := Flip(getFrom)
// getA := get("a")
// getA(data) // 1
//
// Example - Combining with other functional patterns:
//
// // Curried append: append(slice)(element)
// appendTo := Curry2(func(slice []int, elem int) []int {
// return append(slice, elem)
// })
//
// // Flip to get: prepend(element)(slice)
// prepend := Flip(appendTo)
//
// nums := []int{1, 2, 3}
// add4 := appendTo(nums)
// result1 := add4(4) // [1, 2, 3, 4]
//
// prependZero := prepend(0)
// result2 := prependZero(nums) // [1, 2, 3, 0]
//
// See also:
// - Swap: For flipping parameters of non-curried binary functions
// - Curry2: For converting binary functions to curried form
// - Uncurry2: For converting curried functions back to binary form
func Flip[T1, T2, R any](f func(T1) func(T2) R) func(T2) func(T1) R {
return func(t2 T2) func(T1) R {
return func(t1 T1) R {

View File

@@ -22,15 +22,265 @@ import (
"github.com/stretchr/testify/assert"
)
// TestFlip tests the Flip function with various scenarios
func TestFlip(t *testing.T) {
t.Run("flips string concatenation", func(t *testing.T) {
// Create a curried function that formats strings
format := Curry2(func(a, b string) string {
return fmt.Sprintf("%s:%s", a, b)
})
x := Curry2(func(a, b string) string {
return fmt.Sprintf("%s:%s", a, b)
// Original order: a then b
assert.Equal(t, "a:b", format("a")("b"))
assert.Equal(t, "hello:world", format("hello")("world"))
// Flipped order: b then a
flipped := Flip(format)
assert.Equal(t, "b:a", flipped("a")("b"))
assert.Equal(t, "world:hello", flipped("hello")("world"))
})
assert.Equal(t, "a:b", x("a")("b"))
t.Run("flips numeric operations", func(t *testing.T) {
// Curried subtraction: subtract(a)(b) = a - b
subtract := Curry2(func(a, b int) int {
return a - b
})
y := Flip(x)
// Original: 10 - 3 = 7
assert.Equal(t, 7, subtract(10)(3))
assert.Equal(t, "b:a", y("a")("b"))
// Flipped: 3 - 10 = -7
flipped := Flip(subtract)
assert.Equal(t, -7, flipped(10)(3))
})
t.Run("flips division", func(t *testing.T) {
// Curried division: divide(a)(b) = a / b
divide := Curry2(func(a, b float64) float64 {
return a / b
})
// Original: 10 / 2 = 5.0
assert.Equal(t, 5.0, divide(10)(2))
// Flipped: 2 / 10 = 0.2
flipped := Flip(divide)
assert.Equal(t, 0.2, flipped(10)(2))
})
t.Run("flips with partial application", func(t *testing.T) {
// Curried append-like operation
prepend := Curry2(func(prefix, text string) string {
return prefix + text
})
// Create specialized functions with original order
addHello := prepend("Hello, ")
assert.Equal(t, "Hello, World", addHello("World"))
assert.Equal(t, "Hello, Go", addHello("Go"))
// Flip and create specialized functions with reversed order
flipped := Flip(prepend)
addToWorld := flipped("World")
assert.Equal(t, "Hello, World", addToWorld("Hello, "))
assert.Equal(t, "Goodbye, World", addToWorld("Goodbye, "))
})
t.Run("flips with different types", func(t *testing.T) {
// Curried function with different input types
repeat := Curry2(func(s string, n int) string {
result := ""
for i := 0; i < n; i++ {
result += s
}
return result
})
// Original: repeat("x")(3) = "xxx"
assert.Equal(t, "xxx", repeat("x")(3))
assert.Equal(t, "abab", repeat("ab")(2))
// Flipped: repeat(3)("x") = "xxx"
flipped := Flip(repeat)
assert.Equal(t, "xxx", flipped(3)("x"))
assert.Equal(t, "abab", flipped(2)("ab"))
})
t.Run("double flip returns to original", func(t *testing.T) {
// Flipping twice should return to original behavior
original := Curry2(func(a, b string) string {
return a + "-" + b
})
flipped := Flip(original)
doubleFlipped := Flip(flipped)
// Original and double-flipped should behave the same
assert.Equal(t, original("a")("b"), doubleFlipped("a")("b"))
assert.Equal(t, "a-b", doubleFlipped("a")("b"))
})
t.Run("flips with complex types", func(t *testing.T) {
