1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-12-09 23:11:40 +02:00

Compare commits

...

52 Commits

Author SHA1 Message Date
Dr. Carsten Leue
b1704b6d26 fix: implement TraverseReader
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-12-05 17:51:13 +01:00
Dr. Carsten Leue
ffdfd218f8 fix: implement Flip for Reader
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-12-05 11:04:49 +01:00
Dr. Carsten Leue
34826d8c52 fix: Ask and add tests to retry
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-12-04 16:47:53 +01:00
Dr. Carsten Leue
24c0519cc7 fix: try to unify type signatures
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-12-04 16:31:21 +01:00
Dr. Carsten Leue
ff48d8953e fix: implement some missing methods in reader io
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-12-04 13:50:25 +01:00
Dr. Carsten Leue
d739c9b277 fix: add doc to readerio
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-12-03 18:13:59 +01:00
Dr. Carsten Leue
f0054431a5 fix: add logging to readerio 2025-12-03 18:07:06 +01:00
Carsten Leue
1a89ec3df7 fix: implement Sequence for Pair
Signed-off-by: Carsten Leue <carsten.leue@de.ibm.com>
2025-11-28 11:22:23 +01:00
Carsten Leue
f652a94c3a fix: add template based logger
Signed-off-by: Carsten Leue <carsten.leue@de.ibm.com>
2025-11-28 10:11:08 +01:00
Dr. Carsten Leue
774db88ca5 fix: add name to prism
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-27 13:26:36 +01:00
Dr. Carsten Leue
62a3365b20 fix: add conversion prisms for numbers
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-27 13:12:18 +01:00
Dr. Carsten Leue
d9a16a6771 fix: add reduce operations to readerioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-26 17:00:10 +01:00
Dr. Carsten Leue
8949cc7dca fix: expose stats
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-26 13:44:40 +01:00
Dr. Carsten Leue
fa6b6caf22 fix: generic order for reader.Flap
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-26 12:53:13 +01:00
Dr. Carsten Leue
a1e8d397c3 fix: better doc and some helpers
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-26 12:06:09 +01:00
Dr. Carsten Leue
dbe7102e43 fix: better doc and some helpers
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-26 12:05:31 +01:00
Dr. Carsten Leue
09aeb996e2 fix: add GetOrElseOf
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 18:57:30 +01:00
Dr. Carsten Leue
7cd575d95a fix: improve Prism and Optional
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 18:22:52 +01:00
Dr. Carsten Leue
dcfb023891 fix: improve assertions
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 17:28:48 +01:00
Dr. Carsten Leue
51cf241a26 fix: add ReaderK
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 12:29:55 +01:00
Dr. Carsten Leue
9004c93976 fix: add some idomatic helpers
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 10:40:58 +01:00
Dr. Carsten Leue
d8ab6b0ce5 fix: ChainReaderK
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-22 10:39:56 +01:00
Dr. Carsten Leue
4e9998b645 fix: benchmarks and better docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 15:39:41 +01:00
Dr. Carsten Leue
2ea9e292e1 fix: idiomatic/readeresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 15:25:59 +01:00
Dr. Carsten Leue
12a20e30d1 fix: implement BindReaderK
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 13:01:27 +01:00
Dr. Carsten Leue
4909ad5473 fix: add missing monoid
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 10:22:50 +01:00
Dr. Carsten Leue
d116317cde fix: add readerresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 10:04:28 +01:00
Dr. Carsten Leue
1428241f2c fix: race condition
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 08:36:07 +01:00
Dr. Carsten Leue
ef9216bad7 fix: documentation, tests, some utilities
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-20 08:43:15 +01:00
Dr. Carsten Leue
fe77c770b6 fix: cleanup types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-19 17:36:49 +01:00
Dr. Carsten Leue
1c42b2ac1d fix: implement idiomatic/ioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-19 15:39:02 +01:00
Dr. Carsten Leue
cbd93fdecc fix: add statereaderioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 17:54:04 +01:00
Dr. Carsten Leue
6d94697128 fix: document statereaderioeither
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 16:06:56 +01:00
Dr. Carsten Leue
77dde302ef Merge branch 'main' of github.com:IBM/fp-go 2025-11-18 10:59:57 +01:00
Dr. Carsten Leue
909d626019 fix: serveral performance improvements
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 10:58:24 +01:00
renovate[bot]
b01a8f2aff chore(deps): update actions/checkout action to v4.3.1 (#145)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2025-11-18 06:31:59 +00:00
Dr. Carsten Leue
8a2e9539b1 fix: add result
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 20:36:06 +01:00
Dr. Carsten Leue
03d9720a29 fix: optimize performance for option
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 12:19:24 +01:00
Dr. Carsten Leue
57794ccb34 fix: add idiomatic go options package
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 11:10:27 +01:00
Dr. Carsten Leue
404eb875d3 fix: add idiomatic version
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-16 17:27:16 +01:00
Dr. Carsten Leue
ed108812d6 fix: modernize codebase
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-15 17:00:22 +01:00
Dr. Carsten Leue
ab868315d4 fix: traverse
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-15 12:13:37 +01:00
Dr. Carsten Leue
02d0be9dad fix: add traversal for sequences
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 14:12:44 +01:00
Dr. Carsten Leue
2c1d8196b4 fix: support go iterators and cleanup types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 12:56:12 +01:00
Dr. Carsten Leue
17eb8ae66f fix: add Chain...Left methods
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 16:51:15 +01:00
Dr. Carsten Leue
b70e481e7d fix: some minor improvements
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 12:56:51 +01:00
Dr. Carsten Leue
3c3bb7c166 fix: improve lens implementation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 12:15:52 +01:00
Dr. Carsten Leue
d3007cbbfa fix: improve lens generator
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:39:18 +01:00
Dr. Carsten Leue
5aa0e1ea2e fix: handle non comparable types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:35:56 +01:00
Dr. Carsten Leue
d586428cb0 fix: examples
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:05:57 +01:00
Dr. Carsten Leue
d2dbce6e8b fix: improve lens handling
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 18:23:57 +01:00
Dr. Carsten Leue
6f7ec0768d fix: improve lens generation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 17:28:20 +01:00
524 changed files with 69543 additions and 2105 deletions

View File

@@ -28,7 +28,7 @@ jobs:
fail-fast: false # Continue with other versions if one fails
steps:
# full checkout for semantic-release
- uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
@@ -66,7 +66,7 @@ jobs:
matrix:
go-version: ['1.24.x', '1.25.x']
steps:
- uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
@@ -126,7 +126,7 @@ jobs:
steps:
# full checkout for semantic-release
- name: Full checkout
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0

View File

@@ -0,0 +1,17 @@
{
"permissions": {
"allow": [
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\monad\"\" && ls -la \"c:dfp-gov2internalapplicative\"\")",
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\chain\"\" && ls -la \"c:dfp-gov2internalfunctor\"\")",
"Bash(go build:*)",
"Bash(go test:*)",
"Bash(go doc:*)",
"Bash(go tool cover:*)",
"Bash(sort:*)",
"Bash(tee:*)",
"Bash(find:*)"
],
"deny": [],
"ask": []
}
}

482
v2/BENCHMARK_COMPARISON.md Normal file
View File

@@ -0,0 +1,482 @@
# Benchmark Comparison: Idiomatic vs Standard Either/Result
**Date:** 2025-11-18
**System:** AMD Ryzen 7 PRO 7840U w/ Radeon 780M Graphics (16 cores)
**Go Version:** go1.23+
This document provides a detailed performance comparison between the optimized `either` package and the `idiomatic/result` package after recent optimizations to the either package.
## Executive Summary
After optimizations to the `either` package, the performance characteristics have changed significantly:
### Key Findings
1. **Constructors & Predicates**: Both packages now perform comparably (~1-2 ns/op) with **zero heap allocations**
2. **Zero-allocation insight**: The `Either` struct (24 bytes) does NOT escape to heap - Go returns it by value on the stack
3. **Core Operations**: Idiomatic package has a **consistent advantage** of 1.2x - 2.3x for most operations
4. **Complex Operations**: Idiomatic package shows **massive advantages**:
- ChainFirst (Right): **32.4x faster** (87.6 ns → 2.7 ns, 72 B → 0 B)
- Pipeline operations: **2-3x faster** with lower allocations
5. **All simple operations**: Both maintain **zero heap allocations** (0 B/op, 0 allocs/op)
### Winner by Category
| Category | Winner | Reason |
|----------|--------|--------|
| Constructors | **TIE** | Both ~1.3-1.8 ns/op |
| Predicates | **TIE** | Both ~1.2-1.5 ns/op |
| Simple Transformations | **Idiomatic** | 1.2-2x faster |
| Monadic Operations | **Idiomatic** | 1.2-2.3x faster |
| Complex Chains | **Idiomatic** | 32x faster, zero allocs |
| Pipelines | **Idiomatic** | 2-2.4x faster, fewer allocs |
| Extraction | **Idiomatic** | 6x faster (GetOrElse) |
## Detailed Benchmark Results
### Constructor Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Left | 1.76 | **1.35** | **1.3x** ✓ | 0 B/op | 0 B/op |
| Right | 1.38 | 1.43 | 1.0x | 0 B/op | 0 B/op |
| Of | 1.68 | **1.22** | **1.4x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Both packages perform extremely well with **zero heap allocations**. Idiomatic has a slight edge on Left and Of.
**Important Clarification: Neither Package Escapes to Heap**
A common misconception is that struct-based Either escapes to heap while tuples stay on stack. The benchmarks prove this is FALSE:
```go
// Either package - NO heap allocation
type Either[E, A any] struct {
r A // 8 bytes
l E // 8 bytes
isLeft bool // 1 byte + 7 padding
} // Total: 24 bytes
func Of[E, A any](value A) Either[E, A] {
return Right[E](value) // Returns 24-byte struct BY VALUE
}
// Benchmark result: 0 B/op, 0 allocs/op ✓
```
**Why Either doesn't escape:**
1. **Small struct** - At 24 bytes, it's below Go's escape threshold (~64 bytes)
2. **Return by value** - Go returns small structs on the stack
3. **Inlining** - The `//go:inline` directive eliminates function overhead
4. **No pointers** - No pointer escapes in normal usage
**Idiomatic package:**
```go
// Returns native tuple - always stack allocated
func Right[A any](a A) (A, error) {
return a, nil // 16 bytes total (8 + 8)
}
// Benchmark result: 0 B/op, 0 allocs/op ✓
```
**Both achieve zero allocations** - the performance difference comes from other factors like function composition overhead, not from constructor allocations.
### Predicate Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| IsLeft | 1.45 | **1.35** | **1.1x** ✓ | 0 B/op | 0 B/op |
| IsRight | 1.47 | 1.51 | 1.0x | 0 B/op | 0 B/op |
**Analysis:** Virtually identical performance. The optimizations brought them to parity.
### Fold Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadFold (Right) | 2.71 | - | - | 0 B/op | - |
| MonadFold (Left) | 2.26 | - | - | 0 B/op | - |
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | 0 B/op | 0 B/op |
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package is 1.5x faster for curried Fold operations.
### Unwrap Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Unwrap (Right) | 1.27 | N/A | Either-specific |
| Unwrap (Left) | 1.24 | N/A | Either-specific |
| UnwrapError (Right) | 1.27 | N/A | Either-specific |
| UnwrapError (Left) | 1.27 | N/A | Either-specific |
| ToError (Right) | N/A | 1.40 | Idiomatic-specific |
| ToError (Left) | N/A | 1.84 | Idiomatic-specific |
**Analysis:** Both provide fast unwrapping. Idiomatic's tuple return is naturally unwrapped.
### Map Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadMap (Right) | 2.96 | - | - | 0 B/op | - |
| MonadMap (Left) | 1.99 | - | - | 0 B/op | - |
| Map (Right) | 5.13 | **4.34** | **1.2x** ✓ | 0 B/op | 0 B/op |
| Map (Left) | 4.19 | **2.48** | **1.7x** ✓ | 0 B/op | 0 B/op |
| MapLeft (Right) | 3.93 | **2.22** | **1.8x** ✓ | 0 B/op | 0 B/op |
| MapLeft (Left) | 7.22 | **3.51** | **2.1x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic is consistently faster across all Map variants, especially for error path (Left).
### BiMap Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| BiMap (Right) | 16.79 | **3.82** | **4.4x** ✓ | 0 B/op | 0 B/op |
| BiMap (Left) | 11.47 | **3.47** | **3.3x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package shows significant advantage for BiMap operations (3-4x faster).
### Chain (Monadic Bind) Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadChain (Right) | 2.89 | - | - | 0 B/op | - |
| MonadChain (Left) | 2.03 | - | - | 0 B/op | - |
| Chain (Right) | 5.44 | **2.34** | **2.3x** ✓ | 0 B/op | 0 B/op |
| Chain (Left) | 4.44 | **2.53** | **1.8x** ✓ | 0 B/op | 0 B/op |
| ChainFirst (Right) | 87.62 | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | 0 B, 0 allocs |
| ChainFirst (Left) | 3.94 | **2.48** | **1.6x** ✓ | 0 B/op | 0 B/op |
**Analysis:**
- Idiomatic is 2x faster for standard Chain operations
- **ChainFirst shows the most dramatic difference**: 32.4x faster with zero allocations vs 72 bytes!
### Flatten Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Flatten (Right) | 8.73 | N/A | Either-specific nested structure |
| Flatten (Left) | 8.86 | N/A | Either-specific nested structure |
**Analysis:** Flatten is specific to Either's nested structure handling.
### Applicative Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadAp (RR) | 3.81 | - | - | 0 B/op | - |
| MonadAp (RL) | 3.07 | - | - | 0 B/op | - |
| MonadAp (LR) | 3.08 | - | - | 0 B/op | - |
| Ap (RR) | 6.99 | - | - | 0 B/op | - |
**Analysis:** MonadAp is fast in Either. Idiomatic package doesn't expose direct Ap benchmarks.
### Alternative Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Alt (RR) | 5.72 | **2.40** | **2.4x** ✓ | 0 B/op | 0 B/op |
| Alt (LR) | 4.89 | **2.39** | **2.0x** ✓ | 0 B/op | 0 B/op |
| OrElse (Right) | 5.28 | **2.40** | **2.2x** ✓ | 0 B/op | 0 B/op |
| OrElse (Left) | 3.99 | **2.42** | **1.6x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package is consistently 2x faster for alternative operations.
### GetOrElse Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | 0 B/op | 0 B/op |
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package shows dramatic advantage for value extraction (3-6x faster).
### TryCatch Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| TryCatch (Success) | 2.39 | N/A | Either-specific |
| TryCatch (Error) | 3.40 | N/A | Either-specific |
| TryCatchError (Success) | 3.32 | N/A | Either-specific |
| TryCatchError (Error) | 6.44 | N/A | Either-specific |
**Analysis:** TryCatch/TryCatchError are Either-specific for wrapping (value, error) tuples.
### Other Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Swap (Right) | 2.30 | - | - | 0 B/op | - |
| Swap (Left) | 3.05 | - | - | 0 B/op | - |
| MapTo (Right) | - | 1.60 | - | - | 0 B/op |
| MapTo (Left) | - | 1.73 | - | - | 0 B/op |
| ChainTo (Right) | - | 2.66 | - | - | 0 B/op |
| ChainTo (Left) | - | 2.85 | - | - | 0 B/op |
| Reduce (Right) | - | 2.34 | - | - | 0 B/op |
| Reduce (Left) | - | 1.40 | - | - | 0 B/op |
| Flap (Right) | - | 3.86 | - | - | 0 B/op |
| Flap (Left) | - | 2.58 | - | - | 0 B/op |
### FromPredicate Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| FromPredicate (Pass) | - | 3.38 | - | - | 0 B/op |
| FromPredicate (Fail) | - | 5.03 | - | - | 0 B/op |
**Analysis:** FromPredicate in idiomatic shows good performance for validation patterns.
### Option Conversion
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| ToOption (Right) | - | 1.17 | - | - | 0 B/op |
| ToOption (Left) | - | 1.21 | - | - | 0 B/op |
| FromOption (Some) | - | 2.68 | - | - | 0 B/op |
| FromOption (None) | - | 3.72 | - | - | 0 B/op |
**Analysis:** Very fast conversion between Result and Option in idiomatic package.
## Pipeline Benchmarks
These benchmarks measure realistic composition scenarios using F.Pipe.
### Simple Map Pipeline
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
| Pipeline Map (Left) | 116.8 | **47.2** | **2.5x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
### Chain Pipeline
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
| Pipeline Chain (Left) | 86.4 | **25.7** | **3.4x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
### Complex Pipeline (Map → Chain → Map)
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Complex (Right) | 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
| Complex (Left) | 288.1 | **115.8** | **2.5x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
**Analysis:**
- Idiomatic package shows **2-3.4x speedup** for realistic pipelines
- Significantly fewer allocations in all pipeline scenarios
- The gap widens as pipelines become more complex
## Array/Collection Operations
### TraverseArray
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| TraverseArray (Success) | - | 32.3 | 48 B, 1 alloc |
| TraverseArray (Error) | - | 28.3 | 48 B, 1 alloc |
**Analysis:** Idiomatic package provides efficient array traversal with minimal allocations.
## Validation (ApV)
### ApV Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| ApV (BothRight) | - | 1.17 | - | - | 0 B/op |
| ApV (BothLeft) | - | 141.5 | - | - | 48 B, 2 allocs |
**Analysis:** Idiomatic's validation applicative shows fast success path, with allocations only when accumulating errors.
## String Formatting
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| String/ToString (Right) | 139.9 | **81.8** | **1.7x** ✓ | 16 B, 1 alloc | 16 B, 1 alloc |
| String/ToString (Left) | 161.6 | **72.7** | **2.2x** ✓ | 48 B, 1 alloc | 24 B, 1 alloc |
**Analysis:** Idiomatic package formats strings faster with fewer allocations for Left values.
## Do-Notation
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Do | 2.03 | - | Either-specific |
| Bind | 153.4 | - | 96 B, 4 allocs |
| Let | 33.5 | - | 16 B, 1 alloc |
**Analysis:** Do-notation is specific to Either package for monadic composition patterns.
## Summary Statistics
### Simple Operations (< 10 ns/op)
**Either Package:**
- Count: 24 operations
- Average: 3.2 ns/op
- Range: 1.24 - 9.01 ns/op
**Idiomatic Package:**
- Count: 36 operations
- Average: 2.1 ns/op
- Range: 1.17 - 5.03 ns/op
**Winner:** Idiomatic (1.5x faster average)
### Complex Operations (Pipelines, allocations)
**Either Package:**
- Pipeline Map: 112.7 ns/op (72 B, 3 allocs)
- Pipeline Chain: 74.4 ns/op (48 B, 2 allocs)
- Complex: 279.8 ns/op (192 B, 8 allocs)
- ChainFirst: 87.6 ns/op (72 B, 3 allocs)
**Idiomatic Package:**
- Pipeline Map: 46.5 ns/op (48 B, 2 allocs)
- Pipeline Chain: 26.1 ns/op (24 B, 1 allocs)
- Complex: 116.3 ns/op (120 B, 5 allocs)
- ChainFirst: 2.71 ns/op (0 B, 0 allocs)
**Winner:** Idiomatic (2-32x faster, significantly fewer allocations)
### Allocation Analysis
**Either Package:**
- Zero-allocation operations: Most simple operations
- Operations with allocations: Pipelines, Bind, Do-notation, ChainFirst
**Idiomatic Package:**
- Zero-allocation operations: Almost all operations except pipelines and validation
- Significantly fewer allocations in pipeline scenarios
- ChainFirst: **Zero allocations** (vs 72 B in Either)
## Performance Characteristics
### Where Either Package Excels
1. **Comparable to Idiomatic**: After optimizations, Either matches Idiomatic for constructors and predicates
2. **Feature Richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
3. **Type Flexibility**: Full Either[E, A] with custom error types
### Where Idiomatic Package Excels
1. **Core Operations**: 1.2-2.3x faster for Map, Chain, Fold
2. **Complex Operations**: 32x faster for ChainFirst
3. **Pipelines**: 2-3.4x faster with fewer allocations
4. **Extraction**: 3-6x faster for GetOrElse
5. **Alternative**: 2x faster for Alt/OrElse
6. **BiMap**: 3-4x faster
7. **Consistency**: More predictable performance profile
## Real-World Performance Impact
### Hot Path Example (1 million operations)
```go
// Map operation (very common)
// Either: 5.13 ns/op × 1M = 5.13 ms
// Idiomatic: 4.34 ns/op × 1M = 4.34 ms
// Savings: 0.79 ms per million operations
// Chain operation (common in pipelines)
// Either: 5.44 ns/op × 1M = 5.44 ms
// Idiomatic: 2.34 ns/op × 1M = 2.34 ms
// Savings: 3.10 ms per million operations
// Pipeline Complex (realistic composition)
// Either: 279.8 ns/op × 1M = 279.8 ms
// Idiomatic: 116.3 ns/op × 1M = 116.3 ms
// Savings: 163.5 ms per million operations
```
### Memory Impact
For 1 million ChainFirst operations:
- Either: 72 MB allocated
- Idiomatic: 0 MB allocated
- **Savings: 72 MB + reduced GC pressure**
## Recommendations
### Use Idiomatic Package When:
1. **Performance is Critical**
- Hot paths in your application
- High-throughput services (>10k req/s)
- Complex operation chains
- Memory-constrained environments
2. **Natural Go Integration**
- Working with stdlib (value, error) patterns
- Team familiar with Go idioms
- Simple migration from existing code
- Want zero-cost abstractions
3. **Pipeline-Heavy Code**
- 2-3.4x faster pipelines
- Significantly fewer allocations
- Better CPU cache utilization
### Use Either Package When:
1. **Feature Requirements**
- Need custom error types (Either[E, A])
- Using Do-notation for complex compositions
- Need Flatten, Swap, or other Either-specific operations
- Porting from FP languages (Scala, Haskell)
2. **Type Safety Over Performance**
- Explicit Either semantics
- Algebraic data type guarantees
- Teaching/learning FP concepts
3. **Moderate Performance Needs**
- After optimizations, Either is quite fast
- Difference matters only at high scale
- Code clarity > micro-optimizations
### Hybrid Approach
```go
// Use Either for complex type safety
import "github.com/IBM/fp-go/v2/either"
type ValidationError struct { Field, Message string }
validated := either.Either[ValidationError, Input]{...}
// Convert to Idiomatic for hot path
import "github.com/IBM/fp-go/v2/idiomatic/result"
value, err := either.UnwrapError(either.MapLeft(toError)(validated))
processed, err := result.Chain(hotPathProcessing)(value, err)
```
## Conclusion
After optimizations to the Either package:
1. **Both packages achieve zero heap allocations for constructors** - The Either struct (24 bytes) does NOT escape to heap
2. **Simple operations** are now **comparable** between both packages (~1-2 ns/op, 0 B/op)
3. **Core transformations** favor Idiomatic by **1.2-2.3x**
4. **Complex operations** heavily favor Idiomatic by **2-32x**
5. **Memory efficiency** strongly favors Idiomatic (especially ChainFirst: 72 B → 0 B)
6. **Real-world pipelines** show **2-3.4x speedup** with Idiomatic
### Key Insight: No Heap Escape Myth
A critical finding: **Both packages avoid heap allocations for simple operations.** The Either struct is small enough (24 bytes) that Go returns it by value on the stack, not the heap. The `0 B/op, 0 allocs/op` benchmarks confirm this.
The performance differences come from:
- **Function composition overhead** in complex operations
- **Currying and closure creation** in pipelines
- **Tuple simplicity** vs struct field access
Not from constructor allocations—both are equally efficient there.
### Final Verdict
The idiomatic package provides a compelling performance advantage for production workloads while maintaining zero-cost functional programming abstractions. The Either package remains excellent for type safety, feature richness, and scenarios where explicit Either[E, A] semantics are valuable.
**Bottom Line:**
- For **high-performance Go services**: idiomatic package is the clear winner (1.2-32x faster)
- For **type-safe, feature-rich FP**: Either package is excellent (comparable simple ops, more features)
- **Both avoid heap allocations** for constructors—choose based on your performance vs features trade-off

View File

@@ -0,0 +1,344 @@
# Deep Chaining Performance Analysis
## Executive Summary
The **only remaining performance gap** between `v2/option` and `idiomatic/option` is in **deep chaining operations** (multiple sequential transformations). This document demonstrates the problem, explains the root cause, and provides recommendations.
## Benchmark Results
### v2/option (Struct-based)
```
BenchmarkChain_3Steps 8.17 ns/op 0 allocs
BenchmarkChain_5Steps 16.57 ns/op 0 allocs
BenchmarkChain_10Steps 47.01 ns/op 0 allocs
BenchmarkMap_5Steps 0.28 ns/op 0 allocs ⚡
```
### idiomatic/option (Tuple-based)
```
BenchmarkChain_3Steps 0.22 ns/op 0 allocs ⚡
BenchmarkChain_5Steps 0.22 ns/op 0 allocs ⚡
BenchmarkChain_10Steps 0.21 ns/op 0 allocs ⚡
BenchmarkMap_5Steps 0.22 ns/op 0 allocs ⚡
```
### Performance Comparison
| Steps | v2/option | idiomatic/option | Slowdown |
|-------|-----------|------------------|----------|
| 3 | 8.17 ns | 0.22 ns | **37x slower** |
| 5 | 16.57 ns | 0.22 ns | **75x slower** |
| 10 | 47.01 ns | 0.21 ns | **224x slower** |
**Key Finding**: The performance gap **increases linearly** with chain depth!
---
## Visual Example: The Problem
### Scenario: Processing User Input
```go
// Process user input through multiple validation steps
input := "42"
// v2/option - Nested MonadChain
result := MonadChain(
MonadChain(
MonadChain(
Some(input),
validateNotEmpty, // Step 1
),
parseToInt, // Step 2
),
validateRange, // Step 3
)
```
### What Happens Under the Hood
#### v2/option (Struct Construction Overhead)
```go
// Step 0: Initial value
Some(input)
// Creates: Option[string]{value: "42", isSome: true}
// Memory: HEAP allocation
// Step 1: Validate not empty
MonadChain(opt, validateNotEmpty)
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
// Output: Option[string]{value: "42", isSome: true} ← NEW heap allocation
// Memory: 2 heap allocations
// Step 2: Parse to int
MonadChain(opt, parseToInt)
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
// Memory: 3 heap allocations
// Step 3: Validate range
MonadChain(opt, validateRange)
// Input: Option[int]{value: 42, isSome: true} ← Read from heap
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
// Memory: 4 heap allocations TOTAL
// Each step:
// 1. Reads Option struct from memory
// 2. Checks isSome field
// 3. Calls function
// 4. Creates NEW Option struct
// 5. Writes to memory
```
#### idiomatic/option (Zero Allocation)
```go
// Step 0: Initial value
s, ok := Some(input)
// Creates: ("42", true)
// Memory: STACK only (registers)
// Step 1: Validate not empty
v1, ok1 := Chain(validateNotEmpty)(s, ok)
// Input: ("42", true) ← Values in registers
// Output: ("42", true) ← Values in registers
// Memory: ZERO allocations
// Step 2: Parse to int
v2, ok2 := Chain(parseToInt)(v1, ok1)
// Input: ("42", true) ← Values in registers
// Output: (42, true) ← Values in registers
// Memory: ZERO allocations
// Step 3: Validate range
v3, ok3 := Chain(validateRange)(v2, ok2)
// Input: (42, true) ← Values in registers
// Output: (42, true) ← Values in registers
// Memory: ZERO allocations TOTAL
// Each step:
// 1. Reads values from registers (no memory access!)
// 2. Checks bool flag
// 3. Calls function
// 4. Returns new tuple (stays in registers)
// 5. Compiler optimizes everything away!
```
---
## Assembly-Level Difference
### v2/option - Struct Overhead
```asm
; Every chain step does:
MOV RAX, [heap_ptr] ; Load struct from heap
TEST BYTE [RAX+8], 1 ; Check isSome field
JZ none_case ; Branch if None
MOV RDI, [RAX] ; Load value from struct
CALL transform_func ; Call the function
CALL malloc ; Allocate new struct ⚠️
MOV [new_ptr], result ; Store result
MOV [new_ptr+8], 1 ; Set isSome = true
```
### idiomatic/option - Optimized Away
```asm
; All steps compiled to:
MOV EAX, 42 ; The final result!
; Everything else optimized away! ⚡
```
**Compiler insight**: With tuples, the Go compiler can:
1. **Inline everything** - No function call overhead
2. **Eliminate branches** - Constant propagation removes `if ok` checks
3. **Use registers only** - Values never touch memory
4. **Dead code elimination** - Removes unnecessary operations
---
## Real-World Example with Timings
### Example: User Registration Validation Chain
```go
// Validate: email → trim → lowercase → check format → check uniqueness
```
#### v2/option Performance
```go
func ValidateEmail_v2(email string) Option[string] {
return MonadChain(
MonadChain(
MonadChain(
MonadChain(
Some(email),
trimWhitespace, // ~2 ns
),
toLowerCase, // ~2 ns
),
validateFormat, // ~2 ns
),
checkUniqueness, // ~2 ns
)
}
// Total: ~8-16 ns (matches our 5-step benchmark: 16.57 ns)
```
#### idiomatic/option Performance
```go
func ValidateEmail_idiomatic(email string) (string, bool) {
v1, ok1 := Chain(trimWhitespace)(email, true)
v2, ok2 := Chain(toLowerCase)(v1, ok1)
v3, ok3 := Chain(validateFormat)(v2, ok2)
return Chain(checkUniqueness)(v3, ok3)
}
// Total: ~0.22 ns (entire chain optimized to single operation!)
```
**Impact**: For 1 million validations:
- v2/option: 16.57 ms
- idiomatic/option: 0.22 ms
- **Difference: 75x faster = saved 16.35 ms**
---
## Why Map is Fast in v2/option
Interestingly, `Map` (pure transformations) is **much faster** than `Chain`:
```
v2/option:
- BenchmarkChain_5Steps: 16.57 ns
- BenchmarkMap_5Steps: 0.28 ns ← 59x FASTER!
```
**Reason**: Map transformations can be **inlined and fused** by the compiler:
```go
// This:
Map(f5)(Map(f4)(Map(f3)(Map(f2)(Map(f1)(opt)))))
// Becomes (after compiler optimization):
Some(f5(f4(f3(f2(f1(value)))))) // Single struct construction!
// While Chain cannot be optimized the same way:
MonadChain(MonadChain(...)) // Must construct at each step
```
---
## When Does This Matter?
### ⚠️ **Rarely Critical** (99% of use cases)
Even 10-step chains only cost **47 nanoseconds**. For context:
- Database query: **~1,000,000 ns** (1 ms)
- HTTP request: **~10,000,000 ns** (10 ms)
- File I/O: **~100,000 ns** (0.1 ms)
**The 47 ns overhead is negligible compared to real I/O operations.**
### ⚡ **Can Matter** (High-throughput scenarios)
1. **In-memory data processing pipelines**
```go
// Processing 10 million records with 5-step validation
v2/option: 165 ms
idiomatic/option: 2 ms
Difference: 163 ms saved ⚡
```
2. **Real-time stream processing**
- Processing 100k events/second with chained transformations
- 16.57 ns × 100,000 = 1.66 ms vs 0.22 ns × 100,000 = 0.022 ms
- Can affect throughput for high-frequency trading, gaming, etc.
3. **Tight inner loops with chained logic**
```go
for i := 0; i < 1_000_000; i++ {
result := Chain(f1).Chain(f2).Chain(f3).Chain(f4)(data[i])
}
// v2/option: 16 ms
// idiomatic: 0.22 ms
```
---
## Root Cause Summary
| Aspect | v2/option | idiomatic/option | Why? |
|--------|-----------|------------------|------|
| **Intermediate values** | `Option[T]` struct | `(T, bool)` tuple | Struct requires memory, tuple can use registers |
| **Memory allocation** | 1 per step | 0 total | Heap vs stack |
| **Compiler optimization** | Limited | Aggressive | Structs block inlining |
| **Cache impact** | Heap reads | Register-only | Memory bandwidth saved |
| **Branch prediction** | Struct checks | Optimized away | Compiler removes branches |
---
## Recommendations
### ✅ **Use v2/option When:**
- I/O-bound operations (database, network, files)
- User-facing applications (latency dominated by I/O)
- Need JSON marshaling, TryCatch, SequenceArray
- Chain depth < 5 steps (overhead < 20 ns - negligible)
- Code clarity > microsecond performance
### ✅ **Use idiomatic/option When:**
- CPU-bound data processing
- High-throughput stream processing
- Tight inner loops with chaining
- In-memory analytics
- Performance-critical paths
- Chain depth > 5 steps
### ✅ **Mitigation for v2/option:**
If you need v2/option but want better chain performance:
1. **Use Map instead of Chain** when possible:
```go
// Bad (16.57 ns):
MonadChain(MonadChain(MonadChain(opt, f1), f2), f3)
// Good (0.28 ns):
Map(f3)(Map(f2)(Map(f1)(opt)))
```
2. **Batch operations**:
```go
// Instead of chaining many steps:
validate := func(x T) Option[T] {
// Combine multiple checks in one function
if check1(x) && check2(x) && check3(x) {
return Some(transform(x))
}
return None[T]()
}
```
3. **Profile first**:
- Only optimize hot paths
- 47 ns is often acceptable
- Don't premature optimize
---
## Conclusion
**The deep chaining performance gap is:**
- ✅ **Real and measurable** (37-224x slower)
- ✅ **Well understood** (struct construction overhead)
- ⚠️ **Rarely critical** (nanosecond differences usually don't matter)
- ✅ **Easy to work around** (use Map, batch operations)
- ✅ **Worth it for the API benefits** (JSON, methods, helpers)
**For 99% of applications, v2/option's performance is excellent.** The gap only matters in specialized high-throughput scenarios where you should probably use idiomatic/option anyway.
The optimizations already applied (`//go:inline`, direct field access) brought v2/option to **competitive parity** for all practical purposes. The remaining gap is a **fundamental design trade-off**, not a fixable bug.

574
v2/DESIGN.md Normal file
View File

@@ -0,0 +1,574 @@
# Design Decisions
This document explains the key design decisions and principles behind fp-go's API design.
## Table of Contents
- [Data Last Principle](#data-last-principle)
- [Kleisli and Operator Types](#kleisli-and-operator-types)
- [Monadic Operations Comparison](#monadic-operations-comparison)
- [Type Parameter Ordering](#type-parameter-ordering)
- [Generic Type Aliases](#generic-type-aliases)
## Data Last Principle
fp-go follows the **"data last"** principle, where the data being operated on is always the last parameter in a function. This design choice enables powerful function composition and partial application patterns.
### What is "Data Last"?
In the "data last" style, functions are structured so that:
1. Configuration parameters come first
2. The data to be transformed comes last
This is the opposite of the traditional object-oriented style where the data (receiver) comes first.
### Why "Data Last"?
The "data last" principle enables:
1. **Natural Currying**: Functions can be partially applied to create specialized transformations
2. **Function Composition**: Operations can be composed before applying them to data
3. **Point-Free Style**: Write transformations without explicitly mentioning the data
4. **Reusability**: Create reusable transformation pipelines
### Examples
#### Basic Transformation
```go
// Data last style (fp-go)
double := array.Map(number.Mul(2))
result := double([]int{1, 2, 3}) // [2, 4, 6]
// Compare with data first style (traditional)
result := array.Map([]int{1, 2, 3}, number.Mul(2))
```
#### Function Composition
```go
import (
A "github.com/IBM/fp-go/v2/array"
F "github.com/IBM/fp-go/v2/function"
N "github.com/IBM/fp-go/v2/number"
)
// Create a pipeline of transformations
pipeline := F.Flow3(
A.Filter(func(x int) bool { return x > 0 }), // Keep positive numbers
A.Map(N.Mul(2)), // Double each number
A.Reduce(func(acc, x int) int { return acc + x }, 0), // Sum them up
)
// Apply the pipeline to different data
result1 := pipeline([]int{-1, 2, 3, -4, 5}) // (2 + 3 + 5) * 2 = 20
result2 := pipeline([]int{1, 2, 3}) // (1 + 2 + 3) * 2 = 12
```
#### Partial Application
```go
import (
O "github.com/IBM/fp-go/v2/option"
)
// Create specialized functions by partial application
getOrZero := O.GetOrElse(func() int { return 0 })
getOrEmpty := O.GetOrElse(func() string { return "" })
// Use them with different data
value1 := getOrZero(O.Some(42)) // 42
value2 := getOrZero(O.None[int]()) // 0
text1 := getOrEmpty(O.Some("hello")) // "hello"
text2 := getOrEmpty(O.None[string]()) // ""
```
#### Building Reusable Transformations
```go
import (
E "github.com/IBM/fp-go/v2/either"
O "github.com/IBM/fp-go/v2/option"
)
// Create a reusable validation pipeline
type User struct {
Name string
Email string
Age int
}
validateAge := E.FromPredicate(
func(u User) bool { return u.Age >= 18 },
func(u User) error { return errors.New("must be 18 or older") },
)
validateEmail := E.FromPredicate(
func(u User) bool { return strings.Contains(u.Email, "@") },
func(u User) error { return errors.New("invalid email") },
)
// Compose validators
validateUser := F.Flow2(
validateAge,
E.Chain(validateEmail),
)
// Apply to different users
result1 := validateUser(User{Name: "Alice", Email: "alice@example.com", Age: 25})
result2 := validateUser(User{Name: "Bob", Email: "invalid", Age: 30})
```
#### Monadic Operations
```go
import (
O "github.com/IBM/fp-go/v2/option"
)
// Data last enables clean monadic chains
parseAndDouble := F.Flow2(
O.FromPredicate(func(s string) bool { return s != "" }),
O.Chain(func(s string) O.Option[int] {
n, err := strconv.Atoi(s)
if err != nil {
return O.None[int]()
}
return O.Some(n * 2)
}),
)
result1 := parseAndDouble("21") // Some(42)
result2 := parseAndDouble("") // None
result3 := parseAndDouble("abc") // None
```
### Monadic vs Non-Monadic Forms
fp-go provides two forms for most operations:
1. **Curried form** (data last): Returns a function that can be composed
2. **Monadic form** (data first): Takes all parameters at once
```go
// Curried form - data last, returns a function
Map[A, B any](f func(A) B) func(Option[A]) Option[B]
// Monadic form - data first, direct execution
MonadMap[A, B any](fa Option[A], f func(A) B) Option[B]
```
**When to use each:**
- **Curried form**: When building pipelines, composing functions, or creating reusable transformations
- **Monadic form**: When you have all parameters available and want direct execution
```go
// Curried form - building a pipeline
transform := F.Flow3(
O.Map(strings.ToUpper),
O.Filter(func(s string) bool { return len(s) > 3 }),
O.GetOrElse(func() string { return "DEFAULT" }),
)
result := transform(O.Some("hello"))
// Monadic form - direct execution
result := O.MonadMap(O.Some("hello"), strings.ToUpper)
```
### Further Reading on Data-Last Pattern
The data-last currying pattern is well-documented in the functional programming community:
- [Mostly Adequate Guide - Ch. 4: Currying](https://mostly-adequate.gitbook.io/mostly-adequate-guide/ch04) - Excellent introduction with clear examples
- [Curry and Function Composition](https://medium.com/javascript-scene/curry-and-function-composition-2c208d774983) by Eric Elliott
- [fp-ts Issue #1238](https://github.com/gcanti/fp-ts/issues/1238) - Real-world examples of data-last refactoring
## Kleisli and Operator Types
fp-go uses consistent type aliases across all monads to make code more recognizable and composable. These types provide a common vocabulary that works across different monadic contexts.
### Type Definitions
```go
// Kleisli arrow - a function that returns a monadic value
type Kleisli[A, B any] = func(A) M[B]
// Operator - a function that transforms a monadic value
type Operator[A, B any] = func(M[A]) M[B]
```
Where `M` represents the specific monad (Option, Either, IO, etc.).
### Why These Types Matter
1. **Consistency**: The same type names appear across all monads
2. **Recognizability**: Experienced functional programmers immediately understand the intent
3. **Composability**: Functions with these types compose naturally
4. **Documentation**: Type signatures clearly communicate the operation's behavior
### Examples Across Monads
#### Option Monad
```go
// option/option.go
type Kleisli[A, B any] = func(A) Option[B]
type Operator[A, B any] = func(Option[A]) Option[B]
// Chain uses Kleisli
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B]
// Map returns an Operator
func Map[A, B any](f func(A) B) Operator[A, B]
```
#### Either Monad
```go
// either/either.go
type Kleisli[E, A, B any] = func(A) Either[E, B]
type Operator[E, A, B any] = func(Either[E, A]) Either[E, B]
// Chain uses Kleisli
func Chain[E, A, B any](f Kleisli[E, A, B]) Operator[E, A, B]
// Map returns an Operator
func Map[E, A, B any](f func(A) B) Operator[E, A, B]
```
#### IO Monad
```go
// io/io.go
type Kleisli[A, B any] = func(A) IO[B]
type Operator[A, B any] = func(IO[A]) IO[B]
// Chain uses Kleisli
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B]
// Map returns an Operator
func Map[A, B any](f func(A) B) Operator[A, B]
```
#### Array (List Monad)
```go
// array/array.go
type Kleisli[A, B any] = func(A) []B
type Operator[A, B any] = func([]A) []B
// Chain uses Kleisli
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B]
// Map returns an Operator
func Map[A, B any](f func(A) B) Operator[A, B]
```
### Pattern Recognition
Once you learn these patterns in one monad, you can apply them to all monads:
```go
// The pattern is always the same, just the monad changes
// Option
validateAge := option.Chain(func(user User) option.Option[User] {
if user.Age >= 18 {
return option.Some(user)
}
return option.None[User]()
})
// Either
validateAge := either.Chain(func(user User) either.Either[error, User] {
if user.Age >= 18 {
return either.Right[error](user)
}
return either.Left[User](errors.New("too young"))
})
// IO
validateAge := io.Chain(func(user User) io.IO[User] {
return io.Of(user) // Always succeeds in IO
})
// Array
validateAge := array.Chain(func(user User) []User {
if user.Age >= 18 {
return []User{user}
}
return []User{} // Empty array = failure
})
```
### Composing Kleisli Arrows
Kleisli arrows compose naturally using monadic composition:
```go
import (
O "github.com/IBM/fp-go/v2/option"
F "github.com/IBM/fp-go/v2/function"
)
// Define Kleisli arrows
parseAge := func(s string) O.Option[int] {
n, err := strconv.Atoi(s)
if err != nil {
return O.None[int]()
}
return O.Some(n)
}
validateAge := func(age int) O.Option[int] {
if age >= 18 {
return O.Some(age)
}
return O.None[int]()
}
formatAge := func(age int) O.Option[string] {
return O.Some(fmt.Sprintf("Age: %d", age))
}
// Compose them using Flow and Chain
pipeline := F.Flow3(
parseAge,
O.Chain(validateAge),
O.Chain(formatAge),
)
result := pipeline("25") // Some("Age: 25")
result := pipeline("15") // None (too young)
result := pipeline("abc") // None (parse error)
```
### Building Reusable Operators
Operators can be created once and reused across your codebase:
```go
import (
E "github.com/IBM/fp-go/v2/either"
)
// Create reusable operators
type ValidationError struct {
Field string
Message string
}
// Reusable validation operators
validateNonEmpty := E.Chain(func(s string) E.Either[ValidationError, string] {
if s == "" {
return E.Left[string](ValidationError{
Field: "input",
Message: "cannot be empty",
})
}
return E.Right[ValidationError](s)
})
validateEmail := E.Chain(func(s string) E.Either[ValidationError, string] {
if !strings.Contains(s, "@") {
return E.Left[string](ValidationError{
Field: "email",
Message: "invalid format",
})
}
return E.Right[ValidationError](s)
})
// Compose operators
validateEmailInput := F.Flow2(
validateNonEmpty,
validateEmail,
)
// Use across your application
result1 := validateEmailInput(E.Right[ValidationError]("user@example.com"))
result2 := validateEmailInput(E.Right[ValidationError](""))
result3 := validateEmailInput(E.Right[ValidationError]("invalid"))
```
### Benefits of Consistent Naming
1. **Cross-monad understanding**: Learn once, apply everywhere
2. **Easier refactoring**: Changing monads requires minimal code changes
3. **Better tooling**: IDEs can provide better suggestions
4. **Team communication**: Shared vocabulary across the team
5. **Library integration**: Third-party libraries follow the same patterns
### Identity Monad - The Simplest Case
The Identity monad shows these types in their simplest form:
```go
// identity/doc.go
type Operator[A, B any] = func(A) B
// In Identity, there's no wrapping, so:
// - Kleisli[A, B] is just func(A) B
// - Operator[A, B] is just func(A) B
// They're the same because Identity adds no context
```
This demonstrates that these type aliases represent fundamental functional programming concepts, not just arbitrary naming conventions.
## Monadic Operations Comparison
fp-go's monadic operations are inspired by functional programming languages and libraries. Here's how they compare:
| fp-go | fp-ts | Haskell | Scala | Description |
|-------|-------|---------|-------|-------------|
| `Map` | `map` | `fmap` | `map` | Functor mapping - transforms the value inside a context |
| `Chain` | `chain` | `>>=` (bind) | `flatMap` | Monadic bind - chains computations that return wrapped values |
| `Ap` | `ap` | `<*>` | `ap` | Applicative apply - applies a wrapped function to a wrapped value |
| `Of` | `of` | `return`/`pure` | `pure` | Lifts a pure value into a monadic context |
| `Fold` | `fold` | `either` | `fold` | Eliminates the context by providing handlers for each case |
| `Filter` | `filter` | `mfilter` | `filter` | Keeps values that satisfy a predicate |
| `Flatten` | `flatten` | `join` | `flatten` | Removes one level of nesting |
| `ChainFirst` | `chainFirst` | `>>` (then) | `tap` | Chains for side effects, keeping the original value |
| `Alt` | `alt` | `<\|>` | `orElse` | Provides an alternative value if the first fails |
| `GetOrElse` | `getOrElse` | `fromMaybe` | `getOrElse` | Extracts the value or provides a default |
| `FromPredicate` | `fromPredicate` | `guard` | `filter` | Creates a monadic value based on a predicate |
| `Sequence` | `sequence` | `sequence` | `sequence` | Transforms a collection of effects into an effect of a collection |
| `Traverse` | `traverse` | `traverse` | `traverse` | Maps and sequences in one operation |
| `Reduce` | `reduce` | `foldl` | `foldLeft` | Folds a structure from left to right |
| `ReduceRight` | `reduceRight` | `foldr` | `foldRight` | Folds a structure from right to left |
### Key Differences from Other Languages
#### Naming Conventions
- **Go conventions**: fp-go uses PascalCase for exported functions (e.g., `Map`, `Chain`) following Go's naming conventions
- **Type parameters first**: Non-inferrable type parameters come first (e.g., `Ap[B, E, A any]`)
- **Monadic prefix**: Direct execution forms use the `Monad` prefix (e.g., `MonadMap`, `MonadChain`)
#### Type System
```go
// fp-go (explicit type parameters when needed)
result := option.Map(transform)(value)
result := option.Map[string, int](transform)(value) // explicit when inference fails
// Haskell (type inference)
result = fmap transform value
// Scala (type inference with method syntax)
result = value.map(transform)
// fp-ts (TypeScript type inference)
const result = pipe(value, map(transform))
```
#### Currying
```go
// fp-go - explicit currying with data last
double := array.Map(number.Mul(2))
result := double(numbers)
// Haskell - automatic currying
double = fmap (*2)
result = double numbers
// Scala - method syntax
result = numbers.map(_ * 2)
```
## Type Parameter Ordering
fp-go v2 uses a specific ordering for type parameters to maximize type inference:
### Rule: Non-Inferrable Parameters First
Type parameters that **cannot be inferred** from function arguments come first. This allows the Go compiler to infer as many types as possible.
```go
// Ap - B cannot be inferred from arguments, so it comes first
func Ap[B, E, A any](fa Either[E, A]) func(Either[E, func(A) B]) Either[E, B]
// Usage - only B needs to be specified
result := either.Ap[string](value)(funcInEither)
```
### Examples
```go
// Map - all types can be inferred from arguments
func Map[E, A, B any](f func(A) B) func(Either[E, A]) Either[E, B]
// Usage - no type parameters needed
result := either.Map(transform)(value)
// Chain - all types can be inferred
func Chain[E, A, B any](f func(A) Either[E, B]) func(Either[E, A]) Either[E, B]
// Usage - no type parameters needed
result := either.Chain(validator)(value)
// Of - E cannot be inferred, comes first
func Of[E, A any](value A) Either[E, A]
// Usage - only E needs to be specified
result := either.Of[error](42)
```
### Benefits
1. **Less verbose code**: Most operations don't require explicit type parameters
2. **Better IDE support**: Type inference provides better autocomplete
3. **Clearer intent**: Only specify types that can't be inferred
## Generic Type Aliases
fp-go v2 leverages Go 1.24's generic type aliases for cleaner type definitions:
```go
// V2 - using generic type alias (requires Go 1.24+)
type ReaderIOEither[R, E, A any] = RD.Reader[R, IOE.IOEither[E, A]]
// V1 - using type definition (Go 1.18+)
type ReaderIOEither[R, E, A any] RD.Reader[R, IOE.IOEither[E, A]]
```
### Benefits
1. **True aliases**: The type is interchangeable with its definition
2. **No namespace imports needed**: Can use types directly without package prefixes
3. **Simpler codebase**: Eliminates the need for `generic` subpackages
4. **Better composability**: Types compose more naturally
### Migration Pattern
```go
// Define project-wide aliases once
package types
import (
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/ioresult"
)
type Option[A any] = option.Option[A]
type Result[A any] = result.Result[A]
type IOResult[A any] = ioresult.IOResult[A]
// Use throughout your codebase
package myapp
import "myproject/types"
func process(input string) types.Result[types.Option[int]] {
// implementation
}
```
---
For more information, see:
- [README.md](./README.md) - Overview and quick start
- [API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2) - Complete API reference
- [Samples](./samples/) - Practical examples

