1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-12-07 23:03:15 +02:00

Compare commits

...

57 Commits

Author SHA1 Message Date
Dr. Carsten Leue
09aeb996e2 fix: add GetOrElseOf
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 18:57:30 +01:00
Dr. Carsten Leue
7cd575d95a fix: improve Prism and Optional
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 18:22:52 +01:00
Dr. Carsten Leue
dcfb023891 fix: improve assertions
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 17:28:48 +01:00
Dr. Carsten Leue
51cf241a26 fix: add ReaderK
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 12:29:55 +01:00
Dr. Carsten Leue
9004c93976 fix: add some idomatic helpers
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-24 10:40:58 +01:00
Dr. Carsten Leue
d8ab6b0ce5 fix: ChainReaderK
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-22 10:39:56 +01:00
Dr. Carsten Leue
4e9998b645 fix: benchmarks and better docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 15:39:41 +01:00
Dr. Carsten Leue
2ea9e292e1 fix: idiomatic/readeresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 15:25:59 +01:00
Dr. Carsten Leue
12a20e30d1 fix: implement BindReaderK
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 13:01:27 +01:00
Dr. Carsten Leue
4909ad5473 fix: add missing monoid
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 10:22:50 +01:00
Dr. Carsten Leue
d116317cde fix: add readerresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 10:04:28 +01:00
Dr. Carsten Leue
1428241f2c fix: race condition
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-21 08:36:07 +01:00
Dr. Carsten Leue
ef9216bad7 fix: documentation, tests, some utilities
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-20 08:43:15 +01:00
Dr. Carsten Leue
fe77c770b6 fix: cleanup types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-19 17:36:49 +01:00
Dr. Carsten Leue
1c42b2ac1d fix: implement idiomatic/ioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-19 15:39:02 +01:00
Dr. Carsten Leue
cbd93fdecc fix: add statereaderioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 17:54:04 +01:00
Dr. Carsten Leue
6d94697128 fix: document statereaderioeither
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 16:06:56 +01:00
Dr. Carsten Leue
77dde302ef Merge branch 'main' of github.com:IBM/fp-go 2025-11-18 10:59:57 +01:00
Dr. Carsten Leue
909d626019 fix: serveral performance improvements
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-18 10:58:24 +01:00
renovate[bot]
b01a8f2aff chore(deps): update actions/checkout action to v4.3.1 (#145)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2025-11-18 06:31:59 +00:00
Dr. Carsten Leue
8a2e9539b1 fix: add result
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 20:36:06 +01:00
Dr. Carsten Leue
03d9720a29 fix: optimize performance for option
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 12:19:24 +01:00
Dr. Carsten Leue
57794ccb34 fix: add idiomatic go options package
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-17 11:10:27 +01:00
Dr. Carsten Leue
404eb875d3 fix: add idiomatic version
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-16 17:27:16 +01:00
Dr. Carsten Leue
ed108812d6 fix: modernize codebase
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-15 17:00:22 +01:00
Dr. Carsten Leue
ab868315d4 fix: traverse
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-15 12:13:37 +01:00
Dr. Carsten Leue
02d0be9dad fix: add traversal for sequences
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 14:12:44 +01:00
Dr. Carsten Leue
2c1d8196b4 fix: support go iterators and cleanup types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 12:56:12 +01:00
Dr. Carsten Leue
17eb8ae66f fix: add Chain...Left methods
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 16:51:15 +01:00
Dr. Carsten Leue
b70e481e7d fix: some minor improvements
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 12:56:51 +01:00
Dr. Carsten Leue
3c3bb7c166 fix: improve lens implementation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 12:15:52 +01:00
Dr. Carsten Leue
d3007cbbfa fix: improve lens generator
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:39:18 +01:00
Dr. Carsten Leue
5aa0e1ea2e fix: handle non comparable types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:35:56 +01:00
Dr. Carsten Leue
d586428cb0 fix: examples
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-13 09:05:57 +01:00
Dr. Carsten Leue
d2dbce6e8b fix: improve lens handling
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 18:23:57 +01:00
Dr. Carsten Leue
6f7ec0768d fix: improve lens generation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 17:28:20 +01:00
Dr. Carsten Leue
ca813b673c fix: better tests and doc
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 16:24:12 +01:00
Dr. Carsten Leue
af271e7d10 fix: better endo and lens
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 15:03:55 +01:00
Dr. Carsten Leue
567315a31c fix: make a distinction between Chain and Compose for endomorphism
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 13:51:00 +01:00
Dr. Carsten Leue
311ed55f06 fix: add Read method to Readers
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 11:59:20 +01:00
Dr. Carsten Leue
23333ce52c doc: improve doc
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 11:08:18 +01:00
Dr. Carsten Leue
eb7fc9f77b fix: better tests for Lazy
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 10:46:07 +01:00
Dr. Carsten Leue
fd0550e71b fix: better test coverage
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 10:35:53 +01:00
Dr. Carsten Leue
13063bbd88 fix: doc and tests
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 16:36:12 +01:00
Dr. Carsten Leue
4f8a557072 fix: simplify type hints
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 15:24:45 +01:00
Dr. Carsten Leue
a4e790ac3d fix: improve bind
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 13:05:55 +01:00
Dr. Carsten Leue
1af6501cd8 fix: add bind variations
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 12:42:14 +01:00
Dr. Carsten Leue
600521b220 fix: refactor
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 11:01:49 +01:00
Dr. Carsten Leue
62fcd186a3 fix: introcuce readeioresult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-10 18:44:14 +01:00
Dr. Carsten Leue
2db7e83651 fix: introduce IOResult
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-10 16:26:52 +01:00
Dr. Carsten Leue
8d92df83ad fix: introduce Result type for convenience
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-10 12:08:50 +01:00
Dr. Carsten Leue
0c742b81e6 fix: better performance for either
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-08 10:01:14 +01:00
Dr. Carsten Leue
a1d6c94b15 fix: run benchmarks
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-08 09:31:48 +01:00
Dr. Carsten Leue
e4e28a6556 fix: more Kleisli simplified types
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-07 17:53:47 +01:00
Dr. Carsten Leue
7e7cc06f11 fix: add more Kleisli definitions
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-07 17:42:54 +01:00
Dr. Carsten Leue
54d5dbd04a fix: more tests for iso and prism
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-07 17:31:27 +01:00
Dr. Carsten Leue
51adce0c95 fix: better package import
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-07 16:15:16 +01:00
755 changed files with 94140 additions and 8943 deletions

View File

@@ -28,7 +28,7 @@ jobs:
fail-fast: false # Continue with other versions if one fails
steps:
# full checkout for semantic-release
- uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
@@ -66,7 +66,7 @@ jobs:
matrix:
go-version: ['1.24.x', '1.25.x']
steps:
- uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
@@ -126,7 +126,7 @@ jobs:
steps:
# full checkout for semantic-release
- name: Full checkout
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
with:
fetch-depth: 0

3
.gitignore vendored
View File

@@ -2,4 +2,5 @@ fp-go.exe
fp-go
main.exe
build/
.idea
.idea
*.exe

View File

@@ -21,8 +21,8 @@ import (
type (
either struct {
isLeft bool
value any
isLeft bool
}
// Either defines a data structure that logically holds either an E or an A. The flag discriminates the cases
@@ -73,12 +73,12 @@ func IsRight[E, A any](val Either[E, A]) bool {
// Left creates a new instance of an [Either] representing the left value.
func Left[A, E any](value E) Either[E, A] {
return Either[E, A]{true, value}
return Either[E, A]{value, true}
}
// Right creates a new instance of an [Either] representing the right value.
func Right[E, A any](value A) Either[E, A] {
return Either[E, A]{false, value}
return Either[E, A]{value, false}
}
// MonadFold extracts the values from an [Either] by invoking the [onLeft] callback or the [onRight] callback depending on the case
@@ -94,8 +94,7 @@ func Unwrap[E, A any](ma Either[E, A]) (A, E) {
if ma.isLeft {
var a A
return a, ma.value.(E)
} else {
var e E
return ma.value.(A), e
}
var e E
return ma.value.(A), e
}

View File

@@ -0,0 +1,17 @@
{
"permissions": {
"allow": [
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\monad\"\" && ls -la \"c:dfp-gov2internalapplicative\"\")",
"Bash(ls -la \"c:\\d\\fp-go\\v2\\internal\\chain\"\" && ls -la \"c:dfp-gov2internalfunctor\"\")",
"Bash(go build:*)",
"Bash(go test:*)",
"Bash(go doc:*)",
"Bash(go tool cover:*)",
"Bash(sort:*)",
"Bash(tee:*)",
"Bash(find:*)"
],
"deny": [],
"ask": []
}
}