type Person struct {
Name string
Age int
}
// Curried function creating a person
makePerson := Curry2(func(name string, age int) Person {
return Person{Name: name, Age: age}
})
// Original order: name then age
alice := makePerson("Alice")(30)
assert.Equal(t, "Alice", alice.Name)
assert.Equal(t, 30, alice.Age)
// Flipped order: age then name
flipped := Flip(makePerson)
bob := flipped(25)("Bob")
assert.Equal(t, "Bob", bob.Name)
assert.Equal(t, 25, bob.Age)
})
t.Run("flips map operations", func(t *testing.T) {
// Curried map getter: get(map)(key)
get := Curry2(func(m map[string]int, key string) int {
return m[key]
})
data := map[string]int{"a": 1, "b": 2, "c": 3}
// Original: provide map first, then key
getValue := get(data)
assert.Equal(t, 1, getValue("a"))
assert.Equal(t, 2, getValue("b"))
// Flipped: provide key first, then map
flipped := Flip(get)
getA := flipped("a")
assert.Equal(t, 1, getA(data))
data2 := map[string]int{"a": 10, "b": 20}
assert.Equal(t, 10, getA(data2))
})
t.Run("flips boolean operations", func(t *testing.T) {
// Curried logical operation
implies := Curry2(func(a, b bool) bool {
return !a || b
})
// Test truth table for implication
assert.True(t, implies(true)(true)) // T → T = T
assert.False(t, implies(true)(false)) // T → F = F
assert.True(t, implies(false)(true)) // F → T = T
assert.True(t, implies(false)(false)) // F → F = T
// Flipped version (reverse implication)
flipped := Flip(implies)
assert.True(t, flipped(true)(true)) // T ← T = T
assert.True(t, flipped(true)(false)) // T ← F = T
assert.False(t, flipped(false)(true)) // F ← T = F
assert.True(t, flipped(false)(false)) // F ← F = T
})
t.Run("flips with slice operations", func(t *testing.T) {
// Curried slice append
appendTo := Curry2(func(slice []int, elem int) []int {
return append(slice, elem)
})
nums := []int{1, 2, 3}
// Original: provide slice first, then element
add4 := appendTo(nums)
result1 := add4(4)
assert.Equal(t, []int{1, 2, 3, 4}, result1)
// Flipped: provide element first, then slice
flipped := Flip(appendTo)
appendFive := flipped(5)
result2 := appendFive(nums)
assert.Equal(t, []int{1, 2, 3, 5}, result2)
})
}
// TestFlipProperties tests mathematical properties of Flip
func TestFlipProperties(t *testing.T) {
t.Run("flip is involutive (flip . flip = id)", func(t *testing.T) {
// Flipping twice should give back the original function behavior
original := Curry2(func(a, b int) int {
return a*10 + b
})
flipped := Flip(original)
doubleFlipped := Flip(flipped)
// Test with multiple inputs
testCases := []struct{ a, b int }{
{1, 2},
{5, 7},
{0, 0},
{-1, 3},
}
for _, tc := range testCases {
assert.Equal(t,
original(tc.a)(tc.b),
doubleFlipped(tc.a)(tc.b),
"flip(flip(f)) should equal f for inputs (%d, %d)", tc.a, tc.b)
}
})
t.Run("flip preserves function composition", func(t *testing.T) {
// If we have f: A → B → C and g: C → D
// then g ∘ f(a)(b) = g(f(a)(b))
// and g ∘ flip(f)(b)(a) = g(flip(f)(b)(a))
f := Curry2(func(a, b int) int {
return a + b
})
g := func(n int) int {
return n * 2
}
flippedF := Flip(f)
// Compose g with f
composed1 := func(a, b int) int {
return g(f(a)(b))
}
// Compose g with flipped f
composed2 := func(a, b int) int {
return g(flippedF(b)(a))
}
// Both should give the same result
assert.Equal(t, composed1(3, 5), composed2(3, 5))
assert.Equal(t, 16, composed1(3, 5)) // (3 + 5) * 2 = 16
})
}
// BenchmarkFlip benchmarks the Flip function
func BenchmarkFlip(b *testing.B) {
add := Curry2(func(a, b int) int {
return a + b
})
flipped := Flip(add)
b.Run("original", func(b *testing.B) {
for i := 0; i < b.N; i++ {
_ = add(i)(i + 1)
}
})
b.Run("flipped", func(b *testing.B) {
for i := 0; i < b.N; i++ {
_ = flipped(i)(i + 1)
}
})
}

Some files were not shown because too many files have changed in this diff Show More