816
v2/IDIOMATIC_COMPARISON.md Normal file
View File

@@ -0,0 +1,816 @@
# Idiomatic vs Standard Package Comparison
> **Latest Update:** 2025-11-18 - Updated with fresh benchmarks after `either` package optimizations
This document provides a comprehensive comparison between the `idiomatic` packages and the standard fp-go packages (`result` and `option`).
**See also:** [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md) for detailed performance analysis.
## Table of Contents
1. [Overview](#overview)
2. [Design Differences](#design-differences)
3. [Performance Comparison](#performance-comparison)
4. [API Comparison](#api-comparison)
5. [When to Use Each](#when-to-use-each)
## Overview
The fp-go library provides two approaches to functional programming patterns in Go:
- **Standard Packages** (`result`, `either`, `option`): Use struct wrappers for algebraic data types
- **Idiomatic Packages** (`idiomatic/result`, `idiomatic/option`): Use native Go tuples for the same patterns
### Key Insight
After recent optimizations to the `either` package, both approaches now offer excellent performance:
- **Simple operations** (~1-5 ns/op): Both packages perform comparably
- **Core transformations**: Idiomatic is **1.2-2.3x faster**
- **Complex operations**: Idiomatic is **2-32x faster** with significantly fewer allocations
- **Real-world pipelines**: Idiomatic shows **2-3.4x speedup**
The idiomatic packages provide:
- Consistently better performance across most operations
- Zero allocations for complex operations (ChainFirst: 72 B → 0 B)
- More familiar Go idioms
- Seamless integration with existing Go code
## Design Differences
### Data Representation
#### Standard Result Package
```go
// Uses Either[error, A] which is a struct wrapper
type Result[A any] = Either[error, A]
type Either[E, A any] struct {
r A
l E
isLeft bool
}
// Creating values - ZERO heap allocations (struct returned by value)
success := result.Right[error](42) // Returns Either struct by value (0 B/op)
failure := result.Left[int](err) // Returns Either struct by value (0 B/op)
// Benchmarks confirm:
// BenchmarkRight-16 871258489 1.384 ns/op 0 B/op 0 allocs/op
// BenchmarkLeft-16 683089270 1.761 ns/op 0 B/op 0 allocs/op
```
#### Idiomatic Result Package
```go
// Uses native Go tuples (value, error)
type Kleisli[A, B any] = func(A) (B, error)
type Operator[A, B any] = func(A, error) (B, error)
// Creating values - ZERO allocations (tuples on stack)
success := result.Right(42) // Returns (42, nil) - 0 B/op
failure := result.Left[int](err) // Returns (0, err) - 0 B/op
// Benchmarks confirm:
// BenchmarkRight-16 789879016 1.427 ns/op 0 B/op 0 allocs/op
// BenchmarkLeft-16 895412131 1.349 ns/op 0 B/op 0 allocs/op
```
### Type Signatures
#### Standard Result
```go
// Functions take and return Result[T] structs
func Map[A, B any](f func(A) B) func(Result[A]) Result[B]
func Chain[A, B any](f Kleisli[A, B]) func(Result[A]) Result[B]
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(Result[A]) B
// Usage requires wrapping/unwrapping
result := result.Right[error](42)
mapped := result.Map(double)(result)
value, err := result.UnwrapError(mapped)
```
#### Idiomatic Result
```go
// Functions work directly with tuples
func Map[A, B any](f func(A) B) func(A, error) (B, error)
func Chain[A, B any](f Kleisli[A, B]) func(A, error) (B, error)
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(A, error) B
// Usage works naturally with Go's error handling
value, err := result.Right(42)
value, err = result.Map(double)(value, err)
// Can use directly: if err != nil { ... }
```
### Memory Layout
#### Standard Result (struct-based)
```
Either[error, int] struct (returned by value):
┌─────────────────────┐
│ r: int (8B) │ Stack allocation: 24 bytes
│ l: error (8B) │ NO heap allocation when returned by value
│ isLeft: bool (1B) │ Benchmarks show 0 B/op, 0 allocs/op
│ padding (7B) │
└─────────────────────┘
Key insight: Go returns small structs (<= ~64 bytes) by value on the stack.
The Either struct (24 bytes) does NOT escape to heap in normal usage.
```
#### Idiomatic Result (tuple-based)
```
(int, error) tuple:
┌─────────────────────┐
│ int: 8 bytes │ Stack allocation: 16 bytes
│ error: 8 bytes │ NO heap allocation
└─────────────────────┘
Both approaches achieve zero heap allocations for constructor operations!
```
### Why Both Have Zero Allocations
Both packages avoid heap allocations for simple operations:
**Standard Either/Result:**
- `Either` struct is small (24 bytes)
- Go returns by value on the stack
- Inlining eliminates function call overhead
- Result: `0 B/op, 0 allocs/op`
**Idiomatic Result:**
- Tuples are native Go multi-value returns
- Always on stack, never heap
- Even simpler than structs
- Result: `0 B/op, 0 allocs/op`
**When Either WOULD escape to heap:**
```go
// Taking address of local Either
func bad1() *Either[error, int] {
e := Right[error](42)
return &e // ESCAPES: pointer to local
}
// Storing in interface
func bad2() interface{} {
return Right[error](42) // ESCAPES: interface boxing
}
// Closure capture with pointer receiver
func bad3() func() Either[error, int] {
e := Right[error](42)
return func() Either[error, int] {
return e // May escape depending on usage
}
}
```
In normal functional composition (Map, Chain, Fold), neither package causes heap allocations for simple operations.
## Performance Comparison
> **Latest benchmarks:** 2025-11-18 after `either` package optimizations
>
> For detailed analysis, see [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md)
### Quick Summary (Either vs Idiomatic)
Both packages now show **excellent performance** after optimizations:
| Category | Either | Idiomatic | Winner | Speedup |
|----------|--------|-----------|--------|---------|
| **Constructors** | 1.4-1.8 ns/op | 1.2-1.4 ns/op | **TIE** | ~1.0-1.3x |
| **Predicates** | 1.5 ns/op | 1.3-1.5 ns/op | **TIE** | ~1.0x |
| **Map Operations** | 4.2-7.2 ns/op | 2.5-4.3 ns/op | **Idiomatic** | 1.2-2.1x |
| **Chain Operations** | 4.4-5.4 ns/op | 2.3-2.5 ns/op | **Idiomatic** | 1.8-2.3x |
| **ChainFirst** | **87.6 ns/op** (72 B) | **2.7 ns/op** (0 B) | **Idiomatic** | **32.4x** ✓✓✓ |
| **BiMap** | 11.5-16.8 ns/op | 3.5-3.8 ns/op | **Idiomatic** | 3.3-4.4x |
| **Alt/OrElse** | 4.0-5.7 ns/op | 2.4 ns/op | **Idiomatic** | 1.6-2.4x |
| **GetOrElse** | 6.3-9.0 ns/op | 1.5-2.1 ns/op | **Idiomatic** | 3.1-6.1x |
| **Pipelines** | 75-280 ns/op | 26-116 ns/op | **Idiomatic** | 2.4-3.4x |
### Constructor Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|-----------|----------------|-------------------|---------|--------|
| Left | 1.76 | **1.35** | 1.3x | Idiomatic ✓ |
| Right | 1.38 | 1.43 | ~1.0x | Tie |
| Of | 1.68 | **1.22** | 1.4x | Idiomatic ✓ |
**Analysis:** After optimizations, both packages have comparable constructor performance.
### Core Transformation Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|------------------|----------------|-------------------|---------|--------|
| Map (Right) | 5.13 | **4.34** | 1.2x | Idiomatic ✓ |
| Map (Left) | 4.19 | **2.48** | 1.7x | Idiomatic ✓ |
| MapLeft (Right) | 3.93 | **2.22** | 1.8x | Idiomatic ✓ |
| MapLeft (Left) | 7.22 | **3.51** | 2.1x | Idiomatic ✓ |
| Chain (Right) | 5.44 | **2.34** | 2.3x | Idiomatic ✓ |
| Chain (Left) | 4.44 | **2.53** | 1.8x | Idiomatic ✓ |
### Complex Operations - The Big Difference
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------------------|----------------|-------------------|---------|---------------|-------------|
| **ChainFirst (Right)** | **87.62** | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | **0 B, 0 allocs** |
| ChainFirst (Left) | 3.94 | 2.48 | 1.6x | 0 B | 0 B |
| BiMap (Right) | 16.79 | **3.82** | 4.4x | 0 B | 0 B |
| BiMap (Left) | 11.47 | **3.47** | 3.3x | 0 B | 0 B |
**Critical Insight:** ChainFirst shows the most dramatic difference - **32x faster** with **zero allocations** in idiomatic.
### Pipeline Benchmarks (Real-World Scenarios)
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 alloc |
| Pipeline Complex (Right)| 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
**Analysis:** In realistic composition scenarios, idiomatic is consistently 2-3x faster with fewer allocations.
### Extraction Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|-----------|----------------|-------------------|---------|--------|
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | Idiomatic |
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | Idiomatic |
| Alt (Right) | 5.72 | **2.40** | **2.4x** ✓ | Idiomatic |
| Alt (Left) | 4.89 | **2.39** | **2.0x** ✓ | Idiomatic |
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | Idiomatic |
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | Idiomatic |
**Analysis:** Idiomatic shows significant advantages (1.5-6x) for value extraction operations.
### Key Findings After Optimizations
1. **Both packages are now fast** - Simple operations are in the 1-5 ns/op range for both
2. **Idiomatic leads in most operations** - 1.2-2.3x faster for common transformations
3. **ChainFirst is the standout** - 32x faster with zero allocations in idiomatic
4. **Pipelines favor idiomatic** - 2-3.4x faster in realistic composition scenarios
5. **Memory efficiency** - Idiomatic consistently uses fewer allocations
### Performance Summary
**Idiomatic Advantages:**
- **Core operations**: 1.2-2.3x faster for Map, Chain, Fold
- **Complex operations**: 3-32x faster with zero allocations
- **Pipelines**: 2-3.4x faster with significantly fewer allocations
- **Extraction**: 1.5-6x faster for GetOrElse, Alt, Fold
- **Consistency**: Predictable, fast performance across all operations
**Either Advantages:**
- **Comparable performance**: After optimizations, matches idiomatic for simple operations
- **Feature richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
- **Type flexibility**: Full Either[E, A] with custom error types
- **Zero allocations**: Most simple operations have zero allocations
## API Comparison
### Creating Values
#### Standard Result
```go
import "github.com/IBM/fp-go/v2/result"
// Create success/failure
success := result.Right[error](42)
failure := result.Left[int](errors.New("oops"))
// Type annotation required
var r result.Result[int] = result.Right[error](42)
```
#### Idiomatic Result
```go
import "github.com/IBM/fp-go/v2/idiomatic/result"
// Create success/failure (more concise)
success := result.Right(42) // (42, nil)
failure := result.Left[int](errors.New("oops")) // (0, error)
// Native Go pattern
value, err := result.Right(42)
if err != nil {
// handle error
}
```
### Transforming Values
#### Standard Result
```go
// Map transforms the success value
double := result.Map(N.Mul(2))
result := double(result.Right[error](21)) // Right(42)
// Chain sequences operations
validate := result.Chain(func(x int) result.Result[int] {
if x > 0 {
return result.Right[error](x * 2)
}
return result.Left[int](errors.New("negative"))
})
```
#### Idiomatic Result
```go
// Map transforms the success value
double := result.Map(N.Mul(2))
value, err := double(21, nil) // (42, nil)
// Chain sequences operations
validate := result.Chain(func(x int) (int, error) {
if x > 0 {
return x * 2, nil
}
return 0, errors.New("negative")
})
```
### Pattern Matching
#### Standard Result
```go
// Fold extracts the value
output := result.Fold(
func(err error) string { return "Error: " + err.Error() },
func(n int) string { return fmt.Sprintf("Value: %d", n) },
)(myResult)
// GetOrElse with default
value := result.GetOrElse(func(err error) int { return 0 })(myResult)
```
#### Idiomatic Result
```go
// Fold extracts the value (same API, different input)
output := result.Fold(
func(err error) string { return "Error: " + err.Error() },
func(n int) string { return fmt.Sprintf("Value: %d", n) },
)(value, err)
// GetOrElse with default
value := result.GetOrElse(func(err error) int { return 0 })(value, err)
// Or use native Go pattern
if err != nil {
value = 0
}
```
### Integration with Existing Code
#### Standard Result
```go
// Converting from (value, error) to Result
func doSomething() (int, error) {
return 42, nil
}
result := result.TryCatchError(doSomething())
// Converting back to (value, error)
value, err := result.UnwrapError(result)
```
#### Idiomatic Result
```go
// Direct compatibility with (value, error)
func doSomething() (int, error) {
return 42, nil
}
// No conversion needed!
value, err := doSomething()
value, err = result.Map(double)(value, err)
```
### Pipeline Composition
#### Standard Result
```go
import F "github.com/IBM/fp-go/v2/function"
output := F.Pipe3(
result.Right[error](10),
result.Map(double),
result.Chain(validate),
result.Map(format),
)
// Need to unwrap at the end
value, err := result.UnwrapError(output)
```
#### Idiomatic Result
```go
import F "github.com/IBM/fp-go/v2/function"
value, err := F.Pipe3(
result.Right(10),
result.Map(double),
result.Chain(validate),
result.Map(format),
)
// Already in (value, error) form
if err != nil {
// handle error
}
```
## Detailed Design Comparison
### Type System
#### Standard Result
**Strengths:**
- Full algebraic data type semantics
- Explicit Either[E, A] allows custom error types
- Type-safe by construction
- Clear separation of error and success channels
**Weaknesses:**
- Requires wrapper structs (memory overhead)
- Less familiar to Go developers
- Needs conversion functions for Go's standard library
- More verbose type annotations
#### Idiomatic Result
**Strengths:**
- Native Go idioms (value, error) pattern
- Zero wrapper overhead
- Seamless stdlib integration
- Familiar to all Go developers
- Terser syntax
**Weaknesses:**
- Error type fixed to `error`
- Less explicit about Either semantics
- Cannot use custom error types without conversion
- Slightly less type-safe (can accidentally ignore bool/error)
### Monad Laws
Both packages satisfy the monad laws, but enforce them differently:
#### Standard Result
```go
// Left identity: return a >>= f ≡ f a
assert.Equal(
result.Chain(f)(result.Of(a)),
f(a),
)
// Right identity: m >>= return ≡ m
assert.Equal(
result.Chain(result.Of[int])(m),
m,
)
// Associativity: (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)
assert.Equal(
result.Chain(g)(result.Chain(f)(m)),
result.Chain(func(x int) result.Result[int] {
return result.Chain(g)(f(x))
})(m),
)
```
#### Idiomatic Result
```go
// Same laws, different syntax
// Left identity
a, aerr := result.Of(val)
b, berr := result.Chain(f)(a, aerr)
c, cerr := f(val)
assert.Equal((b, berr), (c, cerr))
// Right identity
value, err := m()
identity := result.Chain(result.Of[int])
assert.Equal(identity(value, err), (value, err))
// Associativity (same structure, tuple-based)
```
### Error Handling Philosophy
#### Standard Result
```go
// Explicit error handling through types
func processUser(id int) result.Result[User] {
user := fetchUser(id) // Returns Result[User]
return F.Pipe2(
user,
result.Chain(validateUser),
result.Chain(enrichUser),
)
}
// Must explicitly unwrap
user, err := result.UnwrapError(processUser(42))
if err != nil {
log.Error(err)
}
```
#### Idiomatic Result
```go
// Natural Go error handling
func processUser(id int) (User, error) {
user, err := fetchUser(id) // Returns (User, error)
return F.Pipe2(
(user, err),
result.Chain(validateUser),
result.Chain(enrichUser),
)
}
// Already in Go form
user, err := processUser(42)
if err != nil {
log.Error(err)
}
```
### Composition Patterns
#### Standard Result
```go
// Applicative composition
import A "github.com/IBM/fp-go/v2/apply"
type Config struct {
Host string
Port int
DB string
}
config := A.SequenceT3(
result.FromPredicate(validHost, hostError)(host),
result.FromPredicate(validPort, portError)(port),
result.FromPredicate(validDB, dbError)(db),
)(func(h string, p int, d string) Config {
return Config{h, p, d}
})
```
#### Idiomatic Result
```go
// Direct tuple composition
config, err := func() (Config, error) {
host, err := result.FromPredicate(validHost, hostError)(host)
if err != nil {
return Config{}, err
}
port, err := result.FromPredicate(validPort, portError)(port)
if err != nil {
return Config{}, err
}
db, err := result.FromPredicate(validDB, dbError)(db)
if err != nil {
return Config{}, err
}
return Config{host, port, db}, nil
}()
```
## When to Use Each
### Use Idiomatic Result When (Recommended for Most Cases):
1. **Performance Matters**
- Any production service (web servers, APIs, microservices)
- Hot paths and high-throughput scenarios (>1000 req/s)
- Complex operation chains (**32x faster** ChainFirst)
- Real-world pipelines (**2-3x faster**)
- Memory-constrained environments (zero allocations)
- Want **1.2-6x speedup** across most operations
2. **Go Integration** ⭐⭐
- Working with existing Go codebases
- Interfacing with standard library (native (value, error))
- Team familiar with Go, new to FP
- Want zero-cost functional abstractions
- Seamless error handling patterns
3. **Pragmatic Functional Programming**
- Value performance AND functional patterns
- Prefer Go idioms over FP terminology
- Simpler function signatures
- Lower cognitive overhead
- Production-ready patterns
4. **Real-World Applications**
- Web servers, REST APIs, gRPC services
- CLI tools and command-line applications
- Data processing pipelines
- Any latency-sensitive application
- Systems with tight performance budgets
**Performance Gains:** Use idiomatic for 1.2-32x speedup depending on operation, with consistently lower allocations.
### Use Standard Either/Result When:
1. **Type Safety & Flexibility**
- Need explicit Either[E, A] with **custom error types**
- Building domain-specific error hierarchies
- Want to distinguish different error categories at type level
- Type system enforcement is critical
2. **Advanced FP Features**
- Using Do-notation for complex monadic compositions
- Need operations like Flatten, Swap, Bind, Let
- Leveraging advanced type classes (Semigroup, Monoid)
- Want the complete FP toolkit
3. **FP Expertise & Education**
- Porting code from other FP languages (Scala, Haskell)
- Teaching functional programming concepts
- Team has strong FP background
- Explicit algebraic data types preferred
- Code review benefits from FP terminology
4. **Performance is Acceptable**
- After optimizations, Either is **quite fast** (1-5 ns/op for simple operations)
- Difference matters mainly at high scale (millions of operations)
- Code clarity > micro-optimizations
- Simple operations dominate your workload
**Note:** Either package is now performant enough for most use cases. Choose it for features, not performance concerns.
### Hybrid Approach
You can use both packages together:
```go
import (
stdResult "github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/idiomatic/result"
)
// Use standard for complex types
type ValidationError struct {
Field string
Error string
}
func validateInput(input string) stdResult.Either[ValidationError, Input] {
// ... validation logic
}
// Convert to idiomatic for performance
func processInput(input string) (Output, error) {
validated := validateInput(input)
value, err := stdResult.UnwrapError(
stdResult.MapLeft(toError)(validated),
)
// Use idiomatic for hot path
return result.Chain(heavyProcessing)(value, err)
}
```
## Migration Guide
### From Standard to Idiomatic
```go
// Before (standard)
import "github.com/IBM/fp-go/v2/result"
func process(x int) result.Result[int] {
return F.Pipe2(
result.Right[error](x),
result.Map(double),
result.Chain(validate),
)
}
// After (idiomatic)
import "github.com/IBM/fp-go/v2/idiomatic/result"
func process(x int) (int, error) {
return F.Pipe2(
result.Right(x),
result.Map(double),
result.Chain(validate),
)
}
```
### Key Changes
1. **Type signatures**: `Result[T]``(T, error)`
2. **Kleisli**: `func(A) Result[B]``func(A) (B, error)`
3. **Operator**: `func(Result[A]) Result[B]``func(A, error) (B, error)`
4. **Return values**: Function calls return tuples, not wrapped values
5. **Pattern matching**: Same Fold/GetOrElse API, different inputs
## Conclusion
### Performance Summary (After Either Optimizations)
The latest benchmark results show a clear pattern:
**Both packages are now fast**, but idiomatic consistently leads:
- **Constructors & Predicates**: Both ~1-2 ns/op (essentially tied)
- **Core transformations**: Idiomatic **1.2-2.3x faster** (Map, Chain, Fold)
- **Complex operations**: Idiomatic **3-32x faster** (BiMap, ChainFirst)
- **Pipelines**: Idiomatic **2-3.4x faster** with fewer allocations
- **Extraction**: Idiomatic **1.5-6x faster** (GetOrElse, Alt)
**Key Insight:** The idiomatic package delivers **consistently better performance** across the board while maintaining zero-cost abstractions. The Either package is now fast enough for most use cases, but idiomatic is the performance winner.
### Updated Recommendation Matrix
| Scenario | Recommendation | Reason |
|----------|---------------|--------|
| **New Go project** | **Idiomatic** ⭐ | Natural Go patterns, 1.2-6x faster, better integration |
| **Production services** | **Idiomatic** ⭐⭐ | 2-3x faster pipelines, zero allocations, proven performance |
| **Performance critical** | **Idiomatic** ⭐⭐⭐ | 32x faster complex ops, minimal allocations |
| **Microservices/APIs** | **Idiomatic** ⭐⭐ | High throughput, familiar patterns, better performance |
| **CLI Tools** | **Idiomatic** ⭐ | Low overhead, Go idioms, fast |
| Custom error types | Standard/Either | Need Either[E, A] with domain types |
| Learning FP | Standard/Either | Clearer ADT semantics, educational |
| FP-heavy codebase | Standard/Either | Consistency, Do-notation, full FP toolkit |
| Library/Framework | Either way | Both are good; choose based on API style |
### Real-World Impact
For a service handling 10,000 requests/second with typical pipeline operations:
```
Either package: 280 ns/op × 10M req/day = 2,800 seconds = 46.7 minutes
Idiomatic package: 116 ns/op × 10M req/day = 1,160 seconds = 19.3 minutes
Time saved: 27.4 minutes of CPU time per day
```
At scale, this translates to:
- Lower latency (2-3x faster response times for FP operations)
- Reduced CPU usage (fewer cores needed)
- Lower memory pressure (significantly fewer allocations)
- Better resource utilization
### Final Recommendation
**For most Go projects:** Use **idiomatic packages**
- 1.2-32x faster across operations
- Native Go idioms
- Zero-cost abstractions
- Production-proven performance
- Easier integration
**For specialized needs:** Use **standard Either/Result**
- Need custom error types Either[E, A]
- Want Do-notation and advanced FP features
- Porting from FP languages
- Educational/learning context
- FP-heavy existing codebase
### Bottom Line
After optimizations, both packages are excellent:
- **Either/Result**: Fast enough for most use cases, feature-rich, type-safe
- **Idiomatic**: **Faster in practice** (1.2-32x), native Go, zero-cost FP
The idiomatic packages now represent the **best of both worlds**: full functional programming capabilities with Go's native performance and idioms. Unless you specifically need Either[E, A]'s custom error types or advanced FP features, **idiomatic is the recommended choice** for production Go services.
Both maintain the core benefits of functional programming—choose based on whether you prioritize performance & Go integration (idiomatic) or type flexibility & FP features (either).

View File

@@ -0,0 +1,174 @@
# Idiomatic ReadIOResult Functions - Implementation Plan
## Overview
This document outlines the idiomatic functions that should be added to the `readerioresult` package to support Go's native `(value, error)` pattern, similar to what was implemented for `readerresult`.
## Key Concepts
The idiomatic package `github.com/IBM/fp-go/v2/idiomatic/readerioresult` defines:
- `ReaderIOResult[R, A]` as `func(R) func() (A, error)` (idiomatic style)
- This contrasts with `readerioresult.ReaderIOResult[R, A]` which is `Reader[R, IOResult[A]]` (functional style)
## Functions to Add
### In `readerioresult/reader.go`
Add helper functions at the top:
```go
func fromReaderIOResultKleisliI[R, A, B any](f RIORI.Kleisli[R, A, B]) Kleisli[R, A, B] {
return function.Flow2(f, FromReaderIOResultI[R, B])
}
func fromIOResultKleisliI[A, B any](f IORI.Kleisli[A, B]) ioresult.Kleisli[A, B] {
return ioresult.Eitherize1(f)
}
```
### Core Conversion Functions
1. **FromResultI** - Lift `(value, error)` to ReaderIOResult
```go
func FromResultI[R, A any](a A, err error) ReaderIOResult[R, A]
```
2. **FromIOResultI** - Lift idiomatic IOResult to functional
```go
func FromIOResultI[R, A any](ioe func() (A, error)) ReaderIOResult[R, A]
```
3. **FromReaderIOResultI** - Convert idiomatic ReaderIOResult to functional
```go
func FromReaderIOResultI[R, A any](rr RIORI.ReaderIOResult[R, A]) ReaderIOResult[R, A]
```
### Chain Functions
4. **MonadChainI** / **ChainI** - Chain with idiomatic Kleisli
```go
func MonadChainI[R, A, B any](ma ReaderIOResult[R, A], f RIORI.Kleisli[R, A, B]) ReaderIOResult[R, B]
func ChainI[R, A, B any](f RIORI.Kleisli[R, A, B]) Operator[R, A, B]
```
5. **MonadChainEitherIK** / **ChainEitherIK** - Chain with idiomatic Result functions
```go
func MonadChainEitherIK[R, A, B any](ma ReaderIOResult[R, A], f func(A) (B, error)) ReaderIOResult[R, B]
func ChainEitherIK[R, A, B any](f func(A) (B, error)) Operator[R, A, B]
```
6. **MonadChainIOResultIK** / **ChainIOResultIK** - Chain with idiomatic IOResult
```go
func MonadChainIOResultIK[R, A, B any](ma ReaderIOResult[R, A], f func(A) func() (B, error)) ReaderIOResult[R, B]
func ChainIOResultIK[R, A, B any](f func(A) func() (B, error)) Operator[R, A, B]
```
### Applicative Functions
7. **MonadApI** / **ApI** - Apply with idiomatic value
```go
func MonadApI[B, R, A any](fab ReaderIOResult[R, func(A) B], fa RIORI.ReaderIOResult[R, A]) ReaderIOResult[R, B]
func ApI[B, R, A any](fa RIORI.ReaderIOResult[R, A]) Operator[R, func(A) B, B]
```
### Error Handling Functions
8. **OrElseI** - Fallback with idiomatic computation
```go
func OrElseI[R, A any](onLeft RIORI.Kleisli[R, error, A]) Operator[R, A, A]
```
9. **MonadAltI** / **AltI** - Alternative with idiomatic computation
```go
func MonadAltI[R, A any](first ReaderIOResult[R, A], second Lazy[RIORI.ReaderIOResult[R, A]]) ReaderIOResult[R, A]
func AltI[R, A any](second Lazy[RIORI.ReaderIOResult[R, A]]) Operator[R, A, A]
```
### Flatten Functions
10. **FlattenI** - Flatten nested idiomatic ReaderIOResult
```go
func FlattenI[R, A any](mma ReaderIOResult[R, RIORI.ReaderIOResult[R, A]]) ReaderIOResult[R, A]
```
### In `readerioresult/bind.go`
11. **BindI** - Bind with idiomatic Kleisli
```go
func BindI[R, S1, S2, T any](setter func(T) func(S1) S2, f RIORI.Kleisli[R, S1, T]) Operator[R, S1, S2]
```
12. **ApIS** - Apply idiomatic value to state
```go
func ApIS[R, S1, S2, T any](setter func(T) func(S1) S2, fa RIORI.ReaderIOResult[R, T]) Operator[R, S1, S2]
```
13. **ApISL** - Apply idiomatic value using lens
```go
func ApISL[R, S, T any](lens L.Lens[S, T], fa RIORI.ReaderIOResult[R, T]) Operator[R, S, S]
```
14. **BindIL** - Bind idiomatic with lens
```go
func BindIL[R, S, T any](lens L.Lens[S, T], f RIORI.Kleisli[R, T, T]) Operator[R, S, S]
```
15. **BindEitherIK** / **BindResultIK** - Bind idiomatic Result
```go
func BindEitherIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) (T, error)) Operator[R, S1, S2]
func BindResultIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) (T, error)) Operator[R, S1, S2]
```
16. **BindIOResultIK** - Bind idiomatic IOResult
```go
func BindIOResultIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) func() (T, error)) Operator[R, S1, S2]
```
17. **BindToEitherI** / **BindToResultI** - Initialize from idiomatic pair
```go
func BindToEitherI[R, S1, T any](setter func(T) S1) func(T, error) ReaderIOResult[R, S1]
func BindToResultI[R, S1, T any](setter func(T) S1) func(T, error) ReaderIOResult[R, S1]
```
18. **BindToIOResultI** - Initialize from idiomatic IOResult
```go
func BindToIOResultI[R, S1, T any](setter func(T) S1) func(func() (T, error)) ReaderIOResult[R, S1]
```
19. **ApEitherIS** / **ApResultIS** - Apply idiomatic pair to state
```go
func ApEitherIS[R, S1, S2, T any](setter func(T) func(S1) S2) func(T, error) Operator[R, S1, S2]
func ApResultIS[R, S1, S2, T any](setter func(T) func(S1) S2) func(T, error) Operator[R, S1, S2]
```
20. **ApIOResultIS** - Apply idiomatic IOResult to state
```go
func ApIOResultIS[R, S1, S2, T any](setter func(T) func(S1) S2, fa func() (T, error)) Operator[R, S1, S2]
```
## Testing Strategy
Create `readerioresult/idiomatic_test.go` with:
- Tests for each idiomatic function
- Success and error cases
- Integration tests showing real-world usage patterns
- Parallel execution tests where applicable
- Complex scenarios combining multiple idiomatic functions
## Implementation Priority
1. **High Priority** - Core conversion and chain functions (1-6)
2. **Medium Priority** - Bind functions for do-notation (11-16)
3. **Low Priority** - Advanced applicative and error handling (7-10, 17-20)
## Benefits
1. **Seamless Integration** - Mix Go idiomatic code with functional pipelines
2. **Gradual Adoption** - Convert code incrementally from idiomatic to functional
3. **Interoperability** - Work with existing Go libraries that return `(value, error)`
4. **Consistency** - Mirrors the successful pattern from `readerresult`
## References
- See `readerresult` package for similar implementations
- See `idiomatic/readerresult` for the idiomatic types
- See `idiomatic/ioresult` for IO-level idiomatic patterns