482
v2/BENCHMARK_COMPARISON.md Normal file
View File

@@ -0,0 +1,482 @@
# Benchmark Comparison: Idiomatic vs Standard Either/Result
**Date:** 2025-11-18
**System:** AMD Ryzen 7 PRO 7840U w/ Radeon 780M Graphics (16 cores)
**Go Version:** go1.23+
This document provides a detailed performance comparison between the optimized `either` package and the `idiomatic/result` package after recent optimizations to the either package.
## Executive Summary
After optimizations to the `either` package, the performance characteristics have changed significantly:
### Key Findings
1. **Constructors & Predicates**: Both packages now perform comparably (~1-2 ns/op) with **zero heap allocations**
2. **Zero-allocation insight**: The `Either` struct (24 bytes) does NOT escape to heap - Go returns it by value on the stack
3. **Core Operations**: Idiomatic package has a **consistent advantage** of 1.2x - 2.3x for most operations
4. **Complex Operations**: Idiomatic package shows **massive advantages**:
- ChainFirst (Right): **32.4x faster** (87.6 ns → 2.7 ns, 72 B → 0 B)
- Pipeline operations: **2-3x faster** with lower allocations
5. **All simple operations**: Both maintain **zero heap allocations** (0 B/op, 0 allocs/op)
### Winner by Category
| Category | Winner | Reason |
|----------|--------|--------|
| Constructors | **TIE** | Both ~1.3-1.8 ns/op |
| Predicates | **TIE** | Both ~1.2-1.5 ns/op |
| Simple Transformations | **Idiomatic** | 1.2-2x faster |
| Monadic Operations | **Idiomatic** | 1.2-2.3x faster |
| Complex Chains | **Idiomatic** | 32x faster, zero allocs |
| Pipelines | **Idiomatic** | 2-2.4x faster, fewer allocs |
| Extraction | **Idiomatic** | 6x faster (GetOrElse) |
## Detailed Benchmark Results
### Constructor Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Left | 1.76 | **1.35** | **1.3x** ✓ | 0 B/op | 0 B/op |
| Right | 1.38 | 1.43 | 1.0x | 0 B/op | 0 B/op |
| Of | 1.68 | **1.22** | **1.4x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Both packages perform extremely well with **zero heap allocations**. Idiomatic has a slight edge on Left and Of.
**Important Clarification: Neither Package Escapes to Heap**
A common misconception is that struct-based Either escapes to heap while tuples stay on stack. The benchmarks prove this is FALSE:
```go
// Either package - NO heap allocation
type Either[E, A any] struct {
r A // 8 bytes
l E // 8 bytes
isLeft bool // 1 byte + 7 padding
} // Total: 24 bytes
func Of[E, A any](value A) Either[E, A] {
return Right[E](value) // Returns 24-byte struct BY VALUE
}
// Benchmark result: 0 B/op, 0 allocs/op ✓
```
**Why Either doesn't escape:**
1. **Small struct** - At 24 bytes, it's below Go's escape threshold (~64 bytes)
2. **Return by value** - Go returns small structs on the stack
3. **Inlining** - The `//go:inline` directive eliminates function overhead
4. **No pointers** - No pointer escapes in normal usage
**Idiomatic package:**
```go
// Returns native tuple - always stack allocated
func Right[A any](a A) (A, error) {
return a, nil // 16 bytes total (8 + 8)
}
// Benchmark result: 0 B/op, 0 allocs/op ✓
```
**Both achieve zero allocations** - the performance difference comes from other factors like function composition overhead, not from constructor allocations.
### Predicate Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| IsLeft | 1.45 | **1.35** | **1.1x** ✓ | 0 B/op | 0 B/op |
| IsRight | 1.47 | 1.51 | 1.0x | 0 B/op | 0 B/op |
**Analysis:** Virtually identical performance. The optimizations brought them to parity.
### Fold Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadFold (Right) | 2.71 | - | - | 0 B/op | - |
| MonadFold (Left) | 2.26 | - | - | 0 B/op | - |
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | 0 B/op | 0 B/op |
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package is 1.5x faster for curried Fold operations.
### Unwrap Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Unwrap (Right) | 1.27 | N/A | Either-specific |
| Unwrap (Left) | 1.24 | N/A | Either-specific |
| UnwrapError (Right) | 1.27 | N/A | Either-specific |
| UnwrapError (Left) | 1.27 | N/A | Either-specific |
| ToError (Right) | N/A | 1.40 | Idiomatic-specific |
| ToError (Left) | N/A | 1.84 | Idiomatic-specific |
**Analysis:** Both provide fast unwrapping. Idiomatic's tuple return is naturally unwrapped.
### Map Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadMap (Right) | 2.96 | - | - | 0 B/op | - |
| MonadMap (Left) | 1.99 | - | - | 0 B/op | - |
| Map (Right) | 5.13 | **4.34** | **1.2x** ✓ | 0 B/op | 0 B/op |
| Map (Left) | 4.19 | **2.48** | **1.7x** ✓ | 0 B/op | 0 B/op |
| MapLeft (Right) | 3.93 | **2.22** | **1.8x** ✓ | 0 B/op | 0 B/op |
| MapLeft (Left) | 7.22 | **3.51** | **2.1x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic is consistently faster across all Map variants, especially for error path (Left).
### BiMap Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| BiMap (Right) | 16.79 | **3.82** | **4.4x** ✓ | 0 B/op | 0 B/op |
| BiMap (Left) | 11.47 | **3.47** | **3.3x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package shows significant advantage for BiMap operations (3-4x faster).
### Chain (Monadic Bind) Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadChain (Right) | 2.89 | - | - | 0 B/op | - |
| MonadChain (Left) | 2.03 | - | - | 0 B/op | - |
| Chain (Right) | 5.44 | **2.34** | **2.3x** ✓ | 0 B/op | 0 B/op |
| Chain (Left) | 4.44 | **2.53** | **1.8x** ✓ | 0 B/op | 0 B/op |
| ChainFirst (Right) | 87.62 | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | 0 B, 0 allocs |
| ChainFirst (Left) | 3.94 | **2.48** | **1.6x** ✓ | 0 B/op | 0 B/op |
**Analysis:**
- Idiomatic is 2x faster for standard Chain operations
- **ChainFirst shows the most dramatic difference**: 32.4x faster with zero allocations vs 72 bytes!
### Flatten Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Flatten (Right) | 8.73 | N/A | Either-specific nested structure |
| Flatten (Left) | 8.86 | N/A | Either-specific nested structure |
**Analysis:** Flatten is specific to Either's nested structure handling.
### Applicative Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| MonadAp (RR) | 3.81 | - | - | 0 B/op | - |
| MonadAp (RL) | 3.07 | - | - | 0 B/op | - |
| MonadAp (LR) | 3.08 | - | - | 0 B/op | - |
| Ap (RR) | 6.99 | - | - | 0 B/op | - |
**Analysis:** MonadAp is fast in Either. Idiomatic package doesn't expose direct Ap benchmarks.
### Alternative Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Alt (RR) | 5.72 | **2.40** | **2.4x** ✓ | 0 B/op | 0 B/op |
| Alt (LR) | 4.89 | **2.39** | **2.0x** ✓ | 0 B/op | 0 B/op |
| OrElse (Right) | 5.28 | **2.40** | **2.2x** ✓ | 0 B/op | 0 B/op |
| OrElse (Left) | 3.99 | **2.42** | **1.6x** ✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package is consistently 2x faster for alternative operations.
### GetOrElse Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | 0 B/op | 0 B/op |
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | 0 B/op | 0 B/op |
**Analysis:** Idiomatic package shows dramatic advantage for value extraction (3-6x faster).
### TryCatch Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| TryCatch (Success) | 2.39 | N/A | Either-specific |
| TryCatch (Error) | 3.40 | N/A | Either-specific |
| TryCatchError (Success) | 3.32 | N/A | Either-specific |
| TryCatchError (Error) | 6.44 | N/A | Either-specific |
**Analysis:** TryCatch/TryCatchError are Either-specific for wrapping (value, error) tuples.
### Other Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Swap (Right) | 2.30 | - | - | 0 B/op | - |
| Swap (Left) | 3.05 | - | - | 0 B/op | - |
| MapTo (Right) | - | 1.60 | - | - | 0 B/op |
| MapTo (Left) | - | 1.73 | - | - | 0 B/op |
| ChainTo (Right) | - | 2.66 | - | - | 0 B/op |
| ChainTo (Left) | - | 2.85 | - | - | 0 B/op |
| Reduce (Right) | - | 2.34 | - | - | 0 B/op |
| Reduce (Left) | - | 1.40 | - | - | 0 B/op |
| Flap (Right) | - | 3.86 | - | - | 0 B/op |
| Flap (Left) | - | 2.58 | - | - | 0 B/op |
### FromPredicate Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| FromPredicate (Pass) | - | 3.38 | - | - | 0 B/op |
| FromPredicate (Fail) | - | 5.03 | - | - | 0 B/op |
**Analysis:** FromPredicate in idiomatic shows good performance for validation patterns.
### Option Conversion
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| ToOption (Right) | - | 1.17 | - | - | 0 B/op |
| ToOption (Left) | - | 1.21 | - | - | 0 B/op |
| FromOption (Some) | - | 2.68 | - | - | 0 B/op |
| FromOption (None) | - | 3.72 | - | - | 0 B/op |
**Analysis:** Very fast conversion between Result and Option in idiomatic package.
## Pipeline Benchmarks
These benchmarks measure realistic composition scenarios using F.Pipe.
### Simple Map Pipeline
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
| Pipeline Map (Left) | 116.8 | **47.2** | **2.5x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
### Chain Pipeline
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
| Pipeline Chain (Left) | 86.4 | **25.7** | **3.4x** ✓ | 48 B, 2 allocs | 24 B, 1 allocs |
### Complex Pipeline (Map → Chain → Map)
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Complex (Right) | 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
| Complex (Left) | 288.1 | **115.8** | **2.5x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
**Analysis:**
- Idiomatic package shows **2-3.4x speedup** for realistic pipelines
- Significantly fewer allocations in all pipeline scenarios
- The gap widens as pipelines become more complex
## Array/Collection Operations
### TraverseArray
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| TraverseArray (Success) | - | 32.3 | 48 B, 1 alloc |
| TraverseArray (Error) | - | 28.3 | 48 B, 1 alloc |
**Analysis:** Idiomatic package provides efficient array traversal with minimal allocations.
## Validation (ApV)
### ApV Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| ApV (BothRight) | - | 1.17 | - | - | 0 B/op |
| ApV (BothLeft) | - | 141.5 | - | - | 48 B, 2 allocs |
**Analysis:** Idiomatic's validation applicative shows fast success path, with allocations only when accumulating errors.
## String Formatting
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| String/ToString (Right) | 139.9 | **81.8** | **1.7x** ✓ | 16 B, 1 alloc | 16 B, 1 alloc |
| String/ToString (Left) | 161.6 | **72.7** | **2.2x** ✓ | 48 B, 1 alloc | 24 B, 1 alloc |
**Analysis:** Idiomatic package formats strings faster with fewer allocations for Left values.
## Do-Notation
| Operation | Either (ns/op) | Idiomatic (ns/op) | Note |
|-----------|----------------|-------------------|------|
| Do | 2.03 | - | Either-specific |
| Bind | 153.4 | - | 96 B, 4 allocs |
| Let | 33.5 | - | 16 B, 1 alloc |
**Analysis:** Do-notation is specific to Either package for monadic composition patterns.
## Summary Statistics
### Simple Operations (< 10 ns/op)
**Either Package:**
- Count: 24 operations
- Average: 3.2 ns/op
- Range: 1.24 - 9.01 ns/op
**Idiomatic Package:**
- Count: 36 operations
- Average: 2.1 ns/op
- Range: 1.17 - 5.03 ns/op
**Winner:** Idiomatic (1.5x faster average)
### Complex Operations (Pipelines, allocations)
**Either Package:**
- Pipeline Map: 112.7 ns/op (72 B, 3 allocs)
- Pipeline Chain: 74.4 ns/op (48 B, 2 allocs)
- Complex: 279.8 ns/op (192 B, 8 allocs)
- ChainFirst: 87.6 ns/op (72 B, 3 allocs)
**Idiomatic Package:**
- Pipeline Map: 46.5 ns/op (48 B, 2 allocs)
- Pipeline Chain: 26.1 ns/op (24 B, 1 allocs)
- Complex: 116.3 ns/op (120 B, 5 allocs)
- ChainFirst: 2.71 ns/op (0 B, 0 allocs)
**Winner:** Idiomatic (2-32x faster, significantly fewer allocations)
### Allocation Analysis
**Either Package:**
- Zero-allocation operations: Most simple operations
- Operations with allocations: Pipelines, Bind, Do-notation, ChainFirst
**Idiomatic Package:**
- Zero-allocation operations: Almost all operations except pipelines and validation
- Significantly fewer allocations in pipeline scenarios
- ChainFirst: **Zero allocations** (vs 72 B in Either)
## Performance Characteristics
### Where Either Package Excels
1. **Comparable to Idiomatic**: After optimizations, Either matches Idiomatic for constructors and predicates
2. **Feature Richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
3. **Type Flexibility**: Full Either[E, A] with custom error types
### Where Idiomatic Package Excels
1. **Core Operations**: 1.2-2.3x faster for Map, Chain, Fold
2. **Complex Operations**: 32x faster for ChainFirst
3. **Pipelines**: 2-3.4x faster with fewer allocations
4. **Extraction**: 3-6x faster for GetOrElse
5. **Alternative**: 2x faster for Alt/OrElse
6. **BiMap**: 3-4x faster
7. **Consistency**: More predictable performance profile
## Real-World Performance Impact
### Hot Path Example (1 million operations)
```go
// Map operation (very common)
// Either: 5.13 ns/op × 1M = 5.13 ms
// Idiomatic: 4.34 ns/op × 1M = 4.34 ms
// Savings: 0.79 ms per million operations
// Chain operation (common in pipelines)
// Either: 5.44 ns/op × 1M = 5.44 ms
// Idiomatic: 2.34 ns/op × 1M = 2.34 ms
// Savings: 3.10 ms per million operations
// Pipeline Complex (realistic composition)
// Either: 279.8 ns/op × 1M = 279.8 ms
// Idiomatic: 116.3 ns/op × 1M = 116.3 ms
// Savings: 163.5 ms per million operations
```
### Memory Impact
For 1 million ChainFirst operations:
- Either: 72 MB allocated
- Idiomatic: 0 MB allocated
- **Savings: 72 MB + reduced GC pressure**
## Recommendations
### Use Idiomatic Package When:
1. **Performance is Critical**
- Hot paths in your application
- High-throughput services (>10k req/s)
- Complex operation chains
- Memory-constrained environments
2. **Natural Go Integration**
- Working with stdlib (value, error) patterns
- Team familiar with Go idioms
- Simple migration from existing code
- Want zero-cost abstractions
3. **Pipeline-Heavy Code**
- 2-3.4x faster pipelines
- Significantly fewer allocations
- Better CPU cache utilization
### Use Either Package When:
1. **Feature Requirements**
- Need custom error types (Either[E, A])
- Using Do-notation for complex compositions
- Need Flatten, Swap, or other Either-specific operations
- Porting from FP languages (Scala, Haskell)
2. **Type Safety Over Performance**
- Explicit Either semantics
- Algebraic data type guarantees
- Teaching/learning FP concepts
3. **Moderate Performance Needs**
- After optimizations, Either is quite fast
- Difference matters only at high scale
- Code clarity > micro-optimizations
### Hybrid Approach
```go
// Use Either for complex type safety
import "github.com/IBM/fp-go/v2/either"
type ValidationError struct { Field, Message string }
validated := either.Either[ValidationError, Input]{...}
// Convert to Idiomatic for hot path
import "github.com/IBM/fp-go/v2/idiomatic/result"
value, err := either.UnwrapError(either.MapLeft(toError)(validated))
processed, err := result.Chain(hotPathProcessing)(value, err)
```
## Conclusion
After optimizations to the Either package:
1. **Both packages achieve zero heap allocations for constructors** - The Either struct (24 bytes) does NOT escape to heap
2. **Simple operations** are now **comparable** between both packages (~1-2 ns/op, 0 B/op)
3. **Core transformations** favor Idiomatic by **1.2-2.3x**
4. **Complex operations** heavily favor Idiomatic by **2-32x**
5. **Memory efficiency** strongly favors Idiomatic (especially ChainFirst: 72 B → 0 B)
6. **Real-world pipelines** show **2-3.4x speedup** with Idiomatic
### Key Insight: No Heap Escape Myth
A critical finding: **Both packages avoid heap allocations for simple operations.** The Either struct is small enough (24 bytes) that Go returns it by value on the stack, not the heap. The `0 B/op, 0 allocs/op` benchmarks confirm this.
The performance differences come from:
- **Function composition overhead** in complex operations
- **Currying and closure creation** in pipelines
- **Tuple simplicity** vs struct field access
Not from constructor allocations—both are equally efficient there.
### Final Verdict
The idiomatic package provides a compelling performance advantage for production workloads while maintaining zero-cost functional programming abstractions. The Either package remains excellent for type safety, feature richness, and scenarios where explicit Either[E, A] semantics are valuable.
**Bottom Line:**
- For **high-performance Go services**: idiomatic package is the clear winner (1.2-32x faster)
- For **type-safe, feature-rich FP**: Either package is excellent (comparable simple ops, more features)
- **Both avoid heap allocations** for constructors—choose based on your performance vs features trade-off

View File

@@ -0,0 +1,344 @@
# Deep Chaining Performance Analysis
## Executive Summary
The **only remaining performance gap** between `v2/option` and `idiomatic/option` is in **deep chaining operations** (multiple sequential transformations). This document demonstrates the problem, explains the root cause, and provides recommendations.
## Benchmark Results
### v2/option (Struct-based)
```
BenchmarkChain_3Steps 8.17 ns/op 0 allocs
BenchmarkChain_5Steps 16.57 ns/op 0 allocs
BenchmarkChain_10Steps 47.01 ns/op 0 allocs
BenchmarkMap_5Steps 0.28 ns/op 0 allocs ⚡
```
### idiomatic/option (Tuple-based)
```
BenchmarkChain_3Steps 0.22 ns/op 0 allocs ⚡
BenchmarkChain_5Steps 0.22 ns/op 0 allocs ⚡
BenchmarkChain_10Steps 0.21 ns/op 0 allocs ⚡
BenchmarkMap_5Steps 0.22 ns/op 0 allocs ⚡
```
### Performance Comparison
| Steps | v2/option | idiomatic/option | Slowdown |
|-------|-----------|------------------|----------|
| 3 | 8.17 ns | 0.22 ns | **37x slower** |
| 5 | 16.57 ns | 0.22 ns | **75x slower** |
| 10 | 47.01 ns | 0.21 ns | **224x slower** |
**Key Finding**: The performance gap **increases linearly** with chain depth!
---
## Visual Example: The Problem
### Scenario: Processing User Input
```go
// Process user input through multiple validation steps
input := "42"
// v2/option - Nested MonadChain
result := MonadChain(
MonadChain(
MonadChain(
Some(input),
validateNotEmpty, // Step 1
),
parseToInt, // Step 2
),
validateRange, // Step 3
)
```
### What Happens Under the Hood
#### v2/option (Struct Construction Overhead)
```go
// Step 0: Initial value
Some(input)
// Creates: Option[string]{value: "42", isSome: true}
// Memory: HEAP allocation
// Step 1: Validate not empty
MonadChain(opt, validateNotEmpty)
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
// Output: Option[string]{value: "42", isSome: true} ← NEW heap allocation
// Memory: 2 heap allocations
// Step 2: Parse to int
MonadChain(opt, parseToInt)
// Input: Option[string]{value: "42", isSome: true} ← Read from heap
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
// Memory: 3 heap allocations
// Step 3: Validate range
MonadChain(opt, validateRange)
// Input: Option[int]{value: 42, isSome: true} ← Read from heap
// Output: Option[int]{value: 42, isSome: true} ← NEW heap allocation
// Memory: 4 heap allocations TOTAL
// Each step:
// 1. Reads Option struct from memory
// 2. Checks isSome field
// 3. Calls function
// 4. Creates NEW Option struct
// 5. Writes to memory
```
#### idiomatic/option (Zero Allocation)
```go
// Step 0: Initial value
s, ok := Some(input)
// Creates: ("42", true)
// Memory: STACK only (registers)
// Step 1: Validate not empty
v1, ok1 := Chain(validateNotEmpty)(s, ok)
// Input: ("42", true) ← Values in registers
// Output: ("42", true) ← Values in registers
// Memory: ZERO allocations
// Step 2: Parse to int
v2, ok2 := Chain(parseToInt)(v1, ok1)
// Input: ("42", true) ← Values in registers
// Output: (42, true) ← Values in registers
// Memory: ZERO allocations
// Step 3: Validate range
v3, ok3 := Chain(validateRange)(v2, ok2)
// Input: (42, true) ← Values in registers
// Output: (42, true) ← Values in registers
// Memory: ZERO allocations TOTAL
// Each step:
// 1. Reads values from registers (no memory access!)
// 2. Checks bool flag
// 3. Calls function
// 4. Returns new tuple (stays in registers)
// 5. Compiler optimizes everything away!
```
---
## Assembly-Level Difference
### v2/option - Struct Overhead
```asm
; Every chain step does:
MOV RAX, [heap_ptr] ; Load struct from heap
TEST BYTE [RAX+8], 1 ; Check isSome field
JZ none_case ; Branch if None
MOV RDI, [RAX] ; Load value from struct
CALL transform_func ; Call the function
CALL malloc ; Allocate new struct ⚠️
MOV [new_ptr], result ; Store result
MOV [new_ptr+8], 1 ; Set isSome = true
```
### idiomatic/option - Optimized Away
```asm
; All steps compiled to:
MOV EAX, 42 ; The final result!
; Everything else optimized away! ⚡
```
**Compiler insight**: With tuples, the Go compiler can:
1. **Inline everything** - No function call overhead
2. **Eliminate branches** - Constant propagation removes `if ok` checks
3. **Use registers only** - Values never touch memory
4. **Dead code elimination** - Removes unnecessary operations
---
## Real-World Example with Timings
### Example: User Registration Validation Chain
```go
// Validate: email → trim → lowercase → check format → check uniqueness
```
#### v2/option Performance
```go
func ValidateEmail_v2(email string) Option[string] {
return MonadChain(
MonadChain(
MonadChain(
MonadChain(
Some(email),
trimWhitespace, // ~2 ns
),
toLowerCase, // ~2 ns
),
validateFormat, // ~2 ns
),
checkUniqueness, // ~2 ns
)
}
// Total: ~8-16 ns (matches our 5-step benchmark: 16.57 ns)
```
#### idiomatic/option Performance
```go
func ValidateEmail_idiomatic(email string) (string, bool) {
v1, ok1 := Chain(trimWhitespace)(email, true)
v2, ok2 := Chain(toLowerCase)(v1, ok1)
v3, ok3 := Chain(validateFormat)(v2, ok2)
return Chain(checkUniqueness)(v3, ok3)
}
// Total: ~0.22 ns (entire chain optimized to single operation!)
```
**Impact**: For 1 million validations:
- v2/option: 16.57 ms
- idiomatic/option: 0.22 ms
- **Difference: 75x faster = saved 16.35 ms**
---
## Why Map is Fast in v2/option
Interestingly, `Map` (pure transformations) is **much faster** than `Chain`:
```
v2/option:
- BenchmarkChain_5Steps: 16.57 ns
- BenchmarkMap_5Steps: 0.28 ns ← 59x FASTER!
```
**Reason**: Map transformations can be **inlined and fused** by the compiler:
```go
// This:
Map(f5)(Map(f4)(Map(f3)(Map(f2)(Map(f1)(opt)))))
// Becomes (after compiler optimization):
Some(f5(f4(f3(f2(f1(value)))))) // Single struct construction!
// While Chain cannot be optimized the same way:
MonadChain(MonadChain(...)) // Must construct at each step
```
---
## When Does This Matter?
### ⚠️ **Rarely Critical** (99% of use cases)
Even 10-step chains only cost **47 nanoseconds**. For context:
- Database query: **~1,000,000 ns** (1 ms)
- HTTP request: **~10,000,000 ns** (10 ms)
- File I/O: **~100,000 ns** (0.1 ms)
**The 47 ns overhead is negligible compared to real I/O operations.**
### ⚡ **Can Matter** (High-throughput scenarios)
1. **In-memory data processing pipelines**
```go
// Processing 10 million records with 5-step validation
v2/option: 165 ms
idiomatic/option: 2 ms
Difference: 163 ms saved ⚡
```
2. **Real-time stream processing**
- Processing 100k events/second with chained transformations
- 16.57 ns × 100,000 = 1.66 ms vs 0.22 ns × 100,000 = 0.022 ms
- Can affect throughput for high-frequency trading, gaming, etc.
3. **Tight inner loops with chained logic**
```go
for i := 0; i < 1_000_000; i++ {
result := Chain(f1).Chain(f2).Chain(f3).Chain(f4)(data[i])
}
// v2/option: 16 ms
// idiomatic: 0.22 ms
```
---
## Root Cause Summary
| Aspect | v2/option | idiomatic/option | Why? |
|--------|-----------|------------------|------|
| **Intermediate values** | `Option[T]` struct | `(T, bool)` tuple | Struct requires memory, tuple can use registers |
| **Memory allocation** | 1 per step | 0 total | Heap vs stack |
| **Compiler optimization** | Limited | Aggressive | Structs block inlining |
| **Cache impact** | Heap reads | Register-only | Memory bandwidth saved |
| **Branch prediction** | Struct checks | Optimized away | Compiler removes branches |
---
## Recommendations
### ✅ **Use v2/option When:**
- I/O-bound operations (database, network, files)
- User-facing applications (latency dominated by I/O)
- Need JSON marshaling, TryCatch, SequenceArray
- Chain depth < 5 steps (overhead < 20 ns - negligible)
- Code clarity > microsecond performance
### ✅ **Use idiomatic/option When:**
- CPU-bound data processing
- High-throughput stream processing
- Tight inner loops with chaining
- In-memory analytics
- Performance-critical paths
- Chain depth > 5 steps
### ✅ **Mitigation for v2/option:**
If you need v2/option but want better chain performance:
1. **Use Map instead of Chain** when possible:
```go
// Bad (16.57 ns):
MonadChain(MonadChain(MonadChain(opt, f1), f2), f3)
// Good (0.28 ns):
Map(f3)(Map(f2)(Map(f1)(opt)))
```
2. **Batch operations**:
```go
// Instead of chaining many steps:
validate := func(x T) Option[T] {
// Combine multiple checks in one function
if check1(x) && check2(x) && check3(x) {
return Some(transform(x))
}
return None[T]()
}
```
3. **Profile first**:
- Only optimize hot paths
- 47 ns is often acceptable
- Don't premature optimize
---
## Conclusion
**The deep chaining performance gap is:**
- ✅ **Real and measurable** (37-224x slower)
- ✅ **Well understood** (struct construction overhead)
- ⚠️ **Rarely critical** (nanosecond differences usually don't matter)
- ✅ **Easy to work around** (use Map, batch operations)
- ✅ **Worth it for the API benefits** (JSON, methods, helpers)
**For 99% of applications, v2/option's performance is excellent.** The gap only matters in specialized high-throughput scenarios where you should probably use idiomatic/option anyway.
The optimizations already applied (`//go:inline`, direct field access) brought v2/option to **competitive parity** for all practical purposes. The remaining gap is a **fundamental design trade-off**, not a fixable bug.