View File

@@ -69,7 +69,7 @@ func main() {
none := option.None[int]()
// Map over values
doubled := option.Map(func(x int) int { return x * 2 })(some)
doubled := option.Map(N.Mul(2))(some)
fmt.Println(option.GetOrElse(0)(doubled)) // Output: 84
// Chain operations
@@ -187,7 +187,7 @@ Monadic operations for `Pair` now operate on the **second argument** to align wi
```go
// Operations on first element
pair := MakePair(1, "hello")
result := Map(func(x int) int { return x * 2 })(pair) // Pair(2, "hello")
result := Map(N.Mul(2))(pair) // Pair(2, "hello")
```
**V2:**
@@ -204,8 +204,8 @@ The `Compose` function for endomorphisms now follows **mathematical function com
**V1:**
```go
// Compose executed left-to-right
double := func(x int) int { return x * 2 }
increment := func(x int) int { return x + 1 }
double := N.Mul(2)
increment := N.Add(1)
composed := Compose(double, increment)
result := composed(5) // (5 * 2) + 1 = 11
```
@@ -213,8 +213,8 @@ result := composed(5) // (5 * 2) + 1 = 11
**V2:**
```go
// Compose executes RIGHT-TO-LEFT (mathematical composition)
double := func(x int) int { return x * 2 }
increment := func(x int) int { return x + 1 }
double := N.Mul(2)
increment := N.Add(1)
composed := Compose(double, increment)
result := composed(5) // (5 + 1) * 2 = 12
@@ -368,7 +368,7 @@ If you're using `Pair`, update operations to work on the second element:
```go
pair := MakePair(42, "data")
// Map operates on first element
result := Map(func(x int) int { return x * 2 })(pair)
result := Map(N.Mul(2))(pair)
```
**After (V2):**

View File

@@ -17,11 +17,10 @@ package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
EM "github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/tuple"
)
@@ -50,16 +49,16 @@ func Replicate[A any](n int, a A) []A {
// This is the monadic version of Map that takes the array as the first parameter.
//
//go:inline
func MonadMap[A, B any](as []A, f func(a A) B) []B {
func MonadMap[A, B any](as []A, f func(A) B) []B {
return G.MonadMap[[]A, []B](as, f)
}
// MonadMapRef applies a function to a pointer to each element of an array, returning a new array with the results.
// This is useful when you need to access elements by reference without copying.
func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
func MonadMapRef[A, B any](as []A, f func(*A) B) []B {
count := len(as)
bs := make([]B, count)
for i := count - 1; i >= 0; i-- {
for i := range count {
bs[i] = f(&as[i])
}
return bs
@@ -68,7 +67,7 @@ func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
// MapWithIndex applies a function to each element and its index in an array, returning a new array with the results.
//
//go:inline
func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
func MapWithIndex[A, B any](f func(int, A) B) Operator[A, B] {
return G.MapWithIndex[[]A, []B](f)
}
@@ -77,39 +76,39 @@ func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
//
// Example:
//
// double := array.Map(func(x int) int { return x * 2 })
// double := array.Map(N.Mul(2))
// result := double([]int{1, 2, 3}) // [2, 4, 6]
//
//go:inline
func Map[A, B any](f func(a A) B) func([]A) []B {
func Map[A, B any](f func(A) B) Operator[A, B] {
return G.Map[[]A, []B](f)
}
// MapRef applies a function to a pointer to each element of an array, returning a new array with the results.
// This is the curried version that returns a function.
func MapRef[A, B any](f func(a *A) B) func([]A) []B {
func MapRef[A, B any](f func(*A) B) Operator[A, B] {
return F.Bind2nd(MonadMapRef[A, B], f)
}
func filterRef[A any](fa []A, pred func(a *A) bool) []A {
var result []A
func filterRef[A any](fa []A, pred func(*A) bool) []A {
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, a)
var result []A = make([]A, 0, count)
for i := range count {
a := &fa[i]
if pred(a) {
result = append(result, *a)
}
}
return result
}
func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
var result []B
func filterMapRef[A, B any](fa []A, pred func(*A) bool, f func(*A) B) []B {
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, f(&a))
var result []B = make([]B, 0, count)
for i := range count {
a := &fa[i]
if pred(a) {
result = append(result, f(a))
}
}
return result
@@ -118,19 +117,19 @@ func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
// Filter returns a new array with all elements from the original array that match a predicate
//
//go:inline
func Filter[A any](pred func(A) bool) EM.Endomorphism[[]A] {
func Filter[A any](pred func(A) bool) Operator[A, A] {
return G.Filter[[]A](pred)
}
// FilterWithIndex returns a new array with all elements from the original array that match a predicate
//
//go:inline
func FilterWithIndex[A any](pred func(int, A) bool) EM.Endomorphism[[]A] {
func FilterWithIndex[A any](pred func(int, A) bool) Operator[A, A] {
return G.FilterWithIndex[[]A](pred)
}
// FilterRef returns a new array with all elements from the original array that match a predicate operating on pointers.
func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
func FilterRef[A any](pred func(*A) bool) Operator[A, A] {
return F.Bind2nd(filterRef[A], pred)
}
@@ -138,7 +137,7 @@ func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
// This is the monadic version that takes the array as the first parameter.
//
//go:inline
func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
func MonadFilterMap[A, B any](fa []A, f option.Kleisli[A, B]) []B {
return G.MonadFilterMap[[]A, []B](fa, f)
}
@@ -146,33 +145,33 @@ func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
// keeping only the Some values. This is the monadic version that takes the array as the first parameter.
//
//go:inline
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) O.Option[B]) []B {
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) Option[B]) []B {
return G.MonadFilterMapWithIndex[[]A, []B](fa, f)
}
// FilterMap maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
// FilterMap maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
//
//go:inline
func FilterMap[A, B any](f func(A) O.Option[B]) func([]A) []B {
func FilterMap[A, B any](f option.Kleisli[A, B]) Operator[A, B] {
return G.FilterMap[[]A, []B](f)
}
// FilterMapWithIndex maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
// FilterMapWithIndex maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
//
//go:inline
func FilterMapWithIndex[A, B any](f func(int, A) O.Option[B]) func([]A) []B {
func FilterMapWithIndex[A, B any](f func(int, A) Option[B]) Operator[A, B] {
return G.FilterMapWithIndex[[]A, []B](f)
}
// FilterChain maps an array with an iterating function that returns an [O.Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
// FilterChain maps an array with an iterating function that returns an [Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
//
//go:inline
func FilterChain[A, B any](f func(A) O.Option[[]B]) func([]A) []B {
func FilterChain[A, B any](f option.Kleisli[A, []B]) Operator[A, B] {
return G.FilterChain[[]A](f)
}
// FilterMapRef filters an array using a predicate on pointers and maps the matching elements using a function on pointers.
func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B {
func FilterMapRef[A, B any](pred func(a *A) bool, f func(*A) B) Operator[A, B] {
return func(fa []A) []B {
return filterMapRef(fa, pred, f)
}
@@ -180,8 +179,7 @@ func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B
func reduceRef[A, B any](fa []A, f func(B, *A) B, initial B) B {
current := initial
count := len(fa)
for i := 0; i < count; i++ {
for i := range len(fa) {
current = f(current, &fa[i])
}
return current
@@ -262,6 +260,8 @@ func Empty[A any]() []A {
}
// Zero returns an empty array of type A (alias for Empty).
//
//go:inline
func Zero[A any]() []A {
return Empty[A]()
}
@@ -277,7 +277,7 @@ func Of[A any](a A) []A {
// This is the monadic version that takes the array as the first parameter (also known as FlatMap).
//
//go:inline
func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
func MonadChain[A, B any](fa []A, f Kleisli[A, B]) []B {
return G.MonadChain(fa, f)
}
@@ -290,7 +290,7 @@ func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
// result := duplicate([]int{1, 2, 3}) // [1, 1, 2, 2, 3, 3]
//
//go:inline
func Chain[A, B any](f func(A) []B) func([]A) []B {
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return G.Chain[[]A](f)
}
@@ -306,7 +306,7 @@ func MonadAp[B, A any](fab []func(A) B, fa []A) []B {
// This is the curried version.
//
//go:inline
func Ap[B, A any](fa []A) func([]func(A) B) []B {
func Ap[B, A any](fa []A) Operator[func(A) B, B] {
return G.Ap[[]B, []func(A) B](fa)
}
@@ -328,7 +328,7 @@ func MatchLeft[A, B any](onEmpty func() B, onNonEmpty func(A, []A) B) func([]A)
// Returns None if the array is empty.
//
//go:inline
func Tail[A any](as []A) O.Option[[]A] {
func Tail[A any](as []A) Option[[]A] {
return G.Tail(as)
}
@@ -336,7 +336,7 @@ func Tail[A any](as []A) O.Option[[]A] {
// Returns None if the array is empty.
//
//go:inline
func Head[A any](as []A) O.Option[A] {
func Head[A any](as []A) Option[A] {
return G.Head(as)
}
@@ -344,7 +344,7 @@ func Head[A any](as []A) O.Option[A] {
// Returns None if the array is empty.
//
//go:inline
func First[A any](as []A) O.Option[A] {
func First[A any](as []A) Option[A] {
return G.First(as)
}
@@ -352,12 +352,12 @@ func First[A any](as []A) O.Option[A] {
// Returns None if the array is empty.
//
//go:inline
func Last[A any](as []A) O.Option[A] {
func Last[A any](as []A) Option[A] {
return G.Last(as)
}
// PrependAll inserts a separator before each element of an array.
func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
func PrependAll[A any](middle A) Operator[A, A] {
return func(as []A) []A {
count := len(as)
dst := count * 2
@@ -377,7 +377,7 @@ func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
// Example:
//
// result := array.Intersperse(0)([]int{1, 2, 3}) // [1, 0, 2, 0, 3]
func Intersperse[A any](middle A) EM.Endomorphism[[]A] {
func Intersperse[A any](middle A) Operator[A, A] {
prepend := PrependAll(middle)
return func(as []A) []A {
if IsEmpty(as) {
@@ -406,7 +406,7 @@ func Flatten[A any](mma [][]A) []A {
}
// Slice extracts a subarray from index low (inclusive) to high (exclusive).
func Slice[A any](low, high int) func(as []A) []A {
func Slice[A any](low, high int) Operator[A, A] {
return array.Slice[[]A](low, high)
}
@@ -414,7 +414,7 @@ func Slice[A any](low, high int) func(as []A) []A {
// Returns None if the index is out of bounds.
//
//go:inline
func Lookup[A any](idx int) func([]A) O.Option[A] {
func Lookup[A any](idx int) func([]A) Option[A] {
return G.Lookup[[]A](idx)
}
@@ -422,7 +422,7 @@ func Lookup[A any](idx int) func([]A) O.Option[A] {
// If the index is out of bounds, the element is appended.
//
//go:inline
func UpsertAt[A any](a A) EM.Endomorphism[[]A] {
func UpsertAt[A any](a A) Operator[A, A] {
return G.UpsertAt[[]A](a)
}
@@ -468,7 +468,7 @@ func ConstNil[A any]() []A {
// SliceRight extracts a subarray from the specified start index to the end.
//
//go:inline
func SliceRight[A any](start int) EM.Endomorphism[[]A] {
func SliceRight[A any](start int) Operator[A, A] {
return G.SliceRight[[]A](start)
}
@@ -482,7 +482,7 @@ func Copy[A any](b []A) []A {
// Clone creates a deep copy of the array using the provided endomorphism to clone the values
//
//go:inline
func Clone[A any](f func(A) A) func(as []A) []A {
func Clone[A any](f func(A) A) Operator[A, A] {
return G.Clone[[]A](f)
}
@@ -510,8 +510,8 @@ func Fold[A any](m M.Monoid[A]) func([]A) A {
// Push adds an element to the end of an array (alias for Append).
//
//go:inline
func Push[A any](a A) EM.Endomorphism[[]A] {
return G.Push[EM.Endomorphism[[]A]](a)
func Push[A any](a A) Operator[A, A] {
return G.Push[Operator[A, A]](a)
}
// MonadFlap applies a value to an array of functions, producing an array of results.
@@ -526,13 +526,13 @@ func MonadFlap[B, A any](fab []func(A) B, a A) []B {
// This is the curried version.
//
//go:inline
func Flap[B, A any](a A) func([]func(A) B) []B {
func Flap[B, A any](a A) Operator[func(A) B, B] {
return G.Flap[func(A) B, []func(A) B, []B](a)
}
// Prepend adds an element to the beginning of an array, returning a new array.
//
//go:inline
func Prepend[A any](head A) EM.Endomorphism[[]A] {
return G.Prepend[EM.Endomorphism[[]A]](head)
func Prepend[A any](head A) Operator[A, A] {
return G.Prepend[Operator[A, A]](head)
}

View File

@@ -35,7 +35,7 @@ func TestReplicate(t *testing.T) {
func TestMonadMap(t *testing.T) {
src := []int{1, 2, 3}
result := MonadMap(src, func(x int) int { return x * 2 })
result := MonadMap(src, N.Mul(2))
assert.Equal(t, []int{2, 4, 6}, result)
}
@@ -173,8 +173,8 @@ func TestChain(t *testing.T) {
func TestMonadAp(t *testing.T) {
fns := []func(int) int{
func(x int) int { return x * 2 },
func(x int) int { return x + 10 },
N.Mul(2),
N.Add(10),
}
values := []int{1, 2}
result := MonadAp(fns, values)
@@ -268,7 +268,7 @@ func TestCopy(t *testing.T) {
func TestClone(t *testing.T) {
src := []int{1, 2, 3}
cloner := Clone(func(x int) int { return x * 2 })
cloner := Clone(N.Mul(2))
result := cloner(src)
assert.Equal(t, []int{2, 4, 6}, result)
}

View File

@@ -56,8 +56,8 @@ func Do[S any](
//go:inline
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) []T,
) func([]S1) []S2 {
f Kleisli[S1, T],
) Operator[S1, S2] {
return G.Bind[[]S1, []S2](setter, f)
}
@@ -79,7 +79,7 @@ func Bind[S1, S2, T any](
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) func([]S1) []S2 {
) Operator[S1, S2] {
return G.Let[[]S1, []S2](setter, f)
}
@@ -101,7 +101,7 @@ func Let[S1, S2, T any](
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) func([]S1) []S2 {
) Operator[S1, S2] {
return G.LetTo[[]S1, []S2](setter, b)
}
@@ -120,7 +120,7 @@ func LetTo[S1, S2, T any](
//go:inline
func BindTo[S1, T any](
setter func(T) S1,
) func([]T) []S1 {
) Operator[T, S1] {
return G.BindTo[[]S1, []T](setter)
}
@@ -143,6 +143,6 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa []T,
) func([]S1) []S2 {
) Operator[S1, S2] {
return G.ApS[[]S1, []S2](setter, fa)
}

View File

@@ -36,7 +36,7 @@
// generated := array.MakeBy(5, func(i int) int { return i * 2 })
//
// // Transforming arrays
// doubled := array.Map(func(x int) int { return x * 2 })(arr)
// doubled := array.Map(N.Mul(2))(arr)
// filtered := array.Filter(func(x int) bool { return x > 2 })(arr)
//
// // Combining arrays
@@ -50,7 +50,7 @@
// numbers := []int{1, 2, 3, 4, 5}
//
// // Map transforms each element
// doubled := array.Map(func(x int) int { return x * 2 })(numbers)
// doubled := array.Map(N.Mul(2))(numbers)
// // Result: [2, 4, 6, 8, 10]
//
// // Filter keeps elements matching a predicate

View File

@@ -17,7 +17,7 @@ package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/option"
)
// FindFirst finds the first element which satisfies a predicate function.
@@ -30,7 +30,7 @@ import (
// result2 := findGreaterThan3([]int{1, 2, 3}) // None
//
//go:inline
func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
func FindFirst[A any](pred func(A) bool) option.Kleisli[[]A, A] {
return G.FindFirst[[]A](pred)
}
@@ -45,7 +45,7 @@ func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
// result := findEvenAtEvenIndex([]int{1, 3, 4, 5}) // Some(4)
//
//go:inline
func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
func FindFirstWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
return G.FindFirstWithIndex[[]A](pred)
}
@@ -65,7 +65,7 @@ func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
// result := parseFirst([]string{"a", "42", "b"}) // Some(42)
//
//go:inline
func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
func FindFirstMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
return G.FindFirstMap[[]A](sel)
}
@@ -73,7 +73,7 @@ func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
// The selector receives both the index and the element.
//
//go:inline
func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
func FindFirstMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
return G.FindFirstMapWithIndex[[]A](sel)
}
@@ -86,7 +86,7 @@ func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.O
// result := findGreaterThan3([]int{1, 4, 2, 5}) // Some(5)
//
//go:inline
func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
func FindLast[A any](pred func(A) bool) option.Kleisli[[]A, A] {
return G.FindLast[[]A](pred)
}
@@ -94,7 +94,7 @@ func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
// Returns Some(element) if found, None if no element matches.
//
//go:inline
func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
func FindLastWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
return G.FindLastWithIndex[[]A](pred)
}
@@ -102,7 +102,7 @@ func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
// This combines finding and mapping in a single operation, searching from the end.
//
//go:inline
func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
func FindLastMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
return G.FindLastMap[[]A](sel)
}
@@ -110,6 +110,6 @@ func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
// The selector receives both the index and the element, searching from the end.
//
//go:inline
func FindLastMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
func FindLastMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
return G.FindLastMapWithIndex[[]A](sel)
}

View File

@@ -25,8 +25,10 @@ import (
)
// Of constructs a single element array
//
//go:inline
func Of[GA ~[]A, A any](value A) GA {
return GA{value}
return array.Of[GA](value)
}
func Reduce[GA ~[]A, A, B any](f func(B, A) B, initial B) func(GA) B {
@@ -82,7 +84,7 @@ func MakeBy[AS ~[]A, F ~func(int) A, A any](n int, f F) AS {
}
// run the generator function across the input
as := make(AS, n)
for i := n - 1; i >= 0; i-- {
for i := range n {
as[i] = f(i)
}
return as
@@ -165,10 +167,9 @@ func Size[GA ~[]A, A any](as GA) int {
func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
result := make(GB, 0, len(fa))
for _, a := range fa {
O.Map(func(b B) B {
if b, ok := O.Unwrap(f(a)); ok {
result = append(result, b)
return b
})(f(a))
}
}
return result
}
@@ -176,10 +177,9 @@ func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
func filterMapWithIndex[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(int, A) O.Option[B]) GB {
result := make(GB, 0, len(fa))
for i, a := range fa {
O.Map(func(b B) B {
if b, ok := O.Unwrap(f(i, a)); ok {
result = append(result, b)
return b
})(f(i, a))
}
}
return result
}

View File

@@ -42,8 +42,7 @@ func FindFirst[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) O.Option[
func FindFirstMapWithIndex[AS ~[]A, PRED ~func(int, A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
none := O.None[B]()
return func(as AS) O.Option[B] {
count := len(as)
for i := 0; i < count; i++ {
for i := range len(as) {
out := pred(i, as[i])
if O.IsSome(out) {
return out

View File

@@ -0,0 +1,34 @@
package generic
import (
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
// Example:
//
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[GT ~[]T, T any]() M.Monoid[GT] {
return M.MakeMonoid(array.Concat[GT], Empty[GT]())
}
// Semigroup returns a Semigroup instance for arrays.
// The Semigroup combines arrays through concatenation.
//
// Example:
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[GT ~[]T, T any]() S.Semigroup[GT] {
return S.MakeSemigroup(array.Concat[GT])
}

View File

@@ -26,7 +26,7 @@ import (
func ZipWith[AS ~[]A, BS ~[]B, CS ~[]C, FCT ~func(A, B) C, A, B, C any](fa AS, fb BS, f FCT) CS {
l := N.Min(len(fa), len(fb))
res := make(CS, l)
for i := l - 1; i >= 0; i-- {
for i := range l {
res[i] = f(fa[i], fb[i])
}
return res
@@ -43,7 +43,7 @@ func Unzip[AS ~[]A, BS ~[]B, CS ~[]T.Tuple2[A, B], A, B any](cs CS) T.Tuple2[AS,
l := len(cs)
as := make(AS, l)
bs := make(BS, l)
for i := l - 1; i >= 0; i-- {
for i := range l {
t := cs[i]
as[i] = t.F1
bs[i] = t.F2

View File

@@ -18,7 +18,6 @@ package array
import (
"testing"
O "github.com/IBM/fp-go/v2/option"
OR "github.com/IBM/fp-go/v2/ord"
"github.com/stretchr/testify/assert"
)
@@ -103,39 +102,6 @@ func TestSortByKey(t *testing.T) {
assert.Equal(t, "Charlie", result[2].Name)
}
func TestMonadTraverse(t *testing.T) {
result := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 3, 5},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.Some([]int{2, 6, 10}), result)
// Test with None case
result2 := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 2, 3},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.None[[]int](), result2)
}
func TestUniqByKey(t *testing.T) {
type Person struct {
Name string

View File

@@ -16,27 +16,12 @@
package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
func concat[T any](left, right []T) []T {
// some performance checks
ll := len(left)
if ll == 0 {
return right
}
lr := len(right)
if lr == 0 {
return left
}
// need to copy
buf := make([]T, ll+lr)
copy(buf[copy(buf, left):], right)
return buf
}
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
@@ -45,8 +30,10 @@ func concat[T any](left, right []T) []T {
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[T any]() M.Monoid[[]T] {
return M.MakeMonoid(concat[T], Empty[T]())
return G.Monoid[[]T]()
}
// Semigroup returns a Semigroup instance for arrays.
@@ -56,8 +43,10 @@ func Monoid[T any]() M.Monoid[[]T] {
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[T any]() S.Semigroup[[]T] {
return S.MakeSemigroup(concat[T])
return G.Semigroup[[]T]()
}
func addLen[A any](count int, data []A) int {

View File

@@ -16,10 +16,18 @@
package array
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
)
func MonadSequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
ma []HKTA) HKTRA {
return array.MonadSequence(fof, m.Empty(), m.Concat, ma)
}
// Sequence takes an array where elements are HKT<A> (higher kinded type) and,
// using an applicative of that HKT, returns an HKT of []A.
//
@@ -55,16 +63,11 @@ import (
// option.MonadAp[[]int, int],
// )
// result := seq(opts) // Some([1, 2, 3])
func Sequence[A, HKTA, HKTRA, HKTFRA any](
_of func([]A) HKTRA,
_map func(HKTRA, func([]A) func(A) []A) HKTFRA,
_ap func(HKTFRA, HKTA) HKTRA,
func Sequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
) func([]HKTA) HKTRA {
ca := F.Curry2(Append[A])
empty := _of(Empty[A]())
return Reduce(func(fas HKTRA, fa HKTA) HKTRA {
return _ap(_map(fas, ca), fa)
}, empty)
return array.Sequence[[]HKTA](fof, m.Empty(), m.Concat)
}
// ArrayOption returns a function to convert a sequence of options into an option of a sequence.
@@ -86,10 +89,10 @@ func Sequence[A, HKTA, HKTRA, HKTFRA any](
// option.Some(3),
// }
// result2 := array.ArrayOption[int]()(opts2) // None
func ArrayOption[A any]() func([]O.Option[A]) O.Option[[]A] {
return Sequence(
O.Of[[]A],
O.MonadMap[[]A, func(A) []A],
O.MonadAp[[]A, A],
func ArrayOption[A any](ma []Option[A]) Option[[]A] {
return MonadSequence(
O.Map(Of[A]),
O.ApplicativeMonoid(Monoid[A]()),
ma,
)
}

View File

@@ -24,8 +24,7 @@ import (
)
func TestSequenceOption(t *testing.T) {
seq := ArrayOption[int]()
assert.Equal(t, O.Of([]int{1, 3}), seq([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), seq([]O.Option[int]{O.Of(1), O.None[int]()}))
assert.Equal(t, O.Of([]int{1, 3}), ArrayOption([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), ArrayOption([]O.Option[int]{O.Of(1), O.None[int]()}))
}

View File

@@ -18,6 +18,7 @@ package array
import (
"testing"
N "github.com/IBM/fp-go/v2/number"
"github.com/stretchr/testify/assert"
)
@@ -243,7 +244,7 @@ func TestSliceComposition(t *testing.T) {
t.Run("slice then map", func(t *testing.T) {
sliced := Slice[int](2, 5)(data)
mapped := Map(func(x int) int { return x * 2 })(sliced)
mapped := Map(N.Mul(2))(sliced)
assert.Equal(t, []int{4, 6, 8}, mapped)
})

View File

@@ -32,7 +32,7 @@ import (
// // Result: [1, 1, 2, 3, 4, 5, 6, 9]
//
//go:inline
func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
func Sort[T any](ord O.Ord[T]) Operator[T, T] {
return G.Sort[[]T](ord)
}
@@ -62,7 +62,7 @@ func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
// // Result: [{"Bob", 25}, {"Alice", 30}, {"Charlie", 35}]
//
//go:inline
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) Operator[T, T] {
return G.SortByKey[[]T](ord, f)
}
@@ -93,6 +93,6 @@ func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
// // Result: [{"Jones", "Bob"}, {"Smith", "Alice"}, {"Smith", "John"}]
//
//go:inline
func SortBy[T any](ord []O.Ord[T]) func(ma []T) []T {
func SortBy[T any](ord []O.Ord[T]) Operator[T, T] {
return G.SortBy[[]T](ord)
}

View File

@@ -80,3 +80,25 @@ func MonadTraverse[A, B, HKTB, HKTAB, HKTRB any](
return array.MonadTraverse(fof, fmap, fap, ta, f)
}
//go:inline
func TraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
f func(int, A) HKTB) func([]A) HKTRB {
return array.TraverseWithIndex[[]A](fof, fmap, fap, f)
}
//go:inline
func MonadTraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta []A,
f func(int, A) HKTB) HKTRB {
return array.MonadTraverseWithIndex(fof, fmap, fap, ta, f)
}

9
v2/array/types.go Normal file
View File

@@ -0,0 +1,9 @@
package array
import "github.com/IBM/fp-go/v2/option"
type (
Kleisli[A, B any] = func(A) []B
Operator[A, B any] = Kleisli[[]A, B]
Option[A any] = option.Option[A]
)

View File

@@ -46,6 +46,6 @@ func StrictUniq[A comparable](as []A) []A {
// // Result: [{"Alice", 30}, {"Bob", 25}, {"Charlie", 30}]
//
//go:inline
func Uniq[A any, K comparable](f func(A) K) func(as []A) []A {
func Uniq[A any, K comparable](f func(A) K) Operator[A, A] {
return G.Uniq[[]A](f)
}

710
v2/assert/assert.go Normal file
View File

@@ -0,0 +1,710 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package assert provides functional assertion helpers for testing.
//
// This package wraps testify/assert functions in a Reader monad pattern,
// allowing for composable and functional test assertions. Each assertion
// returns a Reader that takes a *testing.T and performs the assertion.
//
// # Data Last Principle
//
// This package follows the "data last" functional programming principle, where
// the data being operated on comes as the last parameter in a chain of function
// applications. This design enables several powerful functional programming patterns:
//
// 1. **Partial Application**: You can create reusable assertion functions by providing
// configuration parameters first, leaving the data and testing context for later.
//
// 2. **Function Composition**: Assertions can be composed and combined before being
// applied to actual data.
//
// 3. **Point-Free Style**: You can pass assertion functions around without immediately
// providing the data they operate on.
//
// The general pattern is:
//
// assert.Function(config)(data)(testingContext)
// ↑ ↑ ↑
// expected actual *testing.T (always last)
//
// For single-parameter assertions:
//
// assert.Function(data)(testingContext)
// ↑ ↑
// actual *testing.T (always last)
//
// Examples of "data last" in action:
//
// // Multi-parameter: expected value → actual value → testing context
// assert.Equal(42)(result)(t)
// assert.ArrayContains(3)(numbers)(t)
//
// // Single-parameter: data → testing context
// assert.NoError(err)(t)
// assert.ArrayNotEmpty(arr)(t)
//
// // Partial application - create reusable assertions
// isPositive := assert.That(func(n int) bool { return n > 0 })
// // Later, apply to different values:
// isPositive(42)(t) // Passes
// isPositive(-5)(t) // Fails
//
// // Composition - combine assertions before applying data
// validateUser := func(u User) assert.Reader {
// return assert.AllOf([]assert.Reader{
// assert.Equal("Alice")(u.Name),
// assert.That(func(age int) bool { return age >= 18 })(u.Age),
// })
// }
// validateUser(user)(t)
//
// The package supports:
// - Equality and inequality assertions
// - Collection assertions (arrays, maps, strings)
// - Error handling assertions
// - Result type assertions
// - Custom predicate assertions
// - Composable test suites
//
// Example:
//
// func TestExample(t *testing.T) {
// value := 42
// assert.Equal(42)(value)(t) // Curried style
//
// // Composing multiple assertions
// arr := []int{1, 2, 3}
// assertions := assert.AllOf([]assert.Reader{
// assert.ArrayNotEmpty(arr),
// assert.ArrayLength[int](3)(arr),
// assert.ArrayContains(2)(arr),
// })
// assertions(t)
// }
package assert
import (
"fmt"
"testing"
"github.com/IBM/fp-go/v2/boolean"
"github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
var (
// Eq is the equal predicate checking if objects are equal
Eq = eq.FromEquals(assert.ObjectsAreEqual)
)
// wrap1 is an internal helper function that wraps testify assertion functions
// into the Reader monad pattern with curried parameters.
//
// It takes a testify assertion function and converts it into a curried function
// that first takes an expected value, then an actual value, and finally returns
// a Reader that performs the assertion when given a *testing.T.
//
// Parameters:
// - wrapped: The testify assertion function to wrap
// - expected: The expected value for comparison
// - msgAndArgs: Optional message and arguments for assertion failure
//
// Returns:
// - A Kleisli function that takes the actual value and returns a Reader
func wrap1[T any](wrapped func(t assert.TestingT, expected, actual any, msgAndArgs ...any) bool, expected T, msgAndArgs ...any) Kleisli[T] {
return func(actual T) Reader {
return func(t *testing.T) bool {
return wrapped(t, expected, actual, msgAndArgs...)
}
}
}
// NotEqual tests if the expected and the actual values are not equal.
//
// This function follows the "data last" principle - you provide the expected value first,
// then the actual value, and finally the testing.T context.
//
// Example:
//
// func TestNotEqual(t *testing.T) {
// value := 42
// assert.NotEqual(10)(value)(t) // Passes: 42 != 10
// assert.NotEqual(42)(value)(t) // Fails: 42 == 42
// }
func NotEqual[T any](expected T) Kleisli[T] {
return wrap1(assert.NotEqual, expected)
}
// Equal tests if the expected and the actual values are equal.
//
// This is one of the most commonly used assertions. It follows the "data last" principle -
// you provide the expected value first, then the actual value, and finally the testing.T context.
//
// Example:
//
// func TestEqual(t *testing.T) {
// result := 2 + 2
// assert.Equal(4)(result)(t) // Passes
//
// name := "Alice"
// assert.Equal("Alice")(name)(t) // Passes
//
// // Can be composed with other assertions
// user := User{Name: "Bob", Age: 30}
// assertions := assert.AllOf([]assert.Reader{
// assert.Equal("Bob")(user.Name),
// assert.Equal(30)(user.Age),
// })
// assertions(t)
// }
func Equal[T any](expected T) Kleisli[T] {
return wrap1(assert.Equal, expected)
}
// ArrayNotEmpty checks if an array is not empty.
//
// Example:
//
// func TestArrayNotEmpty(t *testing.T) {
// numbers := []int{1, 2, 3}
// assert.ArrayNotEmpty(numbers)(t) // Passes
//
// empty := []int{}
// assert.ArrayNotEmpty(empty)(t) // Fails
// }
func ArrayNotEmpty[T any](arr []T) Reader {
return func(t *testing.T) bool {
return assert.NotEmpty(t, arr)
}
}
// RecordNotEmpty checks if a map is not empty.
//
// Example:
//
// func TestRecordNotEmpty(t *testing.T) {
// config := map[string]int{"timeout": 30, "retries": 3}
// assert.RecordNotEmpty(config)(t) // Passes
//
// empty := map[string]int{}
// assert.RecordNotEmpty(empty)(t) // Fails
// }
func RecordNotEmpty[K comparable, T any](mp map[K]T) Reader {
return func(t *testing.T) bool {
return assert.NotEmpty(t, mp)
}
}
// StringNotEmpty checks if a string is not empty.
//
// Example:
//
// func TestStringNotEmpty(t *testing.T) {
// message := "Hello, World!"
// assert.StringNotEmpty(message)(t) // Passes
//
// empty := ""
// assert.StringNotEmpty(empty)(t) // Fails
// }
func StringNotEmpty(s string) Reader {
return func(t *testing.T) bool {
return assert.NotEmpty(t, s)
}
}
// ArrayLength tests if an array has the expected length.
//
// Example:
//
// func TestArrayLength(t *testing.T) {
// numbers := []int{1, 2, 3, 4, 5}
// assert.ArrayLength[int](5)(numbers)(t) // Passes
// assert.ArrayLength[int](3)(numbers)(t) // Fails
// }
func ArrayLength[T any](expected int) Kleisli[[]T] {
return func(actual []T) Reader {
return func(t *testing.T) bool {
return assert.Len(t, actual, expected)
}
}
}
// RecordLength tests if a map has the expected length.
//
// Example:
//
// func TestRecordLength(t *testing.T) {
// config := map[string]string{"host": "localhost", "port": "8080"}
// assert.RecordLength[string, string](2)(config)(t) // Passes
// assert.RecordLength[string, string](3)(config)(t) // Fails
// }
func RecordLength[K comparable, T any](expected int) Kleisli[map[K]T] {
return func(actual map[K]T) Reader {
return func(t *testing.T) bool {
return assert.Len(t, actual, expected)
}
}
}
// StringLength tests if a string has the expected length.
//
// Example:
//
// func TestStringLength(t *testing.T) {
// message := "Hello"
// assert.StringLength[any, any](5)(message)(t) // Passes
// assert.StringLength[any, any](10)(message)(t) // Fails
// }
func StringLength[K comparable, T any](expected int) Kleisli[string] {
return func(actual string) Reader {
return func(t *testing.T) bool {
return assert.Len(t, actual, expected)
}
}
}
// NoError validates that there is no error.
//
// This is commonly used to assert that operations complete successfully.
//
// Example:
//
// func TestNoError(t *testing.T) {
// err := doSomething()
// assert.NoError(err)(t) // Passes if err is nil
//
// // Can be used with result types
// result := result.TryCatch(func() (int, error) {
// return 42, nil
// })
// assert.Success(result)(t) // Uses NoError internally
// }
func NoError(err error) Reader {
return func(t *testing.T) bool {
return assert.NoError(t, err)
}
}
// Error validates that there is an error.
//
// This is used to assert that operations fail as expected.
//
// Example:
//
// func TestError(t *testing.T) {
// err := validateInput("")
// assert.Error(err)(t) // Passes if err is not nil
//
// err2 := validateInput("valid")
// assert.Error(err2)(t) // Fails if err2 is nil
// }
func Error(err error) Reader {
return func(t *testing.T) bool {
return assert.Error(t, err)
}
}
// Success checks if a [Result] represents success.
//
// This is a convenience function for testing Result types from the fp-go library.
//
// Example:
//
// func TestSuccess(t *testing.T) {
// res := result.Of[int](42)
// assert.Success(res)(t) // Passes
//
// failedRes := result.Error[int](errors.New("failed"))
// assert.Success(failedRes)(t) // Fails
// }
func Success[T any](res Result[T]) Reader {
return NoError(result.ToError(res))
}
// Failure checks if a [Result] represents failure.
//
// This is a convenience function for testing Result types from the fp-go library.
//
// Example:
//
// func TestFailure(t *testing.T) {
// res := result.Error[int](errors.New("something went wrong"))
// assert.Failure(res)(t) // Passes
//
// successRes := result.Of[int](42)
// assert.Failure(successRes)(t) // Fails
// }
func Failure[T any](res Result[T]) Reader {
return Error(result.ToError(res))
}
// ArrayContains tests if a value is contained in an array.
//
// Example:
//
// func TestArrayContains(t *testing.T) {
// numbers := []int{1, 2, 3, 4, 5}
// assert.ArrayContains(3)(numbers)(t) // Passes
// assert.ArrayContains(10)(numbers)(t) // Fails
//
// names := []string{"Alice", "Bob", "Charlie"}
// assert.ArrayContains("Bob")(names)(t) // Passes
// }
func ArrayContains[T any](expected T) Kleisli[[]T] {
return func(actual []T) Reader {
return func(t *testing.T) bool {
return assert.Contains(t, actual, expected)
}
}
}
// ContainsKey tests if a key is contained in a map.
//
// Example:
//
// func TestContainsKey(t *testing.T) {
// config := map[string]int{"timeout": 30, "retries": 3}
// assert.ContainsKey[int]("timeout")(config)(t) // Passes
// assert.ContainsKey[int]("maxSize")(config)(t) // Fails
// }
func ContainsKey[T any, K comparable](expected K) Kleisli[map[K]T] {
return func(actual map[K]T) Reader {
return func(t *testing.T) bool {
return assert.Contains(t, actual, expected)
}
}
}
// NotContainsKey tests if a key is not contained in a map.
//
// Example:
//
// func TestNotContainsKey(t *testing.T) {
// config := map[string]int{"timeout": 30, "retries": 3}
// assert.NotContainsKey[int]("maxSize")(config)(t) // Passes
// assert.NotContainsKey[int]("timeout")(config)(t) // Fails
// }
func NotContainsKey[T any, K comparable](expected K) Kleisli[map[K]T] {
return func(actual map[K]T) Reader {
return func(t *testing.T) bool {
return assert.NotContains(t, actual, expected)
}
}
}
// That asserts that a particular predicate matches.
//
// This is a powerful function that allows you to create custom assertions using predicates.
//
// Example:
//
// func TestThat(t *testing.T) {
// // Test if a number is positive
// isPositive := func(n int) bool { return n > 0 }
// assert.That(isPositive)(42)(t) // Passes
// assert.That(isPositive)(-5)(t) // Fails
//
// // Test if a string is uppercase
// isUppercase := func(s string) bool { return s == strings.ToUpper(s) }
// assert.That(isUppercase)("HELLO")(t) // Passes
// assert.That(isUppercase)("Hello")(t) // Fails
//
// // Can be combined with Local for property testing
// type User struct { Age int }
// ageIsAdult := assert.Local(func(u User) int { return u.Age })(
// assert.That(func(age int) bool { return age >= 18 }),
// )
// user := User{Age: 25}
// ageIsAdult(user)(t) // Passes
// }
func That[T any](pred Predicate[T]) Kleisli[T] {
return func(a T) Reader {
return func(t *testing.T) bool {
if pred(a) {
return true
}
return assert.Fail(t, fmt.Sprintf("Preficate %v does not match value %v", pred, a))
}
}
}
// AllOf combines multiple assertion Readers into a single Reader that passes
// only if all assertions pass.
//
// This function uses boolean AND logic (MonoidAll) to combine the results of
// all assertions. If any assertion fails, the combined assertion fails.
//
// This is useful for grouping related assertions together and ensuring all
// conditions are met.
//
// Parameters:
// - readers: Array of assertion Readers to combine
//
// Returns:
// - A single Reader that performs all assertions and returns true only if all pass
//
// Example:
//
// func TestUser(t *testing.T) {
// user := User{Name: "Alice", Age: 30, Active: true}
// assertions := assert.AllOf([]assert.Reader{
// assert.Equal("Alice")(user.Name),
// assert.Equal(30)(user.Age),
// assert.Equal(true)(user.Active),
// })
// assertions(t)
// }
//
//go:inline
func AllOf(readers []Reader) Reader {
return reader.MonadReduceArrayM(readers, boolean.MonoidAll)
}
// RunAll executes a map of named test cases, running each as a subtest.
//
// This function creates a Reader that runs multiple named test cases using
// Go's t.Run for proper test isolation and reporting. Each test case is
// executed as a separate subtest with its own name.
//
// The function returns true only if all subtests pass. This allows for
// better test organization and clearer test output.
//
// Parameters:
// - testcases: Map of test names to assertion Readers
//
// Returns:
// - A Reader that executes all named test cases and returns true if all pass
//
// Example:
//
// func TestMathOperations(t *testing.T) {
// testcases := map[string]assert.Reader{
// "addition": assert.Equal(4)(2 + 2),
// "multiplication": assert.Equal(6)(2 * 3),
// "subtraction": assert.Equal(1)(3 - 2),
// }
// assert.RunAll(testcases)(t)
// }
//
//go:inline
func RunAll(testcases map[string]Reader) Reader {
return func(t *testing.T) bool {
current := true
for k, r := range testcases {
current = current && t.Run(k, func(t1 *testing.T) {
r(t1)
})
}
return current
}
}
// Local transforms a Reader that works on type R1 into a Reader that works on type R2,
// by providing a function that converts R2 to R1. This allows you to focus a test on a
// specific property or subset of a larger data structure.
//
// This is particularly useful when you have an assertion that operates on a specific field
// or property, and you want to apply it to a complete object. Instead of extracting the
// property and then asserting on it, you can transform the assertion to work directly
// on the whole object.
//
// Parameters:
// - f: A function that extracts or transforms R2 into R1
//
// Returns:
// - A function that transforms a Reader[R1, Reader] into a Reader[R2, Reader]
//
// Example:
//
// type User struct {
// Name string
// Age int
// }
//
// // Create an assertion that checks if age is positive
// ageIsPositive := assert.That(func(age int) bool { return age > 0 })
//
// // Focus this assertion on the Age field of User
// userAgeIsPositive := assert.Local(func(u User) int { return u.Age })(ageIsPositive)
//
// // Now we can test the whole User object
// user := User{Name: "Alice", Age: 30}
// userAgeIsPositive(user)(t)
//
//go:inline
func Local[R1, R2 any](f func(R2) R1) func(Kleisli[R1]) Kleisli[R2] {
return reader.Local[Reader](f)
}
// LocalL is similar to Local but uses a Lens to focus on a specific property.
// A Lens is a functional programming construct that provides a composable way to
// focus on a part of a data structure.
//
// This function is particularly useful when you want to focus a test on a specific
// field of a struct using a lens, making the code more declarative and composable.
// Lenses are often code-generated or predefined for common data structures.
//
// Parameters:
// - l: A Lens that focuses from type S to type T
//
// Returns:
// - A function that transforms a Reader[T, Reader] into a Reader[S, Reader]
//
// Example:
//
// type Person struct {
// Name string
// Email string
// }
//
// // Assume we have a lens that focuses on the Email field
// var emailLens = lens.Prop[Person, string]("Email")
//
// // Create an assertion for email format
// validEmail := assert.That(func(email string) bool {
// return strings.Contains(email, "@")
// })
//
// // Focus this assertion on the Email property using a lens
// validPersonEmail := assert.LocalL(emailLens)(validEmail)
//
// // Test a Person object
// person := Person{Name: "Bob", Email: "bob@example.com"}
// validPersonEmail(person)(t)
//
//go:inline
func LocalL[S, T any](l Lens[S, T]) func(Kleisli[T]) Kleisli[S] {
return reader.Local[Reader](l.Get)
}
// fromOptionalGetter is an internal helper that creates an assertion Reader from
// an optional getter function. It asserts that the optional value is present (Some).
func fromOptionalGetter[S, T any](getter func(S) option.Option[T], msgAndArgs ...any) Kleisli[S] {
return func(s S) Reader {
return func(t *testing.T) bool {
return assert.True(t, option.IsSome(getter(s)), msgAndArgs...)
}
}
}
// FromOptional creates an assertion that checks if an Optional can successfully extract a value.
// An Optional is an optic that represents an optional reference to a subpart of a data structure.
//
// This function is useful when you have an Optional optic and want to assert that the optional
// value is present (Some) rather than absent (None). The assertion passes if the Optional's
// GetOption returns Some, and fails if it returns None.
//
// This enables property-focused testing where you verify that a particular optional field or
// sub-structure exists and is accessible.
//
// Parameters:
// - opt: An Optional optic that focuses from type S to type T
//
// Returns:
// - A Reader that asserts the optional value is present when applied to a value of type S
//
// Example:
//
// type Config struct {
// Database *DatabaseConfig // Optional field
// }
//
// type DatabaseConfig struct {
// Host string
// Port int
// }
//
// // Create an Optional that focuses on the Database field
// dbOptional := optional.MakeOptional(
// func(c Config) option.Option[*DatabaseConfig] {
// if c.Database != nil {
// return option.Some(c.Database)
// }
// return option.None[*DatabaseConfig]()
// },
// func(c Config, db *DatabaseConfig) Config {
// c.Database = db
// return c
// },
// )
//
// // Assert that the database config is present
// hasDatabaseConfig := assert.FromOptional(dbOptional)
//
// config := Config{Database: &DatabaseConfig{Host: "localhost", Port: 5432}}
// hasDatabaseConfig(config)(t) // Passes
//
// emptyConfig := Config{Database: nil}
// hasDatabaseConfig(emptyConfig)(t) // Fails
//
//go:inline
func FromOptional[S, T any](opt Optional[S, T]) reader.Reader[S, Reader] {
return fromOptionalGetter(opt.GetOption, "Optional: %s", opt)
}
// FromPrism creates an assertion that checks if a Prism can successfully extract a value.
// A Prism is an optic used to select part of a sum type (tagged union or variant).
//
// This function is useful when you have a Prism optic and want to assert that a value
// matches a specific variant of a sum type. The assertion passes if the Prism's GetOption
// returns Some (meaning the value is of the expected variant), and fails if it returns None
// (meaning the value is a different variant).
//
// This enables variant-focused testing where you verify that a value is of a particular
// type or matches a specific condition within a sum type.
//
// Parameters:
// - p: A Prism optic that focuses from type S to type T
//
// Returns:
// - A Reader that asserts the prism successfully extracts when applied to a value of type S
//
// Example:
//
// type Result interface{ isResult() }
// type Success struct{ Value int }
// type Failure struct{ Error string }
//
// func (Success) isResult() {}
// func (Failure) isResult() {}
//
// // Create a Prism that focuses on Success variant
// successPrism := prism.MakePrism(
// func(r Result) option.Option[int] {
// if s, ok := r.(Success); ok {
// return option.Some(s.Value)
// }
// return option.None[int]()
// },
// func(v int) Result { return Success{Value: v} },
// )
//
// // Assert that the result is a Success
// isSuccess := assert.FromPrism(successPrism)
//
// result1 := Success{Value: 42}
// isSuccess(result1)(t) // Passes
//
// result2 := Failure{Error: "something went wrong"}
// isSuccess(result2)(t) // Fails
//
//go:inline
func FromPrism[S, T any](p Prism[S, T]) reader.Reader[S, Reader] {
return fromOptionalGetter(p.GetOption, "Prism: %s", p)
}

View File

@@ -16,94 +16,676 @@
package assert
import (
"fmt"
"errors"
"testing"
"github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
var (
errTest = fmt.Errorf("test failure")
// Eq is the equal predicate checking if objects are equal
Eq = eq.FromEquals(assert.ObjectsAreEqual)
)
func wrap1[T any](wrapped func(t assert.TestingT, expected, actual any, msgAndArgs ...any) bool, t *testing.T, expected T) result.Kleisli[T, T] {
return func(actual T) Result[T] {
ok := wrapped(t, expected, actual)
if ok {
return result.Of(actual)
func TestEqual(t *testing.T) {
t.Run("should pass when values are equal", func(t *testing.T) {
result := Equal(42)(42)(t)
if !result {
t.Error("Expected Equal to pass for equal values")
}
return result.Left[T](errTest)
}
}
})
// NotEqual tests if the expected and the actual values are not equal
func NotEqual[T any](t *testing.T, expected T) result.Kleisli[T, T] {
return wrap1(assert.NotEqual, t, expected)
}
// Equal tests if the expected and the actual values are equal
func Equal[T any](t *testing.T, expected T) result.Kleisli[T, T] {
return wrap1(assert.Equal, t, expected)
}
// Length tests if an array has the expected length
func Length[T any](t *testing.T, expected int) result.Kleisli[[]T, []T] {
return func(actual []T) Result[[]T] {
ok := assert.Len(t, actual, expected)
if ok {
return result.Of(actual)
t.Run("should fail when values are not equal", func(t *testing.T) {
mockT := &testing.T{}
result := Equal(42)(43)(mockT)
if result {
t.Error("Expected Equal to fail for different values")
}
return result.Left[[]T](errTest)
}
})
t.Run("should work with strings", func(t *testing.T) {
result := Equal("hello")("hello")(t)
if !result {
t.Error("Expected Equal to pass for equal strings")
}
})
}
// NoError validates that there is no error
func NoError[T any](t *testing.T) result.Operator[T, T] {
return func(actual Result[T]) Result[T] {
return result.MonadFold(actual, func(e error) Result[T] {
assert.NoError(t, e)
return result.Left[T](e)
}, func(value T) Result[T] {
assert.NoError(t, nil)
return result.Of(value)
func TestNotEqual(t *testing.T) {
t.Run("should pass when values are not equal", func(t *testing.T) {
result := NotEqual(42)(43)(t)
if !result {
t.Error("Expected NotEqual to pass for different values")
}
})
t.Run("should fail when values are equal", func(t *testing.T) {
mockT := &testing.T{}
result := NotEqual(42)(42)(mockT)
if result {
t.Error("Expected NotEqual to fail for equal values")
}
})
}
func TestArrayNotEmpty(t *testing.T) {
t.Run("should pass for non-empty array", func(t *testing.T) {
arr := []int{1, 2, 3}
result := ArrayNotEmpty(arr)(t)
if !result {
t.Error("Expected ArrayNotEmpty to pass for non-empty array")
}
})
t.Run("should fail for empty array", func(t *testing.T) {
mockT := &testing.T{}
arr := []int{}
result := ArrayNotEmpty(arr)(mockT)
if result {
t.Error("Expected ArrayNotEmpty to fail for empty array")
}
})
}
func TestRecordNotEmpty(t *testing.T) {
t.Run("should pass for non-empty map", func(t *testing.T) {
mp := map[string]int{"a": 1, "b": 2}
result := RecordNotEmpty(mp)(t)
if !result {
t.Error("Expected RecordNotEmpty to pass for non-empty map")
}
})
t.Run("should fail for empty map", func(t *testing.T) {
mockT := &testing.T{}
mp := map[string]int{}
result := RecordNotEmpty(mp)(mockT)
if result {
t.Error("Expected RecordNotEmpty to fail for empty map")
}
})
}
func TestArrayLength(t *testing.T) {
t.Run("should pass when length matches", func(t *testing.T) {
arr := []int{1, 2, 3}
result := ArrayLength[int](3)(arr)(t)
if !result {
t.Error("Expected ArrayLength to pass when length matches")
}
})
t.Run("should fail when length doesn't match", func(t *testing.T) {
mockT := &testing.T{}
arr := []int{1, 2, 3}
result := ArrayLength[int](5)(arr)(mockT)
if result {
t.Error("Expected ArrayLength to fail when length doesn't match")
}
})
t.Run("should work with empty array", func(t *testing.T) {
arr := []string{}
result := ArrayLength[string](0)(arr)(t)
if !result {
t.Error("Expected ArrayLength to pass for empty array with expected length 0")
}
})
}
func TestRecordLength(t *testing.T) {
t.Run("should pass when map length matches", func(t *testing.T) {
mp := map[string]int{"a": 1, "b": 2}
result := RecordLength[string, int](2)(mp)(t)
if !result {
t.Error("Expected RecordLength to pass when length matches")
}
})
t.Run("should fail when map length doesn't match", func(t *testing.T) {
mockT := &testing.T{}
mp := map[string]int{"a": 1}
result := RecordLength[string, int](3)(mp)(mockT)
if result {
t.Error("Expected RecordLength to fail when length doesn't match")
}
})
}
func TestStringLength(t *testing.T) {
t.Run("should pass when string length matches", func(t *testing.T) {
str := "hello"
result := StringLength[string, int](5)(str)(t)
if !result {
t.Error("Expected StringLength to pass when length matches")
}
})
t.Run("should fail when string length doesn't match", func(t *testing.T) {
mockT := &testing.T{}
str := "hello"
result := StringLength[string, int](10)(str)(mockT)
if result {
t.Error("Expected StringLength to fail when length doesn't match")
}
})
t.Run("should work with empty string", func(t *testing.T) {
str := ""
result := StringLength[string, int](0)(str)(t)
if !result {
t.Error("Expected StringLength to pass for empty string with expected length 0")
}
})
}
func TestNoError(t *testing.T) {
t.Run("should pass when error is nil", func(t *testing.T) {
result := NoError(nil)(t)
if !result {
t.Error("Expected NoError to pass when error is nil")
}
})
t.Run("should fail when error is not nil", func(t *testing.T) {
mockT := &testing.T{}
err := errors.New("test error")
result := NoError(err)(mockT)
if result {
t.Error("Expected NoError to fail when error is not nil")
}
})
}
func TestError(t *testing.T) {
t.Run("should pass when error is not nil", func(t *testing.T) {
err := errors.New("test error")
result := Error(err)(t)
if !result {
t.Error("Expected Error to pass when error is not nil")
}
})
t.Run("should fail when error is nil", func(t *testing.T) {
mockT := &testing.T{}
result := Error(nil)(mockT)
if result {
t.Error("Expected Error to fail when error is nil")
}
})
}
func TestSuccess(t *testing.T) {
t.Run("should pass for successful result", func(t *testing.T) {
res := result.Of(42)
result := Success(res)(t)
if !result {
t.Error("Expected Success to pass for successful result")
}
})
t.Run("should fail for error result", func(t *testing.T) {
mockT := &testing.T{}
res := result.Left[int](errors.New("test error"))
result := Success(res)(mockT)
if result {
t.Error("Expected Success to fail for error result")
}
})
}
func TestFailure(t *testing.T) {
t.Run("should pass for error result", func(t *testing.T) {
res := result.Left[int](errors.New("test error"))
result := Failure(res)(t)
if !result {
t.Error("Expected Failure to pass for error result")
}
})
t.Run("should fail for successful result", func(t *testing.T) {
mockT := &testing.T{}
res := result.Of(42)
result := Failure(res)(mockT)
if result {
t.Error("Expected Failure to fail for successful result")
}
})
}
func TestArrayContains(t *testing.T) {
t.Run("should pass when element is in array", func(t *testing.T) {
arr := []int{1, 2, 3, 4, 5}
result := ArrayContains(3)(arr)(t)
if !result {
t.Error("Expected ArrayContains to pass when element is in array")
}
})
t.Run("should fail when element is not in array", func(t *testing.T) {
mockT := &testing.T{}
arr := []int{1, 2, 3}
result := ArrayContains(10)(arr)(mockT)
if result {
t.Error("Expected ArrayContains to fail when element is not in array")
}
})
t.Run("should work with strings", func(t *testing.T) {
arr := []string{"apple", "banana", "cherry"}
result := ArrayContains("banana")(arr)(t)
if !result {
t.Error("Expected ArrayContains to pass for string element")
}
})
}
func TestContainsKey(t *testing.T) {
t.Run("should pass when key exists in map", func(t *testing.T) {
mp := map[string]int{"a": 1, "b": 2, "c": 3}
result := ContainsKey[int]("b")(mp)(t)
if !result {
t.Error("Expected ContainsKey to pass when key exists")
}
})
t.Run("should fail when key doesn't exist in map", func(t *testing.T) {
mockT := &testing.T{}
mp := map[string]int{"a": 1, "b": 2}
result := ContainsKey[int]("z")(mp)(mockT)
if result {
t.Error("Expected ContainsKey to fail when key doesn't exist")
}
})
}
func TestNotContainsKey(t *testing.T) {
t.Run("should pass when key doesn't exist in map", func(t *testing.T) {
mp := map[string]int{"a": 1, "b": 2}
result := NotContainsKey[int]("z")(mp)(t)
if !result {
t.Error("Expected NotContainsKey to pass when key doesn't exist")
}
})
t.Run("should fail when key exists in map", func(t *testing.T) {
mockT := &testing.T{}
mp := map[string]int{"a": 1, "b": 2}
result := NotContainsKey[int]("a")(mp)(mockT)
if result {
t.Error("Expected NotContainsKey to fail when key exists")
}
})
}
func TestThat(t *testing.T) {
t.Run("should pass when predicate is true", func(t *testing.T) {
isEven := func(n int) bool { return n%2 == 0 }
result := That(isEven)(42)(t)
if !result {
t.Error("Expected That to pass when predicate is true")
}
})
t.Run("should fail when predicate is false", func(t *testing.T) {
mockT := &testing.T{}
isEven := func(n int) bool { return n%2 == 0 }
result := That(isEven)(43)(mockT)
if result {
t.Error("Expected That to fail when predicate is false")
}
})
t.Run("should work with string predicates", func(t *testing.T) {
startsWithH := func(s string) bool { return len(s) > 0 && s[0] == 'h' }
result := That(startsWithH)("hello")(t)
if !result {
t.Error("Expected That to pass for string predicate")
}
})
}
func TestAllOf(t *testing.T) {
t.Run("should pass when all assertions pass", func(t *testing.T) {
assertions := AllOf([]Reader{
Equal(42)(42),
Equal("hello")("hello"),
ArrayNotEmpty([]int{1, 2, 3}),
})
}
result := assertions(t)
if !result {
t.Error("Expected AllOf to pass when all assertions pass")
}
})
t.Run("should fail when any assertion fails", func(t *testing.T) {
mockT := &testing.T{}
assertions := AllOf([]Reader{
Equal(42)(42),
Equal("hello")("goodbye"),
ArrayNotEmpty([]int{1, 2, 3}),
})
result := assertions(mockT)
if result {
t.Error("Expected AllOf to fail when any assertion fails")
}
})
t.Run("should work with empty array", func(t *testing.T) {
assertions := AllOf([]Reader{})
result := assertions(t)
if !result {
t.Error("Expected AllOf to pass for empty array")
}
})
t.Run("should combine multiple array assertions", func(t *testing.T) {
arr := []int{1, 2, 3, 4, 5}
assertions := AllOf([]Reader{
ArrayNotEmpty(arr),
ArrayLength[int](5)(arr),
ArrayContains(3)(arr),
})
result := assertions(t)
if !result {
t.Error("Expected AllOf to pass for multiple array assertions")
}
})
}
// ArrayContains tests if a value is contained in an array
func ArrayContains[T any](t *testing.T, expected T) result.Kleisli[[]T, []T] {
return func(actual []T) Result[[]T] {
ok := assert.Contains(t, actual, expected)
if ok {
return result.Of(actual)
func TestRunAll(t *testing.T) {
t.Run("should run all named test cases", func(t *testing.T) {
testcases := map[string]Reader{
"equality": Equal(42)(42),
"string_check": Equal("test")("test"),
"array_check": ArrayNotEmpty([]int{1, 2, 3}),
}
return result.Left[[]T](errTest)
}
result := RunAll(testcases)(t)
if !result {
t.Error("Expected RunAll to pass when all test cases pass")
}
})
// Note: Testing failure behavior of RunAll is tricky because subtests
// will actually fail in the test framework. The function works correctly
// as demonstrated by the passing test above.
t.Run("should work with empty test cases", func(t *testing.T) {
testcases := map[string]Reader{}
result := RunAll(testcases)(t)
if !result {
t.Error("Expected RunAll to pass for empty test cases")
}
})
}
// ContainsKey tests if a key is contained in a map
func ContainsKey[T any, K comparable](t *testing.T, expected K) result.Kleisli[map[K]T, map[K]T] {
return func(actual map[K]T) Result[map[K]T] {
ok := assert.Contains(t, actual, expected)
if ok {
return result.Of(actual)
func TestEq(t *testing.T) {
t.Run("should return true for equal values", func(t *testing.T) {
if !Eq.Equals(42, 42) {
t.Error("Expected Eq to return true for equal integers")
}
return result.Left[map[K]T](errTest)
}
})
t.Run("should return false for different values", func(t *testing.T) {
if Eq.Equals(42, 43) {
t.Error("Expected Eq to return false for different integers")
}
})
t.Run("should work with strings", func(t *testing.T) {
if !Eq.Equals("hello", "hello") {
t.Error("Expected Eq to return true for equal strings")
}
if Eq.Equals("hello", "world") {
t.Error("Expected Eq to return false for different strings")
}
})
t.Run("should work with slices", func(t *testing.T) {
arr1 := []int{1, 2, 3}
arr2 := []int{1, 2, 3}
if !Eq.Equals(arr1, arr2) {
t.Error("Expected Eq to return true for equal slices")
}
})
}
// NotContainsKey tests if a key is not contained in a map
func NotContainsKey[T any, K comparable](t *testing.T, expected K) result.Kleisli[map[K]T, map[K]T] {
return func(actual map[K]T) Result[map[K]T] {
ok := assert.NotContains(t, actual, expected)
if ok {
return result.Of(actual)
}
return result.Left[map[K]T](errTest)
func TestLocal(t *testing.T) {
type User struct {
Name string
Age int
}
t.Run("should focus assertion on a property", func(t *testing.T) {
// Create an assertion that checks if age is positive
ageIsPositive := That(func(age int) bool { return age > 0 })
// Focus this assertion on the Age field of User
userAgeIsPositive := Local(func(u User) int { return u.Age })(ageIsPositive)
// Test with a user who has a positive age
user := User{Name: "Alice", Age: 30}
result := userAgeIsPositive(user)(t)
if !result {
t.Error("Expected focused assertion to pass for positive age")
}
})
t.Run("should fail when focused property doesn't match", func(t *testing.T) {
mockT := &testing.T{}
ageIsPositive := That(func(age int) bool { return age > 0 })
userAgeIsPositive := Local(func(u User) int { return u.Age })(ageIsPositive)
// Test with a user who has zero age
user := User{Name: "Bob", Age: 0}
result := userAgeIsPositive(user)(mockT)
if result {
t.Error("Expected focused assertion to fail for zero age")
}
})
t.Run("should compose with other assertions", func(t *testing.T) {
// Create multiple focused assertions
nameNotEmpty := Local(func(u User) string { return u.Name })(
That(func(name string) bool { return len(name) > 0 }),
)
ageInRange := Local(func(u User) int { return u.Age })(
That(func(age int) bool { return age >= 18 && age <= 100 }),
)
user := User{Name: "Charlie", Age: 25}
assertions := AllOf([]Reader{
nameNotEmpty(user),
ageInRange(user),
})
result := assertions(t)
if !result {
t.Error("Expected composed focused assertions to pass")
}
})
t.Run("should work with Equal assertion", func(t *testing.T) {
// Focus Equal assertion on Name field
nameIsAlice := Local(func(u User) string { return u.Name })(Equal("Alice"))
user := User{Name: "Alice", Age: 30}
result := nameIsAlice(user)(t)
if !result {
t.Error("Expected focused Equal assertion to pass")
}
})
}
func TestLocalL(t *testing.T) {
// Note: LocalL requires lens package which provides lens operations.
// This test demonstrates the concept, but actual usage would require
// proper lens definitions.
t.Run("conceptual test for LocalL", func(t *testing.T) {
// LocalL is similar to Local but uses lenses for focusing.
// It would be used like:
// validEmail := That(func(email string) bool { return strings.Contains(email, "@") })
// validPersonEmail := LocalL(emailLens)(validEmail)
//
// The actual implementation would require lens definitions from the lens package.
// This test serves as documentation for the intended usage.
})
}
func TestFromOptional(t *testing.T) {
type DatabaseConfig struct {
Host string
Port int
}
type Config struct {
Database *DatabaseConfig
}
// Create an Optional that focuses on the Database field
dbOptional := Optional[Config, *DatabaseConfig]{
GetOption: func(c Config) option.Option[*DatabaseConfig] {
if c.Database != nil {
return option.Of(c.Database)
}
return option.None[*DatabaseConfig]()
},
Set: func(db *DatabaseConfig) func(Config) Config {
return func(c Config) Config {
c.Database = db
return c
}
},
}
t.Run("should pass when optional value is present", func(t *testing.T) {
config := Config{Database: &DatabaseConfig{Host: "localhost", Port: 5432}}
hasDatabaseConfig := FromOptional(dbOptional)
result := hasDatabaseConfig(config)(t)
if !result {
t.Error("Expected FromOptional to pass when optional value is present")
}
})
t.Run("should fail when optional value is absent", func(t *testing.T) {
mockT := &testing.T{}
emptyConfig := Config{Database: nil}
hasDatabaseConfig := FromOptional(dbOptional)
result := hasDatabaseConfig(emptyConfig)(mockT)
if result {
t.Error("Expected FromOptional to fail when optional value is absent")
}
})
t.Run("should work with nested optionals", func(t *testing.T) {
type AdvancedSettings struct {
Cache bool
}
type Settings struct {
Advanced *AdvancedSettings
}
advancedOptional := Optional[Settings, *AdvancedSettings]{
GetOption: func(s Settings) option.Option[*AdvancedSettings] {
if s.Advanced != nil {
return option.Of(s.Advanced)
}
return option.None[*AdvancedSettings]()
},
Set: func(adv *AdvancedSettings) func(Settings) Settings {
return func(s Settings) Settings {
s.Advanced = adv
return s
}
},
}
settings := Settings{Advanced: &AdvancedSettings{Cache: true}}
hasAdvanced := FromOptional(advancedOptional)
result := hasAdvanced(settings)(t)
if !result {
t.Error("Expected FromOptional to pass for nested optional")
}
})
}
// Helper types for Prism testing
type PrismTestResult interface {
isPrismTestResult()
}
type PrismTestSuccess struct {
Value int
}
type PrismTestFailure struct {
Error string
}
func (PrismTestSuccess) isPrismTestResult() {}
func (PrismTestFailure) isPrismTestResult() {}
func TestFromPrism(t *testing.T) {
// Create a Prism that focuses on Success variant using prism.MakePrism
successPrism := prism.MakePrism(
func(r PrismTestResult) option.Option[int] {
if s, ok := r.(PrismTestSuccess); ok {
return option.Of(s.Value)
}
return option.None[int]()
},
func(v int) PrismTestResult {
return PrismTestSuccess{Value: v}
},
)
// Create a Prism that focuses on Failure variant
failurePrism := prism.MakePrism(
func(r PrismTestResult) option.Option[string] {
if f, ok := r.(PrismTestFailure); ok {
return option.Of(f.Error)
}
return option.None[string]()
},
func(err string) PrismTestResult {
return PrismTestFailure{Error: err}
},
)
t.Run("should pass when prism successfully extracts", func(t *testing.T) {
result := PrismTestSuccess{Value: 42}
isSuccess := FromPrism(successPrism)
testResult := isSuccess(result)(t)
if !testResult {
t.Error("Expected FromPrism to pass when prism extracts successfully")
}
})
t.Run("should fail when prism cannot extract", func(t *testing.T) {
mockT := &testing.T{}
result := PrismTestFailure{Error: "something went wrong"}
isSuccess := FromPrism(successPrism)
testResult := isSuccess(result)(mockT)
if testResult {
t.Error("Expected FromPrism to fail when prism cannot extract")
}
})
t.Run("should work with failure prism", func(t *testing.T) {
result := PrismTestFailure{Error: "test error"}
isFailure := FromPrism(failurePrism)
testResult := isFailure(result)(t)
if !testResult {
t.Error("Expected FromPrism to pass for failure prism on failure result")
}
})
t.Run("should fail with failure prism on success result", func(t *testing.T) {
mockT := &testing.T{}
result := PrismTestSuccess{Value: 100}
isFailure := FromPrism(failurePrism)
testResult := isFailure(result)(mockT)
if testResult {
t.Error("Expected FromPrism to fail for failure prism on success result")
}
})
}

235
v2/assert/example_test.go Normal file
View File

@@ -0,0 +1,235 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package assert_test
import (
"errors"
"strings"
"testing"
"github.com/IBM/fp-go/v2/assert"
"github.com/IBM/fp-go/v2/result"
)
// Example_basicAssertions demonstrates basic equality and inequality assertions
func Example_basicAssertions() {
// This would be in a real test function
var t *testing.T // placeholder for example
// Basic equality
value := 42
assert.Equal(42)(value)(t)
// String equality
name := "Alice"
assert.Equal("Alice")(name)(t)
// Inequality
assert.NotEqual(10)(value)(t)
}
// Example_arrayAssertions demonstrates array-related assertions
func Example_arrayAssertions() {
var t *testing.T // placeholder for example
numbers := []int{1, 2, 3, 4, 5}
// Check array is not empty
assert.ArrayNotEmpty(numbers)(t)
// Check array length
assert.ArrayLength[int](5)(numbers)(t)
// Check array contains a value
assert.ArrayContains(3)(numbers)(t)
}
// Example_mapAssertions demonstrates map-related assertions
func Example_mapAssertions() {
var t *testing.T // placeholder for example
config := map[string]int{
"timeout": 30,
"retries": 3,
"maxSize": 1000,
}
// Check map is not empty
assert.RecordNotEmpty(config)(t)
// Check map length
assert.RecordLength[string, int](3)(config)(t)
// Check map contains key
assert.ContainsKey[int]("timeout")(config)(t)
// Check map does not contain key
assert.NotContainsKey[int]("unknown")(config)(t)
}
// Example_errorAssertions demonstrates error-related assertions
func Example_errorAssertions() {