816
v2/IDIOMATIC_COMPARISON.md Normal file
View File

@@ -0,0 +1,816 @@
# Idiomatic vs Standard Package Comparison
> **Latest Update:** 2025-11-18 - Updated with fresh benchmarks after `either` package optimizations
This document provides a comprehensive comparison between the `idiomatic` packages and the standard fp-go packages (`result` and `option`).
**See also:** [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md) for detailed performance analysis.
## Table of Contents
1. [Overview](#overview)
2. [Design Differences](#design-differences)
3. [Performance Comparison](#performance-comparison)
4. [API Comparison](#api-comparison)
5. [When to Use Each](#when-to-use-each)
## Overview
The fp-go library provides two approaches to functional programming patterns in Go:
- **Standard Packages** (`result`, `either`, `option`): Use struct wrappers for algebraic data types
- **Idiomatic Packages** (`idiomatic/result`, `idiomatic/option`): Use native Go tuples for the same patterns
### Key Insight
After recent optimizations to the `either` package, both approaches now offer excellent performance:
- **Simple operations** (~1-5 ns/op): Both packages perform comparably
- **Core transformations**: Idiomatic is **1.2-2.3x faster**
- **Complex operations**: Idiomatic is **2-32x faster** with significantly fewer allocations
- **Real-world pipelines**: Idiomatic shows **2-3.4x speedup**
The idiomatic packages provide:
- Consistently better performance across most operations
- Zero allocations for complex operations (ChainFirst: 72 B → 0 B)
- More familiar Go idioms
- Seamless integration with existing Go code
## Design Differences
### Data Representation
#### Standard Result Package
```go
// Uses Either[error, A] which is a struct wrapper
type Result[A any] = Either[error, A]
type Either[E, A any] struct {
r A
l E
isLeft bool
}
// Creating values - ZERO heap allocations (struct returned by value)
success := result.Right[error](42) // Returns Either struct by value (0 B/op)
failure := result.Left[int](err) // Returns Either struct by value (0 B/op)
// Benchmarks confirm:
// BenchmarkRight-16 871258489 1.384 ns/op 0 B/op 0 allocs/op
// BenchmarkLeft-16 683089270 1.761 ns/op 0 B/op 0 allocs/op
```
#### Idiomatic Result Package
```go
// Uses native Go tuples (value, error)
type Kleisli[A, B any] = func(A) (B, error)
type Operator[A, B any] = func(A, error) (B, error)
// Creating values - ZERO allocations (tuples on stack)
success := result.Right(42) // Returns (42, nil) - 0 B/op
failure := result.Left[int](err) // Returns (0, err) - 0 B/op
// Benchmarks confirm:
// BenchmarkRight-16 789879016 1.427 ns/op 0 B/op 0 allocs/op
// BenchmarkLeft-16 895412131 1.349 ns/op 0 B/op 0 allocs/op
```
### Type Signatures
#### Standard Result
```go
// Functions take and return Result[T] structs
func Map[A, B any](f func(A) B) func(Result[A]) Result[B]
func Chain[A, B any](f Kleisli[A, B]) func(Result[A]) Result[B]
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(Result[A]) B
// Usage requires wrapping/unwrapping
result := result.Right[error](42)
mapped := result.Map(double)(result)
value, err := result.UnwrapError(mapped)
```
#### Idiomatic Result
```go
// Functions work directly with tuples
func Map[A, B any](f func(A) B) func(A, error) (B, error)
func Chain[A, B any](f Kleisli[A, B]) func(A, error) (B, error)
func Fold[A, B any](onLeft func(error) B, onRight func(A) B) func(A, error) B
// Usage works naturally with Go's error handling
value, err := result.Right(42)
value, err = result.Map(double)(value, err)
// Can use directly: if err != nil { ... }
```
### Memory Layout
#### Standard Result (struct-based)
```
Either[error, int] struct (returned by value):
┌─────────────────────┐
│ r: int (8B) │ Stack allocation: 24 bytes
│ l: error (8B) │ NO heap allocation when returned by value
│ isLeft: bool (1B) │ Benchmarks show 0 B/op, 0 allocs/op
│ padding (7B) │
└─────────────────────┘
Key insight: Go returns small structs (<= ~64 bytes) by value on the stack.
The Either struct (24 bytes) does NOT escape to heap in normal usage.
```
#### Idiomatic Result (tuple-based)
```
(int, error) tuple:
┌─────────────────────┐
│ int: 8 bytes │ Stack allocation: 16 bytes
│ error: 8 bytes │ NO heap allocation
└─────────────────────┘
Both approaches achieve zero heap allocations for constructor operations!
```
### Why Both Have Zero Allocations
Both packages avoid heap allocations for simple operations:
**Standard Either/Result:**
- `Either` struct is small (24 bytes)
- Go returns by value on the stack
- Inlining eliminates function call overhead
- Result: `0 B/op, 0 allocs/op`
**Idiomatic Result:**
- Tuples are native Go multi-value returns
- Always on stack, never heap
- Even simpler than structs
- Result: `0 B/op, 0 allocs/op`
**When Either WOULD escape to heap:**
```go
// Taking address of local Either
func bad1() *Either[error, int] {
e := Right[error](42)
return &e // ESCAPES: pointer to local
}
// Storing in interface
func bad2() interface{} {
return Right[error](42) // ESCAPES: interface boxing
}
// Closure capture with pointer receiver
func bad3() func() Either[error, int] {
e := Right[error](42)
return func() Either[error, int] {
return e // May escape depending on usage
}
}
```
In normal functional composition (Map, Chain, Fold), neither package causes heap allocations for simple operations.
## Performance Comparison
> **Latest benchmarks:** 2025-11-18 after `either` package optimizations
>
> For detailed analysis, see [BENCHMARK_COMPARISON.md](./BENCHMARK_COMPARISON.md)
### Quick Summary (Either vs Idiomatic)
Both packages now show **excellent performance** after optimizations:
| Category | Either | Idiomatic | Winner | Speedup |
|----------|--------|-----------|--------|---------|
| **Constructors** | 1.4-1.8 ns/op | 1.2-1.4 ns/op | **TIE** | ~1.0-1.3x |
| **Predicates** | 1.5 ns/op | 1.3-1.5 ns/op | **TIE** | ~1.0x |
| **Map Operations** | 4.2-7.2 ns/op | 2.5-4.3 ns/op | **Idiomatic** | 1.2-2.1x |
| **Chain Operations** | 4.4-5.4 ns/op | 2.3-2.5 ns/op | **Idiomatic** | 1.8-2.3x |
| **ChainFirst** | **87.6 ns/op** (72 B) | **2.7 ns/op** (0 B) | **Idiomatic** | **32.4x** ✓✓✓ |
| **BiMap** | 11.5-16.8 ns/op | 3.5-3.8 ns/op | **Idiomatic** | 3.3-4.4x |
| **Alt/OrElse** | 4.0-5.7 ns/op | 2.4 ns/op | **Idiomatic** | 1.6-2.4x |
| **GetOrElse** | 6.3-9.0 ns/op | 1.5-2.1 ns/op | **Idiomatic** | 3.1-6.1x |
| **Pipelines** | 75-280 ns/op | 26-116 ns/op | **Idiomatic** | 2.4-3.4x |
### Constructor Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|-----------|----------------|-------------------|---------|--------|
| Left | 1.76 | **1.35** | 1.3x | Idiomatic ✓ |
| Right | 1.38 | 1.43 | ~1.0x | Tie |
| Of | 1.68 | **1.22** | 1.4x | Idiomatic ✓ |
**Analysis:** After optimizations, both packages have comparable constructor performance.
### Core Transformation Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|------------------|----------------|-------------------|---------|--------|
| Map (Right) | 5.13 | **4.34** | 1.2x | Idiomatic ✓ |
| Map (Left) | 4.19 | **2.48** | 1.7x | Idiomatic ✓ |
| MapLeft (Right) | 3.93 | **2.22** | 1.8x | Idiomatic ✓ |
| MapLeft (Left) | 7.22 | **3.51** | 2.1x | Idiomatic ✓ |
| Chain (Right) | 5.44 | **2.34** | 2.3x | Idiomatic ✓ |
| Chain (Left) | 4.44 | **2.53** | 1.8x | Idiomatic ✓ |
### Complex Operations - The Big Difference
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------------------|----------------|-------------------|---------|---------------|-------------|
| **ChainFirst (Right)** | **87.62** | **2.71** | **32.4x** ✓✓✓ | 72 B, 3 allocs | **0 B, 0 allocs** |
| ChainFirst (Left) | 3.94 | 2.48 | 1.6x | 0 B | 0 B |
| BiMap (Right) | 16.79 | **3.82** | 4.4x | 0 B | 0 B |
| BiMap (Left) | 11.47 | **3.47** | 3.3x | 0 B | 0 B |
**Critical Insight:** ChainFirst shows the most dramatic difference - **32x faster** with **zero allocations** in idiomatic.
### Pipeline Benchmarks (Real-World Scenarios)
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Either Allocs | Idio Allocs |
|-----------|----------------|-------------------|---------|---------------|-------------|
| Pipeline Map (Right) | 112.7 | **46.5** | **2.4x** ✓ | 72 B, 3 allocs | 48 B, 2 allocs |
| Pipeline Chain (Right) | 74.4 | **26.1** | **2.9x** ✓ | 48 B, 2 allocs | 24 B, 1 alloc |
| Pipeline Complex (Right)| 279.8 | **116.3** | **2.4x** ✓ | 192 B, 8 allocs | 120 B, 5 allocs |
**Analysis:** In realistic composition scenarios, idiomatic is consistently 2-3x faster with fewer allocations.
### Extraction Operations
| Operation | Either (ns/op) | Idiomatic (ns/op) | Speedup | Winner |
|-----------|----------------|-------------------|---------|--------|
| GetOrElse (Right) | 9.01 | **1.49** | **6.1x** ✓✓ | Idiomatic |
| GetOrElse (Left) | 6.35 | **2.08** | **3.1x** ✓✓ | Idiomatic |
| Alt (Right) | 5.72 | **2.40** | **2.4x** ✓ | Idiomatic |
| Alt (Left) | 4.89 | **2.39** | **2.0x** ✓ | Idiomatic |
| Fold (Right) | 4.03 | **2.75** | **1.5x** ✓ | Idiomatic |
| Fold (Left) | 3.69 | **2.40** | **1.5x** ✓ | Idiomatic |
**Analysis:** Idiomatic shows significant advantages (1.5-6x) for value extraction operations.
### Key Findings After Optimizations
1. **Both packages are now fast** - Simple operations are in the 1-5 ns/op range for both
2. **Idiomatic leads in most operations** - 1.2-2.3x faster for common transformations
3. **ChainFirst is the standout** - 32x faster with zero allocations in idiomatic
4. **Pipelines favor idiomatic** - 2-3.4x faster in realistic composition scenarios
5. **Memory efficiency** - Idiomatic consistently uses fewer allocations
### Performance Summary
**Idiomatic Advantages:**
- **Core operations**: 1.2-2.3x faster for Map, Chain, Fold
- **Complex operations**: 3-32x faster with zero allocations
- **Pipelines**: 2-3.4x faster with significantly fewer allocations
- **Extraction**: 1.5-6x faster for GetOrElse, Alt, Fold
- **Consistency**: Predictable, fast performance across all operations
**Either Advantages:**
- **Comparable performance**: After optimizations, matches idiomatic for simple operations
- **Feature richness**: More operations (Do-notation, Bind, Let, Flatten, Swap)
- **Type flexibility**: Full Either[E, A] with custom error types
- **Zero allocations**: Most simple operations have zero allocations
## API Comparison
### Creating Values
#### Standard Result
```go
import "github.com/IBM/fp-go/v2/result"
// Create success/failure
success := result.Right[error](42)
failure := result.Left[int](errors.New("oops"))
// Type annotation required
var r result.Result[int] = result.Right[error](42)
```
#### Idiomatic Result
```go
import "github.com/IBM/fp-go/v2/idiomatic/result"
// Create success/failure (more concise)
success := result.Right(42) // (42, nil)
failure := result.Left[int](errors.New("oops")) // (0, error)
// Native Go pattern
value, err := result.Right(42)
if err != nil {
// handle error
}
```
### Transforming Values
#### Standard Result
```go
// Map transforms the success value
double := result.Map(func(x int) int { return x * 2 })
result := double(result.Right[error](21)) // Right(42)
// Chain sequences operations
validate := result.Chain(func(x int) result.Result[int] {
if x > 0 {
return result.Right[error](x * 2)
}
return result.Left[int](errors.New("negative"))
})
```
#### Idiomatic Result
```go
// Map transforms the success value
double := result.Map(func(x int) int { return x * 2 })
value, err := double(21, nil) // (42, nil)
// Chain sequences operations
validate := result.Chain(func(x int) (int, error) {
if x > 0 {
return x * 2, nil
}
return 0, errors.New("negative")
})
```
### Pattern Matching
#### Standard Result
```go
// Fold extracts the value
output := result.Fold(
func(err error) string { return "Error: " + err.Error() },
func(n int) string { return fmt.Sprintf("Value: %d", n) },
)(myResult)
// GetOrElse with default
value := result.GetOrElse(func(err error) int { return 0 })(myResult)
```
#### Idiomatic Result
```go
// Fold extracts the value (same API, different input)
output := result.Fold(
func(err error) string { return "Error: " + err.Error() },
func(n int) string { return fmt.Sprintf("Value: %d", n) },
)(value, err)
// GetOrElse with default
value := result.GetOrElse(func(err error) int { return 0 })(value, err)
// Or use native Go pattern
if err != nil {
value = 0
}
```
### Integration with Existing Code
#### Standard Result
```go
// Converting from (value, error) to Result
func doSomething() (int, error) {
return 42, nil
}
result := result.TryCatchError(doSomething())
// Converting back to (value, error)
value, err := result.UnwrapError(result)
```
#### Idiomatic Result
```go
// Direct compatibility with (value, error)
func doSomething() (int, error) {
return 42, nil
}
// No conversion needed!
value, err := doSomething()
value, err = result.Map(double)(value, err)
```
### Pipeline Composition
#### Standard Result
```go
import F "github.com/IBM/fp-go/v2/function"
output := F.Pipe3(
result.Right[error](10),
result.Map(double),
result.Chain(validate),
result.Map(format),
)
// Need to unwrap at the end
value, err := result.UnwrapError(output)
```
#### Idiomatic Result
```go
import F "github.com/IBM/fp-go/v2/function"
value, err := F.Pipe3(
result.Right(10),
result.Map(double),
result.Chain(validate),
result.Map(format),
)
// Already in (value, error) form
if err != nil {
// handle error
}
```
## Detailed Design Comparison
### Type System
#### Standard Result
**Strengths:**
- Full algebraic data type semantics
- Explicit Either[E, A] allows custom error types
- Type-safe by construction
- Clear separation of error and success channels
**Weaknesses:**
- Requires wrapper structs (memory overhead)
- Less familiar to Go developers
- Needs conversion functions for Go's standard library
- More verbose type annotations
#### Idiomatic Result
**Strengths:**
- Native Go idioms (value, error) pattern
- Zero wrapper overhead
- Seamless stdlib integration
- Familiar to all Go developers
- Terser syntax
**Weaknesses:**
- Error type fixed to `error`
- Less explicit about Either semantics
- Cannot use custom error types without conversion
- Slightly less type-safe (can accidentally ignore bool/error)
### Monad Laws
Both packages satisfy the monad laws, but enforce them differently:
#### Standard Result
```go
// Left identity: return a >>= f ≡ f a
assert.Equal(
result.Chain(f)(result.Of(a)),
f(a),
)
// Right identity: m >>= return ≡ m
assert.Equal(
result.Chain(result.Of[int])(m),
m,
)
// Associativity: (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)
assert.Equal(
result.Chain(g)(result.Chain(f)(m)),
result.Chain(func(x int) result.Result[int] {
return result.Chain(g)(f(x))
})(m),
)
```
#### Idiomatic Result
```go
// Same laws, different syntax
// Left identity
a, aerr := result.Of(val)
b, berr := result.Chain(f)(a, aerr)
c, cerr := f(val)
assert.Equal((b, berr), (c, cerr))
// Right identity
value, err := m()
identity := result.Chain(result.Of[int])
assert.Equal(identity(value, err), (value, err))
// Associativity (same structure, tuple-based)
```
### Error Handling Philosophy
#### Standard Result
```go
// Explicit error handling through types
func processUser(id int) result.Result[User] {
user := fetchUser(id) // Returns Result[User]
return F.Pipe2(
user,
result.Chain(validateUser),
result.Chain(enrichUser),
)
}
// Must explicitly unwrap
user, err := result.UnwrapError(processUser(42))
if err != nil {
log.Error(err)
}
```
#### Idiomatic Result
```go
// Natural Go error handling
func processUser(id int) (User, error) {
user, err := fetchUser(id) // Returns (User, error)
return F.Pipe2(
(user, err),
result.Chain(validateUser),
result.Chain(enrichUser),
)
}
// Already in Go form
user, err := processUser(42)
if err != nil {
log.Error(err)
}
```
### Composition Patterns
#### Standard Result
```go
// Applicative composition
import A "github.com/IBM/fp-go/v2/apply"
type Config struct {
Host string
Port int
DB string
}
config := A.SequenceT3(
result.FromPredicate(validHost, hostError)(host),
result.FromPredicate(validPort, portError)(port),
result.FromPredicate(validDB, dbError)(db),
)(func(h string, p int, d string) Config {
return Config{h, p, d}
})
```
#### Idiomatic Result
```go
// Direct tuple composition
config, err := func() (Config, error) {
host, err := result.FromPredicate(validHost, hostError)(host)
if err != nil {
return Config{}, err
}
port, err := result.FromPredicate(validPort, portError)(port)
if err != nil {
return Config{}, err
}
db, err := result.FromPredicate(validDB, dbError)(db)
if err != nil {
return Config{}, err
}
return Config{host, port, db}, nil
}()
```
## When to Use Each
### Use Idiomatic Result When (Recommended for Most Cases):
1. **Performance Matters**
- Any production service (web servers, APIs, microservices)
- Hot paths and high-throughput scenarios (>1000 req/s)
- Complex operation chains (**32x faster** ChainFirst)
- Real-world pipelines (**2-3x faster**)
- Memory-constrained environments (zero allocations)
- Want **1.2-6x speedup** across most operations
2. **Go Integration** ⭐⭐
- Working with existing Go codebases
- Interfacing with standard library (native (value, error))
- Team familiar with Go, new to FP
- Want zero-cost functional abstractions
- Seamless error handling patterns
3. **Pragmatic Functional Programming**
- Value performance AND functional patterns
- Prefer Go idioms over FP terminology
- Simpler function signatures
- Lower cognitive overhead
- Production-ready patterns
4. **Real-World Applications**
- Web servers, REST APIs, gRPC services
- CLI tools and command-line applications
- Data processing pipelines
- Any latency-sensitive application
- Systems with tight performance budgets
**Performance Gains:** Use idiomatic for 1.2-32x speedup depending on operation, with consistently lower allocations.
### Use Standard Either/Result When:
1. **Type Safety & Flexibility**
- Need explicit Either[E, A] with **custom error types**
- Building domain-specific error hierarchies
- Want to distinguish different error categories at type level
- Type system enforcement is critical
2. **Advanced FP Features**
- Using Do-notation for complex monadic compositions
- Need operations like Flatten, Swap, Bind, Let
- Leveraging advanced type classes (Semigroup, Monoid)
- Want the complete FP toolkit
3. **FP Expertise & Education**
- Porting code from other FP languages (Scala, Haskell)
- Teaching functional programming concepts
- Team has strong FP background
- Explicit algebraic data types preferred
- Code review benefits from FP terminology
4. **Performance is Acceptable**
- After optimizations, Either is **quite fast** (1-5 ns/op for simple operations)
- Difference matters mainly at high scale (millions of operations)
- Code clarity > micro-optimizations
- Simple operations dominate your workload
**Note:** Either package is now performant enough for most use cases. Choose it for features, not performance concerns.
### Hybrid Approach
You can use both packages together:
```go
import (
stdResult "github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/idiomatic/result"
)
// Use standard for complex types
type ValidationError struct {
Field string
Error string
}
func validateInput(input string) stdResult.Either[ValidationError, Input] {
// ... validation logic
}
// Convert to idiomatic for performance
func processInput(input string) (Output, error) {
validated := validateInput(input)
value, err := stdResult.UnwrapError(
stdResult.MapLeft(toError)(validated),
)
// Use idiomatic for hot path
return result.Chain(heavyProcessing)(value, err)
}
```
## Migration Guide
### From Standard to Idiomatic
```go
// Before (standard)
import "github.com/IBM/fp-go/v2/result"
func process(x int) result.Result[int] {
return F.Pipe2(
result.Right[error](x),
result.Map(double),
result.Chain(validate),
)
}
// After (idiomatic)
import "github.com/IBM/fp-go/v2/idiomatic/result"
func process(x int) (int, error) {
return F.Pipe2(
result.Right(x),
result.Map(double),
result.Chain(validate),
)
}
```
### Key Changes
1. **Type signatures**: `Result[T]``(T, error)`
2. **Kleisli**: `func(A) Result[B]``func(A) (B, error)`
3. **Operator**: `func(Result[A]) Result[B]``func(A, error) (B, error)`
4. **Return values**: Function calls return tuples, not wrapped values
5. **Pattern matching**: Same Fold/GetOrElse API, different inputs
## Conclusion
### Performance Summary (After Either Optimizations)
The latest benchmark results show a clear pattern:
**Both packages are now fast**, but idiomatic consistently leads:
- **Constructors & Predicates**: Both ~1-2 ns/op (essentially tied)
- **Core transformations**: Idiomatic **1.2-2.3x faster** (Map, Chain, Fold)
- **Complex operations**: Idiomatic **3-32x faster** (BiMap, ChainFirst)
- **Pipelines**: Idiomatic **2-3.4x faster** with fewer allocations
- **Extraction**: Idiomatic **1.5-6x faster** (GetOrElse, Alt)
**Key Insight:** The idiomatic package delivers **consistently better performance** across the board while maintaining zero-cost abstractions. The Either package is now fast enough for most use cases, but idiomatic is the performance winner.
### Updated Recommendation Matrix
| Scenario | Recommendation | Reason |
|----------|---------------|--------|
| **New Go project** | **Idiomatic** ⭐ | Natural Go patterns, 1.2-6x faster, better integration |
| **Production services** | **Idiomatic** ⭐⭐ | 2-3x faster pipelines, zero allocations, proven performance |
| **Performance critical** | **Idiomatic** ⭐⭐⭐ | 32x faster complex ops, minimal allocations |
| **Microservices/APIs** | **Idiomatic** ⭐⭐ | High throughput, familiar patterns, better performance |
| **CLI Tools** | **Idiomatic** ⭐ | Low overhead, Go idioms, fast |
| Custom error types | Standard/Either | Need Either[E, A] with domain types |
| Learning FP | Standard/Either | Clearer ADT semantics, educational |
| FP-heavy codebase | Standard/Either | Consistency, Do-notation, full FP toolkit |
| Library/Framework | Either way | Both are good; choose based on API style |
### Real-World Impact
For a service handling 10,000 requests/second with typical pipeline operations:
```
Either package: 280 ns/op × 10M req/day = 2,800 seconds = 46.7 minutes
Idiomatic package: 116 ns/op × 10M req/day = 1,160 seconds = 19.3 minutes
Time saved: 27.4 minutes of CPU time per day
```
At scale, this translates to:
- Lower latency (2-3x faster response times for FP operations)
- Reduced CPU usage (fewer cores needed)
- Lower memory pressure (significantly fewer allocations)
- Better resource utilization
### Final Recommendation
**For most Go projects:** Use **idiomatic packages**
- 1.2-32x faster across operations
- Native Go idioms
- Zero-cost abstractions
- Production-proven performance
- Easier integration
**For specialized needs:** Use **standard Either/Result**
- Need custom error types Either[E, A]
- Want Do-notation and advanced FP features
- Porting from FP languages
- Educational/learning context
- FP-heavy existing codebase
### Bottom Line
After optimizations, both packages are excellent:
- **Either/Result**: Fast enough for most use cases, feature-rich, type-safe
- **Idiomatic**: **Faster in practice** (1.2-32x), native Go, zero-cost FP
The idiomatic packages now represent the **best of both worlds**: full functional programming capabilities with Go's native performance and idioms. Unless you specifically need Either[E, A]'s custom error types or advanced FP features, **idiomatic is the recommended choice** for production Go services.
Both maintain the core benefits of functional programming—choose based on whether you prioritize performance & Go integration (idiomatic) or type flexibility & FP features (either).

View File

@@ -0,0 +1,174 @@
# Idiomatic ReadIOResult Functions - Implementation Plan
## Overview
This document outlines the idiomatic functions that should be added to the `readerioresult` package to support Go's native `(value, error)` pattern, similar to what was implemented for `readerresult`.
## Key Concepts
The idiomatic package `github.com/IBM/fp-go/v2/idiomatic/readerioresult` defines:
- `ReaderIOResult[R, A]` as `func(R) func() (A, error)` (idiomatic style)
- This contrasts with `readerioresult.ReaderIOResult[R, A]` which is `Reader[R, IOResult[A]]` (functional style)
## Functions to Add
### In `readerioresult/reader.go`
Add helper functions at the top:
```go
func fromReaderIOResultKleisliI[R, A, B any](f RIORI.Kleisli[R, A, B]) Kleisli[R, A, B] {
return function.Flow2(f, FromReaderIOResultI[R, B])
}
func fromIOResultKleisliI[A, B any](f IORI.Kleisli[A, B]) ioresult.Kleisli[A, B] {
return ioresult.Eitherize1(f)
}
```
### Core Conversion Functions
1. **FromResultI** - Lift `(value, error)` to ReaderIOResult
```go
func FromResultI[R, A any](a A, err error) ReaderIOResult[R, A]
```
2. **FromIOResultI** - Lift idiomatic IOResult to functional
```go
func FromIOResultI[R, A any](ioe func() (A, error)) ReaderIOResult[R, A]
```
3. **FromReaderIOResultI** - Convert idiomatic ReaderIOResult to functional
```go
func FromReaderIOResultI[R, A any](rr RIORI.ReaderIOResult[R, A]) ReaderIOResult[R, A]
```
### Chain Functions
4. **MonadChainI** / **ChainI** - Chain with idiomatic Kleisli
```go
func MonadChainI[R, A, B any](ma ReaderIOResult[R, A], f RIORI.Kleisli[R, A, B]) ReaderIOResult[R, B]
func ChainI[R, A, B any](f RIORI.Kleisli[R, A, B]) Operator[R, A, B]
```
5. **MonadChainEitherIK** / **ChainEitherIK** - Chain with idiomatic Result functions
```go
func MonadChainEitherIK[R, A, B any](ma ReaderIOResult[R, A], f func(A) (B, error)) ReaderIOResult[R, B]
func ChainEitherIK[R, A, B any](f func(A) (B, error)) Operator[R, A, B]
```
6. **MonadChainIOResultIK** / **ChainIOResultIK** - Chain with idiomatic IOResult
```go
func MonadChainIOResultIK[R, A, B any](ma ReaderIOResult[R, A], f func(A) func() (B, error)) ReaderIOResult[R, B]
func ChainIOResultIK[R, A, B any](f func(A) func() (B, error)) Operator[R, A, B]
```
### Applicative Functions
7. **MonadApI** / **ApI** - Apply with idiomatic value
```go
func MonadApI[B, R, A any](fab ReaderIOResult[R, func(A) B], fa RIORI.ReaderIOResult[R, A]) ReaderIOResult[R, B]
func ApI[B, R, A any](fa RIORI.ReaderIOResult[R, A]) Operator[R, func(A) B, B]
```
### Error Handling Functions
8. **OrElseI** - Fallback with idiomatic computation
```go
func OrElseI[R, A any](onLeft RIORI.Kleisli[R, error, A]) Operator[R, A, A]
```
9. **MonadAltI** / **AltI** - Alternative with idiomatic computation
```go
func MonadAltI[R, A any](first ReaderIOResult[R, A], second Lazy[RIORI.ReaderIOResult[R, A]]) ReaderIOResult[R, A]
func AltI[R, A any](second Lazy[RIORI.ReaderIOResult[R, A]]) Operator[R, A, A]
```
### Flatten Functions
10. **FlattenI** - Flatten nested idiomatic ReaderIOResult
```go
func FlattenI[R, A any](mma ReaderIOResult[R, RIORI.ReaderIOResult[R, A]]) ReaderIOResult[R, A]
```
### In `readerioresult/bind.go`
11. **BindI** - Bind with idiomatic Kleisli
```go
func BindI[R, S1, S2, T any](setter func(T) func(S1) S2, f RIORI.Kleisli[R, S1, T]) Operator[R, S1, S2]
```
12. **ApIS** - Apply idiomatic value to state
```go
func ApIS[R, S1, S2, T any](setter func(T) func(S1) S2, fa RIORI.ReaderIOResult[R, T]) Operator[R, S1, S2]
```
13. **ApISL** - Apply idiomatic value using lens
```go
func ApISL[R, S, T any](lens L.Lens[S, T], fa RIORI.ReaderIOResult[R, T]) Operator[R, S, S]
```
14. **BindIL** - Bind idiomatic with lens
```go
func BindIL[R, S, T any](lens L.Lens[S, T], f RIORI.Kleisli[R, T, T]) Operator[R, S, S]
```
15. **BindEitherIK** / **BindResultIK** - Bind idiomatic Result
```go
func BindEitherIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) (T, error)) Operator[R, S1, S2]
func BindResultIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) (T, error)) Operator[R, S1, S2]
```
16. **BindIOResultIK** - Bind idiomatic IOResult
```go
func BindIOResultIK[R, S1, S2, T any](setter func(T) func(S1) S2, f func(S1) func() (T, error)) Operator[R, S1, S2]
```
17. **BindToEitherI** / **BindToResultI** - Initialize from idiomatic pair
```go
func BindToEitherI[R, S1, T any](setter func(T) S1) func(T, error) ReaderIOResult[R, S1]
func BindToResultI[R, S1, T any](setter func(T) S1) func(T, error) ReaderIOResult[R, S1]
```
18. **BindToIOResultI** - Initialize from idiomatic IOResult
```go
func BindToIOResultI[R, S1, T any](setter func(T) S1) func(func() (T, error)) ReaderIOResult[R, S1]
```
19. **ApEitherIS** / **ApResultIS** - Apply idiomatic pair to state
```go
func ApEitherIS[R, S1, S2, T any](setter func(T) func(S1) S2) func(T, error) Operator[R, S1, S2]
func ApResultIS[R, S1, S2, T any](setter func(T) func(S1) S2) func(T, error) Operator[R, S1, S2]
```
20. **ApIOResultIS** - Apply idiomatic IOResult to state
```go
func ApIOResultIS[R, S1, S2, T any](setter func(T) func(S1) S2, fa func() (T, error)) Operator[R, S1, S2]
```
## Testing Strategy
Create `readerioresult/idiomatic_test.go` with:
- Tests for each idiomatic function
- Success and error cases
- Integration tests showing real-world usage patterns
- Parallel execution tests where applicable
- Complex scenarios combining multiple idiomatic functions
## Implementation Priority
1. **High Priority** - Core conversion and chain functions (1-6)
2. **Medium Priority** - Bind functions for do-notation (11-16)
3. **Low Priority** - Advanced applicative and error handling (7-10, 17-20)
## Benefits
1. **Seamless Integration** - Mix Go idiomatic code with functional pipelines
2. **Gradual Adoption** - Convert code incrementally from idiomatic to functional
3. **Interoperability** - Work with existing Go libraries that return `(value, error)`
4. **Consistency** - Mirrors the successful pattern from `readerresult`
## References
- See `readerresult` package for similar implementations
- See `idiomatic/readerresult` for the idiomatic types
- See `idiomatic/ioresult` for IO-level idiomatic patterns