var t *testing.T // placeholder for example
// Assert no error
err := doSomethingSuccessful()
assert.NoError(err)(t)
// Assert error exists
err2 := doSomethingThatFails()
assert.Error(err2)(t)
}
// Example_resultAssertions demonstrates Result type assertions
func Example_resultAssertions() {
var t *testing.T // placeholder for example
// Assert success
successResult := result.Of[int](42)
assert.Success(successResult)(t)
// Assert failure
failureResult := result.Left[int](errors.New("something went wrong"))
assert.Failure(failureResult)(t)
}
// Example_predicateAssertions demonstrates custom predicate assertions
func Example_predicateAssertions() {
var t *testing.T // placeholder for example
// Test if a number is positive
isPositive := func(n int) bool { return n > 0 }
assert.That(isPositive)(42)(t)
// Test if a string is uppercase
isUppercase := func(s string) bool { return s == strings.ToUpper(s) }
assert.That(isUppercase)("HELLO")(t)
// Test if a number is even
isEven := func(n int) bool { return n%2 == 0 }
assert.That(isEven)(10)(t)
}
// Example_allOf demonstrates combining multiple assertions
func Example_allOf() {
var t *testing.T // placeholder for example
type User struct {
Name string
Age int
Active bool
}
user := User{Name: "Alice", Age: 30, Active: true}
// Combine multiple assertions
assertions := assert.AllOf([]assert.Reader{
assert.Equal("Alice")(user.Name),
assert.Equal(30)(user.Age),
assert.Equal(true)(user.Active),
})
assertions(t)
}
// Example_runAll demonstrates running named test cases
func Example_runAll() {
var t *testing.T // placeholder for example
testcases := map[string]assert.Reader{
"addition": assert.Equal(4)(2 + 2),
"multiplication": assert.Equal(6)(2 * 3),
"subtraction": assert.Equal(1)(3 - 2),
"division": assert.Equal(2)(10 / 5),
}
assert.RunAll(testcases)(t)
}
// Example_local demonstrates focusing assertions on specific properties
func Example_local() {
var t *testing.T // placeholder for example
type User struct {
Name string
Age int
}
// Create an assertion that checks if age is positive
ageIsPositive := assert.That(func(age int) bool { return age > 0 })
// Focus this assertion on the Age field of User
userAgeIsPositive := assert.Local(func(u User) int { return u.Age })(ageIsPositive)
// Now we can test the whole User object
user := User{Name: "Alice", Age: 30}
userAgeIsPositive(user)(t)
}
// Example_composableAssertions demonstrates building complex assertions
func Example_composableAssertions() {
var t *testing.T // placeholder for example
type Config struct {
Host string
Port int
Timeout int
Retries int
}
config := Config{
Host: "localhost",
Port: 8080,
Timeout: 30,
Retries: 3,
}
// Create focused assertions for each field
validHost := assert.Local(func(c Config) string { return c.Host })(
assert.StringNotEmpty,
)
validPort := assert.Local(func(c Config) int { return c.Port })(
assert.That(func(p int) bool { return p > 0 && p < 65536 }),
)
validTimeout := assert.Local(func(c Config) int { return c.Timeout })(
assert.That(func(t int) bool { return t > 0 }),
)
validRetries := assert.Local(func(c Config) int { return c.Retries })(
assert.That(func(r int) bool { return r >= 0 }),
)
// Combine all assertions
validConfig := assert.AllOf([]assert.Reader{
validHost(config),
validPort(config),
validTimeout(config),
validRetries(config),
})
validConfig(t)
}
// Helper functions for examples
func doSomethingSuccessful() error {
return nil
}
func doSomethingThatFails() error {
return errors.New("operation failed")
}

View File

@@ -1,7 +1,22 @@
package assert
import "github.com/IBM/fp-go/v2/result"
import (
"testing"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/optics/optional"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/predicate"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/result"
)
type (
Result[T any] = result.Result[T]
Result[T any] = result.Result[T]
Reader = reader.Reader[*testing.T, bool]
Kleisli[T any] = reader.Reader[T, Reader]
Predicate[T any] = predicate.Predicate[T]
Lens[S, T any] = lens.Lens[S, T]
Optional[S, T any] = optional.Optional[S, T]
Prism[S, T any] = prism.Prism[S, T]
)

View File

@@ -8,5 +8,5 @@ import (
// BuilderPrism createa a [Prism] that converts between a builder and its type
func BuilderPrism[T any, B Builder[T]](creator func(T) B) Prism[B, T] {
return prism.MakePrism(F.Flow2(B.Build, result.ToOption[T]), creator)
return prism.MakePrismWithName(F.Flow2(B.Build, result.ToOption[T]), creator, "BuilderPrism")
}

View File

@@ -382,7 +382,7 @@ func BenchmarkToString(b *testing.B) {
data := []byte("Hello, World!")
b.Run("small", func(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = ToString(data)
}
})
@@ -393,7 +393,7 @@ func BenchmarkToString(b *testing.B) {
large[i] = byte(i % 256)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = ToString(large)
}
})
@@ -402,7 +402,7 @@ func BenchmarkToString(b *testing.B) {
func BenchmarkSize(b *testing.B) {
data := []byte("Hello, World!")
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Size(data)
}
}
@@ -412,7 +412,7 @@ func BenchmarkMonoidConcat(b *testing.B) {
c := []byte(" World")
b.Run("small slices", func(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Monoid.Concat(a, c)
}
})
@@ -421,7 +421,7 @@ func BenchmarkMonoidConcat(b *testing.B) {
large1 := make([]byte, 10000)
large2 := make([]byte, 10000)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Monoid.Concat(large1, large2)
}
})
@@ -436,7 +436,7 @@ func BenchmarkConcatAll(b *testing.B) {
}
b.Run("few slices", func(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = ConcatAll(slices...)
}
})
@@ -447,7 +447,7 @@ func BenchmarkConcatAll(b *testing.B) {
many[i] = []byte{byte(i)}
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = ConcatAll(many...)
}
})
@@ -458,13 +458,13 @@ func BenchmarkOrdCompare(b *testing.B) {
c := []byte("abd")
b.Run("equal", func(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Ord.Compare(a, a)
}
})
b.Run("different", func(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Ord.Compare(a, c)
}
})
@@ -474,7 +474,7 @@ func BenchmarkOrdCompare(b *testing.B) {
large2 := make([]byte, 10000)
large2[9999] = 1
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Ord.Compare(large1, large2)
}
})

View File

@@ -53,17 +53,20 @@ var (
// structInfo holds information about a struct that needs lens generation
type structInfo struct {
Name string
Fields []fieldInfo
Imports map[string]string // package path -> alias
Name string
TypeParams string // e.g., "[T any]" or "[K comparable, V any]" - for type declarations
TypeParamNames string // e.g., "[T]" or "[K, V]" - for type usage in function signatures
Fields []fieldInfo
Imports map[string]string // package path -> alias
}
// fieldInfo holds information about a struct field
type fieldInfo struct {
Name string
TypeName string
BaseType string // TypeName without leading * for pointer types
IsOptional bool // true if field is a pointer or has json omitempty tag
Name string
TypeName string
BaseType string // TypeName without leading * for pointer types
IsOptional bool // true if field is a pointer or has json omitempty tag
IsComparable bool // true if the type is comparable (can use ==)
}
// templateData holds data for template rendering
@@ -74,64 +77,95 @@ type templateData struct {
const lensStructTemplate = `
// {{.Name}}Lenses provides lenses for accessing fields of {{.Name}}
type {{.Name}}Lenses struct {
type {{.Name}}Lenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
{{.Name}} {{if .IsOptional}}LO.LensO[{{$.Name}}, {{.TypeName}}]{{else}}L.Lens[{{$.Name}}, {{.TypeName}}]{{end}}
{{.Name}} L.Lens[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
// optional fields
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O LO.LensO[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
}
// {{.Name}}RefLenses provides lenses for accessing fields of {{.Name}} via a reference to {{.Name}}
type {{.Name}}RefLenses struct {
type {{.Name}}RefLenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
{{.Name}} {{if .IsOptional}}LO.LensO[*{{$.Name}}, {{.TypeName}}]{{else}}L.Lens[*{{$.Name}}, {{.TypeName}}]{{end}}
{{.Name}} L.Lens[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
// optional fields
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O LO.LensO[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
}
`
const lensConstructorTemplate = `
// Make{{.Name}}Lenses creates a new {{.Name}}Lenses with lenses for all fields
func Make{{.Name}}Lenses() {{.Name}}Lenses {
func Make{{.Name}}Lenses{{.TypeParams}}() {{.Name}}Lenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
iso{{.Name}} := I.FromZero[{{.TypeName}}]()
lens{{.Name}} := L.MakeLens(
func(s {{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s {{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) {{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}}O := LO.FromIso[{{$.Name}}{{$.TypeParamNames}}](IO.FromZero[{{.TypeName}}]())(lens{{.Name}})
{{- end}}
{{- end}}
return {{.Name}}Lenses{
return {{.Name}}Lenses{{.TypeParamNames}}{
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
{{.Name}}: L.MakeLens(
func(s {{$.Name}}) O.Option[{{.TypeName}}] { return iso{{.Name}}.Get(s.{{.Name}}) },
func(s {{$.Name}}, v O.Option[{{.TypeName}}]) {{$.Name}} { s.{{.Name}} = iso{{.Name}}.ReverseGet(v); return s },
),
{{- else}}
{{.Name}}: L.MakeLens(
func(s {{$.Name}}) {{.TypeName}} { return s.{{.Name}} },
func(s {{$.Name}}, v {{.TypeName}}) {{$.Name}} { s.{{.Name}} = v; return s },
),
{{.Name}}: lens{{.Name}},
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O: lens{{.Name}}O,
{{- end}}
{{- end}}
}
}
// Make{{.Name}}RefLenses creates a new {{.Name}}RefLenses with lenses for all fields
func Make{{.Name}}RefLenses() {{.Name}}RefLenses {
func Make{{.Name}}RefLenses{{.TypeParams}}() {{.Name}}RefLenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
{{- if .IsOptional}}
iso{{.Name}} := I.FromZero[{{.TypeName}}]()
{{- end}}
{{- end}}
return {{.Name}}RefLenses{
{{- range .Fields}}
{{- if .IsOptional}}
{{.Name}}: L.MakeLensRef(
func(s *{{$.Name}}) O.Option[{{.TypeName}}] { return iso{{.Name}}.Get(s.{{.Name}}) },
func(s *{{$.Name}}, v O.Option[{{.TypeName}}]) *{{$.Name}} { s.{{.Name}} = iso{{.Name}}.ReverseGet(v); return s },
),
{{- if .IsComparable}}
lens{{.Name}} := L.MakeLensStrict(
func(s *{{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- else}}
{{.Name}}: L.MakeLensRef(
func(s *{{$.Name}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}, v {{.TypeName}}) *{{$.Name}} { s.{{.Name}} = v; return s },
),
lens{{.Name}} := L.MakeLensRef(
func(s *{{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- end}}
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}}O := LO.FromIso[*{{$.Name}}{{$.TypeParamNames}}](IO.FromZero[{{.TypeName}}]())(lens{{.Name}})
{{- end}}
{{- end}}
return {{.Name}}RefLenses{{.TypeParamNames}}{
// mandatory lenses
{{- range .Fields}}
{{.Name}}: lens{{.Name}},
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O: lens{{.Name}}O,
{{- end}}
{{- end}}
}
@@ -257,6 +291,259 @@ func isPointerType(expr ast.Expr) bool {
return ok
}
// isComparableType checks if a type expression represents a comparable type.
// Comparable types in Go include:
// - Basic types (bool, numeric types, string)
// - Pointer types
// - Channel types
// - Interface types
// - Structs where all fields are comparable
// - Arrays where the element type is comparable
//
// Non-comparable types include:
// - Slices
// - Maps
// - Functions
//
// typeParams is a map of type parameter names to their constraints (e.g., "T" -> "any", "K" -> "comparable")
func isComparableType(expr ast.Expr, typeParams map[string]string) bool {
switch t := expr.(type) {
case *ast.Ident:
// Check if this is a type parameter
if constraint, isTypeParam := typeParams[t.Name]; isTypeParam {
// Type parameter - check its constraint
return constraint == "comparable"
}
// Basic types and named types
// We assume named types are comparable unless they're known non-comparable types
name := t.Name
// Known non-comparable built-in types
if name == "error" {
// error is an interface, which is comparable
return true
}
// Most basic types and named types are comparable
// We can't determine if a custom type is comparable without type checking,
// so we assume it is (conservative approach)
return true
case *ast.StarExpr:
// Pointer types are always comparable
return true
case *ast.ArrayType:
// Arrays are comparable if their element type is comparable
if t.Len == nil {
// This is a slice (no length), slices are not comparable
return false
}
// Fixed-size array, check element type
return isComparableType(t.Elt, typeParams)
case *ast.MapType:
// Maps are not comparable
return false
case *ast.FuncType:
// Functions are not comparable
return false
case *ast.InterfaceType:
// Interface types are comparable
return true
case *ast.StructType:
// Structs are comparable if all fields are comparable
// We can't easily determine this without full type information,
// so we conservatively return false for struct literals
return false
case *ast.SelectorExpr:
// Qualified identifier (e.g., pkg.Type)
// We can't determine comparability without type information
// Check for known non-comparable types from standard library
if ident, ok := t.X.(*ast.Ident); ok {
pkgName := ident.Name
typeName := t.Sel.Name
// Check for known non-comparable types
if pkgName == "context" && typeName == "Context" {
// context.Context is an interface, which is comparable
return true
}
// For other qualified types, we assume they're comparable
// This is a conservative approach
}
return true
case *ast.IndexExpr, *ast.IndexListExpr:
// Generic types - we can't determine comparability without type information
// For common generic types, we can make educated guesses
var baseExpr ast.Expr
if idx, ok := t.(*ast.IndexExpr); ok {
baseExpr = idx.X
} else if idxList, ok := t.(*ast.IndexListExpr); ok {
baseExpr = idxList.X
}
if sel, ok := baseExpr.(*ast.SelectorExpr); ok {
if ident, ok := sel.X.(*ast.Ident); ok {
pkgName := ident.Name
typeName := sel.Sel.Name
// Check for known non-comparable generic types
if pkgName == "option" && typeName == "Option" {
// Option types are not comparable (they contain a slice internally)
return false
}
if pkgName == "either" && typeName == "Either" {
// Either types are not comparable
return false
}
}
}
// For other generic types, conservatively assume not comparable
log.Printf("Not comparable type: %v\n", t)
return false
case *ast.ChanType:
// Channel types are comparable
return true
default:
// Unknown type, conservatively assume not comparable
return false
}
}
// embeddedFieldResult holds both the field info and its AST type for import extraction
type embeddedFieldResult struct {
fieldInfo fieldInfo
fieldType ast.Expr
}
// extractEmbeddedFields extracts fields from an embedded struct type
// It returns a slice of embeddedFieldResult for all exported fields in the embedded struct
// typeParamsMap contains the type parameters of the parent struct (for checking comparability)
func extractEmbeddedFields(embedType ast.Expr, fileImports map[string]string, file *ast.File, typeParamsMap map[string]string) []embeddedFieldResult {
var results []embeddedFieldResult
// Get the type name of the embedded field
var typeName string
var typeIdent *ast.Ident
switch t := embedType.(type) {
case *ast.Ident:
// Direct embedded type: type MyStruct struct { EmbeddedType }
typeName = t.Name
typeIdent = t
case *ast.StarExpr:
// Pointer embedded type: type MyStruct struct { *EmbeddedType }
if ident, ok := t.X.(*ast.Ident); ok {
typeName = ident.Name
typeIdent = ident
}
case *ast.SelectorExpr:
// Qualified embedded type: type MyStruct struct { pkg.EmbeddedType }
// We can't easily resolve this without full type information
// For now, skip these
return results
}
if typeName == "" || typeIdent == nil {
return results
}
// Find the struct definition in the same file
var embeddedStructType *ast.StructType
ast.Inspect(file, func(n ast.Node) bool {
if ts, ok := n.(*ast.TypeSpec); ok {
if ts.Name.Name == typeName {
if st, ok := ts.Type.(*ast.StructType); ok {
embeddedStructType = st
return false
}
}
}
return true
})
if embeddedStructType == nil {
// Struct not found in this file, might be from another package
return results
}
// Extract fields from the embedded struct
for _, field := range embeddedStructType.Fields.List {
// Skip embedded fields within embedded structs (for now, to avoid infinite recursion)
if len(field.Names) == 0 {
continue
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
fieldTypeName := getTypeName(field.Type)
isOptional := false
baseType := fieldTypeName
// Check if field is optional
if isPointerType(field.Type) {
isOptional = true
baseType = strings.TrimPrefix(fieldTypeName, "*")
} else if hasOmitEmpty(field.Tag) {
isOptional = true
}
// Check if the type is comparable
isComparable := isComparableType(field.Type, typeParamsMap)
results = append(results, embeddedFieldResult{
fieldInfo: fieldInfo{
Name: name.Name,
TypeName: fieldTypeName,
BaseType: baseType,
IsOptional: isOptional,
IsComparable: isComparable,
},
fieldType: field.Type,
})
}
}
}
return results
}
// extractTypeParams extracts type parameters from a type spec
// Returns two strings: full params like "[T any]" and names only like "[T]"
func extractTypeParams(typeSpec *ast.TypeSpec) (string, string) {
if typeSpec.TypeParams == nil || len(typeSpec.TypeParams.List) == 0 {
return "", ""
}
var params []string
var names []string
for _, field := range typeSpec.TypeParams.List {
for _, name := range field.Names {
constraint := getTypeName(field.Type)
params = append(params, name.Name+" "+constraint)
names = append(names, name.Name)
}
}
fullParams := "[" + strings.Join(params, ", ") + "]"
nameParams := "[" + strings.Join(names, ", ") + "]"
return fullParams, nameParams
}
// buildTypeParamsMap creates a map of type parameter names to their constraints
// e.g., for "type Box[T any, K comparable]", returns {"T": "any", "K": "comparable"}
func buildTypeParamsMap(typeSpec *ast.TypeSpec) map[string]string {
typeParamsMap := make(map[string]string)
if typeSpec.TypeParams == nil || len(typeSpec.TypeParams.List) == 0 {
return typeParamsMap
}
for _, field := range typeSpec.TypeParams.List {
constraint := getTypeName(field.Type)
for _, name := range field.Names {
typeParamsMap[name.Name] = constraint
}
}
return typeParamsMap
}
// parseFile parses a Go file and extracts structs with lens annotations
func parseFile(filename string) ([]structInfo, string, error) {
fset := token.NewFileSet()
@@ -320,9 +607,27 @@ func parseFile(filename string) ([]structInfo, string, error) {
var fields []fieldInfo
structImports := make(map[string]string)
// Build type parameters map for this struct
typeParamsMap := buildTypeParamsMap(typeSpec)
for _, field := range structType.Fields.List {
if len(field.Names) == 0 {
// Embedded field, skip for now
// Embedded field - promote its fields
embeddedResults := extractEmbeddedFields(field.Type, fileImports, node, typeParamsMap)
for _, embResult := range embeddedResults {
// Extract imports from embedded field's type
fieldImports := make(map[string]string)
extractImports(embResult.fieldType, fieldImports)
// Resolve package names to full import paths
for pkgName := range fieldImports {
if importPath, ok := fileImports[pkgName]; ok {
structImports[importPath] = pkgName
}
}
fields = append(fields, embResult.fieldInfo)
}
continue
}
for _, name := range field.Names {
@@ -331,6 +636,7 @@ func parseFile(filename string) ([]structInfo, string, error) {
typeName := getTypeName(field.Type)
isOptional := false
baseType := typeName
isComparable := false
// Check if field is optional:
// 1. Pointer types are always optional
@@ -344,6 +650,11 @@ func parseFile(filename string) ([]structInfo, string, error) {
isOptional = true
}
// Check if the type is comparable (for non-optional fields)
// For optional fields, we don't need to check since they use LensO
isComparable = isComparableType(field.Type, typeParamsMap)
// log.Printf("field %s, type: %v, isComparable: %b\n", name, field.Type, isComparable)
// Extract imports from this field's type
fieldImports := make(map[string]string)
extractImports(field.Type, fieldImports)
@@ -356,20 +667,24 @@ func parseFile(filename string) ([]structInfo, string, error) {
}
fields = append(fields, fieldInfo{
Name: name.Name,
TypeName: typeName,
BaseType: baseType,
IsOptional: isOptional,
Name: name.Name,
TypeName: typeName,
BaseType: baseType,
IsOptional: isOptional,
IsComparable: isComparable,
})
}
}
}
if len(fields) > 0 {
typeParams, typeParamNames := extractTypeParams(typeSpec)
structs = append(structs, structInfo{
Name: typeSpec.Name.Name,
Fields: fields,
Imports: structImports,
Name: typeSpec.Name.Name,
TypeParams: typeParams,
TypeParamNames: typeParamNames,
Fields: fields,
Imports: structImports,
})
}
@@ -469,8 +784,8 @@ func generateLensHelpers(dir, filename string, verbose bool) error {
// Standard fp-go imports always needed
f.WriteString("\tL \"github.com/IBM/fp-go/v2/optics/lens\"\n")
f.WriteString("\tLO \"github.com/IBM/fp-go/v2/optics/lens/option\"\n")
f.WriteString("\tO \"github.com/IBM/fp-go/v2/option\"\n")
f.WriteString("\tI \"github.com/IBM/fp-go/v2/optics/iso/option\"\n")
// f.WriteString("\tO \"github.com/IBM/fp-go/v2/option\"\n")
f.WriteString("\tIO \"github.com/IBM/fp-go/v2/optics/iso/option\"\n")
// Add additional imports collected from field types
for importPath, alias := range allImports {

View File

@@ -168,6 +168,91 @@ func TestIsPointerType(t *testing.T) {
}
}
func TestIsComparableType(t *testing.T) {
tests := []struct {
name string
code string
expected bool
}{
{
name: "basic type - string",
code: "type T struct { F string }",
expected: true,
},
{
name: "basic type - int",
code: "type T struct { F int }",
expected: true,
},
{
name: "basic type - bool",
code: "type T struct { F bool }",
expected: true,
},
{
name: "pointer type",
code: "type T struct { F *string }",
expected: true,
},
{
name: "slice type - not comparable",
code: "type T struct { F []string }",
expected: false,
},
{
name: "map type - not comparable",
code: "type T struct { F map[string]int }",
expected: false,
},
{
name: "array type - comparable if element is",
code: "type T struct { F [5]int }",
expected: true,
},
{
name: "interface type",
code: "type T struct { F interface{} }",
expected: true,
},
{
name: "channel type",
code: "type T struct { F chan int }",
expected: true,
},
{
name: "function type - not comparable",
code: "type T struct { F func() }",
expected: false,
},
{
name: "struct literal - conservatively not comparable",
code: "type T struct { F struct{ X int } }",
expected: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
fset := token.NewFileSet()
file, err := parser.ParseFile(fset, "", "package test\n"+tt.code, 0)
require.NoError(t, err)
var fieldType ast.Expr
ast.Inspect(file, func(n ast.Node) bool {
if field, ok := n.(*ast.Field); ok && len(field.Names) > 0 {
fieldType = field.Type
return false
}
return true
})
require.NotNil(t, fieldType)
result := isComparableType(fieldType, map[string]string{})
assert.Equal(t, tt.expected, result)
})
}
}
func TestHasOmitEmpty(t *testing.T) {
tests := []struct {
name string
@@ -337,6 +422,167 @@ type Config struct {
assert.False(t, config.Fields[4].IsOptional, "Required field without omitempty should not be optional")
}
func TestParseFileWithComparableTypes(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type TypeTest struct {
Name string
Age int
Pointer *string
Slice []string
Map map[string]int
Channel chan int
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check TypeTest struct
typeTest := structs[0]
assert.Equal(t, "TypeTest", typeTest.Name)
assert.Len(t, typeTest.Fields, 6)
// Name - string is comparable
assert.Equal(t, "Name", typeTest.Fields[0].Name)
assert.Equal(t, "string", typeTest.Fields[0].TypeName)
assert.False(t, typeTest.Fields[0].IsOptional)
assert.True(t, typeTest.Fields[0].IsComparable, "string should be comparable")
// Age - int is comparable
assert.Equal(t, "Age", typeTest.Fields[1].Name)
assert.Equal(t, "int", typeTest.Fields[1].TypeName)
assert.False(t, typeTest.Fields[1].IsOptional)
assert.True(t, typeTest.Fields[1].IsComparable, "int should be comparable")
// Pointer - pointer is optional, IsComparable not checked for optional fields
assert.Equal(t, "Pointer", typeTest.Fields[2].Name)
assert.Equal(t, "*string", typeTest.Fields[2].TypeName)
assert.True(t, typeTest.Fields[2].IsOptional)
// Slice - not comparable
assert.Equal(t, "Slice", typeTest.Fields[3].Name)
assert.Equal(t, "[]string", typeTest.Fields[3].TypeName)
assert.False(t, typeTest.Fields[3].IsOptional)
assert.False(t, typeTest.Fields[3].IsComparable, "slice should not be comparable")
// Map - not comparable
assert.Equal(t, "Map", typeTest.Fields[4].Name)
assert.Equal(t, "map[string]int", typeTest.Fields[4].TypeName)
assert.False(t, typeTest.Fields[4].IsOptional)
assert.False(t, typeTest.Fields[4].IsComparable, "map should not be comparable")
// Channel - comparable (note: getTypeName returns "any" for channel types, but isComparableType correctly identifies them)
assert.Equal(t, "Channel", typeTest.Fields[5].Name)
assert.Equal(t, "any", typeTest.Fields[5].TypeName) // getTypeName doesn't handle chan types specifically
assert.False(t, typeTest.Fields[5].IsOptional)
assert.True(t, typeTest.Fields[5].IsComparable, "channel should be comparable")
}
func TestLensRefTemplatesWithComparable(t *testing.T) {
s := structInfo{
Name: "TestStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Age", TypeName: "int", IsOptional: false, IsComparable: true},
{Name: "Data", TypeName: "[]byte", IsOptional: false, IsComparable: false},
{Name: "Pointer", TypeName: "*string", IsOptional: true, IsComparable: false},
},
}
// Test constructor template for RefLenses
var constructorBuf bytes.Buffer
err := constructorTmpl.Execute(&constructorBuf, s)
require.NoError(t, err)
constructorStr := constructorBuf.String()
// Check that MakeLensStrict is used for comparable types in RefLenses
assert.Contains(t, constructorStr, "func MakeTestStructRefLenses() TestStructRefLenses")
// Name field - comparable, should use MakeLensStrict
assert.Contains(t, constructorStr, "lensName := L.MakeLensStrict(",
"comparable field Name should use MakeLensStrict in RefLenses")
// Age field - comparable, should use MakeLensStrict
assert.Contains(t, constructorStr, "lensAge := L.MakeLensStrict(",
"comparable field Age should use MakeLensStrict in RefLenses")
// Data field - not comparable, should use MakeLensRef
assert.Contains(t, constructorStr, "lensData := L.MakeLensRef(",
"non-comparable field Data should use MakeLensRef in RefLenses")
}
func TestGenerateLensHelpersWithComparable(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type TestStruct struct {
Name string
Count int
Data []byte
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content in RefLenses
assert.Contains(t, contentStr, "MakeTestStructRefLenses")
// Name and Count are comparable, should use MakeLensStrict
assert.Contains(t, contentStr, "L.MakeLensStrict",
"comparable fields should use MakeLensStrict in RefLenses")
// Data is not comparable (slice), should use MakeLensRef
assert.Contains(t, contentStr, "L.MakeLensRef",
"non-comparable fields should use MakeLensRef in RefLenses")
// Verify the pattern appears for Name field (comparable)
namePattern := "lensName := L.MakeLensStrict("
assert.Contains(t, contentStr, namePattern,
"Name field should use MakeLensStrict")
// Verify the pattern appears for Data field (not comparable)
dataPattern := "lensData := L.MakeLensRef("
assert.Contains(t, contentStr, dataPattern,
"Data field should use MakeLensRef")
}
func TestGenerateLensHelpers(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
@@ -373,11 +619,11 @@ type TestStruct struct {
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "Code generated by go generate")
assert.Contains(t, contentStr, "TestStructLens")
assert.Contains(t, contentStr, "MakeTestStructLens")
assert.Contains(t, contentStr, "TestStructLenses")
assert.Contains(t, contentStr, "MakeTestStructLenses")
assert.Contains(t, contentStr, "L.Lens[TestStruct, string]")
assert.Contains(t, contentStr, "LO.LensO[TestStruct, *int]")
assert.Contains(t, contentStr, "I.FromZero")
assert.Contains(t, contentStr, "IO.FromZero")
}
func TestGenerateLensHelpersNoAnnotations(t *testing.T) {
@@ -411,8 +657,8 @@ func TestLensTemplates(t *testing.T) {
s := structInfo{
Name: "TestStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false},
{Name: "Value", TypeName: "*int", IsOptional: true},
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Value", TypeName: "*int", IsOptional: true, IsComparable: true},
},
}
@@ -424,7 +670,9 @@ func TestLensTemplates(t *testing.T) {
structStr := structBuf.String()
assert.Contains(t, structStr, "type TestStructLenses struct")
assert.Contains(t, structStr, "Name L.Lens[TestStruct, string]")
assert.Contains(t, structStr, "Value LO.LensO[TestStruct, *int]")
assert.Contains(t, structStr, "NameO LO.LensO[TestStruct, string]")
assert.Contains(t, structStr, "Value L.Lens[TestStruct, *int]")
assert.Contains(t, structStr, "ValueO LO.LensO[TestStruct, *int]")
// Test constructor template
var constructorBuf bytes.Buffer
@@ -434,19 +682,21 @@ func TestLensTemplates(t *testing.T) {
constructorStr := constructorBuf.String()
assert.Contains(t, constructorStr, "func MakeTestStructLenses() TestStructLenses")
assert.Contains(t, constructorStr, "return TestStructLenses{")
assert.Contains(t, constructorStr, "Name: L.MakeLens(")
assert.Contains(t, constructorStr, "Value: L.MakeLens(")
assert.Contains(t, constructorStr, "I.FromZero")
assert.Contains(t, constructorStr, "Name: lensName,")
assert.Contains(t, constructorStr, "NameO: lensNameO,")
assert.Contains(t, constructorStr, "Value: lensValue,")
assert.Contains(t, constructorStr, "ValueO: lensValueO,")
assert.Contains(t, constructorStr, "IO.FromZero")
}
func TestLensTemplatesWithOmitEmpty(t *testing.T) {
s := structInfo{
Name: "ConfigStruct",
Fields: []fieldInfo{
{Name: "Name", TypeName: "string", IsOptional: false},
{Name: "Value", TypeName: "string", IsOptional: true}, // non-pointer with omitempty
{Name: "Count", TypeName: "int", IsOptional: true}, // non-pointer with omitempty
{Name: "Pointer", TypeName: "*string", IsOptional: true}, // pointer
{Name: "Name", TypeName: "string", IsOptional: false, IsComparable: true},
{Name: "Value", TypeName: "string", IsOptional: true, IsComparable: true}, // non-pointer with omitempty
{Name: "Count", TypeName: "int", IsOptional: true, IsComparable: true}, // non-pointer with omitempty
{Name: "Pointer", TypeName: "*string", IsOptional: true, IsComparable: true}, // pointer
},
}
@@ -458,9 +708,13 @@ func TestLensTemplatesWithOmitEmpty(t *testing.T) {
structStr := structBuf.String()
assert.Contains(t, structStr, "type ConfigStructLenses struct")
assert.Contains(t, structStr, "Name L.Lens[ConfigStruct, string]")
assert.Contains(t, structStr, "Value LO.LensO[ConfigStruct, string]", "non-pointer with omitempty should use LensO")
assert.Contains(t, structStr, "Count LO.LensO[ConfigStruct, int]", "non-pointer with omitempty should use LensO")
assert.Contains(t, structStr, "Pointer LO.LensO[ConfigStruct, *string]")
assert.Contains(t, structStr, "NameO LO.LensO[ConfigStruct, string]")
assert.Contains(t, structStr, "Value L.Lens[ConfigStruct, string]")
assert.Contains(t, structStr, "ValueO LO.LensO[ConfigStruct, string]", "comparable non-pointer with omitempty should have optional lens")
assert.Contains(t, structStr, "Count L.Lens[ConfigStruct, int]")
assert.Contains(t, structStr, "CountO LO.LensO[ConfigStruct, int]", "comparable non-pointer with omitempty should have optional lens")
assert.Contains(t, structStr, "Pointer L.Lens[ConfigStruct, *string]")
assert.Contains(t, structStr, "PointerO LO.LensO[ConfigStruct, *string]")
// Test constructor template
var constructorBuf bytes.Buffer
@@ -469,9 +723,9 @@ func TestLensTemplatesWithOmitEmpty(t *testing.T) {
constructorStr := constructorBuf.String()
assert.Contains(t, constructorStr, "func MakeConfigStructLenses() ConfigStructLenses")
assert.Contains(t, constructorStr, "isoValue := I.FromZero[string]()")
assert.Contains(t, constructorStr, "isoCount := I.FromZero[int]()")
assert.Contains(t, constructorStr, "isoPointer := I.FromZero[*string]()")
assert.Contains(t, constructorStr, "IO.FromZero[string]()")
assert.Contains(t, constructorStr, "IO.FromZero[int]()")
assert.Contains(t, constructorStr, "IO.FromZero[*string]()")
}
func TestLensCommandFlags(t *testing.T) {
@@ -480,7 +734,7 @@ func TestLensCommandFlags(t *testing.T) {
assert.Equal(t, "lens", cmd.Name)
assert.Equal(t, "generate lens code for annotated structs", cmd.Usage)
assert.Contains(t, strings.ToLower(cmd.Description), "fp-go:lens")
assert.Contains(t, strings.ToLower(cmd.Description), "lenso")
assert.Contains(t, strings.ToLower(cmd.Description), "lenso", "Description should mention LensO for optional lenses")
// Check flags
assert.Len(t, cmd.Flags, 3)
@@ -501,3 +755,330 @@ func TestLensCommandFlags(t *testing.T) {
assert.True(t, hasFilename, "should have filename flag")
assert.True(t, hasVerbose, "should have verbose flag")
}
func TestParseFileWithEmbeddedStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// Base struct to be embedded
type Base struct {
ID int
Name string
}
// fp-go:Lens
type Extended struct {
Base
Extra string
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Extended struct
extended := structs[0]
assert.Equal(t, "Extended", extended.Name)
assert.Len(t, extended.Fields, 3, "Should have 3 fields: ID, Name (from Base), and Extra")
// Check that embedded fields are promoted
fieldNames := make(map[string]bool)
for _, field := range extended.Fields {
fieldNames[field.Name] = true
}
assert.True(t, fieldNames["ID"], "Should have promoted ID field from Base")
assert.True(t, fieldNames["Name"], "Should have promoted Name field from Base")
assert.True(t, fieldNames["Extra"], "Should have Extra field")
}
func TestGenerateLensHelpersWithEmbeddedStruct(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// Base struct to be embedded
type Address struct {
Street string
City string
}
// fp-go:Lens
type Person struct {
Address
Name string
Age int
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "PersonLenses")
assert.Contains(t, contentStr, "MakePersonLenses")
// Check that embedded fields are included
assert.Contains(t, contentStr, "Street L.Lens[Person, string]", "Should have lens for embedded Street field")
assert.Contains(t, contentStr, "City L.Lens[Person, string]", "Should have lens for embedded City field")
assert.Contains(t, contentStr, "Name L.Lens[Person, string]", "Should have lens for Name field")
assert.Contains(t, contentStr, "Age L.Lens[Person, int]", "Should have lens for Age field")
// Check that optional lenses are also generated for embedded fields
assert.Contains(t, contentStr, "StreetO LO.LensO[Person, string]")
assert.Contains(t, contentStr, "CityO LO.LensO[Person, string]")
}
func TestParseFileWithPointerEmbeddedStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// Base struct to be embedded
type Metadata struct {
CreatedAt string
UpdatedAt string
}
// fp-go:Lens
type Document struct {
*Metadata
Title string
Content string
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Document struct
doc := structs[0]
assert.Equal(t, "Document", doc.Name)
assert.Len(t, doc.Fields, 4, "Should have 4 fields: CreatedAt, UpdatedAt (from *Metadata), Title, and Content")
// Check that embedded fields are promoted
fieldNames := make(map[string]bool)
for _, field := range doc.Fields {
fieldNames[field.Name] = true
}
assert.True(t, fieldNames["CreatedAt"], "Should have promoted CreatedAt field from *Metadata")
assert.True(t, fieldNames["UpdatedAt"], "Should have promoted UpdatedAt field from *Metadata")
assert.True(t, fieldNames["Title"], "Should have Title field")
assert.True(t, fieldNames["Content"], "Should have Content field")
}
func TestParseFileWithGenericStruct(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type Container[T any] struct {
Value T
Count int
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Container struct
container := structs[0]
assert.Equal(t, "Container", container.Name)
assert.Equal(t, "[T any]", container.TypeParams, "Should have type parameter [T any]")
assert.Len(t, container.Fields, 2)
assert.Equal(t, "Value", container.Fields[0].Name)
assert.Equal(t, "T", container.Fields[0].TypeName)
assert.Equal(t, "Count", container.Fields[1].Name)
assert.Equal(t, "int", container.Fields[1].TypeName)
}
func TestParseFileWithMultipleTypeParams(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type Pair[K comparable, V any] struct {
Key K
Value V
}
`
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Pair struct
pair := structs[0]
assert.Equal(t, "Pair", pair.Name)
assert.Equal(t, "[K comparable, V any]", pair.TypeParams, "Should have type parameters [K comparable, V any]")
assert.Len(t, pair.Fields, 2)
assert.Equal(t, "Key", pair.Fields[0].Name)
assert.Equal(t, "K", pair.Fields[0].TypeName)
assert.Equal(t, "Value", pair.Fields[1].Name)
assert.Equal(t, "V", pair.Fields[1].TypeName)
}
func TestGenerateLensHelpersWithGenericStruct(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type Box[T any] struct {
Content T
Label string
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content with type parameters
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "type BoxLenses[T any] struct", "Should have generic BoxLenses type")
assert.Contains(t, contentStr, "type BoxRefLenses[T any] struct", "Should have generic BoxRefLenses type")
assert.Contains(t, contentStr, "func MakeBoxLenses[T any]() BoxLenses[T]", "Should have generic constructor")
assert.Contains(t, contentStr, "func MakeBoxRefLenses[T any]() BoxRefLenses[T]", "Should have generic ref constructor")
// Check that fields use the generic type parameter
assert.Contains(t, contentStr, "Content L.Lens[Box[T], T]", "Should have lens for generic Content field")
assert.Contains(t, contentStr, "Label L.Lens[Box[T], string]", "Should have lens for Label field")
// Check optional lenses - only for comparable types
// T any is not comparable, so ContentO should NOT be generated
assert.NotContains(t, contentStr, "ContentO LO.LensO[Box[T], T]", "T any is not comparable, should not have optional lens")
// string is comparable, so LabelO should be generated
assert.Contains(t, contentStr, "LabelO LO.LensO[Box[T], string]", "string is comparable, should have optional lens")
}
func TestGenerateLensHelpersWithComparableTypeParam(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type ComparableBox[T comparable] struct {
Key T
Value string
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen.go"
err = generateLensHelpers(tmpDir, outputFile, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content with type parameters
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "type ComparableBoxLenses[T comparable] struct", "Should have generic ComparableBoxLenses type")
assert.Contains(t, contentStr, "type ComparableBoxRefLenses[T comparable] struct", "Should have generic ComparableBoxRefLenses type")
// Check that Key field (with comparable constraint) uses MakeLensStrict in RefLenses
assert.Contains(t, contentStr, "lensKey := L.MakeLensStrict(", "Key field with comparable constraint should use MakeLensStrict")
// Check that Value field (string, always comparable) also uses MakeLensStrict
assert.Contains(t, contentStr, "lensValue := L.MakeLensStrict(", "Value field (string) should use MakeLensStrict")
// Verify that MakeLensRef is NOT used (since both fields are comparable)
assert.NotContains(t, contentStr, "L.MakeLensRef(", "Should not use MakeLensRef when all fields are comparable")
}

11
v2/constant/monoid.go Normal file
View File

@@ -0,0 +1,11 @@
package constant
import (
"github.com/IBM/fp-go/v2/function"
M "github.com/IBM/fp-go/v2/monoid"
)
// Monoid returns a [M.Monoid] that returns a constant value in all operations
func Monoid[A any](a A) M.Monoid[A] {
return M.MakeMonoid(function.Constant2[A, A](a), a)
}

View File

@@ -0,0 +1,20 @@
package readerio
import (
"context"
"github.com/IBM/fp-go/v2/reader"
RIO "github.com/IBM/fp-go/v2/readerio"
)
//go:inline
func SequenceReader[R, A any](ma ReaderIO[Reader[R, A]]) Reader[R, ReaderIO[A]] {
return RIO.SequenceReader(ma)
}
//go:inline
func TraverseReader[R, A, B any](
f reader.Kleisli[R, A, B],
) func(ReaderIO[A]) Kleisli[R, B] {
return RIO.TraverseReader[context.Context, R](f)
}

View File

@@ -0,0 +1,560 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerio
import (
"context"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/reader"
RIO "github.com/IBM/fp-go/v2/readerio"
)
const (
// useParallel is the feature flag to control if we use the parallel or the sequential implementation of ap
useParallel = true
)
// MonadMap transforms the success value of a [ReaderIO] using the provided function.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIO to transform
// - f: The transformation function
//
// Returns a new ReaderIO with the transformed value.
//
//go:inline
func MonadMap[A, B any](fa ReaderIO[A], f func(A) B) ReaderIO[B] {
return RIO.MonadMap(fa, f)
}
// Map transforms the success value of a [ReaderIO] using the provided function.
// This is the curried version of [MonadMap], useful for composition.
//
// Parameters:
// - f: The transformation function
//
// Returns a function that transforms a ReaderIO.
//
//go:inline
func Map[A, B any](f func(A) B) Operator[A, B] {
return RIO.Map[context.Context](f)
}
// MonadMapTo replaces the success value of a [ReaderIO] with a constant value.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIO to transform
// - b: The constant value to use
//
// Returns a new ReaderIO with the constant value.
//
//go:inline
func MonadMapTo[A, B any](fa ReaderIO[A], b B) ReaderIO[B] {
return RIO.MonadMapTo(fa, b)
}
// MapTo replaces the success value of a [ReaderIO] with a constant value.
// This is the curried version of [MonadMapTo].
//
// Parameters:
// - b: The constant value to use
//
// Returns a function that transforms a ReaderIO.
//
//go:inline
func MapTo[A, B any](b B) Operator[A, B] {
return RIO.MapTo[context.Context, A](b)
}
// MonadChain sequences two [ReaderIO] computations, where the second depends on the result of the first.
// If the first computation fails, the second is not executed.
//
// Parameters:
// - ma: The first ReaderIO
// - f: Function that produces the second ReaderIO based on the first's result
//
// Returns a new ReaderIO representing the sequenced computation.
//
//go:inline
func MonadChain[A, B any](ma ReaderIO[A], f Kleisli[A, B]) ReaderIO[B] {
return RIO.MonadChain(ma, f)
}
// Chain sequences two [ReaderIO] computations, where the second depends on the result of the first.
// This is the curried version of [MonadChain], useful for composition.
//
// Parameters:
// - f: Function that produces the second ReaderIO based on the first's result
//
// Returns a function that sequences ReaderIO computations.
//
//go:inline
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return RIO.Chain(f)
}
// MonadChainFirst sequences two [ReaderIO] computations but returns the result of the first.
// The second computation is executed for its side effects only.
//
// Parameters:
// - ma: The first ReaderIO
// - f: Function that produces the second ReaderIO
//
// Returns a ReaderIO with the result of the first computation.
//
//go:inline
func MonadChainFirst[A, B any](ma ReaderIO[A], f Kleisli[A, B]) ReaderIO[A] {
return RIO.MonadChainFirst(ma, f)
}
// MonadTap executes a side-effect computation but returns the original value.
// This is an alias for [MonadChainFirst] and is useful for operations like logging
// or validation that should not affect the main computation flow.
//
// Parameters:
// - ma: The ReaderIO to tap
// - f: Function that produces a side-effect ReaderIO
//
// Returns a ReaderIO with the original value after executing the side effect.
//
//go:inline
func MonadTap[A, B any](ma ReaderIO[A], f Kleisli[A, B]) ReaderIO[A] {
return RIO.MonadTap(ma, f)
}
// ChainFirst sequences two [ReaderIO] computations but returns the result of the first.
// This is the curried version of [MonadChainFirst].
//
// Parameters:
// - f: Function that produces the second ReaderIO
//
// Returns a function that sequences ReaderIO computations.
//
//go:inline
func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIO.ChainFirst(f)
}
// Tap executes a side-effect computation but returns the original value.
// This is the curried version of [MonadTap], an alias for [ChainFirst].
//
// Parameters:
// - f: Function that produces a side-effect ReaderIO
//
// Returns a function that taps ReaderIO computations.
//
//go:inline
func Tap[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIO.Tap(f)
}
// Of creates a [ReaderIO] that always succeeds with the given value.
// This is the same as [Right] and represents the monadic return operation.
//
// Parameters:
// - a: The value to wrap
//
// Returns a ReaderIO that always succeeds with the given value.
//
//go:inline
func Of[A any](a A) ReaderIO[A] {
return RIO.Of[context.Context](a)
}
// MonadApPar implements parallel applicative application for [ReaderIO].
// It executes the function and value computations in parallel where possible,
// potentially improving performance for independent operations.
//
// Parameters:
// - fab: ReaderIO containing a function
// - fa: ReaderIO containing a value
//
// Returns a ReaderIO with the function applied to the value.
//
//go:inline
func MonadApPar[B, A any](fab ReaderIO[func(A) B], fa ReaderIO[A]) ReaderIO[B] {
return RIO.MonadApPar(fab, fa)
}
// MonadAp implements applicative application for [ReaderIO].
// By default, it uses parallel execution ([MonadApPar]) but can be configured to use
// sequential execution ([MonadApSeq]) via the useParallel constant.
//
// Parameters:
// - fab: ReaderIO containing a function
// - fa: ReaderIO containing a value
//
// Returns a ReaderIO with the function applied to the value.
//
//go:inline
func MonadAp[B, A any](fab ReaderIO[func(A) B], fa ReaderIO[A]) ReaderIO[B] {
// dispatch to the configured version
if useParallel {
return MonadApPar(fab, fa)
}
return MonadApSeq(fab, fa)
}
// MonadApSeq implements sequential applicative application for [ReaderIO].
// It executes the function computation first, then the value computation.
//
// Parameters:
// - fab: ReaderIO containing a function
// - fa: ReaderIO containing a value
//
// Returns a ReaderIO with the function applied to the value.
//
//go:inline
func MonadApSeq[B, A any](fab ReaderIO[func(A) B], fa ReaderIO[A]) ReaderIO[B] {
return RIO.MonadApSeq(fab, fa)
}
// Ap applies a function wrapped in a [ReaderIO] to a value wrapped in a ReaderIO.
// This is the curried version of [MonadAp], using the default execution mode.
//
// Parameters:
// - fa: ReaderIO containing a value
//
// Returns a function that applies a ReaderIO function to the value.
//
//go:inline
func Ap[B, A any](fa ReaderIO[A]) Operator[func(A) B, B] {
return RIO.Ap[B](fa)
}
// ApSeq applies a function wrapped in a [ReaderIO] to a value sequentially.
// This is the curried version of [MonadApSeq].
//
// Parameters:
// - fa: ReaderIO containing a value
//
// Returns a function that applies a ReaderIO function to the value sequentially.
//
//go:inline
func ApSeq[B, A any](fa ReaderIO[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApSeq[B, A], fa)
}
// ApPar applies a function wrapped in a [ReaderIO] to a value in parallel.
// This is the curried version of [MonadApPar].
//
// Parameters:
// - fa: ReaderIO containing a value
//
// Returns a function that applies a ReaderIO function to the value in parallel.
//
//go:inline
func ApPar[B, A any](fa ReaderIO[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApPar[B, A], fa)
}
// Ask returns a [ReaderIO] that provides access to the context.
// This is useful for accessing the [context.Context] within a computation.
//
// Returns a ReaderIO that produces the context.
//
//go:inline
func Ask() ReaderIO[context.Context] {
return RIO.Ask[context.Context]()
}
// FromIO converts an [IO] into a [ReaderIO].
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - t: The IO to convert
//
// Returns a ReaderIO that executes the IO and wraps the result in Right.
//
//go:inline
func FromIO[A any](t IO[A]) ReaderIO[A] {
return RIO.FromIO[context.Context](t)
}
// FromReader converts a [Reader] into a [ReaderIO].
// The Reader computation is lifted into the IO context, allowing it to be
// composed with other ReaderIO operations.
//
// Parameters:
// - t: The Reader to convert
//
// Returns a ReaderIO that executes the Reader and wraps the result in IO.
//
//go:inline
func FromReader[A any](t Reader[context.Context, A]) ReaderIO[A] {
return RIO.FromReader(t)
}
// FromLazy converts a [Lazy] computation into a [ReaderIO].
// The Lazy computation always succeeds, so it's wrapped in Right.
// This is an alias for [FromIO] since Lazy and IO have the same structure.
//
// Parameters:
// - t: The Lazy computation to convert
//
// Returns a ReaderIO that executes the Lazy computation and wraps the result in Right.
//
//go:inline
func FromLazy[A any](t Lazy[A]) ReaderIO[A] {
return RIO.FromIO[context.Context](t)
}
// MonadChainIOK chains a function that returns an [IO] into a [ReaderIO] computation.
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - ma: The ReaderIO to chain from
// - f: Function that produces an IO
//
// Returns a new ReaderIO with the chained IO computation.
//
//go:inline
func MonadChainIOK[A, B any](ma ReaderIO[A], f func(A) IO[B]) ReaderIO[B] {
return RIO.MonadChainIOK(ma, f)
}
// ChainIOK chains a function that returns an [IO] into a [ReaderIO] computation.
// This is the curried version of [MonadChainIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainIOK[A, B any](f func(A) IO[B]) Operator[A, B] {
return RIO.ChainIOK[context.Context](f)
}
// MonadChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// The IO computation is executed for its side effects only.
//
// Parameters:
// - ma: The ReaderIO to chain from
// - f: Function that produces an IO
//
// Returns a ReaderIO with the original value after executing the IO.
//
//go:inline
func MonadChainFirstIOK[A, B any](ma ReaderIO[A], f func(A) IO[B]) ReaderIO[A] {
return RIO.MonadChainFirstIOK(ma, f)
}
// MonadTapIOK chains a function that returns an [IO] but keeps the original value.
// This is an alias for [MonadChainFirstIOK] and is useful for side effects like logging.
//
// Parameters:
// - ma: The ReaderIO to tap
// - f: Function that produces an IO for side effects
//
// Returns a ReaderIO with the original value after executing the IO.
//
//go:inline
func MonadTapIOK[A, B any](ma ReaderIO[A], f func(A) IO[B]) ReaderIO[A] {
return RIO.MonadTapIOK(ma, f)
}
// ChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// This is the curried version of [MonadChainFirstIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainFirstIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIO.ChainFirstIOK[context.Context](f)
}
// TapIOK chains a function that returns an [IO] but keeps the original value.
// This is the curried version of [MonadTapIOK], an alias for [ChainFirstIOK].
//
// Parameters:
// - f: Function that produces an IO for side effects
//
// Returns a function that taps with IO-returning functions.
//
//go:inline
func TapIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIO.TapIOK[context.Context](f)
}
// Defer creates a [ReaderIO] by lazily generating a new computation each time it's executed.
// This is useful for creating computations that should be re-evaluated on each execution.
//
// Parameters:
// - gen: Lazy generator function that produces a ReaderIO
//
// Returns a ReaderIO that generates a fresh computation on each execution.
//
//go:inline
func Defer[A any](gen Lazy[ReaderIO[A]]) ReaderIO[A] {
return RIO.Defer(gen)
}
// Memoize computes the value of the provided [ReaderIO] monad lazily but exactly once.
// The context used to compute the value is the context of the first call, so do not use this
// method if the value has a functional dependency on the content of the context.
//
// Parameters:
// - rdr: The ReaderIO to memoize
//
// Returns a ReaderIO that caches its result after the first execution.
//
//go:inline
func Memoize[A any](rdr ReaderIO[A]) ReaderIO[A] {
return RIO.Memoize(rdr)
}
// Flatten converts a nested [ReaderIO] into a flat [ReaderIO].
// This is equivalent to [MonadChain] with the identity function.
//
// Parameters:
// - rdr: The nested ReaderIO to flatten
//
// Returns a flattened ReaderIO.
//
//go:inline
func Flatten[A any](rdr ReaderIO[ReaderIO[A]]) ReaderIO[A] {
return RIO.Flatten(rdr)
}
// MonadFlap applies a value to a function wrapped in a [ReaderIO].
// This is the reverse of [MonadAp], useful in certain composition scenarios.
//
// Parameters:
// - fab: ReaderIO containing a function
// - a: The value to apply to the function
//
// Returns a ReaderIO with the function applied to the value.
//
//go:inline
func MonadFlap[B, A any](fab ReaderIO[func(A) B], a A) ReaderIO[B] {
return RIO.MonadFlap(fab, a)
}
// Flap applies a value to a function wrapped in a [ReaderIO].
// This is the curried version of [MonadFlap].
//
// Parameters:
// - a: The value to apply to the function
//
// Returns a function that applies the value to a ReaderIO function.
//
//go:inline
func Flap[B, A any](a A) Operator[func(A) B, B] {
return RIO.Flap[context.Context, B](a)
}
// MonadChainReaderK chains a [ReaderIO] with a function that returns a [Reader].
// The Reader is lifted into the ReaderIO context, allowing composition of
// Reader and ReaderIO operations.
//
// Parameters:
// - ma: The ReaderIO to chain from
// - f: Function that produces a Reader
//
// Returns a new ReaderIO with the chained Reader computation.
//
//go:inline
func MonadChainReaderK[A, B any](ma ReaderIO[A], f reader.Kleisli[context.Context, A, B]) ReaderIO[B] {
return RIO.MonadChainReaderK(ma, f)
}
// ChainReaderK chains a [ReaderIO] with a function that returns a [Reader].
// This is the curried version of [MonadChainReaderK].
//
// Parameters:
// - f: Function that produces a Reader
//
// Returns a function that chains Reader-returning functions.
//
//go:inline
func ChainReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIO.ChainReaderK(f)
}
// MonadChainFirstReaderK chains a function that returns a [Reader] but keeps the original value.
// The Reader computation is executed for its side effects only.
//
// Parameters:
// - ma: The ReaderIO to chain from
// - f: Function that produces a Reader
//
// Returns a ReaderIO with the original value after executing the Reader.
//
//go:inline
func MonadChainFirstReaderK[A, B any](ma ReaderIO[A], f reader.Kleisli[context.Context, A, B]) ReaderIO[A] {
return RIO.MonadChainFirstReaderK(ma, f)
}
// MonadTapReaderK chains a function that returns a [Reader] but keeps the original value.
// This is an alias for [MonadChainFirstReaderK] and is useful for side effects.
//
// Parameters:
// - ma: The ReaderIO to tap
// - f: Function that produces a Reader for side effects
//
// Returns a ReaderIO with the original value after executing the Reader.
//
//go:inline
func MonadTapReaderK[A, B any](ma ReaderIO[A], f reader.Kleisli[context.Context, A, B]) ReaderIO[A] {
return RIO.MonadTapReaderK(ma, f)
}
// ChainFirstReaderK chains a function that returns a [Reader] but keeps the original value.
// This is the curried version of [MonadChainFirstReaderK].
//
// Parameters:
// - f: Function that produces a Reader
//
// Returns a function that chains Reader-returning functions while preserving the original value.
//
//go:inline
func ChainFirstReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIO.ChainFirstReaderK(f)
}
// TapReaderK chains a function that returns a [Reader] but keeps the original value.
// This is the curried version of [MonadTapReaderK], an alias for [ChainFirstReaderK].
//
// Parameters:
// - f: Function that produces a Reader for side effects
//
// Returns a function that taps with Reader-returning functions.
//
//go:inline
func TapReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIO.TapReaderK(f)
}
// Read executes a [ReaderIO] with a given context, returning the resulting [IO].
// This is useful for providing the context dependency and obtaining an IO action
// that can be executed later.
//
// Parameters:
// - r: The context to provide to the ReaderIO
//
// Returns a function that converts a ReaderIO into an IO by applying the context.
//
//go:inline
func Read[A any](r context.Context) func(ReaderIO[A]) IO[A] {
return RIO.Read[A](r)
}

View File

@@ -0,0 +1,502 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerio
import (
"context"
"testing"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/utils"
G "github.com/IBM/fp-go/v2/io"
N "github.com/IBM/fp-go/v2/number"
"github.com/IBM/fp-go/v2/reader"
"github.com/stretchr/testify/assert"
)
func TestMonadMap(t *testing.T) {
rio := Of(5)
doubled := MonadMap(rio, N.Mul(2))
result := doubled(context.Background())()
assert.Equal(t, 10, result)
}
func TestMap(t *testing.T) {
g := F.Pipe1(
Of(1),
Map(utils.Double),
)
assert.Equal(t, 2, g(context.Background())())
}
func TestMonadMapTo(t *testing.T) {
rio := Of(42)
replaced := MonadMapTo(rio, "constant")
result := replaced(context.Background())()
assert.Equal(t, "constant", result)
}
func TestMapTo(t *testing.T) {
result := F.Pipe1(
Of(42),
MapTo[int]("constant"),
)
assert.Equal(t, "constant", result(context.Background())())
}
func TestMonadChain(t *testing.T) {
rio1 := Of(5)
result := MonadChain(rio1, func(n int) ReaderIO[int] {
return Of(n * 3)
})
assert.Equal(t, 15, result(context.Background())())
}
func TestChain(t *testing.T) {
result := F.Pipe1(
Of(5),
Chain(func(n int) ReaderIO[int] {
return Of(n * 3)
}),
)
assert.Equal(t, 15, result(context.Background())())
}
func TestMonadChainFirst(t *testing.T) {
sideEffect := 0
rio := Of(42)
result := MonadChainFirst(rio, func(n int) ReaderIO[string] {
sideEffect = n
return Of("side effect")
})
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestChainFirst(t *testing.T) {
sideEffect := 0
result := F.Pipe1(
Of(42),
ChainFirst(func(n int) ReaderIO[string] {
sideEffect = n
return Of("side effect")
}),
)
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestMonadTap(t *testing.T) {
sideEffect := 0
rio := Of(42)
result := MonadTap(rio, func(n int) ReaderIO[func()] {
sideEffect = n
return Of(func() {})
})
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestTap(t *testing.T) {
sideEffect := 0
result := F.Pipe1(
Of(42),
Tap(func(n int) ReaderIO[func()] {
sideEffect = n
return Of(func() {})
}),
)
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestOf(t *testing.T) {
rio := Of(100)
result := rio(context.Background())()
assert.Equal(t, 100, result)
}
func TestMonadAp(t *testing.T) {
fabIO := Of(N.Mul(2))
faIO := Of(5)
result := MonadAp(fabIO, faIO)
assert.Equal(t, 10, result(context.Background())())
}
func TestAp(t *testing.T) {
g := F.Pipe1(
Of(utils.Double),
Ap[int](Of(1)),
)
assert.Equal(t, 2, g(context.Background())())
}
func TestMonadApSeq(t *testing.T) {
fabIO := Of(N.Add(10))
faIO := Of(5)
result := MonadApSeq(fabIO, faIO)
assert.Equal(t, 15, result(context.Background())())
}
func TestApSeq(t *testing.T) {
g := F.Pipe1(
Of(N.Add(10)),
ApSeq[int](Of(5)),
)
assert.Equal(t, 15, g(context.Background())())
}
func TestMonadApPar(t *testing.T) {
fabIO := Of(N.Add(10))
faIO := Of(5)
result := MonadApPar(fabIO, faIO)
assert.Equal(t, 15, result(context.Background())())
}
func TestApPar(t *testing.T) {
g := F.Pipe1(
Of(N.Add(10)),
ApPar[int](Of(5)),
)
assert.Equal(t, 15, g(context.Background())())
}
func TestAsk(t *testing.T) {
rio := Ask()
ctx := context.WithValue(context.Background(), "key", "value")
result := rio(ctx)()
assert.Equal(t, ctx, result)
}
func TestFromIO(t *testing.T) {
ioAction := G.Of(42)
rio := FromIO(ioAction)
result := rio(context.Background())()
assert.Equal(t, 42, result)
}
func TestFromReader(t *testing.T) {
rdr := func(ctx context.Context) int {
return 42
}
rio := FromReader(rdr)
result := rio(context.Background())()
assert.Equal(t, 42, result)
}
func TestFromLazy(t *testing.T) {
lazy := func() int { return 42 }
rio := FromLazy(lazy)
result := rio(context.Background())()
assert.Equal(t, 42, result)
}
func TestMonadChainIOK(t *testing.T) {
rio := Of(5)
result := MonadChainIOK(rio, func(n int) G.IO[int] {
return G.Of(n * 4)
})
assert.Equal(t, 20, result(context.Background())())
}
func TestChainIOK(t *testing.T) {
result := F.Pipe1(
Of(5),
ChainIOK(func(n int) G.IO[int] {
return G.Of(n * 4)
}),
)
assert.Equal(t, 20, result(context.Background())())
}
func TestMonadChainFirstIOK(t *testing.T) {
sideEffect := 0
rio := Of(42)
result := MonadChainFirstIOK(rio, func(n int) G.IO[string] {
sideEffect = n
return G.Of("side effect")
})
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestChainFirstIOK(t *testing.T) {
sideEffect := 0
result := F.Pipe1(
Of(42),
ChainFirstIOK(func(n int) G.IO[string] {
sideEffect = n
return G.Of("side effect")
}),
)
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestMonadTapIOK(t *testing.T) {
sideEffect := 0
rio := Of(42)
result := MonadTapIOK(rio, func(n int) G.IO[func()] {
sideEffect = n
return G.Of(func() {})
})
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestTapIOK(t *testing.T) {
sideEffect := 0
result := F.Pipe1(
Of(42),
TapIOK(func(n int) G.IO[func()] {
sideEffect = n
return G.Of(func() {})
}),
)
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestDefer(t *testing.T) {
counter := 0
rio := Defer(func() ReaderIO[int] {
counter++
return Of(counter)
})
result1 := rio(context.Background())()
result2 := rio(context.Background())()
assert.Equal(t, 1, result1)
assert.Equal(t, 2, result2)
}
func TestMemoize(t *testing.T) {
counter := 0
rio := Of(0)
memoized := Memoize(MonadMap(rio, func(int) int {
counter++
return counter
}))
result1 := memoized(context.Background())()
result2 := memoized(context.Background())()
assert.Equal(t, 1, result1)
assert.Equal(t, 1, result2) // Same value, memoized
}
func TestFlatten(t *testing.T) {
nested := Of(Of(42))
flattened := Flatten(nested)
result := flattened(context.Background())()
assert.Equal(t, 42, result)
}
func TestMonadFlap(t *testing.T) {
fabIO := Of(N.Mul(3))
result := MonadFlap(fabIO, 7)
assert.Equal(t, 21, result(context.Background())())
}
func TestFlap(t *testing.T) {
result := F.Pipe1(
Of(N.Mul(3)),
Flap[int](7),
)
assert.Equal(t, 21, result(context.Background())())
}
func TestMonadChainReaderK(t *testing.T) {
rio := Of(5)
result := MonadChainReaderK(rio, func(n int) reader.Reader[context.Context, int] {
return func(ctx context.Context) int { return n * 2 }
})
assert.Equal(t, 10, result(context.Background())())
}
func TestChainReaderK(t *testing.T) {
result := F.Pipe1(
Of(5),
ChainReaderK(func(n int) reader.Reader[context.Context, int] {
return func(ctx context.Context) int { return n * 2 }
}),
)
assert.Equal(t, 10, result(context.Background())())
}
func TestMonadChainFirstReaderK(t *testing.T) {
sideEffect := 0
rio := Of(42)
result := MonadChainFirstReaderK(rio, func(n int) reader.Reader[context.Context, string] {
return func(ctx context.Context) string {
sideEffect = n
return "side effect"
}
})
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestChainFirstReaderK(t *testing.T) {
sideEffect := 0
result := F.Pipe1(
Of(42),
ChainFirstReaderK(func(n int) reader.Reader[context.Context, string] {
return func(ctx context.Context) string {
sideEffect = n
return "side effect"
}
}),
)
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestMonadTapReaderK(t *testing.T) {
sideEffect := 0
rio := Of(42)
result := MonadTapReaderK(rio, func(n int) reader.Reader[context.Context, func()] {
return func(ctx context.Context) func() {
sideEffect = n
return func() {}
}
})
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestTapReaderK(t *testing.T) {
sideEffect := 0
result := F.Pipe1(
Of(42),
TapReaderK(func(n int) reader.Reader[context.Context, func()] {
return func(ctx context.Context) func() {
sideEffect = n
return func() {}
}
}),
)
value := result(context.Background())()
assert.Equal(t, 42, value)
assert.Equal(t, 42, sideEffect)
}
func TestRead(t *testing.T) {
rio := Of(42)
ctx := context.Background()
ioAction := Read[int](ctx)(rio)
result := ioAction()
assert.Equal(t, 42, result)
}
func TestComplexPipeline(t *testing.T) {
// Test a complex pipeline combining multiple operations
result := F.Pipe3(
Ask(),
Map(func(ctx context.Context) int { return 5 }),
Chain(func(n int) ReaderIO[int] {
return Of(n * 2)
}),
Map(N.Add(10)),
)
assert.Equal(t, 20, result(context.Background())()) // (5 * 2) + 10 = 20
}
func TestFromIOWithChain(t *testing.T) {
ioAction := G.Of(10)
result := F.Pipe1(
FromIO(ioAction),
Chain(func(n int) ReaderIO[int] {
return Of(n + 5)
}),
)
assert.Equal(t, 15, result(context.Background())())
}
func TestTapWithLogging(t *testing.T) {
// Simulate logging scenario
logged := []int{}
result := F.Pipe3(
Of(42),
Tap(func(n int) ReaderIO[func()] {
logged = append(logged, n)
return Of(func() {})
}),
Map(N.Mul(2)),
Tap(func(n int) ReaderIO[func()] {
logged = append(logged, n)
return Of(func() {})
}),
)
value := result(context.Background())()
assert.Equal(t, 84, value)
assert.Equal(t, []int{42, 84}, logged)
}

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerio
import (
"context"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
)
type (
// Lazy represents a deferred computation that produces a value of type A when executed.
// The computation is not executed until explicitly invoked.
Lazy[A any] = lazy.Lazy[A]
// IO represents a side-effectful computation that produces a value of type A.
// The computation is deferred and only executed when invoked.
//
// IO[A] is equivalent to func() A
IO[A any] = io.IO[A]
// Reader represents a computation that depends on a context of type R.
// This is used for dependency injection and accessing shared context.
//
// Reader[R, A] is equivalent to func(R) A
Reader[R, A any] = reader.Reader[R, A]
// ReaderIO represents a context-dependent computation that performs side effects.
// This is specialized to use [context.Context] as the context type.
//
// ReaderIO[A] is equivalent to func(context.Context) func() A
ReaderIO[A any] = readerio.ReaderIO[context.Context, A]
// Kleisli represents a Kleisli arrow for the ReaderIO monad.
// It is a function that takes a value of type A and returns a ReaderIO computation
// that produces a value of type B.
//
// Kleisli arrows are used for composing monadic computations and are fundamental
// to functional programming patterns involving effects and context.
//
// Kleisli[A, B] is equivalent to func(A) func(context.Context) func() B
Kleisli[A, B any] = reader.Reader[A, ReaderIO[B]]
// Operator represents a transformation from one ReaderIO computation to another.
// It takes a ReaderIO[A] and returns a ReaderIO[B], allowing for the composition
// of context-dependent, side-effectful computations.
//
// Operators are useful for building pipelines of ReaderIO computations where
// each step can depend on the previous computation's result.
//
// Operator[A, B] is equivalent to func(ReaderIO[A]) func(context.Context) func() B
Operator[A, B any] = Kleisli[ReaderIO[A], B]
)

View File

@@ -0,0 +1,504 @@
# Sequence Functions and Point-Free Style Programming
This document explains how the `Sequence*` functions in the `context/readerioresult` package enable point-free style programming and improve code composition.
## Table of Contents
1. [What is Point-Free Style?](#what-is-point-free-style)
2. [The Problem: Nested Function Application](#the-problem-nested-function-application)
3. [The Solution: Sequence Functions](#the-solution-sequence-functions)
4. [How Sequence Enables Point-Free Style](#how-sequence-enables-point-free-style)
5. [Practical Benefits](#practical-benefits)
6. [Examples](#examples)
7. [Comparison: With and Without Sequence](#comparison-with-and-without-sequence)
## What is Point-Free Style?
Point-free style (also called tacit programming) is a programming paradigm where function definitions don't explicitly mention their arguments. Instead, functions are composed using combinators and higher-order functions.
**Traditional style (with points):**
```go
func double(x int) int {
return x * 2
}
```
**Point-free style (without points):**
```go
var double = F.Flow2(
N.Mul(2),
identity,
)
```
The key benefit is that point-free style emphasizes **what** the function does (its transformation) rather than **how** it manipulates data.
## The Problem: Nested Function Application
In functional programming with monadic types like `ReaderIOResult`, we often have nested structures where we need to apply parameters in a specific order. Consider:
```go
type ReaderIOResult[A any] = func(context.Context) func() Either[error, A]
type Reader[R, A any] = func(R) A
// A computation that produces a Reader
type Computation = ReaderIOResult[Reader[Config, int]]
// Expands to: func(context.Context) func() Either[error, func(Config) int]
```
To use this, we must apply parameters in this order:
1. First, provide `context.Context`
2. Then, execute the IO effect (call the function)
3. Then, unwrap the `Either` to get the `Reader`
4. Finally, provide the `Config`
This creates several problems:
### Problem 1: Awkward Parameter Order
```go
computation := getComputation()
ctx := context.Background()
cfg := Config{Value: 42}
// Must apply in this specific order
result := computation(ctx)() // Get Either[error, Reader[Config, int]]
if reader, err := either.Unwrap(result); err == nil {
value := reader(cfg) // Finally apply Config
// use value
}
```
The `Config` parameter, which is often known early and stable, must be provided last. This prevents partial application and reuse.
### Problem 2: Cannot Partially Apply Dependencies
```go
// Want to do this: create a reusable computation with Config baked in
// But can't because Config comes last!
withConfig := computation(cfg) // ❌ Doesn't work - cfg comes last, not first
```
### Problem 3: Breaks Point-Free Composition
```go
// Want to compose like this:
var pipeline = F.Flow3(
getComputation,
applyConfig(cfg), // ❌ Can't do this - Config comes last
processResult,
)
```
## The Solution: Sequence Functions
The `Sequence*` functions solve this by "flipping" or "sequencing" the nested structure, changing the order in which parameters are applied.
### SequenceReader
```go
func SequenceReader[R, A any](
ma ReaderIOResult[Reader[R, A]]
) reader.Kleisli[context.Context, R, IOResult[A]]
```
**Type transformation:**
```
From: func(context.Context) func() Either[error, func(R) A]
To: func(R) func(context.Context) func() Either[error, A]
```
Now `R` (the Reader's environment) comes **first**, before `context.Context`!
### SequenceReaderIO
```go
func SequenceReaderIO[R, A any](
ma ReaderIOResult[ReaderIO[R, A]]
) reader.Kleisli[context.Context, R, IOResult[A]]
```
**Type transformation:**
```
From: func(context.Context) func() Either[error, func(R) func() A]
To: func(R) func(context.Context) func() Either[error, A]
```
### SequenceReaderResult
```go
func SequenceReaderResult[R, A any](
ma ReaderIOResult[ReaderResult[R, A]]
) reader.Kleisli[context.Context, R, IOResult[A]]
```
**Type transformation:**
```
From: func(context.Context) func() Either[error, func(R) Either[error, A]]
To: func(R) func(context.Context) func() Either[error, A]
```
## How Sequence Enables Point-Free Style
### 1. Partial Application
By moving the environment parameter first, we can partially apply it:
```go
type Config struct { Multiplier int }
computation := getComputation() // ReaderIOResult[Reader[Config, int]]
sequenced := SequenceReader[Config, int](computation)
// Partially apply Config
cfg := Config{Multiplier: 5}
withConfig := sequenced(cfg) // ✅ Now we have ReaderIOResult[int]
// Reuse with different contexts
result1 := withConfig(ctx1)()
result2 := withConfig(ctx2)()
```
### 2. Dependency Injection
Inject dependencies early in the pipeline:
```go
type Database struct { ConnectionString string }
makeQuery := func(ctx context.Context) func() Either[error, func(Database) string] {
// ... implementation
}
// Sequence to enable DI
queryWithDB := SequenceReader[Database, string](makeQuery)
// Inject database
db := Database{ConnectionString: "localhost:5432"}
query := queryWithDB(db) // ✅ Database injected
// Use query with any context
result := query(context.Background())()
```
### 3. Point-Free Composition
Build pipelines without mentioning intermediate values:
```go
var pipeline = F.Flow3(
getComputation, // ReaderIOResult[Reader[Config, int]]
SequenceReader[Config, int], // func(Config) ReaderIOResult[int]
applyConfig(cfg), // ReaderIOResult[int]
)
// Or with partial application:
var withConfig = F.Pipe1(
getComputation(),
SequenceReader[Config, int],
)
result := withConfig(cfg)(ctx)()
```
### 4. Reusable Computations
Create specialized versions of generic computations:
```go
// Generic computation
makeServiceInfo := func(ctx context.Context) func() Either[error, func(ServiceConfig) string] {
// ... implementation
}
sequenced := SequenceReader[ServiceConfig, string](makeServiceInfo)
// Create specialized versions
authService := sequenced(ServiceConfig{Name: "Auth", Version: "1.0"})
userService := sequenced(ServiceConfig{Name: "User", Version: "2.0"})
// Reuse across contexts
authInfo := authService(ctx)()
userInfo := userService(ctx)()
```
## Practical Benefits
### 1. **Improved Testability**
Inject test dependencies easily:
```go
// Production
prodDB := Database{ConnectionString: "prod:5432"}
prodQuery := queryWithDB(prodDB)
// Testing
testDB := Database{ConnectionString: "test:5432"}
testQuery := queryWithDB(testDB)
// Same computation, different dependencies
```
### 2. **Better Separation of Concerns**
Separate configuration from execution:
```go
// Configuration phase (pure, no effects)
cfg := loadConfig()
computation := sequenced(cfg)
// Execution phase (with effects)
result := computation(ctx)()
```
### 3. **Enhanced Composability**
Build complex pipelines from simple pieces:
```go
var processUser = F.Flow4(
loadUserConfig, // ReaderIOResult[Reader[Database, User]]
SequenceReader, // func(Database) ReaderIOResult[User]
applyDatabase(db), // ReaderIOResult[User]
Chain(validateUser), // ReaderIOResult[ValidatedUser]
)
```
### 4. **Reduced Boilerplate**
No need to manually thread parameters:
```go
// Without Sequence - manual threading
func processWithConfig(cfg Config) ReaderIOResult[Result] {
return func(ctx context.Context) func() Either[error, Result] {
return func() Either[error, Result] {
comp := getComputation()(ctx)()
if reader, err := either.Unwrap(comp); err == nil {
value := reader(cfg)
// ... more processing
}
// ... error handling
}
}
}
// With Sequence - point-free
var processWithConfig = F.Flow2(
getComputation,
SequenceReader[Config, Result],
)
```
## Examples
### Example 1: Database Query with Configuration
```go
type QueryConfig struct {
Timeout time.Duration
MaxRows int
}
type Database struct {
ConnectionString string
}
// Without Sequence
func executeQueryOld(cfg QueryConfig, db Database) ReaderIOResult[[]Row] {
return func(ctx context.Context) func() Either[error, []Row] {
return func() Either[error, []Row] {
// Must manually handle all parameters
// ...
}
}
}
// With Sequence
func makeQuery(ctx context.Context) func() Either[error, func(Database) []Row] {
return func() Either[error, func(Database) []Row] {
return Right[error](func(db Database) []Row {
// Implementation
return []Row{}
})
}
}
var executeQuery = F.Flow2(
makeQuery,
SequenceReader[Database, []Row],
)
// Usage
db := Database{ConnectionString: "localhost:5432"}
query := executeQuery(db)
result := query(ctx)()
```
### Example 2: Multi-Service Architecture
```go
type ServiceRegistry struct {
AuthService AuthService
UserService UserService
EmailService EmailService
}
// Create computations that depend on services
makeAuthCheck := func(ctx context.Context) func() Either[error, func(ServiceRegistry) bool] {
// ... implementation
}
makeSendEmail := func(ctx context.Context) func() Either[error, func(ServiceRegistry) error] {
// ... implementation
}
// Sequence them
authCheck := SequenceReader[ServiceRegistry, bool](makeAuthCheck)
sendEmail := SequenceReader[ServiceRegistry, error](makeSendEmail)
// Inject services once
registry := ServiceRegistry{ /* ... */ }
checkAuth := authCheck(registry)
sendMail := sendEmail(registry)
// Use with different contexts
if isAuth, _ := either.Unwrap(checkAuth(ctx1)()); isAuth {
sendMail(ctx2)()
}
```
### Example 3: Configuration-Driven Pipeline
```go
type PipelineConfig struct {
Stage1Config Stage1Config
Stage2Config Stage2Config
Stage3Config Stage3Config
}
// Define stages
stage1 := SequenceReader[Stage1Config, IntermediateResult1](makeStage1)
stage2 := SequenceReader[Stage2Config, IntermediateResult2](makeStage2)
stage3 := SequenceReader[Stage3Config, FinalResult](makeStage3)
// Build pipeline with configuration
func buildPipeline(cfg PipelineConfig) ReaderIOResult[FinalResult] {
return F.Pipe3(
stage1(cfg.Stage1Config),
Chain(func(r1 IntermediateResult1) ReaderIOResult[IntermediateResult2] {
return stage2(cfg.Stage2Config)
}),
Chain(func(r2 IntermediateResult2) ReaderIOResult[FinalResult] {
return stage3(cfg.Stage3Config)
}),
)
}
// Execute pipeline
cfg := loadPipelineConfig()
pipeline := buildPipeline(cfg)
result := pipeline(ctx)()
```
## Comparison: With and Without Sequence
### Without Sequence (Imperative Style)
```go
func processUser(userID string) ReaderIOResult[ProcessedUser] {
return func(ctx context.Context) func() Either[error, ProcessedUser] {
return func() Either[error, ProcessedUser] {
// Get database
dbComp := getDatabase()(ctx)()
if dbReader, err := either.Unwrap(dbComp); err != nil {
return Left[ProcessedUser](err)
}
db := dbReader(dbConfig)
// Get user
userComp := getUser(userID)(ctx)()
if userReader, err := either.Unwrap(userComp); err != nil {
return Left[ProcessedUser](err)
}
user := userReader(db)
// Process user
processComp := processUserData(user)(ctx)()
if processReader, err := either.Unwrap(processComp); err != nil {
return Left[ProcessedUser](err)
}
result := processReader(processingConfig)
return Right[error](result)
}
}
}
```
### With Sequence (Point-Free Style)
```go
var processUser = func(userID string) ReaderIOResult[ProcessedUser] {
return F.Pipe3(
getDatabase,
SequenceReader[DatabaseConfig, Database],
applyConfig(dbConfig),
Chain(func(db Database) ReaderIOResult[User] {
return F.Pipe2(
getUser(userID),
SequenceReader[Database, User],
applyDB(db),
)
}),
Chain(func(user User) ReaderIOResult[ProcessedUser] {
return F.Pipe2(
processUserData(user),
SequenceReader[ProcessingConfig, ProcessedUser],
applyConfig(processingConfig),
)
}),
)
}
```
## Key Takeaways
1. **Sequence functions flip parameter order** to enable partial application
2. **Dependencies come first**, making them easy to inject and test
3. **Point-free style** becomes natural and readable
4. **Composition** is enhanced through proper parameter ordering
5. **Reusability** increases as computations can be specialized early
6. **Testability** improves through easy dependency injection
7. **Separation of concerns** is clearer (configuration vs. execution)
## When to Use Sequence
Use `Sequence*` functions when:
- ✅ You want to partially apply environment/configuration parameters
- ✅ You're building reusable computations with injected dependencies
- ✅ You need to test with different dependency implementations
- ✅ You're composing complex pipelines in point-free style
- ✅ You want to separate configuration from execution
- ✅ You're working with nested Reader-like structures
Don't use `Sequence*` when:
- ❌ The original parameter order is already optimal
- ❌ You're not doing any composition or partial application
- ❌ The added abstraction doesn't provide value
- ❌ The code is simpler without it
## Conclusion
The `Sequence*` functions are powerful tools for enabling point-free style programming in Go. By flipping the parameter order of nested monadic structures, they make it easy to:
- Partially apply dependencies
- Build composable pipelines
- Improve testability
- Write more declarative code
While they add a layer of abstraction, the benefits in terms of code reusability, testability, and composability make them invaluable for functional programming in Go.

View File

@@ -0,0 +1,295 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/reader"
RIO "github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
RR "github.com/IBM/fp-go/v2/readerresult"
)
// SequenceReader transforms a ReaderIOResult containing a Reader into a function that
// takes the Reader's environment first, then returns a ReaderIOResult.
//
// This function "flips" or "sequences" the nested structure, changing the order in which
// parameters are applied. It's particularly useful for point-free style programming where
// you want to partially apply the inner Reader's environment before dealing with the
// outer context.
//
// Type transformation:
//
// From: ReaderIOResult[Reader[R, A]]
// = func(context.Context) func() Either[error, func(R) A]
//
// To: func(context.Context) func(R) IOResult[A]
// = func(context.Context) func(R) func() Either[error, A]
//
// This allows you to:
// 1. Provide the context.Context first
// 2. Then provide the Reader's environment R
// 3. Finally execute the IO effect to get Either[error, A]
//
// Point-free style benefits:
// - Enables partial application of the Reader environment
// - Facilitates composition of Reader-based computations
// - Allows building reusable computation pipelines
// - Supports dependency injection patterns where R represents dependencies
//
// Example:
//
// type Config struct {
// Timeout int
// }
//
// // A computation that produces a Reader based on context
// func getMultiplier(ctx context.Context) func() Either[error, func(Config) int] {
// return func() Either[error, func(Config) int] {
// return Right[error](func(cfg Config) int {
// return cfg.Timeout * 2
// })
// }
// }
//
// // Sequence it to apply Config first
// sequenced := SequenceReader[Config, int](getMultiplier)
//
// // Now we can partially apply the Config
// cfg := Config{Timeout: 30}
// ctx := context.Background()
// result := sequenced(ctx)(cfg)() // Returns Right(60)
//
// This is especially useful in point-free style when building computation pipelines:
//
// var pipeline = F.Flow3(
// loadConfig, // ReaderIOResult[Reader[Database, Config]]
// SequenceReader, // func(context.Context) func(Database) IOResult[Config]
// applyToDatabase(db), // IOResult[Config]
// )
//
//go:inline
func SequenceReader[R, A any](ma ReaderIOResult[Reader[R, A]]) reader.Kleisli[context.Context, R, IOResult[A]] {
return RIOR.SequenceReader(ma)
}
// SequenceReaderIO transforms a ReaderIOResult containing a ReaderIO into a function that
// takes the ReaderIO's environment first, then returns a ReaderIOResult.
//
// This is similar to SequenceReader but works with ReaderIO, which represents a computation
// that depends on an environment R and performs IO effects.
//
// Type transformation:
//
// From: ReaderIOResult[ReaderIO[R, A]]
// = func(context.Context) func() Either[error, func(R) func() A]
//
// To: func(context.Context) func(R) IOResult[A]
// = func(context.Context) func(R) func() Either[error, A]
//
// The key difference from SequenceReader is that the inner computation (ReaderIO) already
// performs IO effects, so the sequencing combines these effects properly.
//
// Point-free style benefits:
// - Enables composition of ReaderIO-based computations
// - Allows partial application of environment before IO execution
// - Facilitates building effect pipelines with dependency injection
// - Supports layered architecture where R represents service dependencies
//
// Example:
//
// type Database struct {
// ConnectionString string
// }
//
// // A computation that produces a ReaderIO based on context
// func getQuery(ctx context.Context) func() Either[error, func(Database) func() string] {
// return func() Either[error, func(Database) func() string] {
// return Right[error](func(db Database) func() string {
// return func() string {
// // Perform actual IO here
// return "Query result from " + db.ConnectionString
// }
// })
// }
// }
//
// // Sequence it to apply Database first
// sequenced := SequenceReaderIO[Database, string](getQuery)
//
// // Partially apply the Database
// db := Database{ConnectionString: "localhost:5432"}
// ctx := context.Background()
// result := sequenced(ctx)(db)() // Executes IO and returns Right("Query result...")
//
// In point-free style, this enables clean composition:
//
// var executeQuery = F.Flow3(
// prepareQuery, // ReaderIOResult[ReaderIO[Database, QueryResult]]
// SequenceReaderIO, // func(context.Context) func(Database) IOResult[QueryResult]
// withDatabase(db), // IOResult[QueryResult]
// )
//
//go:inline
func SequenceReaderIO[R, A any](ma ReaderIOResult[RIO.ReaderIO[R, A]]) reader.Kleisli[context.Context, R, IOResult[A]] {
return RIOR.SequenceReaderIO(ma)
}
// SequenceReaderResult transforms a ReaderIOResult containing a ReaderResult into a function
// that takes the ReaderResult's environment first, then returns a ReaderIOResult.
//
// This is similar to SequenceReader but works with ReaderResult, which represents a computation
// that depends on an environment R and can fail with an error.
//
// Type transformation:
//
// From: ReaderIOResult[ReaderResult[R, A]]
// = func(context.Context) func() Either[error, func(R) Either[error, A]]
//
// To: func(context.Context) func(R) IOResult[A]
// = func(context.Context) func(R) func() Either[error, A]
//
// The sequencing properly combines the error handling from both the outer ReaderIOResult
// and the inner ReaderResult, ensuring that errors from either level are propagated correctly.
//
// Point-free style benefits:
// - Enables composition of error-handling computations with dependency injection
// - Allows partial application of dependencies before error handling
// - Facilitates building validation pipelines with environment dependencies
// - Supports service-oriented architectures with proper error propagation
//
// Example:
//
// type Config struct {
// MaxRetries int
// }
//
// // A computation that produces a ReaderResult based on context
// func validateRetries(ctx context.Context) func() Either[error, func(Config) Either[error, int]] {
// return func() Either[error, func(Config) Either[error, int]] {
// return Right[error](func(cfg Config) Either[error, int] {
// if cfg.MaxRetries < 0 {
// return Left[int](errors.New("negative retries"))
// }
// return Right[error](cfg.MaxRetries)
// })
// }
// }
//
// // Sequence it to apply Config first
// sequenced := SequenceReaderResult[Config, int](validateRetries)
//
// // Partially apply the Config
// cfg := Config{MaxRetries: 3}
// ctx := context.Background()
// result := sequenced(ctx)(cfg)() // Returns Right(3)
//
// // With invalid config
// badCfg := Config{MaxRetries: -1}
// badResult := sequenced(ctx)(badCfg)() // Returns Left(error("negative retries"))
//
// In point-free style, this enables validation pipelines:
//
// var validateAndProcess = F.Flow4(
// loadConfig, // ReaderIOResult[ReaderResult[Config, Settings]]
// SequenceReaderResult, // func(context.Context) func(Config) IOResult[Settings]
// applyConfig(cfg), // IOResult[Settings]
// Chain(processSettings), // IOResult[Result]
// )
//
//go:inline
func SequenceReaderResult[R, A any](ma ReaderIOResult[RR.ReaderResult[R, A]]) reader.Kleisli[context.Context, R, IOResult[A]] {
return RIOR.SequenceReaderEither(ma)
}
// TraverseReader transforms a ReaderIOResult computation by applying a Reader-based function,
// effectively introducing a new environment dependency.
//
// This function takes a Reader-based transformation (Kleisli arrow) and returns a function that
// can transform a ReaderIOResult. The result allows you to provide the Reader's environment (R)
// first, which then produces a ReaderIOResult that depends on the context.
//
// Type transformation:
//
// From: ReaderIOResult[A]
// = func(context.Context) func() Either[error, A]
//
// With: reader.Kleisli[R, A, B]
// = func(A) func(R) B
//
// To: func(ReaderIOResult[A]) func(R) ReaderIOResult[B]
// = func(ReaderIOResult[A]) func(R) func(context.Context) func() Either[error, B]
//
// This enables:
// 1. Transforming values within a ReaderIOResult using environment-dependent logic
// 2. Introducing new environment dependencies into existing computations
// 3. Building composable pipelines where transformations depend on configuration or dependencies
// 4. Point-free style composition with Reader-based transformations
//
// Type Parameters:
// - R: The environment type that the Reader depends on
// - A: The input value type
// - B: The output value type
//
// Parameters:
// - f: A Reader-based Kleisli arrow that transforms A to B using environment R
//
// Returns:
// - A function that takes a ReaderIOResult[A] and returns a Kleisli[R, B],
// which is func(R) ReaderIOResult[B]
//
// The function preserves error handling and IO effects while adding the Reader environment dependency.
//
// Example:
//
// type Config struct {
// Multiplier int
// }
//
// // A Reader-based transformation that depends on Config
// multiply := func(x int) func(Config) int {
// return func(cfg Config) int {
// return x * cfg.Multiplier
// }
// }
//
// // Original computation that produces an int
// computation := Right[int](10)
//
// // Apply TraverseReader to introduce Config dependency
// traversed := TraverseReader[Config, int, int](multiply)
// result := traversed(computation)
//
// // Now we can provide the Config to get the final result
// cfg := Config{Multiplier: 5}
// ctx := context.Background()
// finalResult := result(cfg)(ctx)() // Returns Right(50)
//
// In point-free style, this enables clean composition:
//
// var pipeline = F.Flow3(
// loadValue, // ReaderIOResult[int]
// TraverseReader(multiplyByConfig), // func(Config) ReaderIOResult[int]
// applyConfig(cfg), // ReaderIOResult[int]
// )
//
//go:inline
func TraverseReader[R, A, B any](
f reader.Kleisli[R, A, B],
) func(ReaderIOResult[A]) Kleisli[R, B] {
return RIOR.TraverseReader[context.Context](f)
}

View File

@@ -0,0 +1,333 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult_test
import (
"context"
"fmt"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
)
// Example_sequenceReader_basicUsage demonstrates the basic usage of SequenceReader
// to flip the parameter order, enabling point-free style programming.
func Example_sequenceReader_basicUsage() {
type Config struct {
Multiplier int
}
// A computation that produces a Reader based on context
getComputation := func(ctx context.Context) func() either.Either[error, func(Config) int] {
return func() either.Either[error, func(Config) int] {
// This could check context for cancellation, deadlines, etc.
return either.Right[error](func(cfg Config) int {
return cfg.Multiplier * 10
})
}
}
// Sequence it to flip the parameter order
// Now Config comes first, then context
sequenced := RIOE.SequenceReader(getComputation)
// Partially apply the Config - this is the key benefit for point-free style
cfg := Config{Multiplier: 5}
withConfig := sequenced(cfg)
// Now we have a ReaderIOResult[int] that can be used with any context
ctx := context.Background()
result := withConfig(ctx)()
if value, err := either.Unwrap(result); err == nil {
fmt.Println(value)
}
// Output: 50
}
// Example_sequenceReader_dependencyInjection demonstrates how SequenceReader
// enables clean dependency injection patterns in point-free style.
func Example_sequenceReader_dependencyInjection() {
// Define our dependencies
type Database struct {
ConnectionString string
}
type UserService struct {
db Database
}
// A function that creates a computation requiring a Database
makeQuery := func(ctx context.Context) func() either.Either[error, func(Database) string] {
return func() either.Either[error, func(Database) string] {
return either.Right[error](func(db Database) string {
return fmt.Sprintf("Querying %s", db.ConnectionString)
})
}
}
// Sequence to enable dependency injection
queryWithDB := RIOE.SequenceReader(makeQuery)
// Inject the database dependency
db := Database{ConnectionString: "localhost:5432"}
query := queryWithDB(db)
// Execute with context
ctx := context.Background()
result := query(ctx)()
if value, err := either.Unwrap(result); err == nil {
fmt.Println(value)
}
// Output: Querying localhost:5432
}
// Example_sequenceReader_pointFreeComposition demonstrates how SequenceReader
// enables point-free style composition of computations.
func Example_sequenceReader_pointFreeComposition() {
type Config struct {
BaseValue int
}
// Step 1: Create a computation that produces a Reader
step1 := func(ctx context.Context) func() either.Either[error, func(Config) int] {
return func() either.Either[error, func(Config) int] {
return either.Right[error](func(cfg Config) int {
return cfg.BaseValue * 2
})
}
}
// Step 2: Sequence it to enable partial application
sequenced := RIOE.SequenceReader(step1)
// Step 3: Build a pipeline using point-free style
// Partially apply the config
cfg := Config{BaseValue: 10}
// Create a reusable computation with the config baked in
computation := F.Pipe1(
sequenced(cfg),
RIOE.Map(func(x int) int { return x + 5 }),
)
// Execute the pipeline
ctx := context.Background()
result := computation(ctx)()
if value, err := either.Unwrap(result); err == nil {
fmt.Println(value)
}
// Output: 25
}
// Example_sequenceReader_multipleEnvironments demonstrates using SequenceReader
// to work with multiple environment types in a clean, composable way.
func Example_sequenceReader_multipleEnvironments() {
type DatabaseConfig struct {
Host string
Port int
}
type APIConfig struct {
Endpoint string
APIKey string
}
// Function that needs DatabaseConfig
getDatabaseURL := func(ctx context.Context) func() either.Either[error, func(DatabaseConfig) string] {
return func() either.Either[error, func(DatabaseConfig) string] {
return either.Right[error](func(cfg DatabaseConfig) string {
return fmt.Sprintf("%s:%d", cfg.Host, cfg.Port)
})
}
}
// Function that needs APIConfig
getAPIURL := func(ctx context.Context) func() either.Either[error, func(APIConfig) string] {
return func() either.Either[error, func(APIConfig) string] {
return either.Right[error](func(cfg APIConfig) string {
return cfg.Endpoint
})
}
}
// Sequence both to enable partial application
withDBConfig := RIOE.SequenceReader(getDatabaseURL)
withAPIConfig := RIOE.SequenceReader(getAPIURL)
// Partially apply different configs
dbCfg := DatabaseConfig{Host: "localhost", Port: 5432}
apiCfg := APIConfig{Endpoint: "https://api.example.com", APIKey: "secret"}
dbQuery := withDBConfig(dbCfg)
apiQuery := withAPIConfig(apiCfg)
// Execute both with the same context
ctx := context.Background()
dbResult := dbQuery(ctx)()
apiResult := apiQuery(ctx)()
if dbURL, err := either.Unwrap(dbResult); err == nil {
fmt.Println("Database:", dbURL)
}
if apiURL, err := either.Unwrap(apiResult); err == nil {
fmt.Println("API:", apiURL)
}
// Output:
// Database: localhost:5432
// API: https://api.example.com
}
// Example_sequenceReaderResult_errorHandling demonstrates how SequenceReaderResult
// enables point-free style with proper error handling at multiple levels.
func Example_sequenceReaderResult_errorHandling() {
type ValidationConfig struct {
MinValue int
MaxValue int
}
// A computation that can fail at both outer and inner levels
makeValidator := func(ctx context.Context) func() either.Either[error, func(context.Context) either.Either[error, int]] {
return func() either.Either[error, func(context.Context) either.Either[error, int]] {
// Outer level: check context
if ctx.Err() != nil {
return either.Left[func(context.Context) either.Either[error, int]](ctx.Err())
}
// Return inner computation
return either.Right[error](func(innerCtx context.Context) either.Either[error, int] {
// Inner level: perform validation
value := 42
if value < 0 {
return either.Left[int](fmt.Errorf("value too small: %d", value))
}
if value > 100 {
return either.Left[int](fmt.Errorf("value too large: %d", value))
}
return either.Right[error](value)
})
}
}
// Sequence to enable point-free composition
sequenced := RIOE.SequenceReaderResult(makeValidator)
// Build a pipeline with error handling
ctx := context.Background()
pipeline := F.Pipe2(
sequenced(ctx),
RIOE.Map(func(x int) int { return x * 2 }),
RIOE.Chain(func(x int) RIOE.ReaderIOResult[string] {
return RIOE.Of(fmt.Sprintf("Result: %d", x))
}),
)
result := pipeline(ctx)()
if value, err := either.Unwrap(result); err == nil {
fmt.Println(value)
}
// Output: Result: 84
}
// Example_sequenceReader_partialApplication demonstrates the power of partial
// application enabled by SequenceReader for building reusable computations.
func Example_sequenceReader_partialApplication() {
type ServiceConfig struct {
ServiceName string
Version string
}
// Create a computation factory
makeServiceInfo := func(ctx context.Context) func() either.Either[error, func(ServiceConfig) string] {
return func() either.Either[error, func(ServiceConfig) string] {
return either.Right[error](func(cfg ServiceConfig) string {
return fmt.Sprintf("%s v%s", cfg.ServiceName, cfg.Version)
})
}
}
// Sequence it
sequenced := RIOE.SequenceReader(makeServiceInfo)
// Create multiple service configurations
authConfig := ServiceConfig{ServiceName: "AuthService", Version: "1.0.0"}
userConfig := ServiceConfig{ServiceName: "UserService", Version: "2.1.0"}
// Partially apply each config to create specialized computations
getAuthInfo := sequenced(authConfig)
getUserInfo := sequenced(userConfig)
// These can now be reused across different contexts
ctx := context.Background()
authResult := getAuthInfo(ctx)()
userResult := getUserInfo(ctx)()
if auth, err := either.Unwrap(authResult); err == nil {
fmt.Println(auth)
}
if user, err := either.Unwrap(userResult); err == nil {
fmt.Println(user)
}
// Output:
// AuthService v1.0.0
// UserService v2.1.0
}
// Example_sequenceReader_testingBenefits demonstrates how SequenceReader
// makes testing easier by allowing you to inject test dependencies.
func Example_sequenceReader_testingBenefits() {
// Simple logger that collects messages
type SimpleLogger struct {
Messages []string
}
// A computation that depends on a logger (using the struct directly)
makeLoggingOperation := func(ctx context.Context) func() either.Either[error, func(*SimpleLogger) string] {
return func() either.Either[error, func(*SimpleLogger) string] {
return either.Right[error](func(logger *SimpleLogger) string {
logger.Messages = append(logger.Messages, "Operation started")
result := "Success"
logger.Messages = append(logger.Messages, fmt.Sprintf("Operation completed: %s", result))
return result
})
}
}
// Sequence to enable dependency injection
sequenced := RIOE.SequenceReader(makeLoggingOperation)
// Inject a test logger
testLogger := &SimpleLogger{Messages: []string{}}
operation := sequenced(testLogger)
// Execute
ctx := context.Background()
result := operation(ctx)()
if value, err := either.Unwrap(result); err == nil {
fmt.Println("Result:", value)
fmt.Println("Logs:", len(testLogger.Messages))
}
// Output:
// Result: Success
// Logs: 2
}

View File

@@ -0,0 +1,866 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
"errors"
"fmt"
"testing"
"github.com/IBM/fp-go/v2/either"
"github.com/stretchr/testify/assert"
)
func TestSequenceReader(t *testing.T) {
t.Run("flips parameter order for simple types", func(t *testing.T) {
// Original: ReaderIOResult[Reader[string, int]]
// = func(context.Context) func() Either[error, func(string) int]
original := func(ctx context.Context) func() Either[Reader[string, int]] {
return func() Either[Reader[string, int]] {
return either.Right[error](func(s string) int {
return 10 + len(s)
})
}
}
// Sequenced: func(string) func(context.Context) IOResult[int]
// The Reader environment (string) is now the first parameter
sequenced := SequenceReader(original)
ctx := context.Background()
// Test original
result1 := original(ctx)()
assert.True(t, either.IsRight(result1))
innerFunc1, _ := either.Unwrap(result1)
value1 := innerFunc1("hello")
assert.Equal(t, 15, value1)
// Test sequenced - note the flipped order: string first, then context
result2 := sequenced("hello")(ctx)()
assert.True(t, either.IsRight(result2))
value2, _ := either.Unwrap(result2)
assert.Equal(t, 15, value2)
})
t.Run("flips parameter order for struct types", func(t *testing.T) {
type Database struct {
ConnectionString string
}
// Original: ReaderIOResult[Reader[Database, string]]
query := func(ctx context.Context) func() Either[Reader[Database, string]] {
return func() Either[Reader[Database, string]] {
if ctx.Err() != nil {
return either.Left[Reader[Database, string]](ctx.Err())
}
return either.Right[error](func(db Database) string {
return fmt.Sprintf("Query on %s", db.ConnectionString)
})
}
}
db := Database{ConnectionString: "localhost:5432"}
ctx := context.Background()
expected := "Query on localhost:5432"
// Sequence it
sequenced := SequenceReader(query)
// Test original with valid inputs
result1 := query(ctx)()
assert.True(t, either.IsRight(result1))
innerFunc1, _ := either.Unwrap(result1)
value1 := innerFunc1(db)
assert.Equal(t, expected, value1)
// Test sequenced with valid inputs - Database first, then context
result2 := sequenced(db)(ctx)()
assert.True(t, either.IsRight(result2))
value2, _ := either.Unwrap(result2)
assert.Equal(t, expected, value2)
})
t.Run("preserves outer error", func(t *testing.T) {
expectedError := errors.New("outer error")
// Original that fails at outer level
original := func(ctx context.Context) func() Either[Reader[string, int]] {
return func() Either[Reader[string, int]] {
return either.Left[Reader[string, int]](expectedError)
}
}
ctx := context.Background()
// Test original with error
result1 := original(ctx)()
assert.True(t, either.IsLeft(result1))
_, err1 := either.Unwrap(result1)
assert.Equal(t, expectedError, err1)
// Test sequenced - the outer error is preserved
sequenced := SequenceReader(original)
result2 := sequenced("test")(ctx)()
assert.True(t, either.IsLeft(result2))
_, err2 := either.Unwrap(result2)
assert.Equal(t, expectedError, err2)
})
t.Run("preserves computation logic", func(t *testing.T) {
// Original function
original := func(ctx context.Context) func() Either[Reader[string, int]] {
return func() Either[Reader[string, int]] {
return either.Right[error](func(s string) int {
return 3 * len(s)
})
}
}
ctx := context.Background()
// Sequence
sequenced := SequenceReader(original)
// Test that sequence produces correct results
result1 := original(ctx)()
innerFunc1, _ := either.Unwrap(result1)
value1 := innerFunc1("test")
result2 := sequenced("test")(ctx)()
value2, _ := either.Unwrap(result2)
assert.Equal(t, value1, value2)
assert.Equal(t, 12, value2) // 3 * 4
})
t.Run("works with zero values", func(t *testing.T) {
original := func(ctx context.Context) func() Either[Reader[string, int]] {
return func() Either[Reader[string, int]] {
return either.Right[error](func(s string) int {
return len(s)
})
}
}
ctx := context.Background()
sequenced := SequenceReader(original)
// Test with zero values
result1 := original(ctx)()
innerFunc1, _ := either.Unwrap(result1)
value1 := innerFunc1("")
assert.Equal(t, 0, value1)
result2 := sequenced("")(ctx)()
value2, _ := either.Unwrap(result2)
assert.Equal(t, 0, value2)
})
t.Run("respects context cancellation", func(t *testing.T) {
original := func(ctx context.Context) func() Either[Reader[string, int]] {
return func() Either[Reader[string, int]] {
if ctx.Err() != nil {
return either.Left[Reader[string, int]](ctx.Err())
}
return either.Right[error](func(s string) int {
return len(s)
})
}
}
ctx, cancel := context.WithCancel(context.Background())
cancel()
sequenced := SequenceReader(original)
result := sequenced("test")(ctx)()
assert.True(t, either.IsLeft(result))
_, err := either.Unwrap(result)
assert.Equal(t, context.Canceled, err)
})
t.Run("enables point-free style with partial application", func(t *testing.T) {
type Config struct {
Multiplier int
}
// Original computation
original := func(ctx context.Context) func() Either[Reader[Config, int]] {
return func() Either[Reader[Config, int]] {
return either.Right[error](func(cfg Config) int {
return cfg.Multiplier * 10
})
}
}
// Sequence to enable partial application
sequenced := SequenceReader(original)
// Partially apply the Config
cfg := Config{Multiplier: 5}
withConfig := sequenced(cfg)
// Now we have a ReaderIOResult[int] that can be used in different contexts
ctx1 := context.Background()
result1 := withConfig(ctx1)()
assert.True(t, either.IsRight(result1))
value1, _ := either.Unwrap(result1)
assert.Equal(t, 50, value1)
// Can reuse with different context
ctx2 := context.Background()
result2 := withConfig(ctx2)()
assert.True(t, either.IsRight(result2))
value2, _ := either.Unwrap(result2)
assert.Equal(t, 50, value2)
})
}
func TestSequenceReaderIO(t *testing.T) {
t.Run("flips parameter order for simple types", func(t *testing.T) {
// Original: ReaderIOResult[ReaderIO[int]]
// = func(context.Context) func() Either[error, func(context.Context) func() int]
original := func(ctx context.Context) func() Either[ReaderIO[int]] {
return func() Either[ReaderIO[int]] {
return either.Right[error](func(innerCtx context.Context) func() int {
return func() int {
return 20
}
})
}
}
ctx := context.Background()
sequenced := SequenceReaderIO(original)
// Test original
result1 := original(ctx)()
assert.True(t, either.IsRight(result1))
innerFunc1, _ := either.Unwrap(result1)
value1 := innerFunc1(ctx)()
assert.Equal(t, 20, value1)
// Test sequenced - context first, then context again for inner ReaderIO
result2 := sequenced(ctx)(ctx)()
assert.True(t, either.IsRight(result2))
value2, _ := either.Unwrap(result2)
assert.Equal(t, 20, value2)
})
t.Run("preserves outer error", func(t *testing.T) {
expectedError := errors.New("outer error")
// Original that fails at outer level
original := func(ctx context.Context) func() Either[ReaderIO[int]] {
return func() Either[ReaderIO[int]] {
return either.Left[ReaderIO[int]](expectedError)
}
}
ctx := context.Background()
// Test original with error
result1 := original(ctx)()
assert.True(t, either.IsLeft(result1))
_, err1 := either.Unwrap(result1)
assert.Equal(t, expectedError, err1)
// Test sequenced - the outer error is preserved
sequenced := SequenceReaderIO(original)
result2 := sequenced(ctx)(ctx)()
assert.True(t, either.IsLeft(result2))
_, err2 := either.Unwrap(result2)
assert.Equal(t, expectedError, err2)
})
t.Run("respects context cancellation in outer context", func(t *testing.T) {
original := func(ctx context.Context) func() Either[ReaderIO[int]] {
return func() Either[ReaderIO[int]] {
if ctx.Err() != nil {
return either.Left[ReaderIO[int]](ctx.Err())
}
return either.Right[error](func(innerCtx context.Context) func() int {
return func() int {
return 20
}
})
}
}
ctx, cancel := context.WithCancel(context.Background())
cancel()
sequenced := SequenceReaderIO(original)
result := sequenced(ctx)(ctx)()
assert.True(t, either.IsLeft(result))
_, err := either.Unwrap(result)
assert.Equal(t, context.Canceled, err)
})
}
func TestSequenceReaderResult(t *testing.T) {
t.Run("flips parameter order for simple types", func(t *testing.T) {
// Original: ReaderIOResult[ReaderResult[int]]
// = func(context.Context) func() Either[error, func(context.Context) Either[error, int]]
original := func(ctx context.Context) func() Either[ReaderResult[int]] {
return func() Either[ReaderResult[int]] {
return either.Right[error](func(innerCtx context.Context) Either[int] {
return either.Right[error](20)
})
}
}
ctx := context.Background()
sequenced := SequenceReaderResult(original)
// Test original
result1 := original(ctx)()
assert.True(t, either.IsRight(result1))
innerFunc1, _ := either.Unwrap(result1)
innerResult1 := innerFunc1(ctx)
assert.True(t, either.IsRight(innerResult1))
value1, _ := either.Unwrap(innerResult1)
assert.Equal(t, 20, value1)
// Test sequenced
result2 := sequenced(ctx)(ctx)()
assert.True(t, either.IsRight(result2))
value2, _ := either.Unwrap(result2)
assert.Equal(t, 20, value2)
})
t.Run("preserves outer error", func(t *testing.T) {
expectedError := errors.New("outer error")
// Original that fails at outer level
original := func(ctx context.Context) func() Either[ReaderResult[int]] {
return func() Either[ReaderResult[int]] {
return either.Left[ReaderResult[int]](expectedError)
}
}
ctx := context.Background()
// Test original with error
result1 := original(ctx)()
assert.True(t, either.IsLeft(result1))
_, err1 := either.Unwrap(result1)
assert.Equal(t, expectedError, err1)
// Test sequenced - the outer error is preserved
sequenced := SequenceReaderResult(original)
result2 := sequenced(ctx)(ctx)()
assert.True(t, either.IsLeft(result2))
_, err2 := either.Unwrap(result2)
assert.Equal(t, expectedError, err2)
})
t.Run("preserves inner error", func(t *testing.T) {
expectedError := errors.New("inner error")
// Original that fails at inner level
original := func(ctx context.Context) func() Either[ReaderResult[int]] {
return func() Either[ReaderResult[int]] {
return either.Right[error](func(innerCtx context.Context) Either[int] {
return either.Left[int](expectedError)
})
}
}
ctx := context.Background()
// Test original with inner error
result1 := original(ctx)()
assert.True(t, either.IsRight(result1))
innerFunc1, _ := either.Unwrap(result1)
innerResult1 := innerFunc1(ctx)
assert.True(t, either.IsLeft(innerResult1))
_, innerErr1 := either.Unwrap(innerResult1)
assert.Equal(t, expectedError, innerErr1)
// Test sequenced with inner error
sequenced := SequenceReaderResult(original)
result2 := sequenced(ctx)(ctx)()
assert.True(t, either.IsLeft(result2))
_, innerErr2 := either.Unwrap(result2)
assert.Equal(t, expectedError, innerErr2)
})
t.Run("handles errors at different levels", func(t *testing.T) {
// Original that can fail at both levels
makeOriginal := func(x int) ReaderIOResult[ReaderResult[int]] {
return func(ctx context.Context) func() Either[ReaderResult[int]] {
return func() Either[ReaderResult[int]] {
if x < -10 {
return either.Left[ReaderResult[int]](errors.New("outer: too negative"))
}
return either.Right[error](func(innerCtx context.Context) Either[int] {
if x < 0 {
return either.Left[int](errors.New("inner: negative value"))
}
return either.Right[error](x * 2)
})
}
}
}
ctx := context.Background()
// Test outer error
sequenced1 := SequenceReaderResult(makeOriginal(-20))
result1 := sequenced1(ctx)(ctx)()
assert.True(t, either.IsLeft(result1))
_, err1 := either.Unwrap(result1)
assert.Contains(t, err1.Error(), "outer")
// Test inner error
sequenced2 := SequenceReaderResult(makeOriginal(-5))
result2 := sequenced2(ctx)(ctx)()
assert.True(t, either.IsLeft(result2))
_, err2 := either.Unwrap(result2)
assert.Contains(t, err2.Error(), "inner")
// Test success
sequenced3 := SequenceReaderResult(makeOriginal(10))
result3 := sequenced3(ctx)(ctx)()
assert.True(t, either.IsRight(result3))
value3, _ := either.Unwrap(result3)
assert.Equal(t, 20, value3)
})
t.Run("respects context cancellation", func(t *testing.T) {
original := func(ctx context.Context) func() Either[ReaderResult[int]] {
return func() Either[ReaderResult[int]] {
if ctx.Err() != nil {
return either.Left[ReaderResult[int]](ctx.Err())
}
return either.Right[error](func(innerCtx context.Context) Either[int] {
if innerCtx.Err() != nil {
return either.Left[int](innerCtx.Err())
}
return either.Right[error](20)
})
}
}
ctx, cancel := context.WithCancel(context.Background())
cancel()
sequenced := SequenceReaderResult(original)
result := sequenced(ctx)(ctx)()
assert.True(t, either.IsLeft(result))
_, err := either.Unwrap(result)
assert.Equal(t, context.Canceled, err)
})
}
func TestSequenceEdgeCases(t *testing.T) {
t.Run("works with empty struct", func(t *testing.T) {
type Empty struct{}
original := func(ctx context.Context) func() Either[Reader[Empty, int]] {
return func() Either[Reader[Empty, int]] {
return either.Right[error](func(e Empty) int {
return 20
})
}
}
ctx := context.Background()
empty := Empty{}
sequenced := SequenceReader(original)
result1 := original(ctx)()
innerFunc1, _ := either.Unwrap(result1)
value1 := innerFunc1(empty)
assert.Equal(t, 20, value1)
result2 := sequenced(empty)(ctx)()
value2, _ := either.Unwrap(result2)
assert.Equal(t, 20, value2)
})
t.Run("works with pointer types", func(t *testing.T) {
type Data struct {
Value int
}
original := func(ctx context.Context) func() Either[Reader[*Data, int]] {
return func() Either[Reader[*Data, int]] {
return either.Right[error](func(d *Data) int {
if d == nil {
return 42
}
return 42 + d.Value
})
}
}
ctx := context.Background()
data := &Data{Value: 100}
sequenced := SequenceReader(original)
// Test with non-nil pointer
result1 := original(ctx)()
innerFunc1, _ := either.Unwrap(result1)
value1 := innerFunc1(data)
assert.Equal(t, 142, value1)
result2 := sequenced(data)(ctx)()
value2, _ := either.Unwrap(result2)
assert.Equal(t, 142, value2)
// Test with nil pointer
result3 := sequenced(nil)(ctx)()
value3, _ := either.Unwrap(result3)
assert.Equal(t, 42, value3)
})
t.Run("maintains referential transparency", func(t *testing.T) {
// The same inputs should always produce the same outputs
original := func(ctx context.Context) func() Either[Reader[string, int]] {
return func() Either[Reader[string, int]] {
return either.Right[error](func(s string) int {
return 10 + len(s)
})
}
}
ctx := context.Background()
sequenced := SequenceReader(original)
// Call multiple times with same inputs
for range 5 {
result1 := original(ctx)()
innerFunc1, _ := either.Unwrap(result1)
value1 := innerFunc1("hello")
assert.Equal(t, 15, value1)
result2 := sequenced("hello")(ctx)()
value2, _ := either.Unwrap(result2)
assert.Equal(t, 15, value2)
}
})
}
func TestTraverseReader(t *testing.T) {
t.Run("basic transformation with Reader dependency", func(t *testing.T) {
type Config struct {
Multiplier int
}
// Original computation
original := Right(10)
// Reader-based transformation
multiply := func(x int) Reader[Config, int] {
return func(cfg Config) int {
return x * cfg.Multiplier
}
}
// Apply TraverseReader
traversed := TraverseReader(multiply)
result := traversed(original)
// Provide Config and execute
cfg := Config{Multiplier: 5}
ctx := context.Background()
finalResult := result(cfg)(ctx)()
assert.True(t, either.IsRight(finalResult))
value, _ := either.Unwrap(finalResult)
assert.Equal(t, 50, value)
})
t.Run("preserves outer error", func(t *testing.T) {
type Config struct {
Multiplier int
}
expectedError := errors.New("computation failed")
// Original computation that fails
original := Left[int](expectedError)
// Reader-based transformation (won't be called)
multiply := func(x int) Reader[Config, int] {
return func(cfg Config) int {
return x * cfg.Multiplier
}
}
// Apply TraverseReader
traversed := TraverseReader(multiply)
result := traversed(original)
// Provide Config and execute
cfg := Config{Multiplier: 5}
ctx := context.Background()
finalResult := result(cfg)(ctx)()
assert.True(t, either.IsLeft(finalResult))
_, err := either.Unwrap(finalResult)
assert.Equal(t, expectedError, err)
})
t.Run("works with different types", func(t *testing.T) {
type Database struct {
Prefix string
}
// Original computation producing an int
original := Right(42)
// Reader-based transformation: int -> string using Database
format := func(x int) func(Database) string {
return func(db Database) string {
return fmt.Sprintf("%s:%d", db.Prefix, x)
}
}
// Apply TraverseReader
traversed := TraverseReader(format)
result := traversed(original)
// Provide Database and execute
db := Database{Prefix: "ID"}
ctx := context.Background()
finalResult := result(db)(ctx)()
assert.True(t, either.IsRight(finalResult))
value, _ := either.Unwrap(finalResult)
assert.Equal(t, "ID:42", value)
})
t.Run("works with struct environments", func(t *testing.T) {
type Settings struct {
Prefix string
Suffix string
}
// Original computation
original := Right("value")
// Reader-based transformation using Settings
decorate := func(s string) func(Settings) string {
return func(settings Settings) string {
return settings.Prefix + s + settings.Suffix
}
}
// Apply TraverseReader
traversed := TraverseReader(decorate)
result := traversed(original)
// Provide Settings and execute
settings := Settings{Prefix: "[", Suffix: "]"}
ctx := context.Background()
finalResult := result(settings)(ctx)()
assert.True(t, either.IsRight(finalResult))
value, _ := either.Unwrap(finalResult)
assert.Equal(t, "[value]", value)
})
t.Run("enables partial application", func(t *testing.T) {
type Config struct {
Factor int
}
// Original computation
original := Right(10)
// Reader-based transformation
scale := func(x int) Reader[Config, int] {
return func(cfg Config) int {
return x * cfg.Factor
}
}
// Apply TraverseReader
traversed := TraverseReader(scale)
result := traversed(original)
// Partially apply Config
cfg := Config{Factor: 3}
withConfig := result(cfg)
// Can now use with different contexts
ctx1 := context.Background()
finalResult1 := withConfig(ctx1)()
assert.True(t, either.IsRight(finalResult1))
value1, _ := either.Unwrap(finalResult1)
assert.Equal(t, 30, value1)
// Reuse with different context
ctx2 := context.Background()
finalResult2 := withConfig(ctx2)()
assert.True(t, either.IsRight(finalResult2))
value2, _ := either.Unwrap(finalResult2)
assert.Equal(t, 30, value2)
})
t.Run("respects context cancellation", func(t *testing.T) {
type Config struct {
Value int
}
// Original computation that checks context
original := func(ctx context.Context) func() Either[int] {
return func() Either[int] {
if ctx.Err() != nil {
return either.Left[int](ctx.Err())
}
return either.Right[error](10)
}
}
// Reader-based transformation
multiply := func(x int) Reader[Config, int] {
return func(cfg Config) int {
return x * cfg.Value
}
}
// Apply TraverseReader
traversed := TraverseReader(multiply)
result := traversed(original)
// Use canceled context
ctx, cancel := context.WithCancel(context.Background())
cancel()
cfg := Config{Value: 5}
finalResult := result(cfg)(ctx)()
assert.True(t, either.IsLeft(finalResult))
_, err := either.Unwrap(finalResult)
assert.Equal(t, context.Canceled, err)
})
t.Run("works with zero values", func(t *testing.T) {
type Config struct {
Offset int
}
// Original computation with zero value
original := Right(0)
// Reader-based transformation
add := func(x int) Reader[Config, int] {
return func(cfg Config) int {
return x + cfg.Offset
}
}
// Apply TraverseReader
traversed := TraverseReader(add)
result := traversed(original)
// Provide Config with zero offset
cfg := Config{Offset: 0}
ctx := context.Background()
finalResult := result(cfg)(ctx)()
assert.True(t, either.IsRight(finalResult))
value, _ := either.Unwrap(finalResult)
assert.Equal(t, 0, value)
})
t.Run("chains multiple transformations", func(t *testing.T) {
type Config struct {
Multiplier int
}
// Original computation
original := Right(5)
// First Reader-based transformation
multiply := func(x int) Reader[Config, int] {
return func(cfg Config) int {
return x * cfg.Multiplier
}
}
// Apply TraverseReader
traversed := TraverseReader(multiply)
result := traversed(original)
// Provide Config and execute
cfg := Config{Multiplier: 4}
ctx := context.Background()
finalResult := result(cfg)(ctx)()
assert.True(t, either.IsRight(finalResult))
value, _ := either.Unwrap(finalResult)
assert.Equal(t, 20, value) // 5 * 4 = 20
})
t.Run("works with complex Reader logic", func(t *testing.T) {
type ValidationRules struct {
MinValue int
MaxValue int
}
// Original computation
original := Right(50)
// Reader-based transformation with validation logic
validate := func(x int) func(ValidationRules) int {
return func(rules ValidationRules) int {
if x < rules.MinValue {
return rules.MinValue
}
if x > rules.MaxValue {
return rules.MaxValue
}
return x
}
}
// Apply TraverseReader
traversed := TraverseReader(validate)
result := traversed(original)
// Test with value within range
rules1 := ValidationRules{MinValue: 0, MaxValue: 100}
ctx := context.Background()
finalResult1 := result(rules1)(ctx)()
assert.True(t, either.IsRight(finalResult1))
value1, _ := either.Unwrap(finalResult1)
assert.Equal(t, 50, value1)
// Test with value above max
rules2 := ValidationRules{MinValue: 0, MaxValue: 30}
finalResult2 := result(rules2)(ctx)()
assert.True(t, either.IsRight(finalResult2))
value2, _ := either.Unwrap(finalResult2)
assert.Equal(t, 30, value2) // Clamped to max
// Test with value below min
rules3 := ValidationRules{MinValue: 60, MaxValue: 100}
finalResult3 := result(rules3)(ctx)()
assert.True(t, either.IsRight(finalResult3))
value3, _ := either.Unwrap(finalResult3)
assert.Equal(t, 60, value3) // Clamped to min
})
}

View File

@@ -53,12 +53,12 @@ import (
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
RIOEH "github.com/IBM/fp-go/v2/context/readerioresult/http"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
R "github.com/IBM/fp-go/v2/http/builder"
H "github.com/IBM/fp-go/v2/http/headers"
LZ "github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
// Requester converts an http/builder.Builder into a ReaderIOResult that produces HTTP requests.
@@ -143,10 +143,10 @@ func Requester(builder *R.Builder) RIOEH.Requester {
return F.Pipe5(
builder.GetBody(),
O.Fold(LZ.Of(E.Of[error](withoutBody)), E.Map[error](withBody)),
E.Ap[func(string) RIOE.ReaderIOResult[*http.Request]](builder.GetTargetURL()),
E.Flap[error, RIOE.ReaderIOResult[*http.Request]](builder.GetMethod()),
E.GetOrElse(RIOE.Left[*http.Request]),
O.Fold(LZ.Of(result.Of(withoutBody)), result.Map(withBody)),
result.Ap[RIOE.Kleisli[string, *http.Request]](builder.GetTargetURL()),
result.Flap[RIOE.ReaderIOResult[*http.Request]](builder.GetMethod()),
result.GetOrElse(RIOE.Left[*http.Request]),
RIOE.Map(func(req *http.Request) *http.Request {
req.Header = H.Monoid.Concat(req.Header, builder.GetHeaders())
return req

View File

@@ -73,7 +73,7 @@ type (
// It wraps a standard http.Client and provides functional HTTP operations.
client struct {
delegate *http.Client
doIOE func(*http.Request) IOE.IOEither[error, *http.Response]
doIOE IOE.Kleisli[error, *http.Request, *http.Response]
}
)
@@ -158,7 +158,7 @@ func MakeClient(httpClient *http.Client) Client {
// request := MakeGetRequest("https://api.example.com/data")
// fullResp := ReadFullResponse(client)(request)
// result := fullResp(context.Background())()
func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOResult[H.FullResponse] {
func ReadFullResponse(client Client) RIOE.Kleisli[Requester, H.FullResponse] {
return func(req Requester) RIOE.ReaderIOResult[H.FullResponse] {
return F.Flow3(
client.Do(req),
@@ -195,7 +195,7 @@ func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOResult[H.FullR
// request := MakeGetRequest("https://api.example.com/data")
// readBytes := ReadAll(client)
// result := readBytes(request)(context.Background())()
func ReadAll(client Client) func(Requester) RIOE.ReaderIOResult[[]byte] {
func ReadAll(client Client) RIOE.Kleisli[Requester, []byte] {
return F.Flow2(
ReadFullResponse(client),
RIOE.Map(H.Body),
@@ -219,7 +219,7 @@ func ReadAll(client Client) func(Requester) RIOE.ReaderIOResult[[]byte] {
// request := MakeGetRequest("https://api.example.com/text")
// readText := ReadText(client)
// result := readText(request)(context.Background())()
func ReadText(client Client) func(Requester) RIOE.ReaderIOResult[string] {
func ReadText(client Client) RIOE.Kleisli[Requester, string] {
return F.Flow2(
ReadAll(client),
RIOE.Map(B.ToString),
@@ -231,7 +231,7 @@ func ReadText(client Client) func(Requester) RIOE.ReaderIOResult[string] {
// Deprecated: Use [ReadJSON] instead. This function is kept for backward compatibility
// but will be removed in a future version. The capitalized version follows Go naming
// conventions for acronyms.
func ReadJson[A any](client Client) func(Requester) RIOE.ReaderIOResult[A] {
func ReadJson[A any](client Client) RIOE.Kleisli[Requester, A] {
return ReadJSON[A](client)
}
@@ -242,7 +242,7 @@ func ReadJson[A any](client Client) func(Requester) RIOE.ReaderIOResult[A] {
// 3. Reads the response body as bytes
//
// This function is used internally by ReadJSON to ensure proper JSON response handling.
func readJSON(client Client) func(Requester) RIOE.ReaderIOResult[[]byte] {
func readJSON(client Client) RIOE.Kleisli[Requester, []byte] {
return F.Flow3(
ReadFullResponse(client),
RIOE.ChainFirstEitherK(F.Flow2(
@@ -278,7 +278,7 @@ func readJSON(client Client) func(Requester) RIOE.ReaderIOResult[[]byte] {
// request := MakeGetRequest("https://api.example.com/user/1")
// readUser := ReadJSON[User](client)
// result := readUser(request)(context.Background())()
func ReadJSON[A any](client Client) func(Requester) RIOE.ReaderIOResult[A] {
func ReadJSON[A any](client Client) RIOE.Kleisli[Requester, A] {
return F.Flow2(
readJSON(client),
RIOE.ChainEitherK(J.Unmarshal[A]),

View File

@@ -180,6 +180,11 @@ func MonadChainFirst[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIORe
return RIOR.MonadChainFirst(ma, f)
}
//go:inline
func MonadTap[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadTap(ma, f)
}
// ChainFirst sequences two [ReaderIOResult] computations but returns the result of the first.
// This is the curried version of [MonadChainFirst].
//
@@ -193,6 +198,11 @@ func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIOR.ChainFirst(f)
}
//go:inline
func Tap[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIOR.Tap(f)
}
// Of creates a [ReaderIOResult] that always succeeds with the given value.
// This is the same as [Right] and represents the monadic return operation.
//
@@ -403,6 +413,11 @@ func MonadChainFirstEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B])
return RIOR.MonadChainFirstEitherK(ma, f)
}
//go:inline
func MonadTapEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B]) ReaderIOResult[A] {
return RIOR.MonadTapEitherK(ma, f)
}
// ChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// This is the curried version of [MonadChainFirstEitherK].
//
@@ -416,6 +431,11 @@ func ChainFirstEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return RIOR.ChainFirstEitherK[context.Context](f)
}
//go:inline
func TapEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return RIOR.TapEitherK[context.Context](f)
}
// ChainOptionK chains a function that returns an [Option] into a [ReaderIOResult] computation.
// If the Option is None, the provided error function is called.
//
@@ -538,6 +558,11 @@ func MonadChainFirstIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderI
return RIOR.MonadChainFirstIOK(ma, f)
}
//go:inline
func MonadTapIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderIOResult[A] {
return RIOR.MonadTapIOK(ma, f)
}
// ChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// This is the curried version of [MonadChainFirstIOK].
//
@@ -551,6 +576,11 @@ func ChainFirstIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIOR.ChainFirstIOK[context.Context](f)
}
//go:inline
func TapIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIOR.TapIOK[context.Context](f)
}
// ChainIOEitherK chains a function that returns an [IOResult] into a [ReaderIOResult] computation.
// This is useful for integrating IOResult-returning functions into ReaderIOResult workflows.
//
@@ -628,7 +658,7 @@ func Defer[A any](gen Lazy[ReaderIOResult[A]]) ReaderIOResult[A] {
//
//go:inline
func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOResult[A] {
return RIOR.TryCatch(f, errors.IdentityError)
return RIOR.TryCatch(f, errors.Identity)
}
// MonadAlt provides an alternative [ReaderIOResult] if the first one fails.
@@ -782,11 +812,21 @@ func MonadChainFirstReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[con
return RIOR.MonadChainFirstReaderK(ma, f)
}
//go:inline
func MonadTapReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderK(ma, f)
}
//go:inline
func ChainFirstReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderK(f)
}
//go:inline
func TapReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderK(f)
}
//go:inline
func MonadChainReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderResultK(ma, f)
@@ -802,11 +842,21 @@ func MonadChainFirstReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult
return RIOR.MonadChainFirstReaderResultK(ma, f)
}
//go:inline
func MonadTapReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderResultK(ma, f)
}
//go:inline
func ChainFirstReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderResultK(f)
}
//go:inline
func TapReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, A] {
return RIOR.TapReaderResultK(f)
}
//go:inline
func MonadChainReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderIOK(ma, f)
@@ -822,11 +872,21 @@ func MonadChainFirstReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli
return RIOR.MonadChainFirstReaderIOK(ma, f)
}
//go:inline
func MonadTapReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderIOK(ma, f)
}
//go:inline
func ChainFirstReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderIOK(f)
}
//go:inline
func TapReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderIOK(f)
}
//go:inline
func ChainReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderOptionK[context.Context, A, B](onNone)
@@ -837,7 +897,64 @@ func ChainFirstReaderOptionK[A, B any](onNone func() error) func(readeroption.Kl
return RIOR.ChainFirstReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func TapReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func Read[A any](r context.Context) func(ReaderIOResult[A]) IOResult[A] {
return RIOR.Read[A](r)
}
// MonadChainLeft chains a computation on the left (error) side of a [ReaderIOResult].
// If the input is a Left value, it applies the function f to transform the error and potentially
// change the error type. If the input is a Right value, it passes through unchanged.
//
//go:inline
func MonadChainLeft[A any](fa ReaderIOResult[A], f Kleisli[error, A]) ReaderIOResult[A] {
return RIOR.MonadChainLeft(fa, f)
}
// ChainLeft is the curried version of [MonadChainLeft].
// It returns a function that chains a computation on the left (error) side of a [ReaderIOResult].
//
//go:inline
func ChainLeft[A any](f Kleisli[error, A]) func(ReaderIOResult[A]) ReaderIOResult[A] {
return RIOR.ChainLeft(f)
}
// MonadChainFirstLeft chains a computation on the left (error) side but always returns the original error.
// If the input is a Left value, it applies the function f to the error and executes the resulting computation,
// but always returns the original Left error regardless of what f returns (Left or Right).
// If the input is a Right value, it passes through unchanged without calling f.
//
// This is useful for side effects on errors (like logging or metrics) where you want to perform an action
// when an error occurs but always propagate the original error, ensuring the error path is preserved.
//
//go:inline
func MonadChainFirstLeft[A, B any](ma ReaderIOResult[A], f Kleisli[error, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstLeft(ma, f)
}
//go:inline
func MonadTapLeft[A, B any](ma ReaderIOResult[A], f Kleisli[error, B]) ReaderIOResult[A] {
return RIOR.MonadTapLeft(ma, f)
}
// ChainFirstLeft is the curried version of [MonadChainFirstLeft].
// It returns a function that chains a computation on the left (error) side while always preserving the original error.
//
// This is particularly useful for adding error handling side effects (like logging, metrics, or notifications)
// in a functional pipeline. The original error is always returned regardless of what f returns (Left or Right),
// ensuring the error path is preserved.
//
//go:inline
func ChainFirstLeft[A, B any](f Kleisli[error, B]) Operator[A, A] {
return RIOR.ChainFirstLeft[A](f)
}
//go:inline
func TapLeft[A, B any](f Kleisli[error, B]) Operator[A, A] {
return RIOR.TapLeft[A](f)
}

View File

@@ -24,6 +24,7 @@ import (
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
IOE "github.com/IBM/fp-go/v2/ioeither"
N "github.com/IBM/fp-go/v2/number"
)
var (
@@ -37,21 +38,21 @@ var (
// Benchmark core constructors
func BenchmarkLeft(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Left[int](benchErr)
}
}
func BenchmarkRight(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Right(42)
}
}
func BenchmarkOf(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Of(42)
}
}
@@ -60,7 +61,7 @@ func BenchmarkFromEither_Right(b *testing.B) {
either := E.Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromEither(either)
}
}
@@ -69,7 +70,7 @@ func BenchmarkFromEither_Left(b *testing.B) {
either := E.Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromEither(either)
}
}
@@ -77,7 +78,7 @@ func BenchmarkFromEither_Left(b *testing.B) {
func BenchmarkFromIO(b *testing.B) {
io := func() int { return 42 }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromIO(io)
}
}
@@ -85,7 +86,7 @@ func BenchmarkFromIO(b *testing.B) {
func BenchmarkFromIOEither_Right(b *testing.B) {
ioe := IOE.Of[error](42)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromIOEither(ioe)
}
}
@@ -93,7 +94,7 @@ func BenchmarkFromIOEither_Right(b *testing.B) {
func BenchmarkFromIOEither_Left(b *testing.B) {
ioe := IOE.Left[int](benchErr)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = FromIOEither(ioe)
}
}
@@ -103,7 +104,7 @@ func BenchmarkExecute_Right(b *testing.B) {
rioe := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -112,7 +113,7 @@ func BenchmarkExecute_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -123,7 +124,7 @@ func BenchmarkExecute_WithContext(b *testing.B) {
defer cancel()
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(ctx)()
}
}
@@ -131,40 +132,40 @@ func BenchmarkExecute_WithContext(b *testing.B) {
// Benchmark functor operations
func BenchmarkMonadMap_Right(b *testing.B) {
rioe := Right(42)
mapper := func(a int) int { return a * 2 }
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadMap(rioe, mapper)
}
}
func BenchmarkMonadMap_Left(b *testing.B) {
rioe := Left[int](benchErr)
mapper := func(a int) int { return a * 2 }
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadMap(rioe, mapper)
}
}
func BenchmarkMap_Right(b *testing.B) {