View File

@@ -2,25 +2,152 @@
[![Go Reference](https://pkg.go.dev/badge/github.com/IBM/fp-go/v2.svg)](https://pkg.go.dev/github.com/IBM/fp-go/v2)
[![Coverage Status](https://coveralls.io/repos/github/IBM/fp-go/badge.svg?branch=main&flag=v2)](https://coveralls.io/github/IBM/fp-go?branch=main)
[![Go Report Card](https://goreportcard.com/badge/github.com/IBM/fp-go/v2)](https://goreportcard.com/report/github.com/IBM/fp-go/v2)
Version 2 of fp-go leverages [generic type aliases](https://github.com/golang/go/issues/46477) introduced in Go 1.24, providing a more ergonomic and streamlined API.
**fp-go** is a comprehensive functional programming library for Go, bringing type-safe functional patterns inspired by [fp-ts](https://gcanti.github.io/fp-ts/) to the Go ecosystem. Version 2 leverages [generic type aliases](https://github.com/golang/go/issues/46477) introduced in Go 1.24, providing a more ergonomic and streamlined API.
## 📚 Table of Contents
- [Overview](#-overview)
- [Features](#-features)
- [Requirements](#-requirements)
- [Breaking Changes](#-breaking-changes)
- [Installation](#-installation)
- [Quick Start](#-quick-start)
- [Breaking Changes](#️-breaking-changes)
- [Key Improvements](#-key-improvements)
- [Migration Guide](#-migration-guide)
- [Installation](#-installation)
- [What's New](#-whats-new)
- [Documentation](#-documentation)
- [Contributing](#-contributing)
- [License](#-license)
## 🎯 Overview
fp-go brings the power of functional programming to Go with:
- **Type-safe abstractions** - Monads, Functors, Applicatives, and more
- **Composable operations** - Build complex logic from simple, reusable functions
- **Error handling** - Elegant error management with `Either`, `Result`, and `IOEither`
- **Lazy evaluation** - Control when and how computations execute
- **Optics** - Powerful lens, prism, and traversal operations for immutable data manipulation
## ✨ Features
- 🔒 **Type Safety** - Leverage Go's generics for compile-time guarantees
- 🧩 **Composability** - Chain operations naturally with functional composition
- 📦 **Rich Type System** - `Option`, `Either`, `Result`, `IO`, `Reader`, and more
- 🎯 **Practical** - Designed for real-world Go applications
- 🚀 **Performance** - Zero-cost abstractions where possible
- 📖 **Well-documented** - Comprehensive API documentation and examples
- 🧪 **Battle-tested** - Extensive test coverage
## 🔧 Requirements
- **Go 1.24 or later** (for generic type alias support)
## ⚠️ Breaking Changes
## 📦 Installation
### 1. Generic Type Aliases
```bash
go get github.com/IBM/fp-go/v2
```
## 🚀 Quick Start
### Working with Option
```go
package main
import (
"fmt"
"github.com/IBM/fp-go/v2/option"
)
func main() {
// Create an Option
some := option.Some(42)
none := option.None[int]()
// Map over values
doubled := option.Map(N.Mul(2))(some)
fmt.Println(option.GetOrElse(0)(doubled)) // Output: 84
// Chain operations
result := option.Chain(func(x int) option.Option[string] {
if x > 0 {
return option.Some(fmt.Sprintf("Positive: %d", x))
}
return option.None[string]()
})(some)
fmt.Println(option.GetOrElse("No value")(result)) // Output: Positive: 42
}
```
### Error Handling with Result
```go
package main
import (
"errors"
"fmt"
"github.com/IBM/fp-go/v2/result"
)
func divide(a, b int) result.Result[int] {
if b == 0 {
return result.Error[int](errors.New("division by zero"))
}
return result.Ok(a / b)
}
func main() {
res := divide(10, 2)
// Pattern match on the result
result.Fold(
func(err error) { fmt.Println("Error:", err) },
func(val int) { fmt.Println("Result:", val) },
)(res)
// Output: Result: 5
// Or use GetOrElse for a default value
value := result.GetOrElse(0)(divide(10, 0))
fmt.Println("Value:", value) // Output: Value: 0
}
```
### Composing IO Operations
```go
package main
import (
"fmt"
"github.com/IBM/fp-go/v2/io"
)
func main() {
// Define pure IO operations
readInput := io.MakeIO(func() string {
return "Hello, fp-go!"
})
// Transform the result
uppercase := io.Map(func(s string) string {
return fmt.Sprintf(">>> %s <<<", s)
})(readInput)
// Execute the IO operation
result := uppercase()
fmt.Println(result) // Output: >>> Hello, fp-go! <<<
}
```
### From V1 to V2
#### 1. Generic Type Aliases
V2 uses [generic type aliases](https://github.com/golang/go/issues/46477) which require Go 1.24+. This is the most significant change and enables cleaner type definitions.
@@ -34,7 +161,7 @@ type ReaderIOEither[R, E, A any] RD.Reader[R, IOE.IOEither[E, A]]
type ReaderIOEither[R, E, A any] = RD.Reader[R, IOE.IOEither[E, A]]
```
### 2. Generic Type Parameter Ordering
#### 2. Generic Type Parameter Ordering
Type parameters that **cannot** be inferred from function arguments now come first, improving type inference.
@@ -52,7 +179,7 @@ func Ap[B, R, E, A any](fa ReaderIOEither[R, E, A]) func(ReaderIOEither[R, E, fu
This change allows the Go compiler to infer more types automatically, reducing the need for explicit type parameters.
### 3. Pair Monad Semantics
#### 3. Pair Monad Semantics
Monadic operations for `Pair` now operate on the **second argument** to align with the [Haskell definition](https://hackage.haskell.org/package/TypeCompose-0.9.14/docs/Data-Pair.html).
@@ -60,7 +187,7 @@ Monadic operations for `Pair` now operate on the **second argument** to align wi
```go
// Operations on first element
pair := MakePair(1, "hello")
result := Map(func(x int) int { return x * 2 })(pair) // Pair(2, "hello")
result := Map(N.Mul(2))(pair) // Pair(2, "hello")
```
**V2:**
@@ -70,6 +197,36 @@ pair := MakePair(1, "hello")
result := Map(func(s string) string { return s + "!" })(pair) // Pair(1, "hello!")
```
#### 4. Endomorphism Compose Semantics
The `Compose` function for endomorphisms now follows **mathematical function composition** (right-to-left execution), aligning with standard functional programming conventions.
**V1:**
```go
// Compose executed left-to-right
double := N.Mul(2)
increment := func(x int) int { return x + 1 }
composed := Compose(double, increment)
result := composed(5) // (5 * 2) + 1 = 11
```
**V2:**
```go
// Compose executes RIGHT-TO-LEFT (mathematical composition)
double := N.Mul(2)
increment := func(x int) int { return x + 1 }
composed := Compose(double, increment)
result := composed(5) // (5 + 1) * 2 = 12
// Use MonadChain for LEFT-TO-RIGHT execution
chained := MonadChain(double, increment)
result2 := chained(5) // (5 * 2) + 1 = 11
```
**Key Difference:**
- `Compose(f, g)` now means `f ∘ g`, which applies `g` first, then `f` (right-to-left)
- `MonadChain(f, g)` applies `f` first, then `g` (left-to-right)
## ✨ Key Improvements
### 1. Simplified Type Declarations
@@ -91,16 +248,16 @@ func processData(input string) ET.Either[error, OPT.Option[int]] {
**V2 Approach:**
```go
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/option"
)
// Define type aliases once
type Either[A any] = either.Either[error, A]
type Result[A any] = result.Result[A]
type Option[A any] = option.Option[A]
// Use them throughout your codebase
func processData(input string) Either[Option[int]] {
func processData(input string) Result[Option[int]] {
// implementation
}
```
@@ -211,7 +368,7 @@ If you're using `Pair`, update operations to work on the second element:
```go
pair := MakePair(42, "data")
// Map operates on first element
result := Map(func(x int) int { return x * 2 })(pair)
result := Map(N.Mul(2))(pair)
```
**After (V2):**
@@ -230,20 +387,14 @@ Create project-wide type aliases for common patterns:
package myapp
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
)
type Either[A any] = either.Either[error, A]
type Result[A any] = result.Result[A]
type Option[A any] = option.Option[A]
type IOEither[A any] = ioeither.IOEither[error, A]
```
## 📦 Installation
```bash
go get github.com/IBM/fp-go/v2
type IOResult[A any] = ioresult.IOResult[A]
```
## 🆕 What's New
@@ -269,7 +420,7 @@ import (
func process() IOET.IOEither[error, string] {
return IOEG.Map[error, int, string](
func(x int) string { return fmt.Sprintf("%d", x) },
strconv.Itoa,
)(fetchData())
}
```
@@ -277,25 +428,37 @@ func process() IOET.IOEither[error, string] {
**V2 Simplified Example:**
```go
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/ioeither"
"strconv"
"github.com/IBM/fp-go/v2/ioresult"
)
type IOEither[A any] = ioeither.IOEither[error, A]
type IOResult[A any] = ioresult.IOResult[A]
func process() IOEither[string] {
return ioeither.Map(
func(x int) string { return fmt.Sprintf("%d", x) },
func process() IOResult[string] {
return ioresult.Map(
strconv.Itoa,
)(fetchData())
}
```
## 📚 Additional Resources
## 📚 Documentation
- [Main README](../README.md) - Core concepts and design philosophy
- [API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2)
- [Code Samples](../samples/)
- [Go 1.24 Release Notes](https://tip.golang.org/doc/go1.24)
- **[API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2)** - Complete API reference
- **[Code Samples](./samples/)** - Practical examples and use cases
- **[Go 1.24 Release Notes](https://tip.golang.org/doc/go1.24)** - Information about generic type aliases
### Core Modules
- **Option** - Represent optional values without nil
- **Either** - Type-safe error handling with left/right values
- **Result** - Simplified Either with error as left type
- **IO** - Lazy evaluation and side effect management
- **IOEither** - Combine IO with error handling
- **Reader** - Dependency injection pattern
- **ReaderIOEither** - Combine Reader, IO, and Either for complex workflows
- **Array** - Functional array operations
- **Record** - Functional record/map operations
- **Optics** - Lens, Prism, Optional, and Traversal for immutable updates
## 🤔 Should I Migrate?
@@ -310,10 +473,25 @@ func process() IOEither[string] {
- ⚠️ Migration effort outweighs benefits for your project
- ⚠️ You need stability in production (V2 is newer)
## 🤝 Contributing
Contributions are welcome! Here's how you can help:
1. **Report bugs** - Open an issue with a clear description and reproduction steps
2. **Suggest features** - Share your ideas for improvements
3. **Submit PRs** - Fix bugs or add features (please discuss major changes first)
4. **Improve docs** - Help make the documentation clearer and more comprehensive
Please read our contribution guidelines before submitting pull requests.
## 🐛 Issues and Feedback
Found a bug or have a suggestion? Please [open an issue](https://github.com/IBM/fp-go/issues) on GitHub.
## 📄 License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
This project is licensed under the Apache License 2.0. See the [LICENSE](https://github.com/IBM/fp-go/blob/main/LICENSE) file for details.
---
**Made with ❤️ by IBM**

View File

@@ -17,11 +17,10 @@ package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
EM "github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/tuple"
)
@@ -50,16 +49,16 @@ func Replicate[A any](n int, a A) []A {
// This is the monadic version of Map that takes the array as the first parameter.
//
//go:inline
func MonadMap[A, B any](as []A, f func(a A) B) []B {
func MonadMap[A, B any](as []A, f func(A) B) []B {
return G.MonadMap[[]A, []B](as, f)
}
// MonadMapRef applies a function to a pointer to each element of an array, returning a new array with the results.
// This is useful when you need to access elements by reference without copying.
func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
func MonadMapRef[A, B any](as []A, f func(*A) B) []B {
count := len(as)
bs := make([]B, count)
for i := count - 1; i >= 0; i-- {
for i := range count {
bs[i] = f(&as[i])
}
return bs
@@ -68,7 +67,7 @@ func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
// MapWithIndex applies a function to each element and its index in an array, returning a new array with the results.
//
//go:inline
func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
func MapWithIndex[A, B any](f func(int, A) B) Operator[A, B] {
return G.MapWithIndex[[]A, []B](f)
}
@@ -77,39 +76,39 @@ func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
//
// Example:
//
// double := array.Map(func(x int) int { return x * 2 })
// double := array.Map(N.Mul(2))
// result := double([]int{1, 2, 3}) // [2, 4, 6]
//
//go:inline
func Map[A, B any](f func(a A) B) func([]A) []B {
return G.Map[[]A, []B, A, B](f)
func Map[A, B any](f func(A) B) Operator[A, B] {
return G.Map[[]A, []B](f)
}
// MapRef applies a function to a pointer to each element of an array, returning a new array with the results.
// This is the curried version that returns a function.
func MapRef[A, B any](f func(a *A) B) func([]A) []B {
func MapRef[A, B any](f func(*A) B) Operator[A, B] {
return F.Bind2nd(MonadMapRef[A, B], f)
}
func filterRef[A any](fa []A, pred func(a *A) bool) []A {
var result []A
func filterRef[A any](fa []A, pred func(*A) bool) []A {
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, a)
var result []A = make([]A, 0, count)
for i := range count {
a := &fa[i]
if pred(a) {
result = append(result, *a)
}
}
return result
}
func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
var result []B
func filterMapRef[A, B any](fa []A, pred func(*A) bool, f func(*A) B) []B {
count := len(fa)
for i := 0; i < count; i++ {
a := fa[i]
if pred(&a) {
result = append(result, f(&a))
var result []B = make([]B, 0, count)
for i := range count {
a := &fa[i]
if pred(a) {
result = append(result, f(a))
}
}
return result
@@ -118,19 +117,19 @@ func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
// Filter returns a new array with all elements from the original array that match a predicate
//
//go:inline
func Filter[A any](pred func(A) bool) EM.Endomorphism[[]A] {
func Filter[A any](pred func(A) bool) Operator[A, A] {
return G.Filter[[]A](pred)
}
// FilterWithIndex returns a new array with all elements from the original array that match a predicate
//
//go:inline
func FilterWithIndex[A any](pred func(int, A) bool) EM.Endomorphism[[]A] {
func FilterWithIndex[A any](pred func(int, A) bool) Operator[A, A] {
return G.FilterWithIndex[[]A](pred)
}
// FilterRef returns a new array with all elements from the original array that match a predicate operating on pointers.
func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
func FilterRef[A any](pred func(*A) bool) Operator[A, A] {
return F.Bind2nd(filterRef[A], pred)
}
@@ -138,7 +137,7 @@ func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
// This is the monadic version that takes the array as the first parameter.
//
//go:inline
func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
func MonadFilterMap[A, B any](fa []A, f option.Kleisli[A, B]) []B {
return G.MonadFilterMap[[]A, []B](fa, f)
}
@@ -146,33 +145,33 @@ func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
// keeping only the Some values. This is the monadic version that takes the array as the first parameter.
//
//go:inline
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) O.Option[B]) []B {
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) Option[B]) []B {
return G.MonadFilterMapWithIndex[[]A, []B](fa, f)
}
// FilterMap maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
// FilterMap maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
//
//go:inline
func FilterMap[A, B any](f func(A) O.Option[B]) func([]A) []B {
func FilterMap[A, B any](f option.Kleisli[A, B]) Operator[A, B] {
return G.FilterMap[[]A, []B](f)
}
// FilterMapWithIndex maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
// FilterMapWithIndex maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
//
//go:inline
func FilterMapWithIndex[A, B any](f func(int, A) O.Option[B]) func([]A) []B {
func FilterMapWithIndex[A, B any](f func(int, A) Option[B]) Operator[A, B] {
return G.FilterMapWithIndex[[]A, []B](f)
}
// FilterChain maps an array with an iterating function that returns an [O.Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
// FilterChain maps an array with an iterating function that returns an [Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
//
//go:inline
func FilterChain[A, B any](f func(A) O.Option[[]B]) func([]A) []B {
func FilterChain[A, B any](f option.Kleisli[A, []B]) Operator[A, B] {
return G.FilterChain[[]A](f)
}
// FilterMapRef filters an array using a predicate on pointers and maps the matching elements using a function on pointers.
func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B {
func FilterMapRef[A, B any](pred func(a *A) bool, f func(*A) B) Operator[A, B] {
return func(fa []A) []B {
return filterMapRef(fa, pred, f)
}
@@ -180,8 +179,7 @@ func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B
func reduceRef[A, B any](fa []A, f func(B, *A) B, initial B) B {
current := initial
count := len(fa)
for i := 0; i < count; i++ {
for i := range len(fa) {
current = f(current, &fa[i])
}
return current
@@ -262,6 +260,8 @@ func Empty[A any]() []A {
}
// Zero returns an empty array of type A (alias for Empty).
//
//go:inline
func Zero[A any]() []A {
return Empty[A]()
}
@@ -277,8 +277,8 @@ func Of[A any](a A) []A {
// This is the monadic version that takes the array as the first parameter (also known as FlatMap).
//
//go:inline
func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
return G.MonadChain[[]A, []B](fa, f)
func MonadChain[A, B any](fa []A, f Kleisli[A, B]) []B {
return G.MonadChain(fa, f)
}
// Chain applies a function that returns an array to each element and flattens the results.
@@ -290,8 +290,8 @@ func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
// result := duplicate([]int{1, 2, 3}) // [1, 1, 2, 2, 3, 3]
//
//go:inline
func Chain[A, B any](f func(A) []B) func([]A) []B {
return G.Chain[[]A, []B](f)
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return G.Chain[[]A](f)
}
// MonadAp applies an array of functions to an array of values, producing all combinations.
@@ -306,7 +306,7 @@ func MonadAp[B, A any](fab []func(A) B, fa []A) []B {
// This is the curried version.
//
//go:inline
func Ap[B, A any](fa []A) func([]func(A) B) []B {
func Ap[B, A any](fa []A) Operator[func(A) B, B] {
return G.Ap[[]B, []func(A) B](fa)
}
@@ -314,21 +314,21 @@ func Ap[B, A any](fa []A) func([]func(A) B) []B {
//
//go:inline
func Match[A, B any](onEmpty func() B, onNonEmpty func([]A) B) func([]A) B {
return G.Match[[]A](onEmpty, onNonEmpty)
return G.Match(onEmpty, onNonEmpty)
}
// MatchLeft performs pattern matching on an array, calling onEmpty if empty or onNonEmpty with head and tail if not.
//
//go:inline
func MatchLeft[A, B any](onEmpty func() B, onNonEmpty func(A, []A) B) func([]A) B {
return G.MatchLeft[[]A](onEmpty, onNonEmpty)
return G.MatchLeft(onEmpty, onNonEmpty)
}
// Tail returns all elements except the first, wrapped in an Option.
// Returns None if the array is empty.
//
//go:inline
func Tail[A any](as []A) O.Option[[]A] {
func Tail[A any](as []A) Option[[]A] {
return G.Tail(as)
}
@@ -336,7 +336,7 @@ func Tail[A any](as []A) O.Option[[]A] {
// Returns None if the array is empty.
//
//go:inline
func Head[A any](as []A) O.Option[A] {
func Head[A any](as []A) Option[A] {
return G.Head(as)
}
@@ -344,7 +344,7 @@ func Head[A any](as []A) O.Option[A] {
// Returns None if the array is empty.
//
//go:inline
func First[A any](as []A) O.Option[A] {
func First[A any](as []A) Option[A] {
return G.First(as)
}
@@ -352,12 +352,12 @@ func First[A any](as []A) O.Option[A] {
// Returns None if the array is empty.
//
//go:inline
func Last[A any](as []A) O.Option[A] {
func Last[A any](as []A) Option[A] {
return G.Last(as)
}
// PrependAll inserts a separator before each element of an array.
func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
func PrependAll[A any](middle A) Operator[A, A] {
return func(as []A) []A {
count := len(as)
dst := count * 2
@@ -377,7 +377,7 @@ func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
// Example:
//
// result := array.Intersperse(0)([]int{1, 2, 3}) // [1, 0, 2, 0, 3]
func Intersperse[A any](middle A) EM.Endomorphism[[]A] {
func Intersperse[A any](middle A) Operator[A, A] {
prepend := PrependAll(middle)
return func(as []A) []A {
if IsEmpty(as) {
@@ -390,7 +390,7 @@ func Intersperse[A any](middle A) EM.Endomorphism[[]A] {
// Intercalate inserts a separator between elements and concatenates them using a Monoid.
func Intercalate[A any](m M.Monoid[A]) func(A) func([]A) A {
return func(middle A) func([]A) A {
return Match(m.Empty, F.Flow2(Intersperse(middle), ConcatAll[A](m)))
return Match(m.Empty, F.Flow2(Intersperse(middle), ConcatAll(m)))
}
}
@@ -406,7 +406,7 @@ func Flatten[A any](mma [][]A) []A {
}
// Slice extracts a subarray from index low (inclusive) to high (exclusive).
func Slice[A any](low, high int) func(as []A) []A {
func Slice[A any](low, high int) Operator[A, A] {
return array.Slice[[]A](low, high)
}
@@ -414,7 +414,7 @@ func Slice[A any](low, high int) func(as []A) []A {
// Returns None if the index is out of bounds.
//
//go:inline
func Lookup[A any](idx int) func([]A) O.Option[A] {
func Lookup[A any](idx int) func([]A) Option[A] {
return G.Lookup[[]A](idx)
}
@@ -422,7 +422,7 @@ func Lookup[A any](idx int) func([]A) O.Option[A] {
// If the index is out of bounds, the element is appended.
//
//go:inline
func UpsertAt[A any](a A) EM.Endomorphism[[]A] {
func UpsertAt[A any](a A) Operator[A, A] {
return G.UpsertAt[[]A](a)
}
@@ -468,7 +468,7 @@ func ConstNil[A any]() []A {
// SliceRight extracts a subarray from the specified start index to the end.
//
//go:inline
func SliceRight[A any](start int) EM.Endomorphism[[]A] {
func SliceRight[A any](start int) Operator[A, A] {
return G.SliceRight[[]A](start)
}
@@ -482,7 +482,7 @@ func Copy[A any](b []A) []A {
// Clone creates a deep copy of the array using the provided endomorphism to clone the values
//
//go:inline
func Clone[A any](f func(A) A) func(as []A) []A {
func Clone[A any](f func(A) A) Operator[A, A] {
return G.Clone[[]A](f)
}
@@ -510,8 +510,8 @@ func Fold[A any](m M.Monoid[A]) func([]A) A {
// Push adds an element to the end of an array (alias for Append).
//
//go:inline
func Push[A any](a A) EM.Endomorphism[[]A] {
return G.Push[EM.Endomorphism[[]A]](a)
func Push[A any](a A) Operator[A, A] {
return G.Push[Operator[A, A]](a)
}
// MonadFlap applies a value to an array of functions, producing an array of results.
@@ -519,20 +519,20 @@ func Push[A any](a A) EM.Endomorphism[[]A] {
//
//go:inline
func MonadFlap[B, A any](fab []func(A) B, a A) []B {
return G.MonadFlap[func(A) B, []func(A) B, []B, A, B](fab, a)
return G.MonadFlap[func(A) B, []func(A) B, []B](fab, a)
}
// Flap applies a value to an array of functions, producing an array of results.
// This is the curried version.
//
//go:inline
func Flap[B, A any](a A) func([]func(A) B) []B {
return G.Flap[func(A) B, []func(A) B, []B, A, B](a)
func Flap[B, A any](a A) Operator[func(A) B, B] {
return G.Flap[func(A) B, []func(A) B, []B](a)
}
// Prepend adds an element to the beginning of an array, returning a new array.
//
//go:inline
func Prepend[A any](head A) EM.Endomorphism[[]A] {
return G.Prepend[EM.Endomorphism[[]A]](head)
func Prepend[A any](head A) Operator[A, A] {
return G.Prepend[Operator[A, A]](head)
}

View File

@@ -97,7 +97,7 @@ func TestAp(t *testing.T) {
utils.Double,
utils.Triple,
},
Ap[int, int]([]int{1, 2, 3}),
Ap[int]([]int{1, 2, 3}),
),
)
}