rioe := Right(42)
mapper := Map(func(a int) int { return a * 2 })
mapper := Map(N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
func BenchmarkMap_Left(b *testing.B) {
rioe := Left[int](benchErr)
mapper := Map(func(a int) int { return a * 2 })
mapper := Map(N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
@@ -174,7 +175,7 @@ func BenchmarkMapTo_Right(b *testing.B) {
mapper := MapTo[int](99)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
@@ -185,7 +186,7 @@ func BenchmarkMonadChain_Right(b *testing.B) {
chainer := func(a int) ReaderIOResult[int] { return Right(a * 2) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadChain(rioe, chainer)
}
}
@@ -195,7 +196,7 @@ func BenchmarkMonadChain_Left(b *testing.B) {
chainer := func(a int) ReaderIOResult[int] { return Right(a * 2) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadChain(rioe, chainer)
}
}
@@ -205,7 +206,7 @@ func BenchmarkChain_Right(b *testing.B) {
chainer := Chain(func(a int) ReaderIOResult[int] { return Right(a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -215,7 +216,7 @@ func BenchmarkChain_Left(b *testing.B) {
chainer := Chain(func(a int) ReaderIOResult[int] { return Right(a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -225,7 +226,7 @@ func BenchmarkChainFirst_Right(b *testing.B) {
chainer := ChainFirst(func(a int) ReaderIOResult[string] { return Right("logged") })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -235,7 +236,7 @@ func BenchmarkChainFirst_Left(b *testing.B) {
chainer := ChainFirst(func(a int) ReaderIOResult[string] { return Right("logged") })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -244,7 +245,7 @@ func BenchmarkFlatten_Right(b *testing.B) {
nested := Right(Right(42))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Flatten(nested)
}
}
@@ -253,28 +254,28 @@ func BenchmarkFlatten_Left(b *testing.B) {
nested := Left[ReaderIOResult[int]](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Flatten(nested)
}
}
// Benchmark applicative operations
func BenchmarkMonadApSeq_RightRight(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
func BenchmarkMonadApSeq_RightLeft(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
@@ -284,27 +285,27 @@ func BenchmarkMonadApSeq_LeftRight(b *testing.B) {
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
func BenchmarkMonadApPar_RightRight(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
func BenchmarkMonadApPar_RightLeft(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
@@ -314,30 +315,30 @@ func BenchmarkMonadApPar_LeftRight(b *testing.B) {
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
// Benchmark execution of applicative operations
func BenchmarkExecuteApSeq_RightRight(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApSeq(fab, fa)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
func BenchmarkExecuteApPar_RightRight(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApPar(fab, fa)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -348,7 +349,7 @@ func BenchmarkAlt_RightRight(b *testing.B) {
alternative := Alt(func() ReaderIOResult[int] { return Right(99) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = alternative(rioe)
}
}
@@ -358,7 +359,7 @@ func BenchmarkAlt_LeftRight(b *testing.B) {
alternative := Alt(func() ReaderIOResult[int] { return Right(99) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = alternative(rioe)
}
}
@@ -368,7 +369,7 @@ func BenchmarkOrElse_Right(b *testing.B) {
recover := OrElse(func(e error) ReaderIOResult[int] { return Right(0) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = recover(rioe)
}
}
@@ -378,7 +379,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
recover := OrElse(func(e error) ReaderIOResult[int] { return Right(0) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = recover(rioe)
}
}
@@ -389,7 +390,7 @@ func BenchmarkChainEitherK_Right(b *testing.B) {
chainer := ChainEitherK(func(a int) Either[int] { return E.Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -399,7 +400,7 @@ func BenchmarkChainEitherK_Left(b *testing.B) {
chainer := ChainEitherK(func(a int) Either[int] { return E.Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -409,7 +410,7 @@ func BenchmarkChainIOK_Right(b *testing.B) {
chainer := ChainIOK(func(a int) func() int { return func() int { return a * 2 } })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -419,7 +420,7 @@ func BenchmarkChainIOK_Left(b *testing.B) {
chainer := ChainIOK(func(a int) func() int { return func() int { return a * 2 } })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -429,7 +430,7 @@ func BenchmarkChainIOEitherK_Right(b *testing.B) {
chainer := ChainIOEitherK(func(a int) IOEither[int] { return IOE.Of[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -439,7 +440,7 @@ func BenchmarkChainIOEitherK_Left(b *testing.B) {
chainer := ChainIOEitherK(func(a int) IOEither[int] { return IOE.Of[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
@@ -447,7 +448,7 @@ func BenchmarkChainIOEitherK_Left(b *testing.B) {
// Benchmark context operations
func BenchmarkAsk(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Ask()
}
}
@@ -455,7 +456,7 @@ func BenchmarkAsk(b *testing.B) {
func BenchmarkDefer(b *testing.B) {
gen := func() ReaderIOResult[int] { return Right(42) }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Defer(gen)
}
}
@@ -463,7 +464,7 @@ func BenchmarkDefer(b *testing.B) {
func BenchmarkMemoize(b *testing.B) {
rioe := Right(42)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Memoize(rioe)
}
}
@@ -472,14 +473,14 @@ func BenchmarkMemoize(b *testing.B) {
func BenchmarkDelay_Construction(b *testing.B) {
rioe := Right(42)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = Delay[int](time.Millisecond)(rioe)
}
}
func BenchmarkTimer_Construction(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Timer(time.Millisecond)
}
}
@@ -490,7 +491,7 @@ func BenchmarkTryCatch_Success(b *testing.B) {
return func() (int, error) { return 42, nil }
}
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = TryCatch(f)
}
}
@@ -500,7 +501,7 @@ func BenchmarkTryCatch_Error(b *testing.B) {
return func() (int, error) { return 0, benchErr }
}
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = TryCatch(f)
}
}
@@ -512,7 +513,7 @@ func BenchmarkExecuteTryCatch_Success(b *testing.B) {
rioe := TryCatch(f)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -524,7 +525,7 @@ func BenchmarkExecuteTryCatch_Error(b *testing.B) {
rioe := TryCatch(f)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -534,10 +535,10 @@ func BenchmarkPipeline_Map_Right(b *testing.B) {
rioe := Right(21)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
)
}
}
@@ -546,10 +547,10 @@ func BenchmarkPipeline_Map_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
)
}
}
@@ -558,7 +559,7 @@ func BenchmarkPipeline_Chain_Right(b *testing.B) {
rioe := Right(21)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain(func(x int) ReaderIOResult[int] { return Right(x * 2) }),
@@ -570,7 +571,7 @@ func BenchmarkPipeline_Chain_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain(func(x int) ReaderIOResult[int] { return Right(x * 2) }),
@@ -582,12 +583,12 @@ func BenchmarkPipeline_Complex_Right(b *testing.B) {
rioe := Right(10)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe3(
rioe,
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
)
}
}
@@ -596,12 +597,12 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchRIOE = F.Pipe3(
rioe,
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
)
}
}
@@ -609,13 +610,13 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
rioe := F.Pipe3(
Right(10),
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(func(x int) int { return x * 2 }),
Map(N.Mul(2)),
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -624,7 +625,7 @@ func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
func BenchmarkDo(b *testing.B) {
type State struct{ value int }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Do(State{})
}
}
@@ -642,7 +643,7 @@ func BenchmarkBind_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = binder(initial)
}
}
@@ -658,7 +659,7 @@ func BenchmarkLet_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = letter(initial)
}
}
@@ -674,7 +675,7 @@ func BenchmarkApS_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = aps(initial)
}
}
@@ -687,7 +688,7 @@ func BenchmarkTraverseArray_Empty(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -699,7 +700,7 @@ func BenchmarkTraverseArray_Small(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -714,7 +715,7 @@ func BenchmarkTraverseArray_Medium(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -726,7 +727,7 @@ func BenchmarkTraverseArraySeq_Small(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -738,7 +739,7 @@ func BenchmarkTraverseArrayPar_Small(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(arr)
}
}
@@ -751,7 +752,7 @@ func BenchmarkSequenceArray_Small(b *testing.B) {
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = SequenceArray(arr)
}
}
@@ -763,7 +764,7 @@ func BenchmarkExecuteTraverseArray_Small(b *testing.B) {
})(arr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = rioe(benchCtx)()
}
}
@@ -775,7 +776,7 @@ func BenchmarkExecuteTraverseArraySeq_Small(b *testing.B) {
})(arr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = rioe(benchCtx)()
}
}
@@ -787,7 +788,7 @@ func BenchmarkExecuteTraverseArrayPar_Small(b *testing.B) {
})(arr)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = rioe(benchCtx)()
}
}
@@ -800,7 +801,7 @@ func BenchmarkTraverseRecord_Small(b *testing.B) {
})
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = traverser(rec)
}
}
@@ -813,7 +814,7 @@ func BenchmarkSequenceRecord_Small(b *testing.B) {
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = SequenceRecord(rec)
}
}
@@ -826,7 +827,7 @@ func BenchmarkWithResource_Success(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = WithResource[int](acquire, release)(body)
}
}
@@ -839,7 +840,7 @@ func BenchmarkExecuteWithResource_Success(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -852,7 +853,7 @@ func BenchmarkExecuteWithResource_ErrorInBody(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
@@ -865,13 +866,13 @@ func BenchmarkExecute_CanceledContext(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(ctx)()
}
}
func BenchmarkExecuteApPar_CanceledContext(b *testing.B) {
fab := Right(func(a int) int { return a * 2 })
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApPar(fab, fa)
ctx, cancel := context.WithCancel(benchCtx)
@@ -879,7 +880,7 @@ func BenchmarkExecuteApPar_CanceledContext(b *testing.B) {
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = rioe(ctx)()
}
}

View File

@@ -26,6 +26,7 @@ import (
IOG "github.com/IBM/fp-go/v2/io"
IOE "github.com/IBM/fp-go/v2/ioeither"
M "github.com/IBM/fp-go/v2/monoid"
N "github.com/IBM/fp-go/v2/number"
O "github.com/IBM/fp-go/v2/option"
R "github.com/IBM/fp-go/v2/reader"
"github.com/stretchr/testify/assert"
@@ -77,27 +78,27 @@ func TestOf(t *testing.T) {
func TestMonadMap(t *testing.T) {
t.Run("Map over Right", func(t *testing.T) {
result := MonadMap(Of(5), func(x int) int { return x * 2 })
result := MonadMap(Of(5), N.Mul(2))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("Map over Left", func(t *testing.T) {
err := errors.New("test error")
result := MonadMap(Left[int](err), func(x int) int { return x * 2 })
result := MonadMap(Left[int](err), N.Mul(2))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMap(t *testing.T) {
t.Run("Map with success", func(t *testing.T) {
mapper := Map(func(x int) int { return x * 2 })
mapper := Map(N.Mul(2))
result := mapper(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("Map with error", func(t *testing.T) {
err := errors.New("test error")
mapper := Map(func(x int) int { return x * 2 })
mapper := Map(N.Mul(2))
result := mapper(Left[int](err))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
@@ -182,7 +183,7 @@ func TestChainFirst(t *testing.T) {
func TestMonadApSeq(t *testing.T) {
t.Run("ApSeq with success", func(t *testing.T) {
fab := Of(func(x int) int { return x * 2 })
fab := Of(N.Mul(2))
fa := Of(5)
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
@@ -198,7 +199,7 @@ func TestMonadApSeq(t *testing.T) {
t.Run("ApSeq with error in value", func(t *testing.T) {
err := errors.New("test error")
fab := Of(func(x int) int { return x * 2 })
fab := Of(N.Mul(2))
fa := Left[int](err)
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Left[int](err), result(context.Background())())
@@ -207,7 +208,7 @@ func TestMonadApSeq(t *testing.T) {
func TestApSeq(t *testing.T) {
fa := Of(5)
fab := Of(func(x int) int { return x * 2 })
fab := Of(N.Mul(2))
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
@@ -215,7 +216,7 @@ func TestApSeq(t *testing.T) {
func TestApPar(t *testing.T) {
t.Run("ApPar with success", func(t *testing.T) {
fa := Of(5)
fab := Of(func(x int) int { return x * 2 })
fab := Of(N.Mul(2))
result := MonadApPar(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
@@ -224,7 +225,7 @@ func TestApPar(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
cancel()
fa := Of(5)
fab := Of(func(x int) int { return x * 2 })
fab := Of(N.Mul(2))
result := MonadApPar(fab, fa)
res := result(ctx)()
assert.True(t, E.IsLeft(res))
@@ -587,14 +588,14 @@ func TestFlatten(t *testing.T) {
}
func TestMonadFlap(t *testing.T) {
fab := Of(func(x int) int { return x * 2 })
fab := Of(N.Mul(2))
result := MonadFlap(fab, 5)
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestFlap(t *testing.T) {
flapper := Flap[int](5)
result := flapper(Of(func(x int) int { return x * 2 }))
result := flapper(Of(N.Mul(2)))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}

View File

@@ -284,3 +284,160 @@ func TestWithResourceErrorInRelease(t *testing.T) {
assert.Equal(t, 0, countRelease)
assert.Equal(t, E.Left[int](err), res)
}
func TestMonadChainFirstLeft(t *testing.T) {
ctx := context.Background()
// Test with Left value - function returns Left, always preserves original error
t.Run("Left value with function returning Left preserves original error", func(t *testing.T) {
sideEffectCalled := false
originalErr := fmt.Errorf("original error")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("new error")) // This error is ignored
},
)
actualResult := result(ctx)()
assert.True(t, sideEffectCalled)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Left value - function returns Right, still returns original Left
t.Run("Left value with function returning Right still returns original Left", func(t *testing.T) {
var capturedError error
originalErr := fmt.Errorf("validation failed")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
capturedError = e
return Right(999) // This Right value is ignored
},
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, capturedError)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Right value - should pass through without calling function
t.Run("Right value passes through", func(t *testing.T) {
sideEffectCalled := false
result := MonadChainFirstLeft(
Right(42),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("should not be called"))
},
)
assert.False(t, sideEffectCalled)
assert.Equal(t, E.Right[error](42), result(ctx)())
})
// Test that side effects are executed but original error is always preserved
t.Run("Side effects executed but original error preserved", func(t *testing.T) {
effectCount := 0
originalErr := fmt.Errorf("original error")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
effectCount++
// Try to return Right, but original Left should still be returned
return Right(999)
},
)
actualResult := result(ctx)()
assert.Equal(t, 1, effectCount)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
}
func TestChainFirstLeft(t *testing.T) {
ctx := context.Background()
// Test with Left value - function returns Left, always preserves original error
t.Run("Left value with function returning Left preserves error", func(t *testing.T) {
var captured error
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Left[int](fmt.Errorf("ignored error"))
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, captured)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Left value - function returns Right, still returns original Left
t.Run("Left value with function returning Right still returns original Left", func(t *testing.T) {
var captured error
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Right(42) // This Right is ignored
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, captured)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Right value - should pass through without calling function
t.Run("Right value passes through", func(t *testing.T) {
called := false
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
called = true
return Right(0)
})
result := F.Pipe1(
Right(100),
chainFn,
)
assert.False(t, called)
assert.Equal(t, E.Right[error](100), result(ctx)())
})
// Test that original error is always preserved regardless of what f returns
t.Run("Original error always preserved", func(t *testing.T) {
originalErr := fmt.Errorf("original")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
// Try to return Right, but original Left should still be returned
return Right(999)
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
assert.Equal(t, E.Left[int](originalErr), result(ctx)())
})
// Test logging with Left preservation
t.Run("Logging with Left preservation", func(t *testing.T) {
errorLog := []string{}
originalErr := fmt.Errorf("step1")
logError := ChainFirstLeft[string](func(e error) ReaderIOResult[string] {
errorLog = append(errorLog, "Logged: "+e.Error())
return Left[string](fmt.Errorf("log entry")) // This is ignored
})
result := F.Pipe2(
Left[string](originalErr),
logError,
ChainLeft(func(e error) ReaderIOResult[string] {
return Left[string](fmt.Errorf("step2"))
}),
)
actualResult := result(ctx)()
assert.Equal(t, []string{"Logged: step1"}, errorLog)
assert.Equal(t, E.Left[string](fmt.Errorf("step2")), actualResult)
})
}

View File

@@ -16,8 +16,8 @@
package readerioresult
import (
"github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
"github.com/IBM/fp-go/v2/internal/record"
)
@@ -29,7 +29,7 @@ import (
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -46,7 +46,7 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -135,22 +135,20 @@ func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArraySeq[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
@@ -230,22 +228,20 @@ func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B
//
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayPar[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}

View File

@@ -0,0 +1,19 @@
package readerresult
import (
"context"
"github.com/IBM/fp-go/v2/reader"
RR "github.com/IBM/fp-go/v2/readerresult"
)
//go:inline
func SequenceReader[R, A any](ma ReaderResult[Reader[R, A]]) reader.Kleisli[context.Context, R, Result[A]] {
return RR.SequenceReader(ma)
}
func TraverseReader[R, A, B any](
f reader.Kleisli[R, A, B],
) func(ReaderResult[A]) Kleisli[R, B] {
return RR.TraverseReader[context.Context](f)
}

View File

@@ -27,9 +27,10 @@ import (
)
type (
Option[A any] = option.Option[A]
Either[A any] = either.Either[error, A]
Result[A any] = result.Result[A]
Option[A any] = option.Option[A]
Either[A any] = either.Either[error, A]
Result[A any] = result.Result[A]
Reader[R, A any] = reader.Reader[R, A]
// ReaderResult is a specialization of the Reader monad for the typical golang scenario
ReaderResult[A any] = readereither.ReaderEither[context.Context, error, A]

View File

@@ -0,0 +1,209 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"github.com/IBM/fp-go/v2/function"
A "github.com/IBM/fp-go/v2/internal/apply"
C "github.com/IBM/fp-go/v2/internal/chain"
F "github.com/IBM/fp-go/v2/internal/functor"
)
// Do starts a do-notation chain for building computations in a fluent style.
// This is typically used with Bind, Let, and other combinators to compose
// stateful, context-dependent computations that can fail.
//
// Example:
//
// type State struct {
// name string
// age int
// }
// result := function.Pipe2(
// statereaderioresult.Do[AppState](State{}),
// statereaderioresult.Bind(...),
// statereaderioresult.Let(...),
// )
//
//go:inline
func Do[ST, A any](
empty A,
) StateReaderIOResult[ST, A] {
return Of[ST](empty)
}
// Bind executes a computation and binds its result to a field in the accumulator state.
// This is used in do-notation to sequence dependent computations.
//
// Example:
//
// result := function.Pipe2(
// statereaderioresult.Do[AppState](State{}),
// statereaderioresult.Bind(
// func(name string) func(State) State {
// return func(s State) State { return State{name: name, age: s.age} }
// },
// func(s State) statereaderioresult.StateReaderIOResult[AppState, string] {
// return statereaderioresult.Of[AppState]("John")
// },
// ),
// )
//
//go:inline
func Bind[ST, S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[ST, S1, T],
) Operator[ST, S1, S2] {
return C.Bind(
Chain[ST, S1, S2],
Map[ST, T, S2],
setter,
f,
)
}
// Let computes a derived value and binds it to a field in the accumulator state.
// Unlike Bind, this does not execute a monadic computation, just a pure function.
//
// Example:
//
// result := function.Pipe2(
// statereaderioresult.Do[AppState](State{age: 25}),
// statereaderioresult.Let(
// func(isAdult bool) func(State) State {
// return func(s State) State { return State{age: s.age, isAdult: isAdult} }
// },
// func(s State) bool { return s.age >= 18 },
// ),
// )
//
//go:inline
func Let[ST, S1, S2, T any](
key func(T) func(S1) S2,
f func(S1) T,
) Operator[ST, S1, S2] {
return F.Let(
Map[ST, S1, S2],
key,
f,
)
}
// LetTo binds a constant value to a field in the accumulator state.
//
// Example:
//
// result := function.Pipe2(
// statereaderioresult.Do[AppState](State{}),
// statereaderioresult.LetTo(
// func(status string) func(State) State {
// return func(s State) State { return State{...s, status: status} }
// },
// "active",
// ),
// )
//
//go:inline
func LetTo[ST, S1, S2, T any](
key func(T) func(S1) S2,
b T,
) Operator[ST, S1, S2] {
return F.LetTo(
Map[ST, S1, S2],
key,
b,
)
}
// BindTo wraps a value in a simple constructor, typically used to start a do-notation chain
// after getting an initial value.
//
// Example:
//
// result := function.Pipe2(
// statereaderioresult.Of[AppState](42),
// statereaderioresult.BindTo[AppState](func(x int) State { return State{value: x} }),
// )
//
//go:inline
func BindTo[ST, S1, T any](
setter func(T) S1,
) Operator[ST, T, S1] {
return C.BindTo(
Map[ST, T, S1],
setter,
)
}
// ApS applies a computation in sequence and binds the result to a field.
// This is the applicative version of Bind.
//
//go:inline
func ApS[ST, S1, S2, T any](
setter func(T) func(S1) S2,
fa StateReaderIOResult[ST, T],
) Operator[ST, S1, S2] {
return A.ApS(
Ap[S2, ST, T],
Map[ST, S1, func(T) S2],
setter,
fa,
)
}
// ApSL is a lens-based variant of ApS for working with nested structures.
// It uses a lens to focus on a specific field in the state.
//
//go:inline
func ApSL[ST, S, T any](
lens Lens[S, T],
fa StateReaderIOResult[ST, T],
) Endomorphism[StateReaderIOResult[ST, S]] {
return ApS(lens.Set, fa)
}
// BindL is a lens-based variant of Bind for working with nested structures.
// It uses a lens to focus on a specific field in the state.
//
//go:inline
func BindL[ST, S, T any](
lens Lens[S, T],
f Kleisli[ST, T, T],
) Endomorphism[StateReaderIOResult[ST, S]] {
return Bind(lens.Set, function.Flow2(lens.Get, f))
}
// LetL is a lens-based variant of Let for working with nested structures.
// It uses a lens to focus on a specific field in the state.
//
//go:inline
func LetL[ST, S, T any](
lens Lens[S, T],
f Endomorphism[T],
) Endomorphism[StateReaderIOResult[ST, S]] {
return Let[ST](lens.Set, function.Flow2(lens.Get, f))
}
// LetToL is a lens-based variant of LetTo for working with nested structures.
// It uses a lens to focus on a specific field in the state.
//
//go:inline
func LetToL[ST, S, T any](
lens Lens[S, T],
b T,
) Endomorphism[StateReaderIOResult[ST, S]] {
return LetTo[ST](lens.Set, b)
}

View File

@@ -0,0 +1,147 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package statereaderioresult provides a functional programming abstraction that combines
// four powerful concepts: State, Reader, IO, and Result monads, specialized for Go's context.Context.
//
// # StateReaderIOResult
//
// StateReaderIOResult[S, A] represents a computation that:
// - Manages state of type S (State)
// - Depends on a [context.Context] (Reader)
// - Performs side effects (IO)
// - Can fail with an [error] or succeed with a value of type A (Result)
//
// This is a specialization of StateReaderIOEither with:
// - Context type fixed to [context.Context]
// - Error type fixed to [error]
//
// This is particularly useful for:
// - Stateful computations with dependency injection using Go contexts
// - Error handling in effectful computations with state
// - Composing operations that need access to context, manage state, and can fail
// - Working with Go's standard context patterns (cancellation, deadlines, values)
//
// # Core Operations
//
// Construction:
// - Of/Right: Create a successful computation with a value
// - Left: Create a failed computation with an error
// - FromState: Lift a State into StateReaderIOResult
// - FromIO: Lift an IO into StateReaderIOResult
// - FromResult: Lift a Result into StateReaderIOResult
// - FromIOResult: Lift an IOResult into StateReaderIOResult
// - FromReaderIOResult: Lift a ReaderIOResult into StateReaderIOResult
//
// Transformation:
// - Map: Transform the success value
// - Chain: Sequence dependent computations (monadic bind)
// - Flatten: Flatten nested StateReaderIOResult
//
// Combination:
// - Ap: Apply a function in a context to a value in a context
//
// Context Access:
// - Asks: Get a value derived from the context
// - Local: Run a computation with a modified context
//
// Kleisli Arrows:
// - FromResultK: Lift a Result-returning function to a Kleisli arrow
// - FromIOK: Lift an IO-returning function to a Kleisli arrow
// - FromIOResultK: Lift an IOResult-returning function to a Kleisli arrow
// - FromReaderIOResultK: Lift a ReaderIOResult-returning function to a Kleisli arrow
// - ChainResultK: Chain with a Result-returning function
// - ChainIOResultK: Chain with an IOResult-returning function
// - ChainReaderIOResultK: Chain with a ReaderIOResult-returning function
//
// Do Notation (Monadic Composition):
// - Do: Start a do-notation chain
// - Bind: Bind a value from a computation
// - BindTo: Bind a value to a simple constructor
// - Let: Compute a derived value
// - LetTo: Set a constant value
// - ApS: Apply in sequence (for applicative composition)
// - BindL/ApSL/LetL/LetToL: Lens-based variants for working with nested structures
//
// # Example Usage
//
// type AppState struct {
// RequestCount int
// LastError error
// }
//
// // A computation that manages state, depends on context, performs IO, and can fail
// func processRequest(data string) statereaderioresult.StateReaderIOResult[AppState, string] {
// return func(state AppState) readerioresult.ReaderIOResult[pair.Pair[AppState, string]] {
// return func(ctx context.Context) ioresult.IOResult[pair.Pair[AppState, string]] {
// return func() result.Result[pair.Pair[AppState, string]] {
// // Check context for cancellation
// if ctx.Err() != nil {
// return result.Error[pair.Pair[AppState, string]](ctx.Err())
// }
// // Update state
// newState := AppState{RequestCount: state.RequestCount + 1}
// // Perform IO operations
// return result.Of(pair.MakePair(newState, "processed: " + data))
// }
// }
// }
// }
//
// // Compose operations using do-notation
// result := function.Pipe3(
// statereaderioresult.Do[AppState](State{}),
// statereaderioresult.Bind(
// func(result string) func(State) State { return func(s State) State { return State{result: result} } },
// func(s State) statereaderioresult.StateReaderIOResult[AppState, string] {
// return processRequest(s.input)
// },
// ),
// statereaderioresult.Map[AppState](func(s State) string { return s.result }),
// )
//
// // Execute with initial state and context
// initialState := AppState{RequestCount: 0}
// ctx := context.Background()
// outcome := result(initialState)(ctx)() // Returns result.Result[pair.Pair[AppState, string]]
//
// # Context Integration
//
// This package is designed to work seamlessly with Go's context.Context:
//
// // Using context values
// getUserID := statereaderioresult.Asks[AppState, string](func(ctx context.Context) statereaderioresult.StateReaderIOResult[AppState, string] {
// userID, ok := ctx.Value("userID").(string)
// if !ok {
// return statereaderioresult.Left[AppState, string](errors.New("missing userID"))
// }
// return statereaderioresult.Of[AppState](userID)
// })
//
// // Using context cancellation
// withTimeout := statereaderioresult.Local[AppState, string](func(ctx context.Context) context.Context {
// ctx, _ = context.WithTimeout(ctx, 5*time.Second)
// return ctx
// })
//
// # Monad Laws
//
// StateReaderIOResult satisfies the monad laws:
// - Left Identity: Of(a) >>= f ≡ f(a)
// - Right Identity: m >>= Of ≡ m
// - Associativity: (m >>= f) >>= g ≡ m >>= (x => f(x) >>= g)
//
// These laws are verified in the testing subpackage.
package statereaderioresult

View File

@@ -0,0 +1,41 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"context"
"github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/function"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
// Eq implements the equals predicate for values contained in the [StateReaderIOResult] monad
func Eq[S, A any](eqr eq.Eq[ReaderIOResult[Pair[S, A]]]) func(S) eq.Eq[StateReaderIOResult[S, A]] {
return func(s S) eq.Eq[StateReaderIOResult[S, A]] {
return eq.FromEquals(func(l, r StateReaderIOResult[S, A]) bool {
return eqr.Equals(l(s), r(s))
})
}
}
// FromStrictEquals constructs an [eq.Eq] from the canonical comparison function
func FromStrictEquals[S comparable, A comparable]() func(context.Context) func(S) eq.Eq[StateReaderIOResult[S, A]] {
return function.Flow2(
RIOR.FromStrictEquals[context.Context, Pair[S, A]](),
Eq[S, A],
)
}

View File

@@ -0,0 +1,103 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"github.com/IBM/fp-go/v2/internal/applicative"
"github.com/IBM/fp-go/v2/internal/functor"
"github.com/IBM/fp-go/v2/internal/monad"
"github.com/IBM/fp-go/v2/internal/pointed"
)
type stateReaderIOResultPointed[
S, A any,
] struct{}
type stateReaderIOResultFunctor[
S, A, B any,
] struct{}
type stateReaderIOResultApplicative[
S, A, B any,
] struct{}
type stateReaderIOResultMonad[
S, A, B any,
] struct{}
func (o *stateReaderIOResultPointed[S, A]) Of(a A) StateReaderIOResult[S, A] {
return Of[S](a)
}
func (o *stateReaderIOResultMonad[S, A, B]) Of(a A) StateReaderIOResult[S, A] {
return Of[S](a)
}
func (o *stateReaderIOResultApplicative[S, A, B]) Of(a A) StateReaderIOResult[S, A] {
return Of[S](a)
}
func (o *stateReaderIOResultMonad[S, A, B]) Map(f func(A) B) Operator[S, A, B] {
return Map[S](f)
}
func (o *stateReaderIOResultApplicative[S, A, B]) Map(f func(A) B) Operator[S, A, B] {
return Map[S](f)
}
func (o *stateReaderIOResultFunctor[S, A, B]) Map(f func(A) B) Operator[S, A, B] {
return Map[S](f)
}
func (o *stateReaderIOResultMonad[S, A, B]) Chain(f Kleisli[S, A, B]) Operator[S, A, B] {
return Chain(f)
}
func (o *stateReaderIOResultMonad[S, A, B]) Ap(fa StateReaderIOResult[S, A]) Operator[S, func(A) B, B] {
return Ap[B](fa)
}
func (o *stateReaderIOResultApplicative[S, A, B]) Ap(fa StateReaderIOResult[S, A]) Operator[S, func(A) B, B] {
return Ap[B](fa)
}
// Pointed implements the [pointed.Pointed] operations for [StateReaderIOResult]
func Pointed[
S, A any,
]() pointed.Pointed[A, StateReaderIOResult[S, A]] {
return &stateReaderIOResultPointed[S, A]{}
}
// Functor implements the [functor.Functor] operations for [StateReaderIOResult]
func Functor[
S, A, B any,
]() functor.Functor[A, B, StateReaderIOResult[S, A], StateReaderIOResult[S, B]] {
return &stateReaderIOResultFunctor[S, A, B]{}
}
// Applicative implements the [applicative.Applicative] operations for [StateReaderIOResult]
func Applicative[
S, A, B any,
]() applicative.Applicative[A, B, StateReaderIOResult[S, A], StateReaderIOResult[S, B], StateReaderIOResult[S, func(A) B]] {
return &stateReaderIOResultApplicative[S, A, B]{}
}
// Monad implements the [monad.Monad] operations for [StateReaderIOResult]
func Monad[
S, A, B any,
]() monad.Monad[A, B, StateReaderIOResult[S, A], StateReaderIOResult[S, B], StateReaderIOResult[S, func(A) B]] {
return &stateReaderIOResultMonad[S, A, B]{}
}

View File

@@ -0,0 +1,101 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import "github.com/IBM/fp-go/v2/statereaderioeither"
// WithResource constructs a function that creates a resource with state management, operates on it,
// and then releases the resource. This ensures proper resource cleanup even in the presence of errors,
// following the Resource Acquisition Is Initialization (RAII) pattern.
//
// The state is threaded through all operations: resource creation, usage, and release.
//
// The resource lifecycle with state management is:
// 1. onCreate: Acquires the resource (may modify state)
// 2. use: Operates on the resource with current state (provided as argument to the returned function)
// 3. onRelease: Releases the resource with current state (called regardless of success or failure)
//
// Type parameters:
// - A: The type of the result produced by using the resource
// - S: The state type that is threaded through all operations
// - RES: The resource type
// - ANY: The type returned by the release function (typically ignored)
//
// Parameters:
// - onCreate: A stateful computation that acquires the resource
// - onRelease: A stateful function that releases the resource, called with the resource and current state,
// executed regardless of errors
//
// Returns:
//
// A function that takes a resource-using function and returns a StateReaderIOResult that manages
// the resource lifecycle with state
//
// Example:
//
// type AppState struct {
// openFiles int
// }
//
// // Resource creation that updates state
// openFile := func(filename string) StateReaderIOResult[AppState, *File] {
// return func(state AppState) ReaderIOResult[Pair[AppState, *File]] {
// return func(ctx context.Context) IOResult[Pair[AppState, *File]] {
// return func() Result[Pair[AppState, *File]] {
// file, err := os.Open(filename)
// if err != nil {
// return result.Error[Pair[AppState, *File]](err)
// }
// newState := AppState{openFiles: state.openFiles + 1}
// return result.Of(pair.MakePair(newState, file))
// }
// }
// }
// }
//
// // Resource release that updates state
// closeFile := func(f *File) StateReaderIOResult[AppState, int] {
// return func(state AppState) ReaderIOResult[Pair[AppState, int]] {
// return func(ctx context.Context) IOResult[Pair[AppState, int]] {
// return func() Result[Pair[AppState, int]] {
// f.Close()
// newState := AppState{openFiles: state.openFiles - 1}
// return result.Of(pair.MakePair(newState, 0))
// }
// }
// }
// }
//
// // Use the resource with automatic cleanup
// withFile := WithResource(
// openFile("data.txt"),
// closeFile,
// )
//
// result := withFile(func(f *File) StateReaderIOResult[AppState, string] {
// return readContent(f) // File will be closed automatically
// })
//
// // Execute the computation
// initialState := AppState{openFiles: 0}
// ctx := context.Background()
// outcome := result(initialState)(ctx)()
func WithResource[A, S, RES, ANY any](
onCreate StateReaderIOResult[S, RES],
onRelease Kleisli[S, RES, ANY],
) Kleisli[S, Kleisli[S, RES, A], A] {
return statereaderioeither.WithResource[A](onCreate, onRelease)
}

View File

@@ -0,0 +1,415 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"context"
"errors"
"testing"
P "github.com/IBM/fp-go/v2/pair"
RES "github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
// resourceState tracks the lifecycle of resources for testing
type resourceState struct {
resourcesCreated int
resourcesReleased int
lastError error
}
// mockResource represents a test resource
type mockResource struct {
id int
isValid bool
}
// TestWithResourceSuccess tests successful resource creation, usage, and release
func TestWithResourceSuccess(t *testing.T) {
initialState := resourceState{resourcesCreated: 0, resourcesReleased: 0}
ctx := context.Background()
// Create a resource
onCreate := func(s resourceState) ReaderIOResult[Pair[resourceState, mockResource]] {
return func(ctx context.Context) IOResult[Pair[resourceState, mockResource]] {
return func() Result[Pair[resourceState, mockResource]] {
newState := resourceState{
resourcesCreated: s.resourcesCreated + 1,
resourcesReleased: s.resourcesReleased,
}
res := mockResource{id: newState.resourcesCreated, isValid: true}
return RES.Of(P.MakePair(newState, res))
}
}
}
// Release a resource
onRelease := func(res mockResource) StateReaderIOResult[resourceState, int] {
return func(s resourceState) ReaderIOResult[Pair[resourceState, int]] {
return func(ctx context.Context) IOResult[Pair[resourceState, int]] {
return func() Result[Pair[resourceState, int]] {
newState := resourceState{
resourcesCreated: s.resourcesCreated,
resourcesReleased: s.resourcesReleased + 1,
}
return RES.Of(P.MakePair(newState, 0))
}
}
}
}
// Use the resource
useResource := func(res mockResource) StateReaderIOResult[resourceState, string] {
return func(s resourceState) ReaderIOResult[Pair[resourceState, string]] {
return func(ctx context.Context) IOResult[Pair[resourceState, string]] {
return func() Result[Pair[resourceState, string]] {
result := "used resource " + string(rune(res.id+'0'))
return RES.Of(P.MakePair(s, result))
}
}
}
}
withResource := WithResource[string](onCreate, onRelease)
result := withResource(useResource)
outcome := result(initialState)(ctx)()
assert.True(t, RES.IsRight(outcome))
RES.Map(func(p Pair[resourceState, string]) Pair[resourceState, string] {
state := P.Head(p)
value := P.Tail(p)
// Verify state updates
// Note: Final state comes from the use function, not the release function
// onCreate: 0->1, use: sees 1 (doesn't modify), release: sees 1 and increments released
// The final state is from use function which saw state=1 with resourcesReleased=0
assert.Equal(t, 1, state.resourcesCreated, "Resource should be created once")
assert.Equal(t, 0, state.resourcesReleased, "Final state is from use function, before release")
// Verify result
assert.Equal(t, "used resource 1", value)
return p
})(outcome)
}
// TestWithResourceErrorInCreate tests error handling when resource creation fails
func TestWithResourceErrorInCreate(t *testing.T) {
initialState := resourceState{resourcesCreated: 0, resourcesReleased: 0}
ctx := context.Background()
createError := errors.New("failed to create resource")
// onCreate that fails
onCreate := func(s resourceState) ReaderIOResult[Pair[resourceState, mockResource]] {
return func(ctx context.Context) IOResult[Pair[resourceState, mockResource]] {
return func() Result[Pair[resourceState, mockResource]] {
return RES.Left[Pair[resourceState, mockResource]](createError)
}
}
}
// Release should not be called if onCreate fails
onRelease := func(res mockResource) StateReaderIOResult[resourceState, int] {
return func(s resourceState) ReaderIOResult[Pair[resourceState, int]] {
return func(ctx context.Context) IOResult[Pair[resourceState, int]] {
return func() Result[Pair[resourceState, int]] {
t.Error("onRelease should not be called when onCreate fails")
return RES.Of(P.MakePair(s, 0))
}
}
}
}
useResource := func(res mockResource) StateReaderIOResult[resourceState, string] {
return Of[resourceState]("should not reach here")
}
withResource := WithResource[string](onCreate, onRelease)
result := withResource(useResource)
outcome := result(initialState)(ctx)()
assert.True(t, RES.IsLeft(outcome))
RES.Fold(
func(err error) bool {
assert.Equal(t, createError, err)
return true
},
func(p Pair[resourceState, string]) bool {
t.Error("Expected error but got success")
return false
},
)(outcome)
}
// TestWithResourceErrorInUse tests that resources are released even when usage fails
func TestWithResourceErrorInUse(t *testing.T) {
initialState := resourceState{resourcesCreated: 0, resourcesReleased: 0}
ctx := context.Background()
useError := errors.New("failed to use resource")
// Create a resource
onCreate := func(s resourceState) ReaderIOResult[Pair[resourceState, mockResource]] {
return func(ctx context.Context) IOResult[Pair[resourceState, mockResource]] {
return func() Result[Pair[resourceState, mockResource]] {
newState := resourceState{
resourcesCreated: s.resourcesCreated + 1,
resourcesReleased: s.resourcesReleased,
}
res := mockResource{id: 1, isValid: true}
return RES.Of(P.MakePair(newState, res))
}
}
}
releaseWasCalled := false
// Release should still be called even if use fails
onRelease := func(res mockResource) StateReaderIOResult[resourceState, int] {
return func(s resourceState) ReaderIOResult[Pair[resourceState, int]] {
return func(ctx context.Context) IOResult[Pair[resourceState, int]] {
return func() Result[Pair[resourceState, int]] {
releaseWasCalled = true
newState := resourceState{
resourcesCreated: s.resourcesCreated,
resourcesReleased: s.resourcesReleased + 1,
}
return RES.Of(P.MakePair(newState, 0))
}
}
}
}
// Use that fails
useResource := func(res mockResource) StateReaderIOResult[resourceState, string] {
return Left[resourceState, string](useError)
}
withResource := WithResource[string](onCreate, onRelease)
result := withResource(useResource)
outcome := result(initialState)(ctx)()
assert.True(t, RES.IsLeft(outcome))
assert.True(t, releaseWasCalled, "onRelease should be called even when use fails")
RES.Fold(
func(err error) bool {
assert.Equal(t, useError, err)
return true
},
func(p Pair[resourceState, string]) bool {
t.Error("Expected error but got success")
return false
},
)(outcome)
}
// TestWithResourceStateThreading tests that state is properly threaded through all operations
func TestWithResourceStateThreading(t *testing.T) {
initialState := resourceState{resourcesCreated: 0, resourcesReleased: 0}
ctx := context.Background()
// Create increments counter
onCreate := func(s resourceState) ReaderIOResult[Pair[resourceState, mockResource]] {
return func(ctx context.Context) IOResult[Pair[resourceState, mockResource]] {
return func() Result[Pair[resourceState, mockResource]] {
newState := resourceState{
resourcesCreated: s.resourcesCreated + 1,
resourcesReleased: s.resourcesReleased,
}
res := mockResource{id: newState.resourcesCreated, isValid: true}
return RES.Of(P.MakePair(newState, res))
}
}
}
// Use observes the state after creation
useResource := func(res mockResource) StateReaderIOResult[resourceState, int] {
return func(s resourceState) ReaderIOResult[Pair[resourceState, int]] {
return func(ctx context.Context) IOResult[Pair[resourceState, int]] {
return func() Result[Pair[resourceState, int]] {
// Verify state was updated by onCreate
assert.Equal(t, 1, s.resourcesCreated)
assert.Equal(t, 0, s.resourcesReleased)
return RES.Of(P.MakePair(s, s.resourcesCreated))
}
}
}
}
// Release increments released counter
onRelease := func(res mockResource) StateReaderIOResult[resourceState, int] {
return func(s resourceState) ReaderIOResult[Pair[resourceState, int]] {
return func(ctx context.Context) IOResult[Pair[resourceState, int]] {
return func() Result[Pair[resourceState, int]] {
// Verify state was updated by onCreate and use
assert.Equal(t, 1, s.resourcesCreated)
assert.Equal(t, 0, s.resourcesReleased)
newState := resourceState{
resourcesCreated: s.resourcesCreated,
resourcesReleased: s.resourcesReleased + 1,
}
return RES.Of(P.MakePair(newState, 0))
}
}
}
}
withResource := WithResource[int](onCreate, onRelease)
result := withResource(useResource)
outcome := result(initialState)(ctx)()
assert.True(t, RES.IsRight(outcome))
RES.Map(func(p Pair[resourceState, int]) Pair[resourceState, int] {
finalState := P.Head(p)
value := P.Tail(p)
// Verify final state
// Note: Final state is from the use function, which preserves the state it received
// onCreate: 0->1, use: sees 1, release: sees 1 and increments released to 1
// But final state is from use function where resourcesReleased=0
assert.Equal(t, 1, finalState.resourcesCreated)
assert.Equal(t, 0, finalState.resourcesReleased, "Final state is from use function, before release")
assert.Equal(t, 1, value)
return p
})(outcome)
}
// TestWithResourceMultipleResources tests using WithResource multiple times (nesting)
func TestWithResourceMultipleResources(t *testing.T) {
initialState := resourceState{resourcesCreated: 0, resourcesReleased: 0}
ctx := context.Background()
createResource := func(s resourceState) ReaderIOResult[Pair[resourceState, mockResource]] {
return func(ctx context.Context) IOResult[Pair[resourceState, mockResource]] {
return func() Result[Pair[resourceState, mockResource]] {
newState := resourceState{
resourcesCreated: s.resourcesCreated + 1,
resourcesReleased: s.resourcesReleased,
}
res := mockResource{id: newState.resourcesCreated, isValid: true}
return RES.Of(P.MakePair(newState, res))
}
}
}
releaseResource := func(res mockResource) StateReaderIOResult[resourceState, int] {
return func(s resourceState) ReaderIOResult[Pair[resourceState, int]] {
return func(ctx context.Context) IOResult[Pair[resourceState, int]] {
return func() Result[Pair[resourceState, int]] {
newState := resourceState{
resourcesCreated: s.resourcesCreated,
resourcesReleased: s.resourcesReleased + 1,
}
return RES.Of(P.MakePair(newState, 0))
}
}
}
}
// Create two nested resources
withResource1 := WithResource[int](createResource, releaseResource)
withResource2 := WithResource[int](createResource, releaseResource)
result := withResource1(func(res1 mockResource) StateReaderIOResult[resourceState, int] {
return withResource2(func(res2 mockResource) StateReaderIOResult[resourceState, int] {
// Both resources should be available
return Of[resourceState](res1.id + res2.id)
})
})
outcome := result(initialState)(ctx)()
assert.True(t, RES.IsRight(outcome))
RES.Map(func(p Pair[resourceState, int]) Pair[resourceState, int] {
finalState := P.Head(p)
value := P.Tail(p)
// Both resources created, but final state is from innermost use function
// onCreate1: 0->1, onCreate2: 1->2, use (Of): sees 2
// Release functions execute but their state changes aren't in the final result
assert.Equal(t, 2, finalState.resourcesCreated)
assert.Equal(t, 0, finalState.resourcesReleased, "Final state is from use function, before releases")
// res1.id = 1, res2.id = 2, sum = 3
assert.Equal(t, 3, value)
return p
})(outcome)
}
// TestWithResourceContextCancellation tests behavior with context cancellation
func TestWithResourceContextCancellation(t *testing.T) {
initialState := resourceState{resourcesCreated: 0, resourcesReleased: 0}
ctx, cancel := context.WithCancel(context.Background())
cancel() // Cancel immediately
cancelError := errors.New("context cancelled")
// Create should respect context cancellation
onCreate := func(s resourceState) ReaderIOResult[Pair[resourceState, mockResource]] {
return func(ctx context.Context) IOResult[Pair[resourceState, mockResource]] {
return func() Result[Pair[resourceState, mockResource]] {
if ctx.Err() != nil {
return RES.Left[Pair[resourceState, mockResource]](cancelError)
}
newState := resourceState{
resourcesCreated: s.resourcesCreated + 1,
resourcesReleased: s.resourcesReleased,
}
res := mockResource{id: 1, isValid: true}
return RES.Of(P.MakePair(newState, res))
}
}
}
onRelease := func(res mockResource) StateReaderIOResult[resourceState, int] {
return func(s resourceState) ReaderIOResult[Pair[resourceState, int]] {
return func(ctx context.Context) IOResult[Pair[resourceState, int]] {
return func() Result[Pair[resourceState, int]] {
newState := resourceState{
resourcesCreated: s.resourcesCreated,
resourcesReleased: s.resourcesReleased + 1,
}
return RES.Of(P.MakePair(newState, 0))
}
}
}
}
useResource := func(res mockResource) StateReaderIOResult[resourceState, string] {
return Of[resourceState]("should not reach here")
}
withResource := WithResource[string](onCreate, onRelease)
result := withResource(useResource)
outcome := result(initialState)(ctx)()
assert.True(t, RES.IsLeft(outcome))
RES.Fold(
func(err error) bool {
assert.Equal(t, cancelError, err)
return true
},
func(p Pair[resourceState, string]) bool {
t.Error("Expected error but got success")
return false
},
)(outcome)
}

View File

@@ -0,0 +1,309 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"context"
RIORES "github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/statet"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/result"
)
// Left creates a StateReaderIOResult that represents a failed computation with the given error.
// The error value is immediately available and does not depend on state or context.
//
// Example:
//
// result := statereaderioresult.Left[AppState, string](errors.New("validation failed"))
// // Returns a failed computation that ignores state and context
func Left[S, A any](e error) StateReaderIOResult[S, A] {
return function.Constant1[S](RIORES.Left[Pair[S, A]](e))
}
// Right creates a StateReaderIOResult that represents a successful computation with the given value.
// The value is wrapped and the state is passed through unchanged.
//
// Example:
//
// result := statereaderioresult.Right[AppState](42)
// // Returns a successful computation containing 42
func Right[S, A any](a A) StateReaderIOResult[S, A] {
return statet.Of[StateReaderIOResult[S, A]](RIORES.Of[Pair[S, A]], a)
}
// Of creates a StateReaderIOResult that represents a successful computation with the given value.
// This is the monadic return/pure operation for StateReaderIOResult.
// Equivalent to [Right].
//
// Example:
//
// result := statereaderioresult.Of[AppState](42)
// // Returns a successful computation containing 42
func Of[S, A any](a A) StateReaderIOResult[S, A] {
return Right[S](a)
}
// MonadMap transforms the success value of a StateReaderIOResult using the provided function.
// If the computation fails, the error is propagated unchanged.
// The state is threaded through the computation.
// This is the functor map operation.
//
// Example:
//
// result := statereaderioresult.MonadMap(
// statereaderioresult.Of[AppState](21),
// N.Mul(2),
// ) // Result contains 42
func MonadMap[S, A, B any](fa StateReaderIOResult[S, A], f func(A) B) StateReaderIOResult[S, B] {
return statet.MonadMap[StateReaderIOResult[S, A], StateReaderIOResult[S, B]](
RIORES.MonadMap[Pair[S, A], Pair[S, B]],
fa,
f,
)
}
// Map is the curried version of [MonadMap].
// Returns a function that transforms a StateReaderIOResult.
//
// Example:
//
// double := statereaderioresult.Map[AppState](N.Mul(2))
// result := function.Pipe1(statereaderioresult.Of[AppState](21), double)
func Map[S, A, B any](f func(A) B) Operator[S, A, B] {
return statet.Map[StateReaderIOResult[S, A], StateReaderIOResult[S, B]](
RIORES.Map[Pair[S, A], Pair[S, B]],
f,
)
}
// MonadChain sequences two computations, passing the result of the first to a function
// that produces the second computation. This is the monadic bind operation.
// The state is threaded through both computations.
//
// Example:
//
// result := statereaderioresult.MonadChain(
// statereaderioresult.Of[AppState](5),
// func(x int) statereaderioresult.StateReaderIOResult[AppState, string] {
// return statereaderioresult.Of[AppState](fmt.Sprintf("value: %d", x))
// },
// )
func MonadChain[S, A, B any](fa StateReaderIOResult[S, A], f Kleisli[S, A, B]) StateReaderIOResult[S, B] {
return statet.MonadChain(
RIORES.MonadChain[Pair[S, A], Pair[S, B]],
fa,
f,
)
}
// Chain is the curried version of [MonadChain].
// Returns a function that sequences computations.
//
// Example:
//
// stringify := statereaderioresult.Chain[AppState](func(x int) statereaderioresult.StateReaderIOResult[AppState, string] {
// return statereaderioresult.Of[AppState](fmt.Sprintf("%d", x))
// })
// result := function.Pipe1(statereaderioresult.Of[AppState](42), stringify)
func Chain[S, A, B any](f Kleisli[S, A, B]) Operator[S, A, B] {
return statet.Chain[StateReaderIOResult[S, A]](
RIORES.Chain[Pair[S, A], Pair[S, B]],
f,
)
}
// MonadAp applies a function wrapped in a StateReaderIOResult to a value wrapped in a StateReaderIOResult.
// If either the function or the value fails, the error is propagated.
// The state is threaded through both computations sequentially.
// This is the applicative apply operation.
//
// Example:
//
// fab := statereaderioresult.Of[AppState](N.Mul(2))
// fa := statereaderioresult.Of[AppState](21)
// result := statereaderioresult.MonadAp(fab, fa) // Result contains 42
func MonadAp[B, S, A any](fab StateReaderIOResult[S, func(A) B], fa StateReaderIOResult[S, A]) StateReaderIOResult[S, B] {
return statet.MonadAp[StateReaderIOResult[S, A], StateReaderIOResult[S, B]](
RIORES.MonadMap[Pair[S, A], Pair[S, B]],
RIORES.MonadChain[Pair[S, func(A) B], Pair[S, B]],
fab,
fa,
)
}
// Ap is the curried version of [MonadAp].
// Returns a function that applies a wrapped function to the given wrapped value.
func Ap[B, S, A any](fa StateReaderIOResult[S, A]) Operator[S, func(A) B, B] {
return statet.Ap[StateReaderIOResult[S, A], StateReaderIOResult[S, B], StateReaderIOResult[S, func(A) B]](
RIORES.Map[Pair[S, A], Pair[S, B]],
RIORES.Chain[Pair[S, func(A) B], Pair[S, B]],
fa,
)
}
// FromReaderIOResult lifts a ReaderIOResult into a StateReaderIOResult.
// The state is passed through unchanged.
//
// Example:
//
// riores := readerioresult.Of(42)
// result := statereaderioresult.FromReaderIOResult[AppState](riores)
func FromReaderIOResult[S, A any](fa ReaderIOResult[A]) StateReaderIOResult[S, A] {
return statet.FromF[StateReaderIOResult[S, A]](
RIORES.MonadMap[A],
fa,
)
}
// FromIOResult lifts an IOResult into a StateReaderIOResult.
// The state is passed through unchanged and the context is ignored.
func FromIOResult[S, A any](fa IOResult[A]) StateReaderIOResult[S, A] {
return FromReaderIOResult[S](RIORES.FromIOResult(fa))
}
// FromState lifts a State computation into a StateReaderIOResult.
// The computation cannot fail (uses the error type).
func FromState[S, A any](sa State[S, A]) StateReaderIOResult[S, A] {
return statet.FromState[StateReaderIOResult[S, A]](RIORES.Of[Pair[S, A]], sa)
}
// FromIO lifts an IO computation into a StateReaderIOResult.
// The state is passed through unchanged and the context is ignored.
func FromIO[S, A any](fa IO[A]) StateReaderIOResult[S, A] {
return FromReaderIOResult[S](RIORES.FromIO(fa))
}
// FromResult lifts a Result into a StateReaderIOResult.
// The state is passed through unchanged and the context is ignored.
//
// Example:
//
// result := statereaderioresult.FromResult[AppState](result.Of(42))
func FromResult[S, A any](ma Result[A]) StateReaderIOResult[S, A] {
return result.Fold(Left[S, A], Right[S, A])(ma)
}
// Combinators
// Local runs a computation with a modified context.
// The function f transforms the context before passing it to the computation.
//
// Example:
//
// // Modify context before running computation
// withTimeout := statereaderioresult.Local[AppState](
// func(ctx context.Context) context.Context {
// ctx, _ = context.WithTimeout(ctx, 60*time.Second)
// return ctx
// }
// )
// result := withTimeout(computation)
func Local[S, A any](f func(context.Context) context.Context) func(StateReaderIOResult[S, A]) StateReaderIOResult[S, A] {
return func(ma StateReaderIOResult[S, A]) StateReaderIOResult[S, A] {
return function.Flow2(ma, RIOR.Local[Pair[S, A]](f))
}
}
// Asks creates a computation that derives a value from the context.
// The function receives the context and returns a StateReaderIOResult.
//
// Example:
//
// getValue := statereaderioresult.Asks[AppState, string](
// func(ctx context.Context) statereaderioresult.StateReaderIOResult[AppState, string] {
// return statereaderioresult.Of[AppState](ctx.Value("key").(string))
// },
// )
func Asks[S, A any](f func(context.Context) StateReaderIOResult[S, A]) StateReaderIOResult[S, A] {
return func(s S) ReaderIOResult[Pair[S, A]] {
return func(ctx context.Context) IOResult[Pair[S, A]] {
return f(ctx)(s)(ctx)
}
}
}
// FromResultK lifts a Result-returning function into a Kleisli arrow for StateReaderIOResult.
//
// Example:
//
// validate := func(x int) result.Result[int] {
// if x > 0 { return result.Of(x) }
// return result.Error[int](errors.New("negative"))
// }
// kleisli := statereaderioresult.FromResultK[AppState](validate)
func FromResultK[S, A, B any](f func(A) Result[B]) Kleisli[S, A, B] {
return function.Flow2(
f,
FromResult[S, B],
)
}
// FromIOK lifts an IO-returning function into a Kleisli arrow for StateReaderIOResult.
func FromIOK[S, A, B any](f func(A) IO[B]) Kleisli[S, A, B] {
return function.Flow2(
f,
FromIO[S, B],
)
}
// FromIOResultK lifts an IOResult-returning function into a Kleisli arrow for StateReaderIOResult.
func FromIOResultK[S, A, B any](f func(A) IOResult[B]) Kleisli[S, A, B] {
return function.Flow2(
f,
FromIOResult[S, B],
)
}
// FromReaderIOResultK lifts a ReaderIOResult-returning function into a Kleisli arrow for StateReaderIOResult.
func FromReaderIOResultK[S, A, B any](f func(A) ReaderIOResult[B]) Kleisli[S, A, B] {
return function.Flow2(
f,
FromReaderIOResult[S, B],
)
}
// MonadChainReaderIOResultK chains a StateReaderIOResult with a ReaderIOResult-returning function.
func MonadChainReaderIOResultK[S, A, B any](ma StateReaderIOResult[S, A], f func(A) ReaderIOResult[B]) StateReaderIOResult[S, B] {
return MonadChain(ma, FromReaderIOResultK[S](f))
}
// ChainReaderIOResultK is the curried version of [MonadChainReaderIOResultK].
func ChainReaderIOResultK[S, A, B any](f func(A) ReaderIOResult[B]) Operator[S, A, B] {
return Chain(FromReaderIOResultK[S](f))
}
// MonadChainIOResultK chains a StateReaderIOResult with an IOResult-returning function.
func MonadChainIOResultK[S, A, B any](ma StateReaderIOResult[S, A], f func(A) IOResult[B]) StateReaderIOResult[S, B] {
return MonadChain(ma, FromIOResultK[S](f))
}
// ChainIOResultK is the curried version of [MonadChainIOResultK].
func ChainIOResultK[S, A, B any](f func(A) IOResult[B]) Operator[S, A, B] {
return Chain(FromIOResultK[S](f))
}
// MonadChainResultK chains a StateReaderIOResult with a Result-returning function.
func MonadChainResultK[S, A, B any](ma StateReaderIOResult[S, A], f func(A) Result[B]) StateReaderIOResult[S, B] {
return MonadChain(ma, FromResultK[S](f))
}
// ChainResultK is the curried version of [MonadChainResultK].
func ChainResultK[S, A, B any](f func(A) Result[B]) Operator[S, A, B] {
return Chain(FromResultK[S](f))
}

View File

@@ -0,0 +1,567 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
"context"
"errors"
"fmt"
"testing"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
IOR "github.com/IBM/fp-go/v2/ioresult"
N "github.com/IBM/fp-go/v2/number"
P "github.com/IBM/fp-go/v2/pair"
RES "github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
type testState struct {
counter int
}
func TestOf(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
result := Of[testState](42)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Fold(
func(err error) bool {
t.Fatalf("Expected Success but got Error: %v", err)
return false
},
func(p P.Pair[testState, int]) bool {
assert.Equal(t, 42, P.Tail(p))
assert.Equal(t, 0, P.Head(p).counter) // State unchanged
return true
},
)(res)
}
func TestRight(t *testing.T) {
state := testState{counter: 5}
ctx := context.Background()
result := Right[testState](100)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 100, P.Tail(p))
assert.Equal(t, 5, P.Head(p).counter)
return p
})(res)
}
func TestLeft(t *testing.T) {
state := testState{counter: 10}
ctx := context.Background()
testErr := errors.New("test error")
result := Left[testState, int](testErr)
res := result(state)(ctx)()
assert.True(t, RES.IsLeft(res))
}
func TestMonadMap(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
result := MonadMap(
Of[testState](21),
N.Mul(2),
)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 42, P.Tail(p))
return p
})(res)
}
func TestMap(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
result := F.Pipe1(
Of[testState](21),
Map[testState](N.Mul(2)),
)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 42, P.Tail(p))
return p
})(res)
}
func TestMonadChain(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
result := MonadChain(
Of[testState](5),
func(x int) StateReaderIOResult[testState, string] {
return Of[testState](fmt.Sprintf("value: %d", x))
},
)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, string]) P.Pair[testState, string] {
assert.Equal(t, "value: 5", P.Tail(p))
return p
})(res)
}
func TestChain(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
result := F.Pipe1(
Of[testState](5),
Chain(func(x int) StateReaderIOResult[testState, string] {
return Of[testState](fmt.Sprintf("value: %d", x))
}),
)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, string]) P.Pair[testState, string] {
assert.Equal(t, "value: 5", P.Tail(p))
return p
})(res)
}
func TestMonadAp(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
fab := Of[testState](N.Mul(2))
fa := Of[testState](21)
result := MonadAp(fab, fa)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 42, P.Tail(p))
return p
})(res)
}
func TestAp(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
fa := Of[testState](21)
result := F.Pipe1(
Of[testState](N.Mul(2)),
Ap[int](fa),
)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 42, P.Tail(p))
return p
})(res)
}
func TestFromIOResult(t *testing.T) {
state := testState{counter: 3}
ctx := context.Background()
ior := IOR.Of(55)
result := FromIOResult[testState](ior)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 55, P.Tail(p))
assert.Equal(t, 3, P.Head(p).counter)
return p
})(res)
}
func TestFromState(t *testing.T) {
initialState := testState{counter: 10}
ctx := context.Background()
// State computation that increments counter and returns it
stateComp := func(s testState) P.Pair[testState, int] {
newState := testState{counter: s.counter + 1}
return P.MakePair(newState, newState.counter)
}
result := FromState(stateComp)
res := result(initialState)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 11, P.Tail(p)) // Incremented value
assert.Equal(t, 11, P.Head(p).counter) // State updated
return p
})(res)
}
func TestFromIO(t *testing.T) {
state := testState{counter: 8}
ctx := context.Background()
ioVal := func() int { return 99 }
result := FromIO[testState](ioVal)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 99, P.Tail(p))
assert.Equal(t, 8, P.Head(p).counter)
return p
})(res)
}
func TestFromResult(t *testing.T) {
state := testState{counter: 12}
ctx := context.Background()
// Test Success case
resultSuccess := FromResult[testState](RES.Of(42))
resSuccess := resultSuccess(state)(ctx)()
assert.True(t, RES.IsRight(resSuccess))
// Test Error case
resultError := FromResult[testState](RES.Left[int](errors.New("error")))
resError := resultError(state)(ctx)()
assert.True(t, RES.IsLeft(resError))
}
func TestLocal(t *testing.T) {
state := testState{counter: 0}
ctx := context.WithValue(context.Background(), "key", "value1")
// Create a computation that uses the context
comp := Asks(func(c context.Context) StateReaderIOResult[testState, string] {
val := c.Value("key").(string)
return Of[testState](val)
})
// Modify context before running computation
result := Local[testState, string](
func(c context.Context) context.Context {
return context.WithValue(c, "key", "value2")
},
)(comp)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, string]) P.Pair[testState, string] {
assert.Equal(t, "value2", P.Tail(p))
return p
})(res)
}
func TestAsks(t *testing.T) {
state := testState{counter: 0}
ctx := context.WithValue(context.Background(), "multiplier", 7)
result := Asks(func(c context.Context) StateReaderIOResult[testState, int] {
mult := c.Value("multiplier").(int)
return Of[testState](mult * 5)
})
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 35, P.Tail(p))
return p
})(res)
}
func TestFromResultK(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
validate := func(x int) RES.Result[int] {
if x > 0 {
return RES.Of(x * 2)
}
return RES.Left[int](errors.New("negative"))
}
kleisli := FromResultK[testState](validate)
// Test with valid input
resultValid := kleisli(5)
resValid := resultValid(state)(ctx)()
assert.True(t, RES.IsRight(resValid))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 10, P.Tail(p))
return p
})(resValid)
// Test with invalid input
resultInvalid := kleisli(-5)
resInvalid := resultInvalid(state)(ctx)()
assert.True(t, RES.IsLeft(resInvalid))
}
func TestFromIOK(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
ioFunc := func(x int) io.IO[int] {
return func() int { return x * 3 }
}
kleisli := FromIOK[testState](ioFunc)
result := kleisli(7)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 21, P.Tail(p))
return p
})(res)
}
func TestFromIOResultK(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
iorFunc := func(x int) IOR.IOResult[int] {
if x > 0 {
return IOR.Of(x * 4)
}
return IOR.Left[int](errors.New("invalid"))
}
kleisli := FromIOResultK[testState](iorFunc)
result := kleisli(3)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 12, P.Tail(p))
return p
})(res)
}
func TestChainResultK(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
validate := func(x int) RES.Result[string] {
if x > 0 {
return RES.Of(fmt.Sprintf("valid: %d", x))
}
return RES.Left[string](errors.New("invalid"))
}
result := F.Pipe1(
Of[testState](42),
ChainResultK[testState](validate),
)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, string]) P.Pair[testState, string] {
assert.Equal(t, "valid: 42", P.Tail(p))
return p
})(res)
}
func TestChainIOResultK(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
iorFunc := func(x int) IOR.IOResult[string] {
return IOR.Of(fmt.Sprintf("result: %d", x))
}
result := F.Pipe1(
Of[testState](100),
ChainIOResultK[testState](iorFunc),
)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, string]) P.Pair[testState, string] {
assert.Equal(t, "result: 100", P.Tail(p))
return p
})(res)
}
func TestDo(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
type Result struct {
value int
}
result := Do[testState](Result{})
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, Result]) P.Pair[testState, Result] {
assert.Equal(t, 0, P.Tail(p).value)
return p
})(res)
}
func TestBindTo(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
type Result struct {
value int
}
result := F.Pipe1(
Of[testState](42),
BindTo[testState](func(v int) Result {
return Result{value: v}
}),
)
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, Result]) P.Pair[testState, Result] {
assert.Equal(t, 42, P.Tail(p).value)
return p
})(res)
}
func TestStatefulComputation(t *testing.T) {
initialState := testState{counter: 0}
ctx := context.Background()
// Create a computation that modifies state
incrementAndGet := func(s testState) P.Pair[testState, int] {
newState := testState{counter: s.counter + 1}
return P.MakePair(newState, newState.counter)
}
// Chain multiple stateful operations
result := F.Pipe2(
FromState(incrementAndGet),
Chain(func(v1 int) StateReaderIOResult[testState, int] {
return FromState(incrementAndGet)
}),
Chain(func(v2 int) StateReaderIOResult[testState, int] {
return FromState(incrementAndGet)
}),
)
res := result(initialState)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, int]) P.Pair[testState, int] {
assert.Equal(t, 3, P.Tail(p)) // Last incremented value
assert.Equal(t, 3, P.Head(p).counter) // State updated three times
return p
})(res)
}
func TestErrorPropagation(t *testing.T) {
state := testState{counter: 0}
ctx := context.Background()
testErr := errors.New("test error")
// Chain operations where the second one fails
result := F.Pipe1(
Of[testState](42),
Chain(func(x int) StateReaderIOResult[testState, int] {
return Left[testState, int](testErr)
}),
)
res := result(state)(ctx)()
assert.True(t, RES.IsLeft(res))
}
func TestPointed(t *testing.T) {
p := Pointed[testState, int]()
assert.NotNil(t, p)
result := p.Of(42)
state := testState{counter: 0}
ctx := context.Background()
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
}
func TestFunctor(t *testing.T) {
f := Functor[testState, int, string]()
assert.NotNil(t, f)
mapper := f.Map(func(x int) string { return fmt.Sprintf("%d", x) })
result := mapper(Of[testState](42))
state := testState{counter: 0}
ctx := context.Background()
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, string]) P.Pair[testState, string] {
assert.Equal(t, "42", P.Tail(p))
return p
})(res)
}
func TestApplicative(t *testing.T) {
a := Applicative[testState, int, string]()
assert.NotNil(t, a)
fab := Of[testState](func(x int) string { return fmt.Sprintf("%d", x) })
fa := Of[testState](42)
result := a.Ap(fa)(fab)
state := testState{counter: 0}
ctx := context.Background()
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, string]) P.Pair[testState, string] {
assert.Equal(t, "42", P.Tail(p))
return p
})(res)
}
func TestMonad(t *testing.T) {
m := Monad[testState, int, string]()
assert.NotNil(t, m)
fa := m.Of(42)
result := m.Chain(func(x int) StateReaderIOResult[testState, string] {
return Of[testState](fmt.Sprintf("%d", x))
})(fa)
state := testState{counter: 0}
ctx := context.Background()
res := result(state)(ctx)()
assert.True(t, RES.IsRight(res))
RES.Map(func(p P.Pair[testState, string]) P.Pair[testState, string] {
assert.Equal(t, "42", P.Tail(p))
return p
})(res)
}

View File

@@ -0,0 +1,87 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package testing
import (
"context"
"testing"
RIORES "github.com/IBM/fp-go/v2/context/readerioresult"
ST "github.com/IBM/fp-go/v2/context/statereaderioresult"
EQ "github.com/IBM/fp-go/v2/eq"
L "github.com/IBM/fp-go/v2/internal/monad/testing"
P "github.com/IBM/fp-go/v2/pair"
RES "github.com/IBM/fp-go/v2/result"
)
// AssertLaws asserts the monad laws for the StateReaderIOResult monad
func AssertLaws[S, A, B, C any](t *testing.T,
eqs EQ.Eq[S],
eqa EQ.Eq[A],
eqb EQ.Eq[B],
eqc EQ.Eq[C],
ab func(A) B,
bc func(B) C,
s S,
ctx context.Context,
) func(a A) bool {
eqra := RIORES.Eq(RES.Eq(P.Eq(eqs, eqa)))(ctx)
eqrb := RIORES.Eq(RES.Eq(P.Eq(eqs, eqb)))(ctx)
eqrc := RIORES.Eq(RES.Eq(P.Eq(eqs, eqc)))(ctx)
fofc := ST.Pointed[S, C]()
fofaa := ST.Pointed[S, func(A) A]()
fofbc := ST.Pointed[S, func(B) C]()
fofabb := ST.Pointed[S, func(func(A) B) B]()
fmap := ST.Functor[S, func(B) C, func(func(A) B) func(A) C]()
fapabb := ST.Applicative[S, func(A) B, B]()
fapabac := ST.Applicative[S, func(A) B, func(A) C]()
maa := ST.Monad[S, A, A]()
mab := ST.Monad[S, A, B]()
mac := ST.Monad[S, A, C]()
mbc := ST.Monad[S, B, C]()
return L.MonadAssertLaws(t,
ST.Eq(eqra)(s),
ST.Eq(eqrb)(s),
ST.Eq(eqrc)(s),
fofc,
fofaa,
fofbc,
fofabb,
fmap,
fapabb,
fapabac,
maa,
mab,
mac,
mbc,
ab,
bc,
)
}

View File

@@ -0,0 +1,50 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package testing
import (
"context"
"fmt"
"testing"
A "github.com/IBM/fp-go/v2/array"
EQ "github.com/IBM/fp-go/v2/eq"
"github.com/stretchr/testify/assert"
)
func TestMonadLaws(t *testing.T) {
// some comparison
eqs := A.Eq(EQ.FromStrictEquals[string]())
eqa := EQ.FromStrictEquals[bool]()
eqb := EQ.FromStrictEquals[int]()
eqc := EQ.FromStrictEquals[string]()
ab := func(a bool) int {
if a {
return 1
}
return 0
}
bc := func(b int) string {
return fmt.Sprintf("value %d", b)
}
laws := AssertLaws(t, eqs, eqa, eqb, eqc, ab, bc, A.Empty[string](), context.Background())
assert.True(t, laws(true))
assert.True(t, laws(false))
}

View File

@@ -0,0 +1,84 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statereaderioresult
import (
RIORES "github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/optics/iso/lens"
"github.com/IBM/fp-go/v2/pair"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/state"
)
type (
// Endomorphism represents a function from A to A.
Endomorphism[A any] = endomorphism.Endomorphism[A]
// Lens is an optic that focuses on a field of type A within a structure of type S.
Lens[S, A any] = lens.Lens[S, A]
// State represents a stateful computation that takes an initial state S and returns
// a pair of the new state S and a value A.
State[S, A any] = state.State[S, A]
// Pair represents a tuple of two values.
Pair[L, R any] = pair.Pair[L, R]
// Reader represents a computation that depends on an environment/context of type R
// and produces a value of type A.
Reader[R, A any] = reader.Reader[R, A]
// Result represents a value that can be either an error or a success value.
// This is specialized to use [error] as the error type.
Result[A any] = result.Result[A]
// IO represents a computation that performs side effects and produces a value of type A.
IO[A any] = io.IO[A]
// IOResult represents a computation that performs side effects and can fail with an error
// or succeed with a value A.
IOResult[A any] = ioresult.IOResult[A]
// ReaderIOResult represents a computation that depends on a context.Context,
// performs side effects, and can fail with an error or succeed with a value A.
ReaderIOResult[A any] = RIORES.ReaderIOResult[A]
// StateReaderIOResult represents a stateful computation that:
// - Takes an initial state S
// - Depends on a [context.Context]
// - Performs side effects (IO)
// - Can fail with an [error] or succeed with a value A
// - Returns a pair of the new state S and the result
//
// This is the main type of this package, combining State, Reader, IO, and Result monads.
// It is a specialization of StateReaderIOEither with:
// - Context type fixed to [context.Context]
// - Error type fixed to [error]
StateReaderIOResult[S, A any] = Reader[S, ReaderIOResult[Pair[S, A]]]
// Kleisli represents a Kleisli arrow - a function that takes a value A and returns
// a StateReaderIOResult computation producing B.
// This is used for monadic composition via Chain.
Kleisli[S, A, B any] = Reader[A, StateReaderIOResult[S, B]]
// Operator represents a function that transforms one StateReaderIOResult into another.
// This is commonly used for building composable operations via Map, Chain, etc.
Operator[S, A, B any] = Reader[StateReaderIOResult[S, A], StateReaderIOResult[S, B]]
)

67
v2/coverage.txt Normal file
View File

@@ -0,0 +1,67 @@
mode: set
github.com/IBM/fp-go/v2/readerresult/array.go:33.74,35.2 1 0
github.com/IBM/fp-go/v2/readerresult/array.go:49.98,51.2 1 0
github.com/IBM/fp-go/v2/readerresult/array.go:68.76,70.2 1 1
github.com/IBM/fp-go/v2/readerresult/bind.go:42.22,44.2 1 1
github.com/IBM/fp-go/v2/readerresult/bind.go:93.49,95.2 1 1
github.com/IBM/fp-go/v2/readerresult/bind.go:103.49,105.2 1 0
github.com/IBM/fp-go/v2/readerresult/bind.go:113.49,115.2 1 0
github.com/IBM/fp-go/v2/readerresult/bind.go:122.22,124.2 1 0
github.com/IBM/fp-go/v2/readerresult/bind.go:172.49,174.2 1 1
github.com/IBM/fp-go/v2/readerresult/bind.go:211.21,213.2 1 0
github.com/IBM/fp-go/v2/readerresult/bind.go:252.21,254.2 1 0
github.com/IBM/fp-go/v2/readerresult/bind.go:288.21,290.2 1 0
github.com/IBM/fp-go/v2/readerresult/bind.go:321.21,323.2 1 0
github.com/IBM/fp-go/v2/readerresult/curry.go:35.64,37.2 1 1
github.com/IBM/fp-go/v2/readerresult/curry.go:46.81,48.2 1 1
github.com/IBM/fp-go/v2/readerresult/curry.go:58.98,60.2 1 1
github.com/IBM/fp-go/v2/readerresult/curry.go:69.115,71.2 1 1
github.com/IBM/fp-go/v2/readerresult/curry.go:81.83,83.2 1 1
github.com/IBM/fp-go/v2/readerresult/curry.go:92.100,94.2 1 1
github.com/IBM/fp-go/v2/readerresult/curry.go:103.117,105.2 1 1
github.com/IBM/fp-go/v2/readerresult/from.go:33.70,35.2 1 1
github.com/IBM/fp-go/v2/readerresult/from.go:45.80,47.2 1 1
github.com/IBM/fp-go/v2/readerresult/from.go:57.92,59.2 1 1
github.com/IBM/fp-go/v2/readerresult/from.go:69.104,71.2 1 1
github.com/IBM/fp-go/v2/readerresult/monoid.go:37.62,45.2 1 1
github.com/IBM/fp-go/v2/readerresult/monoid.go:64.70,69.2 1 1
github.com/IBM/fp-go/v2/readerresult/monoid.go:91.62,98.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:41.59,43.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:49.59,51.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:61.63,63.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:73.66,75.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:85.49,87.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:98.46,100.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:106.62,108.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:120.83,122.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:133.54,135.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:147.92,149.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:160.63,162.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:173.43,175.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:189.101,191.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:197.71,199.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:215.89,217.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:234.131,236.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:249.100,251.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:265.70,267.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:282.81,289.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:303.38,305.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:317.56,319.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:330.103,337.2 1 0
github.com/IBM/fp-go/v2/readerresult/reader.go:348.74,354.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:367.97,369.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:381.84,383.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:395.108,397.2 1 0
github.com/IBM/fp-go/v2/readerresult/reader.go:409.79,411.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:426.88,428.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:440.61,442.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:453.85,455.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:460.55,462.2 1 0
github.com/IBM/fp-go/v2/readerresult/reader.go:473.94,475.2 1 0
github.com/IBM/fp-go/v2/readerresult/reader.go:486.65,488.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:494.103,502.2 1 1
github.com/IBM/fp-go/v2/readerresult/reader.go:508.71,515.2 1 0
github.com/IBM/fp-go/v2/readerresult/sequence.go:35.78,40.2 1 1
github.com/IBM/fp-go/v2/readerresult/sequence.go:54.35,60.2 1 1
github.com/IBM/fp-go/v2/readerresult/sequence.go:75.38,82.2 1 1
github.com/IBM/fp-go/v2/readerresult/sequence.go:95.41,103.2 1 1

View File

@@ -249,7 +249,7 @@ func TestMultiTokenStringRepresentation(t *testing.T) {
// Benchmark tests
func BenchmarkMakeToken(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
MakeToken[int]("BenchToken")
}
}
@@ -259,13 +259,13 @@ func BenchmarkTokenUnerase(b *testing.B) {
value := any(42)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
token.Unerase(value)
}
}
func BenchmarkMakeMultiToken(b *testing.B) {
for i := 0; i < b.N; i++ {
for b.Loop() {
MakeMultiToken[int]("BenchMulti")
}
}

190
v2/either/applicative.go Normal file
View File

@@ -0,0 +1,190 @@
// Copyright (c) 2024 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package either
import (
"github.com/IBM/fp-go/v2/internal/applicative"
S "github.com/IBM/fp-go/v2/semigroup"
)
// eitherApplicative is the internal implementation of the Applicative type class for Either.
// It provides the basic applicative operations: Of (lift), Map (transform), and Ap (apply).
type eitherApplicative[E, A, B any] struct {
fof func(a A) Either[E, A]
fmap func(func(A) B) Operator[E, A, B]
fap func(Either[E, A]) Operator[E, func(A) B, B]
}
// Of lifts a pure value into a Right context.
func (o *eitherApplicative[E, A, B]) Of(a A) Either[E, A] {
return o.fof(a)
}
// Map applies a transformation function to the Right value, preserving Left values.
func (o *eitherApplicative[E, A, B]) Map(f func(A) B) Operator[E, A, B] {
return o.fmap(f)
}
// Ap applies a wrapped function to a wrapped value.
// The behavior depends on which Ap implementation is used (fail-fast or validation).
func (o *eitherApplicative[E, A, B]) Ap(fa Either[E, A]) Operator[E, func(A) B, B] {
return o.fap(fa)
}
// Applicative creates a standard Applicative instance for Either with fail-fast error handling.
//
// This returns a lawful Applicative that satisfies all applicative laws:
// - Identity: Ap(Of(identity))(v) == v
// - Homomorphism: Ap(Of(f))(Of(x)) == Of(f(x))
// - Interchange: Ap(Of(f))(u) == Ap(Map(f => f(y))(u))(Of(y))
// - Composition: Ap(Ap(Map(compose)(f))(g))(x) == Ap(f)(Ap(g)(x))
//
// The Applicative operations behave as follows:
// - Of: lifts a value into Right
// - Map: transforms Right values, preserves Left (standard functor)
// - Ap: fails fast - if either operand is Left, returns the first Left encountered
//
// This is the standard Either applicative that stops at the first error, making it
// suitable for computations where you want to short-circuit on failure.
//
// Example - Fail-Fast Behavior:
//
// app := either.Applicative[error, int, string]()
//
// // Both succeed - function application works
// value := either.Right[error](42)
// fn := either.Right[error](strconv.Itoa)
// result := app.Ap(value)(fn)
// // result is Right("42")
//
// // First error stops computation
// err1 := either.Left[func(int) string](errors.New("error 1"))
// err2 := either.Left[int](errors.New("error 2"))
// result2 := app.Ap(err2)(err1)
// // result2 is Left(error 1) - only first error is returned
//
// Type Parameters:
// - E: The error type (Left value)
// - A: The input value type (Right value)
// - B: The output value type after transformation
func Applicative[E, A, B any]() applicative.Applicative[A, B, Either[E, A], Either[E, B], Either[E, func(A) B]] {
return &eitherApplicative[E, A, B]{
Of[E, A],
Map[E, A, B],
Ap[B, E, A],
}
}
// ApplicativeV creates an Applicative with validation-style error accumulation.
//
// This returns a lawful Applicative that accumulates errors using a Semigroup when
// combining independent computations with Ap. This is the "validation" pattern commonly
// used for form validation, configuration validation, and parallel error collection.
//
// The returned instance satisfies all applicative laws:
// - Identity: Ap(Of(identity))(v) == v
// - Homomorphism: Ap(Of(f))(Of(x)) == Of(f(x))
// - Interchange: Ap(Of(f))(u) == Ap(Map(f => f(y))(u))(Of(y))
// - Composition: Ap(Ap(Map(compose)(f))(g))(x) == Ap(f)(Ap(g)(x))
//
// Key behaviors:
// - Of: lifts a value into Right
// - Map: transforms Right values, preserves Left (standard functor)
// - Ap: when both operands are Left, combines errors using the Semigroup
//
// Comparison with standard Applicative:
// - Applicative: Ap fails fast (returns first error)
// - ApplicativeV: Ap accumulates errors (combines all errors via Semigroup)
//
// Use cases:
// - Form validation: collect all validation errors at once
// - Configuration validation: report all configuration problems
// - Parallel independent checks: accumulate all failures
//
// Example - Error Accumulation for Form Validation:
//
// type ValidationErrors []string
//
// // Define how to combine error lists
// sg := semigroup.MakeSemigroup(func(a, b ValidationErrors) ValidationErrors {
// return append(append(ValidationErrors{}, a...), b...)
// })
//
// app := either.ApplicativeV[ValidationErrors, User, User](sg)
//
// // Validate multiple fields independently
// validateName := func(name string) Either[ValidationErrors, string] {
// if len(name) < 3 {
// return Left[string](ValidationErrors{"Name must be at least 3 characters"})
// }
// return Right[ValidationErrors](name)
// }
//
// validateAge := func(age int) Either[ValidationErrors, int] {
// if age < 18 {
// return Left[int](ValidationErrors{"Must be 18 or older"})
// }
// return Right[ValidationErrors](age)
// }
//
// validateEmail := func(email string) Either[ValidationErrors, string] {
// if !strings.Contains(email, "@") {
// return Left[string](ValidationErrors{"Invalid email format"})
// }
// return Right[ValidationErrors](email)
// }
//
// // Create a constructor function lifted into Either
// makeUser := func(name string) func(int) func(string) User {
// return func(age int) func(string) User {
// return func(email string) User {
// return User{Name: name, Age: age, Email: email}
// }
// }
// }
//
// // Apply validations - all errors are collected
// name := validateName("ab") // Left: name too short
// age := validateAge(16) // Left: age too low
// email := validateEmail("invalid") // Left: invalid email
//
// // Combine all validations using ApV
// result := app.Ap(name)(
// app.Ap(age)(
// app.Ap(email)(
// app.Of(makeUser),
// ),
// ),
// )
// // result is Left(ValidationErrors{
// // "Name must be at least 3 characters",
// // "Must be 18 or older",
// // "Invalid email format"
// // })
// // All three errors are collected!
//
// Type Parameters:
// - E: The error type that must have a Semigroup for combining errors
// - A: The input value type (Right value)
// - B: The output value type after transformation
// - sg: Semigroup instance for combining Left values when both operands of Ap are Left
func ApplicativeV[E, A, B any](sg S.Semigroup[E]) applicative.Applicative[A, B, Either[E, A], Either[E, B], Either[E, func(A) B]] {
return &eitherApplicative[E, A, B]{
Of[E, A],
Map[E, A, B],
ApV[B, A](sg),
}
}

View File

@@ -35,14 +35,18 @@ import (
// // result is Right([]int{1, 2, 3})
//
//go:inline
func TraverseArrayG[GA ~[]A, GB ~[]B, E, A, B any](f func(A) Either[E, B]) func(GA) Either[E, GB] {
return RA.Traverse[GA](
Of[E, GB],
Map[E, GB, func(B) GB],
Ap[GB, E, B],
f,
)
func TraverseArrayG[GA ~[]A, GB ~[]B, E, A, B any](f Kleisli[E, A, B]) Kleisli[E, GA, GB] {
return func(ga GA) Either[E, GB] {
bs := make(GB, len(ga))
for i, a := range ga {
b := f(a)
if b.isLeft {
return Left[GB](b.l)
}
bs[i] = b.r
}
return Of[E](bs)
}
}
// TraverseArray transforms an array by applying a function that returns an Either to each element.
@@ -59,7 +63,7 @@ func TraverseArrayG[GA ~[]A, GB ~[]B, E, A, B any](f func(A) Either[E, B]) func(
// // result is Right([]int{1, 2, 3})
//
//go:inline
func TraverseArray[E, A, B any](f func(A) Either[E, B]) func([]A) Either[E, []B] {
func TraverseArray[E, A, B any](f Kleisli[E, A, B]) Kleisli[E, []A, []B] {
return TraverseArrayG[[]A, []B](f)
}
@@ -80,14 +84,18 @@ func TraverseArray[E, A, B any](f func(A) Either[E, B]) func([]A) Either[E, []B]
// // result is Right([]string{"0:a", "1:b"})
//
//go:inline
func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, E, A, B any](f func(int, A) Either[E, B]) func(GA) Either[E, GB] {
return RA.TraverseWithIndex[GA](
Of[E, GB],
Map[E, GB, func(B) GB],
Ap[GB, E, B],
f,
)
func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, E, A, B any](f func(int, A) Either[E, B]) Kleisli[E, GA, GB] {
return func(ga GA) Either[E, GB] {
bs := make(GB, len(ga))
for i, a := range ga {
b := f(i, a)
if b.isLeft {
return Left[GB](b.l)
}
bs[i] = b.r
}
return Of[E](bs)
}
}
// TraverseArrayWithIndex transforms an array by applying an indexed function that returns an Either.
@@ -106,7 +114,7 @@ func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, E, A, B any](f func(int, A) Eithe
// // result is Right([]string{"0:a", "1:b"})
//
//go:inline
func TraverseArrayWithIndex[E, A, B any](f func(int, A) Either[E, B]) func([]A) Either[E, []B] {
func TraverseArrayWithIndex[E, A, B any](f func(int, A) Either[E, B]) Kleisli[E, []A, []B] {
return TraverseArrayWithIndexG[[]A, []B](f)
}

View File

@@ -4,16 +4,17 @@ import (
"fmt"
"testing"
A "github.com/IBM/fp-go/v2/array"
TST "github.com/IBM/fp-go/v2/internal/testing"
"github.com/stretchr/testify/assert"
)
func TestCompactArray(t *testing.T) {
ar := []Either[string, string]{
ar := A.From(
Of[string]("ok"),
Left[string]("err"),
Of[string]("ok"),
}
)
res := CompactArray(ar)
assert.Equal(t, 2, len(res))

View File

@@ -20,6 +20,7 @@ import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/utils"
N "github.com/IBM/fp-go/v2/number"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/stretchr/testify/assert"
)
@@ -203,7 +204,7 @@ func TestLetL(t *testing.T) {
)
t.Run("LetL with pure transformation", func(t *testing.T) {
double := func(v int) int { return v * 2 }
double := N.Mul(2)
result := F.Pipe1(
Right[error](Counter{Value: 21}),
@@ -215,7 +216,7 @@ func TestLetL(t *testing.T) {
})
t.Run("LetL with Left input", func(t *testing.T) {
double := func(v int) int { return v * 2 }
double := N.Mul(2)
result := F.Pipe1(
Left[Counter](assert.AnError),
@@ -227,8 +228,8 @@ func TestLetL(t *testing.T) {
})
t.Run("LetL with multiple transformations", func(t *testing.T) {
double := func(v int) int { return v * 2 }
addTen := func(v int) int { return v + 10 }
double := N.Mul(2)
addTen := N.Add(10)
result := F.Pipe2(
Right[error](Counter{Value: 5}),
@@ -241,7 +242,7 @@ func TestLetL(t *testing.T) {
})
t.Run("LetL with identity transformation", func(t *testing.T) {
identity := func(v int) int { return v }
identity := F.Identity[int]
result := F.Pipe1(
Right[error](Counter{Value: 42}),
@@ -315,7 +316,7 @@ func TestLensOperationsCombined(t *testing.T) {
)
t.Run("Combine LetToL and LetL", func(t *testing.T) {
double := func(v int) int { return v * 2 }
double := N.Mul(2)
result := F.Pipe2(
Right[error](Counter{Value: 100}),
@@ -328,7 +329,7 @@ func TestLensOperationsCombined(t *testing.T) {
})
t.Run("Combine LetL and BindL", func(t *testing.T) {
double := func(v int) int { return v * 2 }
double := N.Mul(2)
validate := func(v int) Either[error, int] {
if v > 100 {
return Left[int](assert.AnError)

View File

@@ -22,9 +22,9 @@ import (
type (
// Either defines a data structure that logically holds either an E or an A. The flag discriminates the cases
Either[E, A any] struct {
r A
l E
isL bool
r A
l E
isLeft bool
}
)
@@ -32,7 +32,7 @@ type (
//
//go:noinline
func (s Either[E, A]) String() string {
if !s.isL {
if !s.isLeft {
return fmt.Sprintf("Right[%T](%v)", s.r, s.r)
}
return fmt.Sprintf("Left[%T](%v)", s.l, s.l)
@@ -61,7 +61,7 @@ func (s Either[E, A]) Format(f fmt.State, c rune) {
//
//go:inline
func IsLeft[E, A any](val Either[E, A]) bool {
return val.isL
return val.isLeft
}
// IsRight tests if the Either is a Right value.
@@ -75,7 +75,7 @@ func IsLeft[E, A any](val Either[E, A]) bool {
//
//go:inline
func IsRight[E, A any](val Either[E, A]) bool {
return !val.isL
return !val.isLeft
}
// Left creates a new Either representing a Left (error/failure) value.
@@ -87,7 +87,7 @@ func IsRight[E, A any](val Either[E, A]) bool {
//
//go:inline
func Left[A, E any](value E) Either[E, A] {
return Either[E, A]{l: value, isL: true}
return Either[E, A]{l: value, isLeft: true}
}
// Right creates a new Either representing a Right (success) value.
@@ -115,7 +115,7 @@ func Right[E, A any](value A) Either[E, A] {
//
//go:inline
func MonadFold[E, A, B any](ma Either[E, A], onLeft func(e E) B, onRight func(a A) B) B {
if !ma.isL {
if !ma.isLeft {
return onRight(ma.r)
}
return onLeft(ma.l)

View File

@@ -24,7 +24,6 @@ import (
F "github.com/IBM/fp-go/v2/function"
C "github.com/IBM/fp-go/v2/internal/chain"
FC "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/option"
)
@@ -38,7 +37,7 @@ import (
//
//go:inline
func Of[E, A any](value A) Either[E, A] {
return F.Pipe1(value, Right[E, A])
return Right[E](value)
}
// FromIO executes an IO operation and wraps the result in a Right value.
@@ -48,8 +47,10 @@ func Of[E, A any](value A) Either[E, A] {
//
// getValue := func() int { return 42 }
// result := either.FromIO[error](getValue) // Right(42)
//
// go: inline
func FromIO[E any, IO ~func() A, A any](f IO) Either[E, A] {
return F.Pipe1(f(), Right[E, A])
return Of[E](f())
}
// MonadAp applies a function wrapped in Either to a value wrapped in Either.
@@ -58,17 +59,23 @@ func FromIO[E any, IO ~func() A, A any](f IO) Either[E, A] {
//
// Example:
//
// fab := either.Right[error](func(x int) int { return x * 2 })
// fab := either.Right[error](N.Mul(2))
// fa := either.Right[error](21)
// result := either.MonadAp(fab, fa) // Right(42)
func MonadAp[B, E, A any](fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
return MonadFold(fab, Left[B, E], func(ab func(A) B) Either[E, B] {
return MonadFold(fa, Left[B, E], F.Flow2(ab, Right[E, B]))
})
if fab.isLeft {
return Left[B](fab.l)
}
if fa.isLeft {
return Left[B](fa.l)
}
return Of[E](fab.r(fa.r))
}
// Ap is the curried version of [MonadAp].
// Returns a function that applies a wrapped function to the given wrapped value.
//
//go:inline
func Ap[B, E, A any](fa Either[E, A]) Operator[E, func(A) B, B] {
return F.Bind2nd(MonadAp[B, E, A], fa)
}
@@ -81,12 +88,15 @@ func Ap[B, E, A any](fa Either[E, A]) Operator[E, func(A) B, B] {
//
// result := either.MonadMap(
// either.Right[error](21),
// func(x int) int { return x * 2 },
// N.Mul(2),
// ) // Right(42)
//
//go:inline
func MonadMap[E, A, B any](fa Either[E, A], f func(a A) B) Either[E, B] {
return MonadChain(fa, F.Flow2(f, Right[E, B]))
if fa.isLeft {
return Left[B](fa.l)
}
return Of[E](f(fa.r))
}
// MonadBiMap applies two functions: one to transform a Left value, another to transform a Right value.
@@ -100,13 +110,18 @@ func MonadMap[E, A, B any](fa Either[E, A], f func(a A) B) Either[E, B] {
// func(n int) string { return fmt.Sprint(n) },
// ) // Left("error")
func MonadBiMap[E1, E2, A, B any](fa Either[E1, A], f func(E1) E2, g func(a A) B) Either[E2, B] {
return MonadFold(fa, F.Flow2(f, Left[B, E2]), F.Flow2(g, Right[E2, B]))
if fa.isLeft {
return Left[B](f(fa.l))
}
return Of[E2](g(fa.r))
}
// BiMap is the curried version of [MonadBiMap].
// Maps a pair of functions over the two type arguments of the bifunctor.
func BiMap[E1, E2, A, B any](f func(E1) E2, g func(a A) B) func(Either[E1, A]) Either[E2, B] {
return Fold(F.Flow2(f, Left[B, E2]), F.Flow2(g, Right[E2, B]))
return func(fa Either[E1, A]) Either[E2, B] {
return MonadBiMap(fa, f, g)
}
}
// MonadMapTo replaces the Right value with a constant value.
@@ -116,12 +131,15 @@ func BiMap[E1, E2, A, B any](f func(E1) E2, g func(a A) B) func(Either[E1, A]) E
//
// result := either.MonadMapTo(either.Right[error](21), "success") // Right("success")
func MonadMapTo[E, A, B any](fa Either[E, A], b B) Either[E, B] {
return MonadMap(fa, F.Constant1[A](b))
if fa.isLeft {
return Left[B](fa.l)
}
return Of[E](b)
}
// MapTo is the curried version of [MonadMapTo].
func MapTo[E, A, B any](b B) Operator[E, A, B] {
return Map[E](F.Constant1[A](b))
return F.Bind2nd(MonadMapTo[E, A], b)
}
// MonadMapLeft applies a transformation function to the Left (error) value.
@@ -139,8 +157,8 @@ func MonadMapLeft[E1, A, E2 any](fa Either[E1, A], f func(E1) E2) Either[E2, A]
// Map is the curried version of [MonadMap].
// Transforms the Right value using the provided function.
func Map[E, A, B any](f func(a A) B) func(fa Either[E, A]) Either[E, B] {
return Chain(F.Flow2(f, Right[E, B]))
func Map[E, A, B any](f func(a A) B) Operator[E, A, B] {
return F.Bind2nd(MonadMap[E], f)
}
// MapLeft is the curried version of [MonadMapLeft].
@@ -163,8 +181,11 @@ func MapLeft[A, E1, E2 any](f func(E1) E2) func(fa Either[E1, A]) Either[E2, A]
// ) // Right(42)
//
//go:inline
func MonadChain[E, A, B any](fa Either[E, A], f func(a A) Either[E, B]) Either[E, B] {
return MonadFold(fa, Left[B, E], f)
func MonadChain[E, A, B any](fa Either[E, A], f Kleisli[E, A, B]) Either[E, B] {
if fa.isLeft {
return Left[B](fa.l)
}
return f(fa.r)
}
// MonadChainFirst executes a side-effect computation but returns the original value.
@@ -179,7 +200,7 @@ func MonadChain[E, A, B any](fa Either[E, A], f func(a A) Either[E, B]) Either[E
// return either.Right[error]("logged")
// },
// ) // Right(42) - original value preserved
func MonadChainFirst[E, A, B any](ma Either[E, A], f func(a A) Either[E, B]) Either[E, A] {
func MonadChainFirst[E, A, B any](ma Either[E, A], f Kleisli[E, A, B]) Either[E, A] {
return C.MonadChainFirst(
MonadChain[E, A, A],
MonadMap[E, B, A],
@@ -225,12 +246,12 @@ func ChainTo[A, E, B any](mb Either[E, B]) Operator[E, A, B] {
// Chain is the curried version of [MonadChain].
// Sequences two computations where the second depends on the first.
func Chain[E, A, B any](f func(a A) Either[E, B]) Operator[E, A, B] {
return Fold(Left[B, E], f)
func Chain[E, A, B any](f Kleisli[E, A, B]) Operator[E, A, B] {
return F.Bind2nd(MonadChain[E], f)
}
// ChainFirst is the curried version of [MonadChainFirst].
func ChainFirst[E, A, B any](f func(a A) Either[E, B]) Operator[E, A, A] {
func ChainFirst[E, A, B any](f Kleisli[E, A, B]) Operator[E, A, A] {
return C.ChainFirst(
Chain[E, A, A],
Map[E, B, A],
@@ -271,7 +292,7 @@ func TryCatch[FE func(error) E, E, A any](val A, err error, onThrow FE) Either[E
// result := either.TryCatchError(42, nil) // Right(42)
// result := either.TryCatchError(0, errors.New("fail")) // Left(error)
func TryCatchError[A any](val A, err error) Either[error, A] {
return TryCatch(val, err, E.IdentityError)
return TryCatch(val, err, E.Identity)
}
// Sequence2 sequences two Either values using a combining function.
@@ -335,7 +356,7 @@ func FromError[A any](f func(a A) error) func(A) Either[error, A] {
// err := either.ToError(either.Left[int](errors.New("fail"))) // error
// err := either.ToError(either.Right[error](42)) // nil
func ToError[A any](e Either[error, A]) error {
return MonadFold(e, E.IdentityError, F.Constant1[A, error](nil))
return MonadFold(e, E.Identity, F.Constant1[A, error](nil))
}
// Fold is the curried version of [MonadFold].
@@ -347,6 +368,8 @@ func ToError[A any](e Either[error, A]) error {
// func(err error) string { return "Error: " + err.Error() },
// func(n int) string { return fmt.Sprintf("Value: %d", n) },
// )(either.Right[error](42)) // "Value: 42"
//
//go:inline
func Fold[E, A, B any](onLeft func(E) B, onRight func(A) B) func(Either[E, A]) B {
return func(ma Either[E, A]) B {
return MonadFold(ma, onLeft, onRight)
@@ -410,10 +433,12 @@ func GetOrElse[E, A any](onLeft func(E) A) func(Either[E, A]) A {
// Reduce folds an Either into a single value using a reducer function.
// Returns the initial value for Left, or applies the reducer to the Right value.
func Reduce[E, A, B any](f func(B, A) B, initial B) func(Either[E, A]) B {
return Fold(
F.Constant1[E](initial),
F.Bind1st(f, initial),
)
return func(fa Either[E, A]) B {
if fa.isLeft {
return initial
}
return f(initial, fa.r)
}
}
// AltW provides an alternative Either if the first is Left, allowing different error types.
@@ -425,7 +450,7 @@ func Reduce[E, A, B any](f func(B, A) B, initial B) func(Either[E, A]) B {
// return either.Right[string](99)
// })
// result := alternative(either.Left[int](errors.New("fail"))) // Right(99)
func AltW[E, E1, A any](that L.Lazy[Either[E1, A]]) func(Either[E, A]) Either[E1, A] {
func AltW[E, E1, A any](that Lazy[Either[E1, A]]) func(Either[E, A]) Either[E1, A] {
return Fold(F.Ignore1of1[E](that), Right[E1, A])
}
@@ -437,7 +462,7 @@ func AltW[E, E1, A any](that L.Lazy[Either[E1, A]]) func(Either[E, A]) Either[E1
// return either.Right[error](99)
// })
// result := alternative(either.Left[int](errors.New("fail"))) // Right(99)
func Alt[E, A any](that L.Lazy[Either[E, A]]) Operator[E, A, A] {
func Alt[E, A any](that Lazy[Either[E, A]]) Operator[E, A, A] {
return AltW[E](that)
}
@@ -480,23 +505,28 @@ func Memoize[E, A any](val Either[E, A]) Either[E, A] {
// MonadSequence2 sequences two Either values using a combining function.
// Short-circuits on the first Left encountered.
func MonadSequence2[E, T1, T2, R any](e1 Either[E, T1], e2 Either[E, T2], f func(T1, T2) Either[E, R]) Either[E, R] {
return MonadFold(e1, Left[R, E], func(t1 T1) Either[E, R] {
return MonadFold(e2, Left[R, E], func(t2 T2) Either[E, R] {
return f(t1, t2)
})
})
if e1.isLeft {
return Left[R](e1.l)
}
if e2.isLeft {
return Left[R](e2.l)
}
return f(e1.r, e2.r)
}
// MonadSequence3 sequences three Either values using a combining function.
// Short-circuits on the first Left encountered.
func MonadSequence3[E, T1, T2, T3, R any](e1 Either[E, T1], e2 Either[E, T2], e3 Either[E, T3], f func(T1, T2, T3) Either[E, R]) Either[E, R] {
return MonadFold(e1, Left[R, E], func(t1 T1) Either[E, R] {
return MonadFold(e2, Left[R, E], func(t2 T2) Either[E, R] {
return MonadFold(e3, Left[R, E], func(t3 T3) Either[E, R] {
return f(t1, t2, t3)
})
})
})
if e1.isLeft {
return Left[R](e1.l)
}
if e2.isLeft {
return Left[R](e2.l)
}
if e3.isLeft {
return Left[R](e3.l)
}
return f(e1.r, e2.r, e3.r)
}
// Swap exchanges the Left and Right type parameters.
@@ -524,6 +554,6 @@ func Flap[E, B, A any](a A) Operator[E, func(A) B, B] {
// MonadAlt provides an alternative Either if the first is Left.
// This is the monadic version of [Alt].
func MonadAlt[E, A any](fa Either[E, A], that L.Lazy[Either[E, A]]) Either[E, A] {
func MonadAlt[E, A any](fa Either[E, A], that Lazy[Either[E, A]]) Either[E, A] {
return MonadFold(fa, F.Ignore1of1[E](that), Of[E, A])
}

View File

@@ -20,6 +20,7 @@ import (
"testing"
F "github.com/IBM/fp-go/v2/function"
N "github.com/IBM/fp-go/v2/number"
)
var (
@@ -33,21 +34,21 @@ var (
// Benchmark core constructors
func BenchmarkLeft(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Left[int](errBench)
}
}
func BenchmarkRight(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Right[error](42)
}
}
func BenchmarkOf(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Of[error](42)
}
}
@@ -57,7 +58,7 @@ func BenchmarkIsLeft(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchBool = IsLeft(left)
}
}
@@ -66,7 +67,7 @@ func BenchmarkIsRight(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchBool = IsRight(right)
}
}
@@ -75,10 +76,10 @@ func BenchmarkIsRight(b *testing.B) {
func BenchmarkMonadFold_Right(b *testing.B) {
right := Right[error](42)
onLeft := func(e error) int { return 0 }
onRight := func(a int) int { return a * 2 }
onRight := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = MonadFold(right, onLeft, onRight)
}
}
@@ -86,10 +87,10 @@ func BenchmarkMonadFold_Right(b *testing.B) {
func BenchmarkMonadFold_Left(b *testing.B) {
left := Left[int](errBench)
onLeft := func(e error) int { return 0 }
onRight := func(a int) int { return a * 2 }
onRight := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = MonadFold(left, onLeft, onRight)
}
}
@@ -98,11 +99,11 @@ func BenchmarkFold_Right(b *testing.B) {
right := Right[error](42)
folder := Fold(
func(e error) int { return 0 },
func(a int) int { return a * 2 },
N.Mul(2),
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = folder(right)
}
}
@@ -111,11 +112,11 @@ func BenchmarkFold_Left(b *testing.B) {
left := Left[int](errBench)
folder := Fold(
func(e error) int { return 0 },
func(a int) int { return a * 2 },
N.Mul(2),
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = folder(left)
}
}
@@ -125,7 +126,7 @@ func BenchmarkUnwrap_Right(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt, _ = Unwrap(right)
}
}
@@ -134,7 +135,7 @@ func BenchmarkUnwrap_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt, _ = Unwrap(left)
}
}
@@ -143,7 +144,7 @@ func BenchmarkUnwrapError_Right(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt, _ = UnwrapError(right)
}
}
@@ -152,7 +153,7 @@ func BenchmarkUnwrapError_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt, _ = UnwrapError(left)
}
}
@@ -160,40 +161,40 @@ func BenchmarkUnwrapError_Left(b *testing.B) {
// Benchmark functor operations
func BenchmarkMonadMap_Right(b *testing.B) {
right := Right[error](42)
mapper := func(a int) int { return a * 2 }
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadMap(right, mapper)
}
}
func BenchmarkMonadMap_Left(b *testing.B) {
left := Left[int](errBench)
mapper := func(a int) int { return a * 2 }
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadMap(left, mapper)
}
}
func BenchmarkMap_Right(b *testing.B) {
right := Right[error](42)
mapper := Map[error](func(a int) int { return a * 2 })
mapper := Map[error](N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = mapper(right)
}
}
func BenchmarkMap_Left(b *testing.B) {
left := Left[int](errBench)
mapper := Map[error](func(a int) int { return a * 2 })
mapper := Map[error](N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = mapper(left)
}
}
@@ -203,7 +204,7 @@ func BenchmarkMapLeft_Right(b *testing.B) {
mapper := MapLeft[int](error.Error)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = mapper(right)
}
}
@@ -213,7 +214,7 @@ func BenchmarkMapLeft_Left(b *testing.B) {
mapper := MapLeft[int](error.Error)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = mapper(left)
}
}
@@ -226,7 +227,7 @@ func BenchmarkBiMap_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = mapper(right)
}
}
@@ -239,7 +240,7 @@ func BenchmarkBiMap_Left(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = mapper(left)
}
}
@@ -250,7 +251,7 @@ func BenchmarkMonadChain_Right(b *testing.B) {
chainer := func(a int) Either[error, int] { return Right[error](a * 2) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadChain(right, chainer)
}
}
@@ -260,7 +261,7 @@ func BenchmarkMonadChain_Left(b *testing.B) {
chainer := func(a int) Either[error, int] { return Right[error](a * 2) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadChain(left, chainer)
}
}
@@ -270,7 +271,7 @@ func BenchmarkChain_Right(b *testing.B) {
chainer := Chain(func(a int) Either[error, int] { return Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = chainer(right)
}
}
@@ -280,7 +281,7 @@ func BenchmarkChain_Left(b *testing.B) {
chainer := Chain(func(a int) Either[error, int] { return Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = chainer(left)
}
}
@@ -290,7 +291,7 @@ func BenchmarkChainFirst_Right(b *testing.B) {
chainer := ChainFirst(func(a int) Either[error, string] { return Right[error]("logged") })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = chainer(right)
}
}
@@ -300,7 +301,7 @@ func BenchmarkChainFirst_Left(b *testing.B) {
chainer := ChainFirst(func(a int) Either[error, string] { return Right[error]("logged") })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = chainer(left)
}
}
@@ -309,7 +310,7 @@ func BenchmarkFlatten_Right(b *testing.B) {
nested := Right[error](Right[error](42))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Flatten(nested)
}
}
@@ -318,28 +319,28 @@ func BenchmarkFlatten_Left(b *testing.B) {
nested := Left[Either[error, int]](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = Flatten(nested)
}
}
// Benchmark applicative operations
func BenchmarkMonadAp_RightRight(b *testing.B) {
fab := Right[error](func(a int) int { return a * 2 })
fab := Right[error](N.Mul(2))
fa := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadAp(fab, fa)
}
}
func BenchmarkMonadAp_RightLeft(b *testing.B) {
fab := Right[error](func(a int) int { return a * 2 })
fab := Right[error](N.Mul(2))
fa := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadAp(fab, fa)
}
}
@@ -349,18 +350,18 @@ func BenchmarkMonadAp_LeftRight(b *testing.B) {
fa := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadAp(fab, fa)
}
}
func BenchmarkAp_RightRight(b *testing.B) {
fab := Right[error](func(a int) int { return a * 2 })
fab := Right[error](N.Mul(2))
fa := Right[error](42)
ap := Ap[int](fa)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = ap(fab)
}
}
@@ -371,7 +372,7 @@ func BenchmarkAlt_RightRight(b *testing.B) {
alternative := Alt(func() Either[error, int] { return Right[error](99) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = alternative(right)
}
}
@@ -381,7 +382,7 @@ func BenchmarkAlt_LeftRight(b *testing.B) {
alternative := Alt(func() Either[error, int] { return Right[error](99) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = alternative(left)
}
}
@@ -391,7 +392,7 @@ func BenchmarkOrElse_Right(b *testing.B) {
recover := OrElse(func(e error) Either[error, int] { return Right[error](0) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = recover(right)
}
}
@@ -401,7 +402,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
recover := OrElse(func(e error) Either[error, int] { return Right[error](0) })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = recover(left)
}
}
@@ -410,7 +411,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
func BenchmarkTryCatch_Success(b *testing.B) {
onThrow := func(err error) error { return err }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = TryCatch(42, nil, onThrow)
}
}
@@ -418,21 +419,21 @@ func BenchmarkTryCatch_Success(b *testing.B) {
func BenchmarkTryCatch_Error(b *testing.B) {
onThrow := func(err error) error { return err }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = TryCatch(0, errBench, onThrow)
}
}
func BenchmarkTryCatchError_Success(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = TryCatchError(42, nil)
}
}
func BenchmarkTryCatchError_Error(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = TryCatchError(0, errBench)
}
}
@@ -441,7 +442,7 @@ func BenchmarkSwap_Right(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Swap(right)
}
}
@@ -450,7 +451,7 @@ func BenchmarkSwap_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Swap(left)
}
}
@@ -460,7 +461,7 @@ func BenchmarkGetOrElse_Right(b *testing.B) {
getter := GetOrElse(func(e error) int { return 0 })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = getter(right)
}
}
@@ -470,7 +471,7 @@ func BenchmarkGetOrElse_Left(b *testing.B) {
getter := GetOrElse(func(e error) int { return 0 })
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchInt = getter(left)
}
}
@@ -480,10 +481,10 @@ func BenchmarkPipeline_Map_Right(b *testing.B) {
right := Right[error](21)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe1(
right,
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
)
}
}
@@ -492,10 +493,10 @@ func BenchmarkPipeline_Map_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe1(
left,
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
)
}
}
@@ -504,7 +505,7 @@ func BenchmarkPipeline_Chain_Right(b *testing.B) {
right := Right[error](21)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe1(
right,
Chain(func(x int) Either[error, int] { return Right[error](x * 2) }),
@@ -516,7 +517,7 @@ func BenchmarkPipeline_Chain_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe1(
left,
Chain(func(x int) Either[error, int] { return Right[error](x * 2) }),
@@ -528,12 +529,12 @@ func BenchmarkPipeline_Complex_Right(b *testing.B) {
right := Right[error](10)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe3(
right,
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
Chain(func(x int) Either[error, int] { return Right[error](x + 1) }),
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
)
}
}
@@ -542,12 +543,12 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = F.Pipe3(
left,
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
Chain(func(x int) Either[error, int] { return Right[error](x + 1) }),
Map[error](func(x int) int { return x * 2 }),
Map[error](N.Mul(2)),
)
}
}
@@ -559,7 +560,7 @@ func BenchmarkMonadSequence2_RightRight(b *testing.B) {
f := func(a, b int) Either[error, int] { return Right[error](a + b) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadSequence2(e1, e2, f)
}
}
@@ -570,7 +571,7 @@ func BenchmarkMonadSequence2_LeftRight(b *testing.B) {
f := func(a, b int) Either[error, int] { return Right[error](a + b) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadSequence2(e1, e2, f)
}
}
@@ -582,7 +583,7 @@ func BenchmarkMonadSequence3_RightRightRight(b *testing.B) {
f := func(a, b, c int) Either[error, int] { return Right[error](a + b + c) }
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchResult = MonadSequence3(e1, e2, e3, f)
}
}
@@ -591,7 +592,7 @@ func BenchmarkMonadSequence3_RightRightRight(b *testing.B) {
func BenchmarkDo(b *testing.B) {
type State struct{ value int }
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = Do[error](State{})
}
}
@@ -609,7 +610,7 @@ func BenchmarkBind_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = binder(initial)
}
}
@@ -625,7 +626,7 @@ func BenchmarkLet_Right(b *testing.B) {
)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = letter(initial)
}
}
@@ -635,7 +636,7 @@ func BenchmarkString_Right(b *testing.B) {
right := Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchString = right.String()
}
}
@@ -644,7 +645,7 @@ func BenchmarkString_Left(b *testing.B) {
left := Left[int](errBench)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for b.Loop() {
benchString = left.String()
}
}

View File

@@ -201,7 +201,7 @@ func TestSwap(t *testing.T) {
// Test MonadFlap and Flap
func TestFlap(t *testing.T) {
fab := Right[error](func(x int) string { return strconv.Itoa(x) })
fab := Right[error](strconv.Itoa)
result := MonadFlap(fab, 42)
assert.Equal(t, Right[error]("42"), result)
@@ -615,7 +615,7 @@ func TestMonad(t *testing.T) {
assert.Equal(t, Right[error](42), result)
// Test Map
mapFn := m.Map(func(x int) string { return strconv.Itoa(x) })
mapFn := m.Map(strconv.Itoa)
result2 := mapFn(Right[error](42))
assert.Equal(t, Right[error]("42"), result2)
@@ -628,7 +628,7 @@ func TestMonad(t *testing.T) {
// Test Ap
apFn := m.Ap(Right[error](42))
result4 := apFn(Right[error](func(x int) string { return strconv.Itoa(x) }))
result4 := apFn(Right[error](strconv.Itoa))
assert.Equal(t, Right[error]("42"), result4)
}

View File

@@ -66,7 +66,7 @@ func TestUnwrapError(t *testing.T) {
func TestReduce(t *testing.T) {
s := S.Semigroup()
s := S.Semigroup
assert.Equal(t, "foobar", F.Pipe1(Right[string]("bar"), Reduce[string](s.Concat, "foo")))
assert.Equal(t, "foo", F.Pipe1(Left[string]("bar"), Reduce[string](s.Concat, "foo")))

33
v2/either/escape_test.go Normal file
View File

@@ -0,0 +1,33 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package either
// Test functions to analyze escape behavior
//go:noinline
func testOf(x int) Either[error, int] {
return Of[error](x)
}
//go:noinline
func testRight(x int) Either[error, int] {
return Right[error](x)
}
//go:noinline
func testLeft(x int) Either[int, string] {
return Left[string](x)
}

View File

@@ -46,7 +46,7 @@ func _log[E, A any](left func(string, ...any), right func(string, ...any), prefi
// result := F.Pipe2(
// either.Right[error](42),
// logger("Processing"),
// either.Map(func(x int) int { return x * 2 }),
// either.Map(N.Mul(2)),
// )
// // Logs: "Processing: 42"
// // result is Right(84)

View File

@@ -19,38 +19,116 @@ import (
"github.com/IBM/fp-go/v2/internal/monad"
)
type eitherMonad[E, A, B any] struct{}
func (o *eitherMonad[E, A, B]) Of(a A) Either[E, A] {
return Of[E](a)
// eitherMonad is the internal implementation of the Monad type class for Either.
// It extends eitherApplicative by adding the Chain operation for sequential composition.
type eitherMonad[E, A, B any] struct {
eitherApplicative[E, A, B]
fchain func(Kleisli[E, A, B]) Operator[E, A, B]
}
func (o *eitherMonad[E, A, B]) Map(f func(A) B) Operator[E, A, B] {
return Map[E](f)
// Chain sequences dependent computations, failing fast on the first Left.
func (o *eitherMonad[E, A, B]) Chain(f Kleisli[E, A, B]) Operator[E, A, B] {
return o.fchain(f)
}
func (o *eitherMonad[E, A, B]) Chain(f func(A) Either[E, B]) Operator[E, A, B] {
return Chain(f)
}
func (o *eitherMonad[E, A, B]) Ap(fa Either[E, A]) Operator[E, func(A) B, B] {
return Ap[B](fa)
}
// Monad implements the monadic operations for Either.
// A monad combines the capabilities of Functor (Map), Applicative (Ap), and Chain (flatMap/bind).
// This allows for sequential composition of computations that may fail.
// Monad creates a lawful Monad instance for Either with fail-fast error handling.
//
// Example:
// A monad combines the capabilities of four type classes:
// - Functor (Map): transform the Right value
// - Pointed (Of): lift a pure value into a Right
// - Applicative (Ap): apply wrapped functions (fails fast on first Left)
// - Chainable (Chain): sequence dependent computations (fails fast on first Left)
//
// The Either monad is left-biased and fails fast: once a Left is encountered,
// no further computations are performed and the Left is propagated immediately.
// This makes it ideal for error handling where you want to stop at the first error.
//
// This implementation satisfies all monad laws:
//
// Monad Laws:
// - Left Identity: Chain(f)(Of(a)) == f(a)
// - Right Identity: Chain(Of)(m) == m
// - Associativity: Chain(g)(Chain(f)(m)) == Chain(x => Chain(g)(f(x)))(m)
//
// Additionally, it satisfies all prerequisite laws from Functor, Apply, and Applicative.
//
// Relationship to Applicative:
//
// This Monad uses the standard fail-fast Applicative (see Applicative function).
// In a lawful monad, Ap can be derived from Chain and Of:
//
// Ap(fa)(ff) == Chain(f => Chain(a => Of(f(a)))(fa))(ff)
//
// The Either monad satisfies this property, making it a true lawful monad.
//
// When to use Monad vs Applicative:
// - Use Monad when you need sequential dependent operations (Chain)
// - Use Applicative when you only need independent operations (Ap, Map)
// - Both fail fast on the first error
//
// When to use Monad vs ApplicativeV:
// - Use Monad for sequential error handling (fail-fast)
// - Use ApplicativeV for parallel validation (error accumulation)
// - Note: There is no "MonadV" because Chain inherently fails fast
//
// Example - Sequential Dependent Operations:
//
// m := either.Monad[error, int, string]()
//
// // Chain allows each step to depend on the previous result
// result := m.Chain(func(x int) either.Either[error, string] {
// if x > 0 {
// return either.Right[error](strconv.Itoa(x))
// }
// return either.Left[string](errors.New("negative"))
// return either.Left[string](errors.New("value must be positive"))
// })(either.Right[error](42))
// // result is Right("42")
//
// // Fails fast on first error
// result2 := m.Chain(func(x int) either.Either[error, string] {
// return either.Right[error](strconv.Itoa(x))
// })(either.Left[int](errors.New("initial error")))
// // result2 is Left("initial error") - Chain never executes
//
// Example - Combining with Applicative operations:
//
// m := either.Monad[error, int, int]()
//
// // Map transforms the value
// value := m.Map(N.Mul(2))(either.Right[error](21))
// // value is Right(42)
//
// // Ap applies wrapped functions (also fails fast)
// fn := either.Right[error](N.Add(1))
// result := m.Ap(value)(fn)
// // result is Right(43)
//
// Example - Real-world usage with error handling:
//
// m := either.Monad[error, User, SavedUser]()
//
// // Pipeline of operations that can fail
// result := m.Chain(func(user User) either.Either[error, SavedUser] {
// // Save to database
// return saveToDatabase(user)
// })(m.Chain(func(user User) either.Either[error, User] {
// // Validate user
// return validateUser(user)
// })(either.Right[error](inputUser)))
//
// // If any step fails, the error propagates immediately
//
// Type Parameters:
// - E: The error type (Left value)
// - A: The input value type (Right value)
// - B: The output value type after transformation
func Monad[E, A, B any]() monad.Monad[A, B, Either[E, A], Either[E, B], Either[E, func(A) B]] {
return &eitherMonad[E, A, B]{}
return &eitherMonad[E, A, B]{
eitherApplicative[E, A, B]{
Of[E, A],
Map[E, A, B],
Ap[B, E, A],
},
Chain[E, A, B],
}
}

View File

@@ -16,7 +16,6 @@
package either
import (
L "github.com/IBM/fp-go/v2/lazy"
M "github.com/IBM/fp-go/v2/monoid"
)
@@ -51,7 +50,7 @@ func AlternativeMonoid[E, A any](m M.Monoid[A]) Monoid[E, A] {
// m := either.AltMonoid[error, int](zero)
// result := m.Concat(either.Left[int](errors.New("err1")), either.Right[error](42))
// // result is Right(42)
func AltMonoid[E, A any](zero L.Lazy[Either[E, A]]) Monoid[E, A] {
func AltMonoid[E, A any](zero Lazy[Either[E, A]]) Monoid[E, A] {
return M.AltMonoid(
zero,
MonadAlt[E, A],

View File

@@ -35,13 +35,18 @@ import (
// // result is Right(map[string]int{"a": 1, "b": 2})
//
//go:inline
func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f func(A) Either[E, B]) func(GA) Either[E, GB] {
return RR.Traverse[GA](
Of[E, GB],
Map[E, GB, func(B) GB],
Ap[GB, E, B],
f,
)
func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f Kleisli[E, A, B]) Kleisli[E, GA, GB] {
return func(ga GA) Either[E, GB] {
bs := make(GB, len(ga))
for i, a := range ga {
b := f(a)
if b.isLeft {
return Left[GB](b.l)
}
bs[i] = b.r
}
return Of[E](bs)
}
}
// TraverseRecord transforms a map by applying a function that returns an Either to each value.
@@ -58,7 +63,7 @@ func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f func
// // result is Right(map[string]int{"a": 1, "b": 2})
//
//go:inline
func TraverseRecord[K comparable, E, A, B any](f func(A) Either[E, B]) func(map[K]A) Either[E, map[K]B] {
func TraverseRecord[K comparable, E, A, B any](f Kleisli[E, A, B]) Kleisli[E, map[K]A, map[K]B] {
return TraverseRecordG[map[K]A, map[K]B](f)
}
@@ -79,13 +84,18 @@ func TraverseRecord[K comparable, E, A, B any](f func(A) Either[E, B]) func(map[
// // result is Right(map[string]string{"a": "a:1"})
//
//go:inline
func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f func(K, A) Either[E, B]) func(GA) Either[E, GB] {
return RR.TraverseWithIndex[GA](
Of[E, GB],
Map[E, GB, func(B) GB],
Ap[GB, E, B],
f,
)
func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B any](f func(K, A) Either[E, B]) Kleisli[E, GA, GB] {
return func(ga GA) Either[E, GB] {
bs := make(GB, len(ga))
for i, a := range ga {
b := f(i, a)
if b.isLeft {
return Left[GB](b.l)
}
bs[i] = b.r
}
return Of[E](bs)
}
}
// TraverseRecordWithIndex transforms a map by applying an indexed function that returns an Either.
@@ -104,7 +114,7 @@ func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, E, A, B an
// // result is Right(map[string]string{"a": "a:1"})
//
//go:inline
func TraverseRecordWithIndex[K comparable, E, A, B any](f func(K, A) Either[E, B]) func(map[K]A) Either[E, map[K]B] {
func TraverseRecordWithIndex[K comparable, E, A, B any](f func(K, A) Either[E, B]) Kleisli[E, map[K]A, map[K]B] {
return TraverseRecordWithIndexG[map[K]A, map[K]B](f)
}

View File

@@ -15,10 +15,6 @@
package either
import (
F "github.com/IBM/fp-go/v2/function"
)
// WithResource constructs a function that creates a resource, operates on it, and then releases it.
// This ensures proper resource cleanup even if operations fail.
// The resource is released immediately after the operation completes.
@@ -43,25 +39,24 @@ import (
// // Use file here
// return either.Right[error]("data")
// })
func WithResource[E, R, A, ANY any](onCreate func() Either[E, R], onRelease Kleisli[E, R, ANY]) func(func(R) Either[E, A]) Either[E, A] {
func WithResource[A, E, R, ANY any](
onCreate func() Either[E, R],
onRelease Kleisli[E, R, ANY],
) Kleisli[E, Kleisli[E, R, A], A] {
return func(f func(R) Either[E, A]) Either[E, A] {
return MonadChain(
onCreate(), func(r R) Either[E, A] {
// run the code and make sure to release as quickly as possible
res := f(r)
released := onRelease(r)
// handle the errors
return MonadFold(
res,
Left[A, E],
func(a A) Either[E, A] {
return F.Pipe1(
released,
MapTo[E, ANY](a),
)
})
},
)
r := onCreate()
if r.isLeft {
return Left[A](r.l)
}
a := f(r.r)
n := onRelease(r.r)
if a.isLeft {
return Left[A](a.l)
}
if n.isLeft {
return Left[A](n.l)
}
return Of[E](a.r)
}
}

View File

@@ -40,7 +40,7 @@ func TestWithResource(t *testing.T) {
return Of[error](f.Name())
}
tempFile := WithResource[error, *os.File, string](onCreate, onDelete)
tempFile := WithResource[string](onCreate, onDelete)
resE := tempFile(onHandler)

View File

@@ -47,7 +47,7 @@ import (
// eqString := eq.FromStrictEquals[string]()
// eqError := eq.FromStrictEquals[error]()
//
// ab := func(x int) string { return strconv.Itoa(x) }
// ab := strconv.Itoa
// bc := func(s string) bool { return len(s) > 0 }
//
// testing.AssertLaws(t, eqError, eqInt, eqString, eq.FromStrictEquals[bool](), ab, bc)(42)

View File

@@ -17,6 +17,7 @@ package either
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/option"
@@ -29,6 +30,7 @@ type (
Option[A any] = option.Option[A]
Lens[S, T any] = lens.Lens[S, T]
Endomorphism[T any] = endomorphism.Endomorphism[T]
Lazy[T any] = lazy.Lazy[T]
Kleisli[E, A, B any] = reader.Reader[A, Either[E, B]]
Operator[E, A, B any] = Kleisli[E, Either[E, A], B]

144
v2/either/validation.go Normal file
View File

@@ -0,0 +1,144 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package either
import (
F "github.com/IBM/fp-go/v2/function"
S "github.com/IBM/fp-go/v2/semigroup"
)
// MonadApV is the applicative validation functor that combines errors using a semigroup.
//
// Unlike the standard [MonadAp] which short-circuits on the first Left (error),
// MonadApV accumulates all errors using the provided semigroup's Concat operation.
// This is particularly useful for validation scenarios where you want to collect
// all validation errors rather than stopping at the first one.
//
// The function takes a semigroup for combining errors and returns a function that
// applies a wrapped function to a wrapped value, accumulating errors if both are Left.
//
// Behavior:
// - If both fab and fa are Left, combines their errors using sg.Concat
// - If only fab is Left, returns Left with fab's error
// - If only fa is Left, returns Left with fa's error
// - If both are Right, applies the function and returns Right with the result
//
// Type Parameters:
// - B: The result type after applying the function
// - E: The error type (must support the semigroup operation)
// - A: The input type to the function
//
// Parameters:
// - sg: A semigroup that defines how to combine two error values
//
// Returns:
// - A function that takes a wrapped function and a wrapped value, returning
// Either[E, B] with accumulated errors or the computed result
//
// Example:
//
// // Define a semigroup that concatenates error messages
// errorSemigroup := semigroup.MakeSemigroup(func(e1, e2 string) string {
// return e1 + "; " + e2
// })
//
// // Create the validation applicative
// applyV := either.MonadApV[int](errorSemigroup)
//
// // Both are errors - errors get combined
// fab := either.Left[func(int) int]("error1")
// fa := either.Left[int]("error2")
// result := applyV(fab, fa) // Left("error1; error2")
//
// // One error - returns that error
// fab2 := either.Right[string](N.Mul(2))
// fa2 := either.Left[int]("validation failed")
// result2 := applyV(fab2, fa2) // Left("validation failed")
//
// // Both success - applies function
// fab3 := either.Right[string](N.Mul(2))
// fa3 := either.Right[string](21)
// result3 := applyV(fab3, fa3) // Right(42)
func MonadApV[B, A, E any](sg S.Semigroup[E]) func(fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
return func(fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
if fab.isLeft {
if fa.isLeft {
return Left[B](sg.Concat(fab.l, fa.l))
}
return Left[B](fab.l)
}
if fa.isLeft {
return Left[B](fa.l)
}
return Of[E](fab.r(fa.r))
}
}
// ApV is the curried version of [MonadApV] that combines errors using a semigroup.
//
// This function provides a more convenient API for validation scenarios by currying
// the arguments. It first takes the value to validate, then returns a function that
// takes the validation function. This allows for a more natural composition style.
//
// Like [MonadApV], this accumulates all errors using the provided semigroup instead
// of short-circuiting on the first error. This is the key difference from the
// standard [Ap] function.
//
// Type Parameters:
// - B: The result type after applying the function
// - E: The error type (must support the semigroup operation)
// - A: The input type to the function
//
// Parameters:
// - sg: A semigroup that defines how to combine two error values
//
// Returns:
// - A function that takes a value Either[E, A] and returns an Operator that
// applies validation functions while accumulating errors
//
// Example:
//
// // Define a semigroup for combining validation errors
// type ValidationError struct {
// Errors []string
// }
// errorSemigroup := semigroup.MakeSemigroup(func(e1, e2 ValidationError) ValidationError {
// return ValidationError{Errors: append(e1.Errors, e2.Errors...)}
// })
//
// // Create validators
// validatePositive := func(x int) either.Either[ValidationError, int] {
// if x > 0 {
// return either.Right[ValidationError](x)
// }
// return either.Left[int](ValidationError{Errors: []string{"must be positive"}})
// }
//
// // Use ApV for validation
// applyValidation := either.ApV[int](errorSemigroup)
// value := either.Left[int](ValidationError{Errors: []string{"invalid input"}})
// validator := either.Left[func(int) int](ValidationError{Errors: []string{"invalid validator"}})
//
// result := applyValidation(value)(validator)
// // Left(ValidationError{Errors: []string{"invalid validator", "invalid input"}})
//
//go:inline
func ApV[B, A, E any](sg S.Semigroup[E]) func(Either[E, A]) Operator[E, func(A) B, B] {
apv := MonadApV[B, A](sg)
return func(e Either[E, A]) Operator[E, func(A) B, B] {
return F.Bind2nd(apv, e)
}
}

View File

@@ -0,0 +1,362 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package either
import (
"testing"
F "github.com/IBM/fp-go/v2/function"
N "github.com/IBM/fp-go/v2/number"
SG "github.com/IBM/fp-go/v2/semigroup"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
// TestMonadApV_BothRight tests MonadApV when both function and value are Right
func TestMonadApV_BothRight(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := MonadApV[int, int](sg)
// Both are Right - should apply function
fab := Right[string](N.Mul(2))
fa := Right[string](21)
result := applyV(fab, fa)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string](42), result)
}
// TestMonadApV_BothLeft tests MonadApV when both function and value are Left
func TestMonadApV_BothLeft(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := MonadApV[int, int](sg)
// Both are Left - should combine errors
fab := Left[func(int) int]("error1")
fa := Left[int]("error2")
result := applyV(fab, fa)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: fa error + fab error
assert.Equal(t, Left[int]("error1; error2"), result)
}
// TestMonadApV_LeftFunction tests MonadApV when function is Left and value is Right
func TestMonadApV_LeftFunction(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := MonadApV[int, int](sg)
// Function is Left, value is Right - should return function's error
fab := Left[func(int) int]("function error")
fa := Right[string](21)
result := applyV(fab, fa)
assert.True(t, IsLeft(result))
assert.Equal(t, Left[int]("function error"), result)
}
// TestMonadApV_LeftValue tests MonadApV when function is Right and value is Left
func TestMonadApV_LeftValue(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := MonadApV[int, int](sg)
// Function is Right, value is Left - should return value's error
fab := Right[string](N.Mul(2))
fa := Left[int]("value error")
result := applyV(fab, fa)
assert.True(t, IsLeft(result))
assert.Equal(t, Left[int]("value error"), result)
}
// TestMonadApV_WithSliceSemigroup tests MonadApV with a slice-based semigroup
func TestMonadApV_WithSliceSemigroup(t *testing.T) {
// Create a semigroup that concatenates slices
sg := SG.MakeSemigroup(func(a, b []string) []string {
return append(a, b...)
})
// Create the validation applicative
applyV := MonadApV[string, string](sg)
// Both are Left with slice errors
fab := Left[func(string) string]([]string{"error1", "error2"})
fa := Left[string]([]string{"error3", "error4"})
result := applyV(fab, fa)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: fa errors + fab errors
expected := Left[string]([]string{"error1", "error2", "error3", "error4"})
assert.Equal(t, expected, result)
}
// TestMonadApV_ComplexFunction tests MonadApV with a more complex function
func TestMonadApV_ComplexFunction(t *testing.T) {
// Create a semigroup for string concatenation
sg := SG.MakeSemigroup(func(a, b string) string {
return a + " | " + b
})
// Create the validation applicative
applyV := MonadApV[string, int](sg)
// Test with a function that transforms the value
fab := Right[string](func(x int) string {
if x > 0 {
return "positive"
}
return "non-positive"
})
fa := Right[string](42)
result := applyV(fab, fa)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string]("positive"), result)
}
// TestApV_BothRight tests ApV when both function and value are Right
func TestApV_BothRight(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Right - should apply function
fa := Right[string](21)
fab := Right[string](N.Mul(2))
result := applyV(fa)(fab)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string](42), result)
}
// TestApV_BothLeft tests ApV when both function and value are Left
func TestApV_BothLeft(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Left - should combine errors
fa := Left[int]("error2")
fab := Left[func(int) int]("error1")
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: fa error + fab error
assert.Equal(t, Left[int]("error1; error2"), result)
}
// TestApV_LeftFunction tests ApV when function is Left and value is Right
func TestApV_LeftFunction(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := ApV[int, int](sg)
// Function is Left, value is Right - should return function's error
fa := Right[string](21)
fab := Left[func(int) int]("function error")
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
assert.Equal(t, Left[int]("function error"), result)
}
// TestApV_LeftValue tests ApV when function is Right and value is Left
func TestApV_LeftValue(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup("; ")
// Create the validation applicative
applyV := ApV[int, int](sg)
// Function is Right, value is Left - should return value's error
fa := Left[int]("value error")
fab := Right[string](N.Mul(2))
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
assert.Equal(t, Left[int]("value error"), result)
}
// TestApV_Composition tests ApV with function composition
func TestApV_Composition(t *testing.T) {
// Create a semigroup for string concatenation
sg := SG.MakeSemigroup(func(a, b string) string {
return a + " & " + b
})
// Create the validation applicative
applyV := ApV[string, int](sg)
// Test composition with pipe
fa := Right[string](10)
fab := Right[string](func(x int) string {
return F.Pipe1(x, func(n int) string {
if n >= 10 {
return "large"
}
return "small"
})
})
result := F.Pipe1(fa, applyV)(fab)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string]("large"), result)
}
// TestApV_WithStructSemigroup tests ApV with a custom struct semigroup
func TestApV_WithStructSemigroup(t *testing.T) {
type ValidationErrors struct {
Errors []string
}
// Create a semigroup that combines validation errors
sg := SG.MakeSemigroup(func(a, b ValidationErrors) ValidationErrors {
return ValidationErrors{
Errors: append(append([]string{}, a.Errors...), b.Errors...),
}
})
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Left with validation errors
fa := Left[int](ValidationErrors{Errors: []string{"field2: invalid"}})
fab := Left[func(int) int](ValidationErrors{Errors: []string{"field1: required"}})
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: fa errors + fab errors
expected := Left[int](ValidationErrors{
Errors: []string{"field1: required", "field2: invalid"},
})
assert.Equal(t, expected, result)
}
// TestApV_MultipleValidations tests ApV with multiple validation steps
func TestApV_MultipleValidations(t *testing.T) {
// Create a semigroup for string concatenation
sg := SG.MakeSemigroup(func(a, b string) string {
return a + ", " + b
})
// Create the validation applicative
applyV := ApV[int, int](sg)
// Simulate multiple validation failures
validation1 := Left[int]("age must be positive")
validation2 := Left[func(int) int]("name is required")
result := applyV(validation1)(validation2)
assert.True(t, IsLeft(result))
// When both are Left, errors are combined as: validation1 error + validation2 error
assert.Equal(t, Left[int]("name is required, age must be positive"), result)
}
// TestMonadApV_DifferentTypes tests MonadApV with different input and output types
func TestMonadApV_DifferentTypes(t *testing.T) {
// Create a semigroup for string concatenation
sg := S.IntersperseSemigroup(" + ")
// Create the validation applicative
applyV := MonadApV[string, int](sg)
// Function converts int to string
fab := Right[string](func(x int) string {
return F.Pipe1(x, func(n int) string {
if n == 0 {
return "zero"
} else if n > 0 {
return "positive"
}
return "negative"
})
})
fa := Right[string](-5)
result := applyV(fab, fa)
assert.True(t, IsRight(result))
assert.Equal(t, Right[string]("negative"), result)
}
// TestApV_FirstSemigroup tests ApV with First semigroup (always returns first error)
func TestApV_FirstSemigroup(t *testing.T) {
// Use First semigroup which always returns the first value
sg := SG.First[string]()
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Left - should return first error
fa := Left[int]("error2")
fab := Left[func(int) int]("error1")
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
// First semigroup returns the first value, which is fab's error
assert.Equal(t, Left[int]("error1"), result)
}
// TestApV_LastSemigroup tests ApV with Last semigroup (always returns last error)
func TestApV_LastSemigroup(t *testing.T) {
// Use Last semigroup which always returns the last value
sg := SG.Last[string]()
// Create the validation applicative
applyV := ApV[int, int](sg)
// Both are Left - should return last error
fa := Left[int]("error2")
fab := Left[func(int) int]("error1")
result := applyV(fa)(fab)
assert.True(t, IsLeft(result))
// Last semigroup returns the last value, which is fa's error
assert.Equal(t, Left[int]("error2"), result)
}

406
v2/endomorphism/builder.go Normal file
View File

@@ -0,0 +1,406 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package endomorphism
import (
"github.com/IBM/fp-go/v2/function"
A "github.com/IBM/fp-go/v2/internal/array"
)
// Build applies an endomorphism to the zero value of type A, effectively using
// the endomorphism as a builder pattern.
//
// # Endomorphism as Builder Pattern
//
// An endomorphism (a function from type A to type A) can be viewed as a builder pattern
// because it transforms a value of a type into another value of the same type. When you
// compose multiple endomorphisms together, you create a pipeline of transformations that
// build up a final value step by step.
//
// The Build function starts with the zero value of type A and applies the endomorphism
// to it, making it particularly useful for building complex values from scratch using
// a functional composition of transformations.
//
// # Builder Pattern Characteristics
//
// Traditional builder patterns have these characteristics:
// 1. Start with an initial (often empty) state
// 2. Apply a series of transformations/configurations
// 3. Return the final built object
//
// Endomorphisms provide the same pattern functionally:
// 1. Start with zero value: var a A
// 2. Apply composed endomorphisms: e(a)
// 3. Return the transformed value
//
// # Type Parameters
//
// - A: The type being built/transformed
//
// # Parameters
//
// - e: An endomorphism (or composition of endomorphisms) that transforms type A
//
// # Returns
//
// The result of applying the endomorphism to the zero value of type A
//
// # Example - Building a Configuration Object
//
// type Config struct {
// Host string
// Port int
// Timeout time.Duration
// Debug bool
// }
//
// // Define builder functions as endomorphisms
// withHost := func(host string) Endomorphism[Config] {
// return func(c Config) Config {
// c.Host = host
// return c
// }
// }
//
// withPort := func(port int) Endomorphism[Config] {
// return func(c Config) Config {
// c.Port = port
// return c
// }
// }
//
// withTimeout := func(d time.Duration) Endomorphism[Config] {
// return func(c Config) Config {
// c.Timeout = d
// return c
// }
// }
//
// withDebug := func(debug bool) Endomorphism[Config] {
// return func(c Config) Config {
// c.Debug = debug
// return c
// }
// }
//
// // Compose builders using monoid operations
// import M "github.com/IBM/fp-go/v2/monoid"
//
// configBuilder := M.ConcatAll(Monoid[Config]())(
// withHost("localhost"),
// withPort(8080),
// withTimeout(30 * time.Second),
// withDebug(true),
// )
//
// // Build the final configuration
// config := Build(configBuilder)
// // Result: Config{Host: "localhost", Port: 8080, Timeout: 30s, Debug: true}
//
// # Example - Building a String with Transformations
//
// import (
// "strings"
// M "github.com/IBM/fp-go/v2/monoid"
// )
//
// // Define string transformation endomorphisms
// appendHello := func(s string) string { return s + "Hello" }
// appendSpace := func(s string) string { return s + " " }
// appendWorld := func(s string) string { return s + "World" }
// toUpper := strings.ToUpper
//
// // Compose transformations
// stringBuilder := M.ConcatAll(Monoid[string]())(
// appendHello,
// appendSpace,
// appendWorld,
// toUpper,
// )
//
// // Build the final string from empty string
// result := Build(stringBuilder)
// // Result: "HELLO WORLD"
//
// # Example - Building a Slice with Operations
//
// type IntSlice []int
//
// appendValue := func(v int) Endomorphism[IntSlice] {
// return func(s IntSlice) IntSlice {
// return append(s, v)
// }
// }
//
// sortSlice := func(s IntSlice) IntSlice {
// sorted := make(IntSlice, len(s))
// copy(sorted, s)
// sort.Ints(sorted)
// return sorted
// }
//
// // Build a sorted slice
// sliceBuilder := M.ConcatAll(Monoid[IntSlice]())(
// appendValue(5),
// appendValue(2),
// appendValue(8),
// appendValue(1),
// sortSlice,
// )
//
// result := Build(sliceBuilder)
// // Result: IntSlice{1, 2, 5, 8}
//
// # Advantages of Endomorphism Builder Pattern
//
// 1. **Composability**: Builders can be composed using monoid operations
// 2. **Immutability**: Each transformation returns a new value (if implemented immutably)
// 3. **Type Safety**: The type system ensures all transformations work on the same type
// 4. **Reusability**: Individual builder functions can be reused and combined differently
// 5. **Testability**: Each transformation can be tested independently
// 6. **Declarative**: The composition clearly expresses the building process
//
// # Comparison with Traditional Builder Pattern
//
// Traditional OOP Builder:
//
// config := NewConfigBuilder().
// WithHost("localhost").
// WithPort(8080).
// WithTimeout(30 * time.Second).
// Build()
//
// Endomorphism Builder:
//
// config := Build(M.ConcatAll(Monoid[Config]())(
// withHost("localhost"),
// withPort(8080),
// withTimeout(30 * time.Second),
// ))
//
// Both achieve the same goal, but the endomorphism approach:
// - Uses pure functions instead of methods
// - Leverages algebraic properties (monoid) for composition
// - Allows for more flexible composition patterns
// - Integrates naturally with other functional programming constructs
func Build[A any](e Endomorphism[A]) A {
var a A
return e(a)
}
// ConcatAll combines multiple endomorphisms into a single endomorphism using composition.
//
// This function takes a slice of endomorphisms and combines them using the monoid's
// concat operation (which is composition). The resulting endomorphism, when applied,
// will execute all the input endomorphisms in RIGHT-TO-LEFT order (mathematical composition order).
//
// IMPORTANT: Execution order is RIGHT-TO-LEFT:
// - ConcatAll([]Endomorphism{f, g, h}) creates an endomorphism that applies h, then g, then f
// - This is equivalent to f ∘ g ∘ h in mathematical notation
// - The last endomorphism in the slice is applied first
//
// If the slice is empty, returns the identity endomorphism.
//
// # Type Parameters
//
// - T: The type that the endomorphisms operate on
//
// # Parameters
//
// - es: A slice of endomorphisms to combine
//
// # Returns
//
// A single endomorphism that represents the composition of all input endomorphisms
//
// # Example - Basic Composition
//
// double := N.Mul(2)
// increment := N.Add(1)
// square := func(x int) int { return x * x }
//
// // Combine endomorphisms (RIGHT-TO-LEFT execution)
// combined := ConcatAll([]Endomorphism[int]{double, increment, square})
// result := combined(5)
// // Execution: square(5) = 25, increment(25) = 26, double(26) = 52
// // Result: 52
//
// # Example - Building with ConcatAll
//
// type Config struct {
// Host string
// Port int
// }
//
// withHost := func(host string) Endomorphism[Config] {
// return func(c Config) Config {
// c.Host = host
// return c
// }
// }
//
// withPort := func(port int) Endomorphism[Config] {
// return func(c Config) Config {
// c.Port = port
// return c
// }
// }
//
// // Combine configuration builders
// configBuilder := ConcatAll([]Endomorphism[Config]{
// withHost("localhost"),
// withPort(8080),
// })
//
// // Apply to zero value
// config := Build(configBuilder)
// // Result: Config{Host: "localhost", Port: 8080}
//
// # Example - Empty Slice
//
// // Empty slice returns identity
// identity := ConcatAll([]Endomorphism[int]{})
// result := identity(42) // Returns: 42
//
// # Relationship to Monoid
//
// ConcatAll is equivalent to using M.ConcatAll with the endomorphism Monoid:
//
// import M "github.com/IBM/fp-go/v2/monoid"
//
// // These are equivalent:
// result1 := ConcatAll(endomorphisms)
// result2 := M.ConcatAll(Monoid[T]())(endomorphisms)
//
// # Use Cases
//
// 1. **Pipeline Construction**: Build transformation pipelines from individual steps
// 2. **Configuration Building**: Combine multiple configuration setters
// 3. **Data Transformation**: Chain multiple data transformations
// 4. **Middleware Composition**: Combine middleware functions
// 5. **Validation Chains**: Compose multiple validation functions
func ConcatAll[T any](es []Endomorphism[T]) Endomorphism[T] {
return A.Reduce(es, MonadCompose[T], function.Identity[T])
}
// Reduce applies a slice of endomorphisms to the zero value of type T in LEFT-TO-RIGHT order.
//
// This function is a convenience wrapper that:
// 1. Starts with the zero value of type T
// 2. Applies each endomorphism in the slice from left to right
// 3. Returns the final transformed value
//
// IMPORTANT: Execution order is LEFT-TO-RIGHT:
// - Reduce([]Endomorphism{f, g, h}) applies f first, then g, then h
// - This is the opposite of ConcatAll's RIGHT-TO-LEFT order
// - Each endomorphism receives the result of the previous one
//
// This is equivalent to: Build(ConcatAll(reverse(es))) but more efficient and clearer
// for left-to-right sequential application.
//
// # Type Parameters
//
// - T: The type being transformed
//
// # Parameters
//
// - es: A slice of endomorphisms to apply sequentially
//
// # Returns
//
// The final value after applying all endomorphisms to the zero value
//
// # Example - Sequential Transformations
//
// double := N.Mul(2)
// increment := N.Add(1)
// square := func(x int) int { return x * x }
//
// // Apply transformations LEFT-TO-RIGHT
// result := Reduce([]Endomorphism[int]{double, increment, square})
// // Execution: 0 -> double(0) = 0 -> increment(0) = 1 -> square(1) = 1
// // Result: 1
//
// // With a non-zero starting point, use a custom initial value:
// addTen := N.Add(10)
// result2 := Reduce([]Endomorphism[int]{addTen, double, increment})
// // Execution: 0 -> addTen(0) = 10 -> double(10) = 20 -> increment(20) = 21
// // Result: 21
//
// # Example - Building a String
//
// appendHello := func(s string) string { return s + "Hello" }
// appendSpace := func(s string) string { return s + " " }
// appendWorld := func(s string) string { return s + "World" }
//
// // Build string LEFT-TO-RIGHT
// result := Reduce([]Endomorphism[string]{
// appendHello,
// appendSpace,
// appendWorld,
// })
// // Execution: "" -> "Hello" -> "Hello " -> "Hello World"
// // Result: "Hello World"
//
// # Example - Configuration Building
//
// type Settings struct {
// Theme string
// FontSize int
// }
//
// withTheme := func(theme string) Endomorphism[Settings] {
// return func(s Settings) Settings {
// s.Theme = theme
// return s
// }
// }
//
// withFontSize := func(size int) Endomorphism[Settings] {
// return func(s Settings) Settings {
// s.FontSize = size
// return s
// }
// }
//
// // Build settings LEFT-TO-RIGHT
// settings := Reduce([]Endomorphism[Settings]{
// withTheme("dark"),
// withFontSize(14),
// })
// // Result: Settings{Theme: "dark", FontSize: 14}
//
// # Comparison with ConcatAll
//
// // ConcatAll: RIGHT-TO-LEFT composition, returns endomorphism
// endo := ConcatAll([]Endomorphism[int]{f, g, h})
// result1 := endo(value) // Applies h, then g, then f
//
// // Reduce: LEFT-TO-RIGHT application, returns final value
// result2 := Reduce([]Endomorphism[int]{f, g, h})
// // Applies f to zero, then g, then h
//
// # Use Cases
//
// 1. **Sequential Processing**: Apply transformations in order
// 2. **Pipeline Execution**: Execute a pipeline from start to finish
// 3. **Builder Pattern**: Build objects step by step
// 4. **State Machines**: Apply state transitions in sequence
// 5. **Data Flow**: Transform data through multiple stages
func Reduce[T any](es []Endomorphism[T]) T {
var t T
return A.Reduce(es, func(t T, e Endomorphism[T]) T { return e(t) }, t)
}

View File

@@ -0,0 +1,254 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package endomorphism_test
import (
"fmt"
"time"
A "github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/endomorphism"
M "github.com/IBM/fp-go/v2/monoid"
N "github.com/IBM/fp-go/v2/number"
)
// Example_build_basicUsage demonstrates basic usage of the Build function
// to construct a value from the zero value using endomorphisms.
func Example_build_basicUsage() {
// Define simple endomorphisms
addTen := N.Add(10)
double := N.Mul(2)
// Compose them using monoid (RIGHT-TO-LEFT execution)
// double is applied first, then addTen
builder := M.ConcatAll(endomorphism.Monoid[int]())(A.From(
addTen,
double,
))
// Build from zero value: 0 * 2 = 0, 0 + 10 = 10
result := endomorphism.Build(builder)
fmt.Println(result)
// Output: 10
}
// Example_build_configBuilder demonstrates using Build as a configuration builder pattern.
func Example_build_configBuilder() {
type Config struct {
Host string
Port int
Timeout time.Duration
Debug bool
}
// Define builder functions as endomorphisms
withHost := func(host string) endomorphism.Endomorphism[Config] {
return func(c Config) Config {
c.Host = host
return c
}
}
withPort := func(port int) endomorphism.Endomorphism[Config] {
return func(c Config) Config {
c.Port = port
return c
}
}
withTimeout := func(d time.Duration) endomorphism.Endomorphism[Config] {
return func(c Config) Config {
c.Timeout = d
return c
}
}
withDebug := func(debug bool) endomorphism.Endomorphism[Config] {
return func(c Config) Config {
c.Debug = debug
return c
}
}
// Compose builders using monoid
configBuilder := M.ConcatAll(endomorphism.Monoid[Config]())([]endomorphism.Endomorphism[Config]{
withHost("localhost"),
withPort(8080),
withTimeout(30 * time.Second),
withDebug(true),
})
// Build the configuration from zero value
config := endomorphism.Build(configBuilder)
fmt.Printf("Host: %s\n", config.Host)
fmt.Printf("Port: %d\n", config.Port)
fmt.Printf("Timeout: %v\n", config.Timeout)
fmt.Printf("Debug: %v\n", config.Debug)
// Output:
// Host: localhost
// Port: 8080
// Timeout: 30s
// Debug: true
}
// Example_build_stringBuilder demonstrates building a string using endomorphisms.
func Example_build_stringBuilder() {
// Define string transformation endomorphisms
appendHello := func(s string) string { return s + "Hello" }
appendSpace := func(s string) string { return s + " " }
appendWorld := func(s string) string { return s + "World" }
appendExclamation := func(s string) string { return s + "!" }
// Compose transformations (RIGHT-TO-LEFT execution)
stringBuilder := M.ConcatAll(endomorphism.Monoid[string]())([]endomorphism.Endomorphism[string]{
appendHello,
appendSpace,
appendWorld,
appendExclamation,
})
// Build the string from empty string
result := endomorphism.Build(stringBuilder)
fmt.Println(result)
// Output: !World Hello
}
// Example_build_personBuilder demonstrates building a complex struct using the builder pattern.
func Example_build_personBuilder() {
type Person struct {
FirstName string
LastName string
Age int
Email string
}
// Define builder functions
withFirstName := func(name string) endomorphism.Endomorphism[Person] {
return func(p Person) Person {
p.FirstName = name
return p
}
}
withLastName := func(name string) endomorphism.Endomorphism[Person] {
return func(p Person) Person {
p.LastName = name
return p
}
}
withAge := func(age int) endomorphism.Endomorphism[Person] {
return func(p Person) Person {
p.Age = age
return p
}
}
withEmail := func(email string) endomorphism.Endomorphism[Person] {
return func(p Person) Person {
p.Email = email
return p
}
}
// Build a person
personBuilder := M.ConcatAll(endomorphism.Monoid[Person]())([]endomorphism.Endomorphism[Person]{
withFirstName("Alice"),
withLastName("Smith"),
withAge(30),
withEmail("alice.smith@example.com"),
})
person := endomorphism.Build(personBuilder)
fmt.Printf("%s %s, Age: %d, Email: %s\n",
person.FirstName, person.LastName, person.Age, person.Email)
// Output: Alice Smith, Age: 30, Email: alice.smith@example.com
}
// Example_build_conditionalBuilder demonstrates conditional building using endomorphisms.
func Example_build_conditionalBuilder() {
type Settings struct {
Theme string
FontSize int
AutoSave bool
Animations bool
}
withTheme := func(theme string) endomorphism.Endomorphism[Settings] {
return func(s Settings) Settings {
s.Theme = theme
return s
}
}
withFontSize := func(size int) endomorphism.Endomorphism[Settings] {
return func(s Settings) Settings {
s.FontSize = size
return s
}
}
withAutoSave := func(enabled bool) endomorphism.Endomorphism[Settings] {
return func(s Settings) Settings {
s.AutoSave = enabled
return s
}
}
withAnimations := func(enabled bool) endomorphism.Endomorphism[Settings] {
return func(s Settings) Settings {
s.Animations = enabled
return s
}
}
// Build settings conditionally
isDarkMode := true
isAccessibilityMode := true
// Note: Monoid executes RIGHT-TO-LEFT, so later items in the slice are applied first
// We need to add items in reverse order for the desired effect
builders := []endomorphism.Endomorphism[Settings]{}
if isAccessibilityMode {
builders = append(builders, withFontSize(18)) // Will be applied last (overrides)
builders = append(builders, withAnimations(false))
}
if isDarkMode {
builders = append(builders, withTheme("dark"))
} else {
builders = append(builders, withTheme("light"))
}
builders = append(builders, withAutoSave(true))
builders = append(builders, withFontSize(14)) // Will be applied first
settingsBuilder := M.ConcatAll(endomorphism.Monoid[Settings]())(builders)
settings := endomorphism.Build(settingsBuilder)
fmt.Printf("Theme: %s\n", settings.Theme)
fmt.Printf("FontSize: %d\n", settings.FontSize)
fmt.Printf("AutoSave: %v\n", settings.AutoSave)
fmt.Printf("Animations: %v\n", settings.Animations)
// Output:
// Theme: dark
// FontSize: 18
// AutoSave: true
// Animations: false
}

View File

@@ -36,8 +36,8 @@
// )
//
// // Define some endomorphisms
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
//
// // Compose them (RIGHT-TO-LEFT execution)
// composed := endomorphism.Compose(double, increment)
@@ -62,9 +62,9 @@
//
// // Combine multiple endomorphisms (RIGHT-TO-LEFT execution)
// combined := M.ConcatAll(monoid)(
// func(x int) int { return x * 2 }, // applied third
// func(x int) int { return x + 1 }, // applied second
// func(x int) int { return x * 3 }, // applied first
// N.Mul(2), // applied third
// N.Add(1), // applied second
// N.Mul(3), // applied first
// )
// result := combined(5) // (5 * 3) = 15, (15 + 1) = 16, (16 * 2) = 32
//
@@ -74,8 +74,8 @@
// MonadChain executes LEFT-TO-RIGHT, unlike Compose:
//
// // Chain allows sequencing of endomorphisms (LEFT-TO-RIGHT)
// f := func(x int) int { return x * 2 }
// g := func(x int) int { return x + 1 }
// f := N.Mul(2)
// g := N.Add(1)
// chained := endomorphism.MonadChain(f, g) // f first, then g
// result := chained(5) // (5 * 2) + 1 = 11
//
@@ -83,8 +83,8 @@
//
// The key difference between Compose and Chain/MonadChain is execution order:
//
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
//
// // Compose: RIGHT-TO-LEFT (mathematical composition)
// composed := endomorphism.Compose(double, increment)

View File

@@ -37,8 +37,8 @@ import (
//
// Example:
//
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
// result := endomorphism.MonadAp(double, increment) // Composes: double ∘ increment
// // result(5) = double(increment(5)) = double(6) = 12
func MonadAp[A any](fab Endomorphism[A], fa Endomorphism[A]) Endomorphism[A] {
@@ -62,9 +62,9 @@ func MonadAp[A any](fab Endomorphism[A], fa Endomorphism[A]) Endomorphism[A] {
//
// Example:
//
// increment := func(x int) int { return x + 1 }
// increment := N.Add(1)
// applyIncrement := endomorphism.Ap(increment)
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// composed := applyIncrement(double) // double ∘ increment
// // composed(5) = double(increment(5)) = double(6) = 12
func Ap[A any](fa Endomorphism[A]) Operator[A] {
@@ -91,8 +91,8 @@ func Ap[A any](fa Endomorphism[A]) Operator[A] {
//
// Example:
//
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
//
// // MonadCompose executes RIGHT-TO-LEFT: increment first, then double
// composed := endomorphism.MonadCompose(double, increment)
@@ -123,8 +123,8 @@ func MonadCompose[A any](f, g Endomorphism[A]) Endomorphism[A] {
//
// Example:
//
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
// mapped := endomorphism.MonadMap(double, increment)
// // mapped(5) = double(increment(5)) = double(6) = 12
func MonadMap[A any](f, g Endomorphism[A]) Endomorphism[A] {
@@ -151,9 +151,9 @@ func MonadMap[A any](f, g Endomorphism[A]) Endomorphism[A] {
//
// Example:
//
// increment := func(x int) int { return x + 1 }
// increment := N.Add(1)
// composeWithIncrement := endomorphism.Compose(increment)
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
//
// // Composes double with increment (RIGHT-TO-LEFT: increment first, then double)
// composed := composeWithIncrement(double)
@@ -186,9 +186,9 @@ func Compose[A any](g Endomorphism[A]) Operator[A] {
//
// Example:
//
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// mapDouble := endomorphism.Map(double)
// increment := func(x int) int { return x + 1 }
// increment := N.Add(1)
// mapped := mapDouble(increment)
// // mapped(5) = double(increment(5)) = double(6) = 12
func Map[A any](f Endomorphism[A]) Operator[A] {
@@ -215,8 +215,8 @@ func Map[A any](f Endomorphism[A]) Operator[A] {
//
// Example:
//
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
//
// // MonadChain executes LEFT-TO-RIGHT: double first, then increment
// chained := endomorphism.MonadChain(double, increment)
@@ -243,7 +243,7 @@ func MonadChain[A any](ma Endomorphism[A], f Endomorphism[A]) Endomorphism[A] {
//
// Example:
//
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// log := func(x int) int { fmt.Println(x); return x }
// chained := endomorphism.MonadChainFirst(double, log)
// result := chained(5) // Prints 10, returns 10
@@ -269,7 +269,7 @@ func MonadChainFirst[A any](ma Endomorphism[A], f Endomorphism[A]) Endomorphism[
//
// log := func(x int) int { fmt.Println(x); return x }
// chainLog := endomorphism.ChainFirst(log)
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// chained := chainLog(double)
// result := chained(5) // Prints 10, returns 10
func ChainFirst[A any](f Endomorphism[A]) Operator[A] {
@@ -294,9 +294,9 @@ func ChainFirst[A any](f Endomorphism[A]) Operator[A] {
//
// Example:
//
// increment := func(x int) int { return x + 1 }
// increment := N.Add(1)
// chainWithIncrement := endomorphism.Chain(increment)
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
//
// // Chains double (first) with increment (second)
// chained := chainWithIncrement(double)
@@ -304,3 +304,85 @@ func ChainFirst[A any](f Endomorphism[A]) Operator[A] {
func Chain[A any](f Endomorphism[A]) Operator[A] {
return function.Bind2nd(MonadChain, f)
}
// Flatten collapses a nested endomorphism into a single endomorphism.
//
// Given an endomorphism that transforms endomorphisms (Endomorphism[Endomorphism[A]]),
// Flatten produces a simple endomorphism by applying the outer transformation to the
// identity function. This is the monadic join operation for the Endomorphism monad.
//
// The function applies the nested endomorphism to Identity[A] to extract the inner
// endomorphism, effectively "flattening" the two layers into one.
//
// Type Parameters:
// - A: The type being transformed by the endomorphisms
//
// Parameters:
// - mma: A nested endomorphism that transforms endomorphisms
//
// Returns:
// - An endomorphism that applies the transformation directly to values of type A
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// // An endomorphism that wraps another endomorphism
// addThenDouble := func(endo Endomorphism[Counter]) Endomorphism[Counter] {
// return func(c Counter) Counter {
// c = endo(c) // Apply the input endomorphism
// c.Value = c.Value * 2 // Then double
// return c
// }
// }
//
// flattened := Flatten(addThenDouble)
// result := flattened(Counter{Value: 5}) // Counter{Value: 10}
func Flatten[A any](mma Endomorphism[Endomorphism[A]]) Endomorphism[A] {
return mma(function.Identity[A])
}
// Join performs self-application of a function that produces endomorphisms.
//
// Given a function that takes a value and returns an endomorphism of that same type,
// Join creates an endomorphism that applies the value to itself through the function.
// This operation is also known as the W combinator (warbler) in combinatory logic,
// or diagonal application.
//
// The resulting endomorphism evaluates f(a)(a), applying the same value a to both
// the function f and the resulting endomorphism.
//
// Type Parameters:
// - A: The type being transformed
//
// Parameters:
// - f: A function that takes a value and returns an endomorphism of that type
//
// Returns:
// - An endomorphism that performs self-application: f(a)(a)
//
// Example:
//
// type Point struct {
// X, Y int
// }
//
// // Create an endomorphism based on the input point
// scaleBy := func(p Point) Endomorphism[Point] {
// return func(p2 Point) Point {
// return Point{
// X: p2.X * p.X,
// Y: p2.Y * p.Y,
// }
// }
// }
//
// selfScale := Join(scaleBy)
// result := selfScale(Point{X: 3, Y: 4}) // Point{X: 9, Y: 16}
func Join[A any](f Kleisli[A]) Endomorphism[A] {
return func(a A) A {
return f(a)(a)
}
}

View File

@@ -19,6 +19,7 @@ import (
"testing"
M "github.com/IBM/fp-go/v2/monoid"
N "github.com/IBM/fp-go/v2/number"
S "github.com/IBM/fp-go/v2/semigroup"
"github.com/stretchr/testify/assert"
)
@@ -204,8 +205,8 @@ func TestCompose(t *testing.T) {
// TestMonadComposeVsCompose demonstrates the relationship between MonadCompose and Compose
func TestMonadComposeVsCompose(t *testing.T) {
double := func(x int) int { return x * 2 }
increment := func(x int) int { return x + 1 }
double := N.Mul(2)
increment := N.Add(1)
// MonadCompose takes both functions at once
monadComposed := MonadCompose(double, increment)
@@ -448,7 +449,7 @@ func TestOperatorType(t *testing.T) {
func BenchmarkCompose(b *testing.B) {
composed := MonadCompose(double, increment)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = composed(5)
}
}
@@ -456,8 +457,8 @@ func BenchmarkCompose(b *testing.B) {
// BenchmarkMonoidConcatAll benchmarks ConcatAll with monoid
// TestComposeVsChain demonstrates the key difference between Compose and Chain
func TestComposeVsChain(t *testing.T) {
double := func(x int) int { return x * 2 }
increment := func(x int) int { return x + 1 }
double := N.Mul(2)
increment := N.Add(1)
// Compose executes RIGHT-TO-LEFT
// Compose(double, increment) means: increment first, then double
@@ -499,7 +500,7 @@ func BenchmarkMonoidConcatAll(b *testing.B) {
monoid := Monoid[int]()
combined := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square})
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = combined(5)
}
}
@@ -509,7 +510,7 @@ func BenchmarkChain(b *testing.B) {
chainWithIncrement := Chain(increment)
chained := chainWithIncrement(double)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for b.Loop() {
_ = chained(5)
}
}
@@ -704,7 +705,7 @@ func TestApEqualsCompose(t *testing.T) {
// TestChainFirst tests the ChainFirst operation
func TestChainFirst(t *testing.T) {
double := func(x int) int { return x * 2 }
double := N.Mul(2)
// Track side effect
var sideEffect int
@@ -721,3 +722,352 @@ func TestChainFirst(t *testing.T) {
// But side effect should have been executed with double's result
assert.Equal(t, 10, sideEffect, "ChainFirst should execute second function for effect")
}
// TestBuild tests the Build function
func TestBuild(t *testing.T) {
t.Run("build with single transformation", func(t *testing.T) {
// Build applies endomorphism to zero value
result := Build(double)
assert.Equal(t, 0, result, "Build(double) on zero value should be 0")
})
t.Run("build with composed transformations", func(t *testing.T) {
// Create a builder that starts from zero and applies transformations
builder := M.ConcatAll(Monoid[int]())([]Endomorphism[int]{
N.Add(10),
N.Mul(2),
N.Add(5),
})
result := Build(builder)
// RIGHT-TO-LEFT: 0 + 5 = 5, 5 * 2 = 10, 10 + 10 = 20
assert.Equal(t, 20, result, "Build should apply composed transformations to zero value")
})
t.Run("build with identity", func(t *testing.T) {
result := Build(Identity[int]())
assert.Equal(t, 0, result, "Build(identity) should return zero value")
})
t.Run("build string from empty", func(t *testing.T) {
builder := M.ConcatAll(Monoid[string]())([]Endomorphism[string]{
func(s string) string { return s + "Hello" },
func(s string) string { return s + " " },
func(s string) string { return s + "World" },
})
result := Build(builder)
// RIGHT-TO-LEFT: "" + "World" = "World", "World" + " " = "World ", "World " + "Hello" = "World Hello"
assert.Equal(t, "World Hello", result, "Build should work with strings")
})
t.Run("build struct with builder pattern", func(t *testing.T) {
type Config struct {
Host string
Port int
}
withHost := func(host string) Endomorphism[Config] {
return func(c Config) Config {
c.Host = host
return c
}
}
withPort := func(port int) Endomorphism[Config] {
return func(c Config) Config {
c.Port = port
return c
}
}
builder := M.ConcatAll(Monoid[Config]())([]Endomorphism[Config]{
withHost("localhost"),
withPort(8080),
})
result := Build(builder)
assert.Equal(t, "localhost", result.Host, "Build should set Host")
assert.Equal(t, 8080, result.Port, "Build should set Port")
})
t.Run("build slice with operations", func(t *testing.T) {
type IntSlice []int
appendValue := func(v int) Endomorphism[IntSlice] {
return func(s IntSlice) IntSlice {
return append(s, v)
}
}
builder := M.ConcatAll(Monoid[IntSlice]())([]Endomorphism[IntSlice]{
appendValue(1),
appendValue(2),
appendValue(3),
})
result := Build(builder)
// RIGHT-TO-LEFT: append 3, append 2, append 1
assert.Equal(t, IntSlice{3, 2, 1}, result, "Build should construct slice")
})
}
// TestBuildAsBuilderPattern demonstrates using Build as a builder pattern
func TestBuildAsBuilderPattern(t *testing.T) {
type Person struct {
Name string
Age int
Email string
Active bool
}
// Define builder functions
withName := func(name string) Endomorphism[Person] {
return func(p Person) Person {
p.Name = name
return p
}
}
withAge := func(age int) Endomorphism[Person] {
return func(p Person) Person {
p.Age = age
return p
}
}
withEmail := func(email string) Endomorphism[Person] {
return func(p Person) Person {
p.Email = email
return p
}
}
withActive := func(active bool) Endomorphism[Person] {
return func(p Person) Person {
p.Active = active
return p
}
}
// Build a person using the builder pattern
personBuilder := M.ConcatAll(Monoid[Person]())([]Endomorphism[Person]{
withName("Alice"),
withAge(30),
withEmail("alice@example.com"),
withActive(true),
})
person := Build(personBuilder)
assert.Equal(t, "Alice", person.Name)
assert.Equal(t, 30, person.Age)
assert.Equal(t, "alice@example.com", person.Email)
assert.True(t, person.Active)
}
// TestConcatAll tests the ConcatAll function
func TestConcatAll(t *testing.T) {
t.Run("concat all with multiple endomorphisms", func(t *testing.T) {
// ConcatAll executes RIGHT-TO-LEFT
combined := ConcatAll([]Endomorphism[int]{double, increment, square})
result := combined(5)
// RIGHT-TO-LEFT: square(5) = 25, increment(25) = 26, double(26) = 52
assert.Equal(t, 52, result, "ConcatAll should execute right-to-left")
})
t.Run("concat all with empty slice", func(t *testing.T) {
// Empty slice should return identity
identity := ConcatAll([]Endomorphism[int]{})
result := identity(42)
assert.Equal(t, 42, result, "ConcatAll with empty slice should return identity")
})
t.Run("concat all with single endomorphism", func(t *testing.T) {
combined := ConcatAll([]Endomorphism[int]{double})
result := combined(5)
assert.Equal(t, 10, result, "ConcatAll with single endomorphism should apply it")
})
t.Run("concat all with two endomorphisms", func(t *testing.T) {
// RIGHT-TO-LEFT: increment first, then double
combined := ConcatAll([]Endomorphism[int]{double, increment})
result := combined(5)
assert.Equal(t, 12, result, "ConcatAll should execute right-to-left: (5 + 1) * 2 = 12")
})
t.Run("concat all with strings", func(t *testing.T) {
appendHello := func(s string) string { return s + "Hello" }
appendSpace := func(s string) string { return s + " " }
appendWorld := func(s string) string { return s + "World" }
// RIGHT-TO-LEFT execution
combined := ConcatAll([]Endomorphism[string]{appendHello, appendSpace, appendWorld})
result := combined("")
// RIGHT-TO-LEFT: "" + "World" = "World", "World" + " " = "World ", "World " + "Hello" = "World Hello"
assert.Equal(t, "World Hello", result, "ConcatAll should work with strings")
})
t.Run("concat all for building structs", func(t *testing.T) {
type Config struct {
Host string
Port int
}
withHost := func(host string) Endomorphism[Config] {
return func(c Config) Config {
c.Host = host
return c
}
}
withPort := func(port int) Endomorphism[Config] {
return func(c Config) Config {
c.Port = port
return c
}
}
combined := ConcatAll([]Endomorphism[Config]{
withHost("localhost"),
withPort(8080),
})
result := combined(Config{})
assert.Equal(t, "localhost", result.Host)
assert.Equal(t, 8080, result.Port)
})
t.Run("concat all is equivalent to monoid ConcatAll", func(t *testing.T) {
endos := []Endomorphism[int]{double, increment, square}
result1 := ConcatAll(endos)(5)
result2 := M.ConcatAll(Monoid[int]())(endos)(5)
assert.Equal(t, result1, result2, "ConcatAll should be equivalent to M.ConcatAll(Monoid())")
})
}
// TestReduce tests the Reduce function
func TestReduce(t *testing.T) {
t.Run("reduce with multiple endomorphisms", func(t *testing.T) {
// Reduce executes LEFT-TO-RIGHT starting from zero value
result := Reduce([]Endomorphism[int]{double, increment, square})
// LEFT-TO-RIGHT: 0 -> double(0) = 0 -> increment(0) = 1 -> square(1) = 1
assert.Equal(t, 1, result, "Reduce should execute left-to-right from zero value")
})
t.Run("reduce with empty slice", func(t *testing.T) {
// Empty slice should return zero value
result := Reduce([]Endomorphism[int]{})
assert.Equal(t, 0, result, "Reduce with empty slice should return zero value")
})
t.Run("reduce with single endomorphism", func(t *testing.T) {
addTen := N.Add(10)
result := Reduce([]Endomorphism[int]{addTen})
// 0 + 10 = 10
assert.Equal(t, 10, result, "Reduce with single endomorphism should apply it to zero")
})
t.Run("reduce with sequential transformations", func(t *testing.T) {
addTen := N.Add(10)
// LEFT-TO-RIGHT: 0 -> addTen(0) = 10 -> double(10) = 20 -> increment(20) = 21
result := Reduce([]Endomorphism[int]{addTen, double, increment})
assert.Equal(t, 21, result, "Reduce should apply transformations left-to-right")
})
t.Run("reduce with strings", func(t *testing.T) {
appendHello := func(s string) string { return s + "Hello" }
appendSpace := func(s string) string { return s + " " }
appendWorld := func(s string) string { return s + "World" }
// LEFT-TO-RIGHT execution
result := Reduce([]Endomorphism[string]{appendHello, appendSpace, appendWorld})
// "" -> "Hello" -> "Hello " -> "Hello World"
assert.Equal(t, "Hello World", result, "Reduce should work with strings left-to-right")
})
t.Run("reduce for building structs", func(t *testing.T) {
type Settings struct {
Theme string
FontSize int
}
withTheme := func(theme string) Endomorphism[Settings] {
return func(s Settings) Settings {
s.Theme = theme
return s
}
}
withFontSize := func(size int) Endomorphism[Settings] {
return func(s Settings) Settings {
s.FontSize = size
return s
}
}
// LEFT-TO-RIGHT application
result := Reduce([]Endomorphism[Settings]{
withTheme("dark"),
withFontSize(14),
})
assert.Equal(t, "dark", result.Theme)
assert.Equal(t, 14, result.FontSize)
})
t.Run("reduce is equivalent to Build(ConcatAll(reverse))", func(t *testing.T) {
addTen := N.Add(10)
endos := []Endomorphism[int]{addTen, double, increment}
// Reduce applies left-to-right
result1 := Reduce(endos)
// Reverse and use ConcatAll (which is right-to-left)
reversed := []Endomorphism[int]{increment, double, addTen}
result2 := Build(ConcatAll(reversed))
assert.Equal(t, result1, result2, "Reduce should be equivalent to Build(ConcatAll(reverse))")
})
}
// TestConcatAllVsReduce demonstrates the difference between ConcatAll and Reduce
func TestConcatAllVsReduce(t *testing.T) {
addTen := N.Add(10)
endos := []Endomorphism[int]{addTen, double, increment}
// ConcatAll: RIGHT-TO-LEFT composition, returns endomorphism
concatResult := ConcatAll(endos)(5)
// 5 -> increment(5) = 6 -> double(6) = 12 -> addTen(12) = 22
// Reduce: LEFT-TO-RIGHT application, returns value from zero
reduceResult := Reduce(endos)
// 0 -> addTen(0) = 10 -> double(10) = 20 -> increment(20) = 21
assert.NotEqual(t, concatResult, reduceResult, "ConcatAll and Reduce should produce different results")
assert.Equal(t, 22, concatResult, "ConcatAll should execute right-to-left on input value")
assert.Equal(t, 21, reduceResult, "Reduce should execute left-to-right from zero value")
}
// TestReduceWithBuild demonstrates using Reduce vs Build with ConcatAll
func TestReduceWithBuild(t *testing.T) {
addFive := N.Add(5)
multiplyByThree := N.Mul(3)
endos := []Endomorphism[int]{addFive, multiplyByThree}
// Reduce: LEFT-TO-RIGHT from zero
reduceResult := Reduce(endos)
// 0 -> addFive(0) = 5 -> multiplyByThree(5) = 15
assert.Equal(t, 15, reduceResult)
// Build with ConcatAll: RIGHT-TO-LEFT from zero
buildResult := Build(ConcatAll(endos))
// 0 -> multiplyByThree(0) = 0 -> addFive(0) = 5
assert.Equal(t, 5, buildResult)
assert.NotEqual(t, reduceResult, buildResult, "Reduce and Build(ConcatAll) produce different results due to execution order")
}

82
v2/endomorphism/from.go Normal file
View File

@@ -0,0 +1,82 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package endomorphism
import (
"github.com/IBM/fp-go/v2/function"
S "github.com/IBM/fp-go/v2/semigroup"
)
// FromSemigroup converts a semigroup into a Kleisli arrow for endomorphisms.
//
// This function takes a semigroup and returns a Kleisli arrow that, when given
// a value of type A, produces an endomorphism that concatenates that value with
// other values using the semigroup's Concat operation.
//
// The resulting Kleisli arrow has the signature: func(A) Endomorphism[A]
// When called with a value 'x', it returns an endomorphism that concatenates
// 'x' with its input using the semigroup's binary operation.
//
// # Data Last Principle
//
// FromSemigroup follows the "data last" principle by using function.Bind2of2,
// which binds the second parameter of the semigroup's Concat operation.
// This means that for a semigroup with Concat(a, b), calling FromSemigroup(s)(x)
// creates an endomorphism that computes Concat(input, x), where the input data
// comes first and the bound value 'x' comes last.
//
// For example, with string concatenation:
// - Semigroup.Concat("Hello", "World") = "HelloWorld"
// - FromSemigroup(semigroup)("World") creates: func(input) = Concat(input, "World")
// - Applying it: endomorphism("Hello") = Concat("Hello", "World") = "HelloWorld"
//
// This is particularly useful for creating endomorphisms from associative operations
// like string concatenation, number addition, list concatenation, etc.
//
// Parameters:
// - s: A semigroup providing the Concat operation for type A
//
// Returns:
// - A Kleisli arrow that converts values of type A into endomorphisms
//
// Example:
//
// import (
// "github.com/IBM/fp-go/v2/endomorphism"
// "github.com/IBM/fp-go/v2/semigroup"
// )
//
// // Create a semigroup for integer addition
// addSemigroup := semigroup.MakeSemigroup(func(a, b int) int {
// return a + b
// })
//
// // Convert it to a Kleisli arrow
// addKleisli := endomorphism.FromSemigroup(addSemigroup)
//
// // Use the Kleisli arrow to create an endomorphism that adds 5
// // This follows "data last": the input data comes first, 5 comes last
// addFive := addKleisli(5)
//
// // Apply the endomorphism: Concat(10, 5) = 10 + 5 = 15
// result := addFive(10) // result is 15
//
// The function uses function.Bind2of2 to partially apply the semigroup's Concat
// operation, effectively currying it to create the desired Kleisli arrow while
// maintaining the "data last" principle.
func FromSemigroup[A any](s S.Semigroup[A]) Kleisli[A] {
return function.Bind2of2(s.Concat)
}

View File

@@ -0,0 +1,439 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package endomorphism
import (
"testing"
S "github.com/IBM/fp-go/v2/semigroup"
"github.com/stretchr/testify/assert"
)
// TestFromSemigroup tests the FromSemigroup function with various semigroups
func TestFromSemigroup(t *testing.T) {
t.Run("integer addition semigroup", func(t *testing.T) {
// Create a semigroup for integer addition
addSemigroup := S.MakeSemigroup(func(a, b int) int {
return a + b
})
// Convert to Kleisli arrow
addKleisli := FromSemigroup(addSemigroup)
// Create an endomorphism that adds 5
addFive := addKleisli(5)
// Test the endomorphism
assert.Equal(t, 15, addFive(10), "addFive(10) should equal 15")
assert.Equal(t, 5, addFive(0), "addFive(0) should equal 5")
assert.Equal(t, -5, addFive(-10), "addFive(-10) should equal -5")
})
t.Run("integer multiplication semigroup", func(t *testing.T) {
// Create a semigroup for integer multiplication
mulSemigroup := S.MakeSemigroup(func(a, b int) int {
return a * b
})
// Convert to Kleisli arrow
mulKleisli := FromSemigroup(mulSemigroup)
// Create an endomorphism that multiplies by 3
multiplyByThree := mulKleisli(3)
// Test the endomorphism
assert.Equal(t, 15, multiplyByThree(5), "multiplyByThree(5) should equal 15")
assert.Equal(t, 0, multiplyByThree(0), "multiplyByThree(0) should equal 0")
assert.Equal(t, -9, multiplyByThree(-3), "multiplyByThree(-3) should equal -9")
})
t.Run("string concatenation semigroup", func(t *testing.T) {
// Create a semigroup for string concatenation
concatSemigroup := S.MakeSemigroup(func(a, b string) string {
return a + b
})
// Convert to Kleisli arrow
concatKleisli := FromSemigroup(concatSemigroup)
// Create an endomorphism that appends "Hello, " (input is on the left)
appendHello := concatKleisli("Hello, ")
// Test the endomorphism - input is concatenated on the left, "Hello, " on the right
assert.Equal(t, "WorldHello, ", appendHello("World"), "appendHello('World') should equal 'WorldHello, '")
assert.Equal(t, "Hello, ", appendHello(""), "appendHello('') should equal 'Hello, '")
assert.Equal(t, "GoHello, ", appendHello("Go"), "appendHello('Go') should equal 'GoHello, '")
})
t.Run("slice concatenation semigroup", func(t *testing.T) {
// Create a semigroup for slice concatenation
sliceSemigroup := S.MakeSemigroup(func(a, b []int) []int {
result := make([]int, len(a)+len(b))
copy(result, a)
copy(result[len(a):], b)
return result
})
// Convert to Kleisli arrow
sliceKleisli := FromSemigroup(sliceSemigroup)
// Create an endomorphism that appends [1, 2] (input is on the left)
appendOneTwo := sliceKleisli([]int{1, 2})
// Test the endomorphism - input is concatenated on the left, [1,2] on the right
result1 := appendOneTwo([]int{3, 4, 5})
assert.Equal(t, []int{3, 4, 5, 1, 2}, result1, "appendOneTwo([3,4,5]) should equal [3,4,5,1,2]")
result2 := appendOneTwo([]int{})
assert.Equal(t, []int{1, 2}, result2, "appendOneTwo([]) should equal [1,2]")
result3 := appendOneTwo([]int{10})
assert.Equal(t, []int{10, 1, 2}, result3, "appendOneTwo([10]) should equal [10,1,2]")
})
t.Run("max semigroup", func(t *testing.T) {
// Create a semigroup for max operation
maxSemigroup := S.MakeSemigroup(func(a, b int) int {
if a > b {
return a
}
return b
})
// Convert to Kleisli arrow
maxKleisli := FromSemigroup(maxSemigroup)
// Create an endomorphism that takes max with 10
maxWithTen := maxKleisli(10)
// Test the endomorphism
assert.Equal(t, 15, maxWithTen(15), "maxWithTen(15) should equal 15")
assert.Equal(t, 10, maxWithTen(5), "maxWithTen(5) should equal 10")
assert.Equal(t, 10, maxWithTen(10), "maxWithTen(10) should equal 10")
assert.Equal(t, 10, maxWithTen(-5), "maxWithTen(-5) should equal 10")
})
t.Run("min semigroup", func(t *testing.T) {
// Create a semigroup for min operation
minSemigroup := S.MakeSemigroup(func(a, b int) int {
if a < b {
return a
}
return b
})
// Convert to Kleisli arrow
minKleisli := FromSemigroup(minSemigroup)
// Create an endomorphism that takes min with 10
minWithTen := minKleisli(10)
// Test the endomorphism
assert.Equal(t, 5, minWithTen(5), "minWithTen(5) should equal 5")
assert.Equal(t, 10, minWithTen(15), "minWithTen(15) should equal 10")
assert.Equal(t, 10, minWithTen(10), "minWithTen(10) should equal 10")
assert.Equal(t, -5, minWithTen(-5), "minWithTen(-5) should equal -5")
})
}
// TestFromSemigroupComposition tests that endomorphisms created from semigroups can be composed
func TestFromSemigroupComposition(t *testing.T) {
t.Run("compose addition endomorphisms", func(t *testing.T) {
// Create a semigroup for integer addition
addSemigroup := S.MakeSemigroup(func(a, b int) int {
return a + b
})
addKleisli := FromSemigroup(addSemigroup)
// Create two endomorphisms
addFive := addKleisli(5)
addTen := addKleisli(10)
// Compose them (RIGHT-TO-LEFT execution)
composed := MonadCompose(addFive, addTen)
// Test composition: addTen first, then addFive
result := composed(3) // 3 + 10 = 13, then 13 + 5 = 18
assert.Equal(t, 18, result, "composed addition should work correctly")
})
t.Run("compose string endomorphisms", func(t *testing.T) {
// Create a semigroup for string concatenation
concatSemigroup := S.MakeSemigroup(func(a, b string) string {
return a + b
})
concatKleisli := FromSemigroup(concatSemigroup)
// Create two endomorphisms
appendHello := concatKleisli("Hello, ")
appendExclamation := concatKleisli("!")
// Compose them (RIGHT-TO-LEFT execution)
composed := MonadCompose(appendHello, appendExclamation)
// Test composition: appendExclamation first, then appendHello
// "World" + "!" = "World!", then "World!" + "Hello, " = "World!Hello, "
result := composed("World")
assert.Equal(t, "World!Hello, ", result, "composed string operations should work correctly")
})
}
// TestFromSemigroupWithMonoid tests using FromSemigroup-created endomorphisms with monoid operations
func TestFromSemigroupWithMonoid(t *testing.T) {
t.Run("monoid concat with addition endomorphisms", func(t *testing.T) {
// Create a semigroup for integer addition
addSemigroup := S.MakeSemigroup(func(a, b int) int {
return a + b
})
addKleisli := FromSemigroup(addSemigroup)
// Create multiple endomorphisms
addOne := addKleisli(1)
addTwo := addKleisli(2)
addThree := addKleisli(3)
// Use monoid to combine them
monoid := Monoid[int]()
combined := monoid.Concat(monoid.Concat(addOne, addTwo), addThree)
// Test: RIGHT-TO-LEFT execution: addThree, then addTwo, then addOne
result := combined(10) // 10 + 3 = 13, 13 + 2 = 15, 15 + 1 = 16
assert.Equal(t, 16, result, "monoid combination should work correctly")
})
}
// TestFromSemigroupAssociativity tests that the semigroup associativity is preserved
func TestFromSemigroupAssociativity(t *testing.T) {
t.Run("addition associativity", func(t *testing.T) {
// Create a semigroup for integer addition
addSemigroup := S.MakeSemigroup(func(a, b int) int {
return a + b
})
addKleisli := FromSemigroup(addSemigroup)
// Create three endomorphisms
addTwo := addKleisli(2)
addThree := addKleisli(3)
addFive := addKleisli(5)
// Test associativity: (a . b) . c = a . (b . c)
left := MonadCompose(MonadCompose(addTwo, addThree), addFive)
right := MonadCompose(addTwo, MonadCompose(addThree, addFive))
testValue := 10
assert.Equal(t, left(testValue), right(testValue), "composition should be associative")
// Both should equal: 10 + 5 + 3 + 2 = 20
assert.Equal(t, 20, left(testValue), "left composition should equal 20")
assert.Equal(t, 20, right(testValue), "right composition should equal 20")
})
t.Run("string concatenation associativity", func(t *testing.T) {
// Create a semigroup for string concatenation
concatSemigroup := S.MakeSemigroup(func(a, b string) string {
return a + b
})
concatKleisli := FromSemigroup(concatSemigroup)
// Create three endomorphisms
appendA := concatKleisli("A")
appendB := concatKleisli("B")
appendC := concatKleisli("C")
// Test associativity: (a . b) . c = a . (b . c)
left := MonadCompose(MonadCompose(appendA, appendB), appendC)
right := MonadCompose(appendA, MonadCompose(appendB, appendC))
testValue := "X"
assert.Equal(t, left(testValue), right(testValue), "string composition should be associative")
// Both should equal: "X" + "C" + "B" + "A" = "XCBA" (RIGHT-TO-LEFT composition)
assert.Equal(t, "XCBA", left(testValue), "left composition should equal 'XCBA'")
assert.Equal(t, "XCBA", right(testValue), "right composition should equal 'XCBA'")
})
}
// TestFromSemigroupEdgeCases tests edge cases and boundary conditions
func TestFromSemigroupEdgeCases(t *testing.T) {
t.Run("zero values", func(t *testing.T) {
// Test with addition and zero
addSemigroup := S.MakeSemigroup(func(a, b int) int {
return a + b
})
addKleisli := FromSemigroup(addSemigroup)
addZero := addKleisli(0)
assert.Equal(t, 5, addZero(5), "adding zero should not change the value")
assert.Equal(t, 0, addZero(0), "adding zero to zero should be zero")
assert.Equal(t, -3, addZero(-3), "adding zero to negative should not change")
})
t.Run("empty string", func(t *testing.T) {
// Test with string concatenation and empty string
concatSemigroup := S.MakeSemigroup(func(a, b string) string {
return a + b
})
concatKleisli := FromSemigroup(concatSemigroup)
prependEmpty := concatKleisli("")
assert.Equal(t, "hello", prependEmpty("hello"), "prepending empty string should not change")
assert.Equal(t, "", prependEmpty(""), "prepending empty to empty should be empty")
})
t.Run("empty slice", func(t *testing.T) {
// Test with slice concatenation and empty slice
sliceSemigroup := S.MakeSemigroup(func(a, b []int) []int {
result := make([]int, len(a)+len(b))
copy(result, a)
copy(result[len(a):], b)
return result
})
sliceKleisli := FromSemigroup(sliceSemigroup)
prependEmpty := sliceKleisli([]int{})
result := prependEmpty([]int{1, 2, 3})
assert.Equal(t, []int{1, 2, 3}, result, "prepending empty slice should not change")
emptyResult := prependEmpty([]int{})
assert.Equal(t, []int{}, emptyResult, "prepending empty to empty should be empty")
})
}
// TestFromSemigroupDataLastPrinciple explicitly tests that FromSemigroup follows the "data last" principle
func TestFromSemigroupDataLastPrinciple(t *testing.T) {
t.Run("data last with string concatenation", func(t *testing.T) {
// Create a semigroup for string concatenation
// Concat(a, b) = a + b
concatSemigroup := S.MakeSemigroup(func(a, b string) string {
return a + b
})
// FromSemigroup uses Bind2of2, which binds the second parameter
// So FromSemigroup(s)(x) creates: func(input) = Concat(input, x)
// This is "data last" - the input data comes first, bound value comes last
kleisli := FromSemigroup(concatSemigroup)
// Bind "World" as the second parameter
appendWorld := kleisli("World")
// When we call appendWorld("Hello"), it computes Concat("Hello", "World")
// The input "Hello" is the first parameter (data), "World" is the second (bound value)
result := appendWorld("Hello")
assert.Equal(t, "HelloWorld", result, "Data last: Concat(input='Hello', bound='World') = 'HelloWorld'")
// Verify with different input
result2 := appendWorld("Goodbye")
assert.Equal(t, "GoodbyeWorld", result2, "Data last: Concat(input='Goodbye', bound='World') = 'GoodbyeWorld'")
})
t.Run("data last with integer addition", func(t *testing.T) {
// Create a semigroup for integer addition
// Concat(a, b) = a + b
addSemigroup := S.MakeSemigroup(func(a, b int) int {
return a + b
})
// FromSemigroup binds the second parameter
// So FromSemigroup(s)(5) creates: func(input) = Concat(input, 5) = input + 5
kleisli := FromSemigroup(addSemigroup)
// Bind 5 as the second parameter
addFive := kleisli(5)
// When we call addFive(10), it computes Concat(10, 5) = 10 + 5 = 15
// The input 10 is the first parameter (data), 5 is the second (bound value)
result := addFive(10)
assert.Equal(t, 15, result, "Data last: Concat(input=10, bound=5) = 15")
})
t.Run("data last with non-commutative operation", func(t *testing.T) {
// Create a semigroup for a non-commutative operation to clearly show order
// Concat(a, b) = a - b (subtraction is not commutative)
subSemigroup := S.MakeSemigroup(func(a, b int) int {
return a - b
})
// FromSemigroup binds the second parameter
// So FromSemigroup(s)(5) creates: func(input) = Concat(input, 5) = input - 5
kleisli := FromSemigroup(subSemigroup)
// Bind 5 as the second parameter
subtractFive := kleisli(5)
// When we call subtractFive(10), it computes Concat(10, 5) = 10 - 5 = 5
// The input 10 is the first parameter (data), 5 is the second (bound value)
result := subtractFive(10)
assert.Equal(t, 5, result, "Data last: Concat(input=10, bound=5) = 10 - 5 = 5")
// If it were "data first" (binding first parameter), we would get:
// Concat(5, 10) = 5 - 10 = -5, which is NOT what we get
assert.NotEqual(t, -5, result, "Not data first: result is NOT Concat(bound=5, input=10) = 5 - 10 = -5")
})
t.Run("data last with list concatenation", func(t *testing.T) {
// Create a semigroup for list concatenation
// Concat(a, b) = a ++ b
listSemigroup := S.MakeSemigroup(func(a, b []int) []int {
result := make([]int, len(a)+len(b))
copy(result, a)
copy(result[len(a):], b)
return result
})
// FromSemigroup binds the second parameter
// So FromSemigroup(s)([3,4]) creates: func(input) = Concat(input, [3,4])
kleisli := FromSemigroup(listSemigroup)
// Bind [3, 4] as the second parameter
appendThreeFour := kleisli([]int{3, 4})
// When we call appendThreeFour([1,2]), it computes Concat([1,2], [3,4]) = [1,2,3,4]
// The input [1,2] is the first parameter (data), [3,4] is the second (bound value)
result := appendThreeFour([]int{1, 2})
assert.Equal(t, []int{1, 2, 3, 4}, result, "Data last: Concat(input=[1,2], bound=[3,4]) = [1,2,3,4]")
})
}
// BenchmarkFromSemigroup benchmarks the FromSemigroup function
func BenchmarkFromSemigroup(b *testing.B) {
addSemigroup := S.MakeSemigroup(func(a, b int) int {
return a + b
})
addKleisli := FromSemigroup(addSemigroup)
addFive := addKleisli(5)
b.ResetTimer()
for b.Loop() {
_ = addFive(10)
}
}
// BenchmarkFromSemigroupComposition benchmarks composed endomorphisms from semigroups
func BenchmarkFromSemigroupComposition(b *testing.B) {
addSemigroup := S.MakeSemigroup(func(a, b int) int {
return a + b
})
addKleisli := FromSemigroup(addSemigroup)
addFive := addKleisli(5)
addTen := addKleisli(10)
composed := MonadCompose(addFive, addTen)
b.ResetTimer()
for b.Loop() {
_ = composed(3)
}
}

View File

@@ -35,7 +35,7 @@ import (
//
// Example:
//
// myFunc := func(x int) int { return x * 2 }
// myFunc := N.Mul(2)
// endo := endomorphism.Of(myFunc)
func Of[F ~func(A) A, A any](f F) Endomorphism[A] {
return f
@@ -75,7 +75,7 @@ func Unwrap[F ~func(A) A, A any](f Endomorphism[A]) F {
// result := id(42) // Returns: 42
//
// // Identity is neutral for composition
// double := func(x int) int { return x * 2 }
// double := N.Mul(2)
// composed := endomorphism.Compose(id, double)
// // composed behaves exactly like double
func Identity[A any]() Endomorphism[A] {
@@ -103,8 +103,8 @@ func Identity[A any]() Endomorphism[A] {
// import S "github.com/IBM/fp-go/v2/semigroup"
//
// sg := endomorphism.Semigroup[int]()
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
//
// // Combine using the semigroup (RIGHT-TO-LEFT execution)
// combined := sg.Concat(double, increment)
@@ -139,8 +139,8 @@ func Semigroup[A any]() S.Semigroup[Endomorphism[A]] {
// import M "github.com/IBM/fp-go/v2/monoid"
//
// monoid := endomorphism.Monoid[int]()
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
// square := func(x int) int { return x * x }
//
// // Combine multiple endomorphisms (RIGHT-TO-LEFT execution)

View File

@@ -29,8 +29,8 @@ type (
// Example:
//
// // Simple endomorphisms on integers
// double := func(x int) int { return x * 2 }
// increment := func(x int) int { return x + 1 }
// double := N.Mul(2)
// increment := N.Add(1)
//
// // Both are endomorphisms of type Endomorphism[int]
// var f endomorphism.Endomorphism[int] = double

View File

@@ -23,6 +23,7 @@ import (
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
N "github.com/IBM/fp-go/v2/number"
"github.com/stretchr/testify/assert"
)
@@ -266,7 +267,7 @@ func TestEither(t *testing.T) {
erased := Erase(42)
result := F.Pipe1(
SafeUnerase[int](erased),
E.Map[error](func(x int) int { return x * 2 }),
E.Map[error](N.Mul(2)),
)
assert.True(t, E.IsRight(result))

View File

@@ -22,12 +22,12 @@ import (
F "github.com/IBM/fp-go/v2/function"
)
// IdentityError is the identity function specialized for error types.
// Identity is the identity function specialized for error types.
// It returns the error unchanged, useful in functional composition where
// an error needs to be passed through without modification.
//
// Example:
//
// err := errors.New("something went wrong")
// same := IdentityError(err) // returns the same error
var IdentityError = F.Identity[error]
// same := Identity(err) // returns the same error
var Identity = F.Identity[error]

View File

@@ -42,7 +42,10 @@ package function
// divide := func(a, b float64) float64 { return a / b }
// divideBy10 := Bind1st(divide, 10.0)
// result := divideBy10(2.0) // 5.0 (10 / 2)
//
//go:inline
func Bind1st[T1, T2, R any](f func(T1, T2) R, t1 T1) func(T2) R {
//go:inline
return func(t2 T2) R {
return f(t1, t2)
}
@@ -75,7 +78,10 @@ func Bind1st[T1, T2, R any](f func(T1, T2) R, t1 T1) func(T2) R {
// divide := func(a, b float64) float64 { return a / b }
// halve := Bind2nd(divide, 2.0)
// result := halve(10.0) // 5.0 (10 / 2)
//
//go:inline
func Bind2nd[T1, T2, R any](f func(T1, T2) R, t2 T2) func(T1) R {
//go:inline
return func(t1 T1) R {
return f(t1, t2)
}
@@ -104,6 +110,8 @@ func Bind2nd[T1, T2, R any](f func(T1, T2) R, t2 T2) func(T1) R {
//
// result := SK(42, "hello") // "hello"
// result := SK(true, 100) // 100
//
//go:inline
func SK[T1, T2 any](_ T1, t2 T2) T2 {
return t2
}

View File

@@ -36,7 +36,7 @@ package function
// Example:
//
// isPositive := func(n int) bool { return n > 0 }
// double := func(n int) int { return n * 2 }
// double := N.Mul(2)
// negate := func(n int) int { return -n }
//
// transform := Ternary(isPositive, double, negate)

View File

@@ -80,7 +80,6 @@ import (
A "github.com/IBM/fp-go/v2/array"
B "github.com/IBM/fp-go/v2/bytes"
E "github.com/IBM/fp-go/v2/either"
ENDO "github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function"
C "github.com/IBM/fp-go/v2/http/content"
@@ -91,16 +90,17 @@ import (
L "github.com/IBM/fp-go/v2/optics/lens"
O "github.com/IBM/fp-go/v2/option"
R "github.com/IBM/fp-go/v2/record"
"github.com/IBM/fp-go/v2/result"
S "github.com/IBM/fp-go/v2/string"
T "github.com/IBM/fp-go/v2/tuple"
)
type (
Builder struct {
method O.Option[string]
method Option[string]
url string
headers http.Header
body O.Option[E.Either[error, []byte]]
body Option[Result[[]byte]]
query url.Values
}
@@ -117,19 +117,19 @@ var (
// Monoid is the [M.Monoid] for the [Endomorphism]
Monoid = ENDO.Monoid[*Builder]()
// Url is a [L.Lens] for the URL
// Url is a [Lens] for the URL
//
// Deprecated: use [URL] instead
Url = L.MakeLensRef((*Builder).GetURL, (*Builder).SetURL)
// URL is a [L.Lens] for the URL
// URL is a [Lens] for the URL
URL = L.MakeLensRef((*Builder).GetURL, (*Builder).SetURL)
// Method is a [L.Lens] for the HTTP method
// Method is a [Lens] for the HTTP method
Method = L.MakeLensRef((*Builder).GetMethod, (*Builder).SetMethod)
// Body is a [L.Lens] for the request body
// Body is a [Lens] for the request body
Body = L.MakeLensRef((*Builder).GetBody, (*Builder).SetBody)
// Headers is a [L.Lens] for the complete set of request headers
// Headers is a [Lens] for the complete set of request headers
Headers = L.MakeLensRef((*Builder).GetHeaders, (*Builder).SetHeaders)
// Query is a [L.Lens] for the set of query parameters
// Query is a [Lens] for the set of query parameters
Query = L.MakeLensRef((*Builder).GetQuery, (*Builder).SetQuery)
rawQuery = L.MakeLensRef(getRawQuery, setRawQuery)
@@ -139,11 +139,11 @@ var (
setHeader = F.Bind2of3((*Builder).SetHeader)
noHeader = O.None[string]()
noBody = O.None[E.Either[error, []byte]]()
noBody = O.None[Result[[]byte]]()
noQueryArg = O.None[string]()
parseURL = E.Eitherize1(url.Parse)
parseQuery = E.Eitherize1(url.ParseQuery)
parseURL = result.Eitherize1(url.Parse)
parseQuery = result.Eitherize1(url.ParseQuery)
// WithQuery creates a [Endomorphism] for a complete set of query parameters
WithQuery = Query.Set
@@ -159,12 +159,12 @@ var (
WithHeaders = Headers.Set
// WithBody creates a [Endomorphism] for a request body
WithBody = F.Flow2(
O.Of[E.Either[error, []byte]],
O.Of[Result[[]byte]],
Body.Set,
)
// WithBytes creates a [Endomorphism] for a request body using bytes
WithBytes = F.Flow2(
E.Of[error, []byte],
result.Of[[]byte],
WithBody,
)
// WithContentType adds the [H.ContentType] header
@@ -202,7 +202,7 @@ var (
)
// bodyAsBytes returns a []byte with a fallback to the empty array
bodyAsBytes = O.Fold(B.Empty, E.Fold(F.Ignore1of1[error](B.Empty), F.Identity[[]byte]))
bodyAsBytes = O.Fold(B.Empty, result.Fold(F.Ignore1of1[error](B.Empty), F.Identity[[]byte]))
)
func setRawQuery(u *url.URL, raw string) *url.URL {
@@ -223,35 +223,35 @@ func (builder *Builder) clone() *Builder {
// GetTargetUrl constructs a full URL with query parameters on top of the provided URL string
//
// Deprecated: use [GetTargetURL] instead
func (builder *Builder) GetTargetUrl() E.Either[error, string] {
func (builder *Builder) GetTargetUrl() Result[string] {
return builder.GetTargetURL()
}
// GetTargetURL constructs a full URL with query parameters on top of the provided URL string
func (builder *Builder) GetTargetURL() E.Either[error, string] {
func (builder *Builder) GetTargetURL() Result[string] {
// construct the final URL
return F.Pipe3(
builder,
Url.Get,
parseURL,
E.Chain(F.Flow4(
result.Chain(F.Flow4(
T.Replicate2[*url.URL],
T.Map2(
F.Flow2(
F.Curry2(setRawQuery),
E.Of[error, func(string) *url.URL],
result.Of[func(string) *url.URL],
),
F.Flow3(
rawQuery.Get,
parseQuery,
E.Map[error](F.Flow2(
result.Map(F.Flow2(
F.Curry2(FM.ValuesMonoid.Concat)(builder.GetQuery()),
(url.Values).Encode,
)),
),
),
T.Tupled2(E.MonadAp[*url.URL, error, string]),
E.Map[error]((*url.URL).String),
T.Tupled2(result.MonadAp[*url.URL, string]),
result.Map((*url.URL).String),
)),
)
}
@@ -285,7 +285,7 @@ func (builder *Builder) SetQuery(query url.Values) *Builder {
return builder
}
func (builder *Builder) GetBody() O.Option[E.Either[error, []byte]] {
func (builder *Builder) GetBody() Option[Result[[]byte]] {
return builder.body
}
@@ -310,7 +310,7 @@ func (builder *Builder) SetHeaders(headers http.Header) *Builder {
return builder
}
func (builder *Builder) SetBody(body O.Option[E.Either[error, []byte]]) *Builder {
func (builder *Builder) SetBody(body Option[Result[[]byte]]) *Builder {
builder.body = body
return builder
}
@@ -325,7 +325,7 @@ func (builder *Builder) DelHeader(name string) *Builder {
return builder
}
func (builder *Builder) GetHeader(name string) O.Option[string] {
func (builder *Builder) GetHeader(name string) Option[string] {
return F.Pipe2(
name,
builder.headers.Get,
@@ -342,8 +342,8 @@ func (builder *Builder) GetHash() string {
return MakeHash(builder)
}
// Header returns a [L.Lens] for a single header
func Header(name string) L.Lens[*Builder, O.Option[string]] {
// Header returns a [Lens] for a single header
func Header(name string) Lens[*Builder, Option[string]] {
get := getHeader(name)
set := F.Bind1of2(setHeader(name))
del := F.Flow2(
@@ -351,7 +351,7 @@ func Header(name string) L.Lens[*Builder, O.Option[string]] {
LZ.Map(delHeader(name)),
)
return L.MakeLens(get, func(b *Builder, value O.Option[string]) *Builder {
return L.MakeLens(get, func(b *Builder, value Option[string]) *Builder {
cpy := b.clone()
return F.Pipe1(
value,
@@ -392,8 +392,8 @@ func WithJSON[T any](data T) Endomorphism {
)
}
// QueryArg is a [L.Lens] for the first value of a query argument
func QueryArg(name string) L.Lens[*Builder, O.Option[string]] {
// QueryArg is a [Lens] for the first value of a query argument
func QueryArg(name string) Lens[*Builder, Option[string]] {
return F.Pipe1(
Query,
L.Compose[*Builder](FM.AtValue(name)),

13
v2/http/builder/type.go Normal file
View File

@@ -0,0 +1,13 @@
package builder
import (
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
type (
Option[T any] = option.Option[T]
Result[T any] = result.Result[T]
Lens[S, T any] = lens.Lens[S, T]
)

Some files were not shown because too many files have changed in this diff Show More