View File

@@ -34,7 +34,7 @@ import (
func Do[S any](
empty S,
) []S {
return G.Do[[]S, S](empty)
return G.Do[[]S](empty)
}
// Bind attaches the result of a computation to a context S1 to produce a context S2.
@@ -56,9 +56,9 @@ func Do[S any](
//go:inline
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) []T,
) func([]S1) []S2 {
return G.Bind[[]S1, []S2, []T, S1, S2, T](setter, f)
f Kleisli[S1, T],
) Operator[S1, S2] {
return G.Bind[[]S1, []S2](setter, f)
}
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
@@ -79,8 +79,8 @@ func Bind[S1, S2, T any](
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) func([]S1) []S2 {
return G.Let[[]S1, []S2, S1, S2, T](setter, f)
) Operator[S1, S2] {
return G.Let[[]S1, []S2](setter, f)
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
@@ -101,8 +101,8 @@ func Let[S1, S2, T any](
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) func([]S1) []S2 {
return G.LetTo[[]S1, []S2, S1, S2, T](setter, b)
) Operator[S1, S2] {
return G.LetTo[[]S1, []S2](setter, b)
}
// BindTo initializes a new state S1 from a value T.
@@ -120,8 +120,8 @@ func LetTo[S1, S2, T any](
//go:inline
func BindTo[S1, T any](
setter func(T) S1,
) func([]T) []S1 {
return G.BindTo[[]S1, []T, S1, T](setter)
) Operator[T, S1] {
return G.BindTo[[]S1, []T](setter)
}
// ApS attaches a value to a context S1 to produce a context S2 by considering
@@ -143,6 +143,6 @@ func BindTo[S1, T any](
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa []T,
) func([]S1) []S2 {
return G.ApS[[]S1, []S2, []T, S1, S2, T](setter, fa)
) Operator[S1, S2] {
return G.ApS[[]S1, []S2](setter, fa)
}

View File

@@ -36,7 +36,7 @@
// generated := array.MakeBy(5, func(i int) int { return i * 2 })
//
// // Transforming arrays
// doubled := array.Map(func(x int) int { return x * 2 })(arr)
// doubled := array.Map(N.Mul(2))(arr)
// filtered := array.Filter(func(x int) bool { return x > 2 })(arr)
//
// // Combining arrays
@@ -50,7 +50,7 @@
// numbers := []int{1, 2, 3, 4, 5}
//
// // Map transforms each element
// doubled := array.Map(func(x int) int { return x * 2 })(numbers)
// doubled := array.Map(N.Mul(2))(numbers)
// // Result: [2, 4, 6, 8, 10]
//
// // Filter keeps elements matching a predicate

View File

@@ -87,6 +87,6 @@ func Example_sort() {
// [abc klm zyx]
// [zyx klm abc]
// [None[int] Some[int](42) Some[int](1337)]
// [{c {false 0}} {b {true 10}} {d {true 10}} {a {true 30}}]
// [{c {0 false}} {b {10 true}} {d {10 true}} {a {30 true}}]
}

View File

@@ -17,7 +17,7 @@ package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/option"
)
// FindFirst finds the first element which satisfies a predicate function.
@@ -30,7 +30,7 @@ import (
// result2 := findGreaterThan3([]int{1, 2, 3}) // None
//
//go:inline
func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
func FindFirst[A any](pred func(A) bool) option.Kleisli[[]A, A] {
return G.FindFirst[[]A](pred)
}
@@ -45,7 +45,7 @@ func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
// result := findEvenAtEvenIndex([]int{1, 3, 4, 5}) // Some(4)
//
//go:inline
func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
func FindFirstWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
return G.FindFirstWithIndex[[]A](pred)
}
@@ -65,7 +65,7 @@ func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
// result := parseFirst([]string{"a", "42", "b"}) // Some(42)
//
//go:inline
func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
func FindFirstMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
return G.FindFirstMap[[]A](sel)
}
@@ -73,7 +73,7 @@ func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
// The selector receives both the index and the element.
//
//go:inline
func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
func FindFirstMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
return G.FindFirstMapWithIndex[[]A](sel)
}
@@ -86,7 +86,7 @@ func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.O
// result := findGreaterThan3([]int{1, 4, 2, 5}) // Some(5)
//
//go:inline
func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
func FindLast[A any](pred func(A) bool) option.Kleisli[[]A, A] {
return G.FindLast[[]A](pred)
}
@@ -94,7 +94,7 @@ func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
// Returns Some(element) if found, None if no element matches.
//
//go:inline
func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
func FindLastWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
return G.FindLastWithIndex[[]A](pred)
}
@@ -102,7 +102,7 @@ func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
// This combines finding and mapping in a single operation, searching from the end.
//
//go:inline
func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
func FindLastMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
return G.FindLastMap[[]A](sel)
}
@@ -110,6 +110,6 @@ func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
// The selector receives both the index and the element, searching from the end.
//
//go:inline
func FindLastMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
func FindLastMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
return G.FindLastMapWithIndex[[]A](sel)
}

View File

@@ -25,31 +25,33 @@ import (
)
// Of constructs a single element array
//
//go:inline
func Of[GA ~[]A, A any](value A) GA {
return GA{value}
return array.Of[GA](value)
}
func Reduce[GA ~[]A, A, B any](f func(B, A) B, initial B) func(GA) B {
return func(as GA) B {
return MonadReduce[GA](as, f, initial)
return MonadReduce(as, f, initial)
}
}
func ReduceWithIndex[GA ~[]A, A, B any](f func(int, B, A) B, initial B) func(GA) B {
return func(as GA) B {
return MonadReduceWithIndex[GA](as, f, initial)
return MonadReduceWithIndex(as, f, initial)
}
}
func ReduceRight[GA ~[]A, A, B any](f func(A, B) B, initial B) func(GA) B {
return func(as GA) B {
return MonadReduceRight[GA](as, f, initial)
return MonadReduceRight(as, f, initial)
}
}
func ReduceRightWithIndex[GA ~[]A, A, B any](f func(int, A, B) B, initial B) func(GA) B {
return func(as GA) B {
return MonadReduceRightWithIndex[GA](as, f, initial)
return MonadReduceRightWithIndex(as, f, initial)
}
}
@@ -82,7 +84,7 @@ func MakeBy[AS ~[]A, F ~func(int) A, A any](n int, f F) AS {
}
// run the generator function across the input
as := make(AS, n)
for i := n - 1; i >= 0; i-- {
for i := range n {
as[i] = f(i)
}
return as
@@ -165,10 +167,9 @@ func Size[GA ~[]A, A any](as GA) int {
func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
result := make(GB, 0, len(fa))
for _, a := range fa {
O.Map(func(b B) B {
if b, ok := O.Unwrap(f(a)); ok {
result = append(result, b)
return b
})(f(a))
}
}
return result
}
@@ -176,10 +177,9 @@ func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
func filterMapWithIndex[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(int, A) O.Option[B]) GB {
result := make(GB, 0, len(fa))
for i, a := range fa {
O.Map(func(b B) B {
if b, ok := O.Unwrap(f(i, a)); ok {
result = append(result, b)
return b
})(f(i, a))
}
}
return result
}

View File

@@ -42,8 +42,7 @@ func FindFirst[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) O.Option[
func FindFirstMapWithIndex[AS ~[]A, PRED ~func(int, A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
none := O.None[B]()
return func(as AS) O.Option[B] {
count := len(as)
for i := 0; i < count; i++ {
for i := range len(as) {
out := pred(i, as[i])
if O.IsSome(out) {
return out

View File

@@ -22,19 +22,19 @@ import (
type arrayMonad[A, B any, GA ~[]A, GB ~[]B, GAB ~[]func(A) B] struct{}
func (o *arrayMonad[A, B, GA, GB, GAB]) Of(a A) GA {
return Of[GA, A](a)
return Of[GA](a)
}
func (o *arrayMonad[A, B, GA, GB, GAB]) Map(f func(A) B) func(GA) GB {
return Map[GA, GB, A, B](f)
return Map[GA, GB](f)
}
func (o *arrayMonad[A, B, GA, GB, GAB]) Chain(f func(A) GB) func(GA) GB {
return Chain[GA, GB, A, B](f)
return Chain[GA](f)
}
func (o *arrayMonad[A, B, GA, GB, GAB]) Ap(fa GA) func(GAB) GB {
return Ap[GB, GAB, GA, B, A](fa)
return Ap[GB, GAB](fa)
}
// Monad implements the monadic operations for an array

View File

@@ -0,0 +1,34 @@
package generic
import (
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
// Example:
//
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[GT ~[]T, T any]() M.Monoid[GT] {
return M.MakeMonoid(array.Concat[GT], Empty[GT]())
}
// Semigroup returns a Semigroup instance for arrays.
// The Semigroup combines arrays through concatenation.
//
// Example:
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[GT ~[]T, T any]() S.Semigroup[GT] {
return S.MakeSemigroup(array.Concat[GT])
}

View File

@@ -26,7 +26,7 @@ import (
func ZipWith[AS ~[]A, BS ~[]B, CS ~[]C, FCT ~func(A, B) C, A, B, C any](fa AS, fb BS, f FCT) CS {
l := N.Min(len(fa), len(fb))
res := make(CS, l)
for i := l - 1; i >= 0; i-- {
for i := range l {
res[i] = f(fa[i], fb[i])
}
return res
@@ -43,7 +43,7 @@ func Unzip[AS ~[]A, BS ~[]B, CS ~[]T.Tuple2[A, B], A, B any](cs CS) T.Tuple2[AS,
l := len(cs)
as := make(AS, l)
bs := make(BS, l)
for i := l - 1; i >= 0; i-- {
for i := range l {
t := cs[i]
as[i] = t.F1
bs[i] = t.F2

View File

@@ -18,7 +18,6 @@ package array
import (
"testing"
O "github.com/IBM/fp-go/v2/option"
OR "github.com/IBM/fp-go/v2/ord"
"github.com/stretchr/testify/assert"
)
@@ -103,39 +102,6 @@ func TestSortByKey(t *testing.T) {
assert.Equal(t, "Charlie", result[2].Name)
}
func TestMonadTraverse(t *testing.T) {
result := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 3, 5},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.Some([]int{2, 6, 10}), result)
// Test with None case
result2 := MonadTraverse(
O.Of[[]int],
O.Map[[]int, func(int) []int],
O.Ap[[]int, int],
[]int{1, 2, 3},
func(n int) O.Option[int] {
if n%2 == 1 {
return O.Some(n * 2)
}
return O.None[int]()
},
)
assert.Equal(t, O.None[[]int](), result2)
}
func TestUniqByKey(t *testing.T) {
type Person struct {
Name string

View File

@@ -16,27 +16,12 @@
package array
import (
G "github.com/IBM/fp-go/v2/array/generic"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
func concat[T any](left, right []T) []T {
// some performance checks
ll := len(left)
if ll == 0 {
return right
}
lr := len(right)
if lr == 0 {
return left
}
// need to copy
buf := make([]T, ll+lr)
copy(buf[copy(buf, left):], right)
return buf
}
// Monoid returns a Monoid instance for arrays.
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
//
@@ -45,8 +30,10 @@ func concat[T any](left, right []T) []T {
// m := array.Monoid[int]()
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
// empty := m.Empty() // []
//
//go:inline
func Monoid[T any]() M.Monoid[[]T] {
return M.MakeMonoid(concat[T], Empty[T]())
return G.Monoid[[]T]()
}
// Semigroup returns a Semigroup instance for arrays.
@@ -56,8 +43,10 @@ func Monoid[T any]() M.Monoid[[]T] {
//
// s := array.Semigroup[int]()
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
//
//go:inline
func Semigroup[T any]() S.Semigroup[[]T] {
return S.MakeSemigroup(concat[T])
return G.Semigroup[[]T]()
}
func addLen[A any](count int, data []A) int {

View File

@@ -97,11 +97,11 @@ func Flatten[A any](mma NonEmptyArray[NonEmptyArray[A]]) NonEmptyArray[A] {
}
func MonadChain[A, B any](fa NonEmptyArray[A], f func(a A) NonEmptyArray[B]) NonEmptyArray[B] {
return G.MonadChain[NonEmptyArray[A], NonEmptyArray[B]](fa, f)
return G.MonadChain(fa, f)
}
func Chain[A, B any](f func(A) NonEmptyArray[B]) func(NonEmptyArray[A]) NonEmptyArray[B] {
return G.Chain[NonEmptyArray[A], NonEmptyArray[B]](f)
return G.Chain[NonEmptyArray[A]](f)
}
func MonadAp[B, A any](fab NonEmptyArray[func(A) B], fa NonEmptyArray[A]) NonEmptyArray[B] {

View File

@@ -16,10 +16,18 @@
package array
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
M "github.com/IBM/fp-go/v2/monoid"
O "github.com/IBM/fp-go/v2/option"
)
func MonadSequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
ma []HKTA) HKTRA {
return array.MonadSequence(fof, m.Empty(), m.Concat, ma)
}
// Sequence takes an array where elements are HKT<A> (higher kinded type) and,
// using an applicative of that HKT, returns an HKT of []A.
//
@@ -55,16 +63,11 @@ import (
// option.MonadAp[[]int, int],
// )
// result := seq(opts) // Some([1, 2, 3])
func Sequence[A, HKTA, HKTRA, HKTFRA any](
_of func([]A) HKTRA,
_map func(HKTRA, func([]A) func(A) []A) HKTFRA,
_ap func(HKTFRA, HKTA) HKTRA,
func Sequence[HKTA, HKTRA any](
fof func(HKTA) HKTRA,
m M.Monoid[HKTRA],
) func([]HKTA) HKTRA {
ca := F.Curry2(Append[A])
empty := _of(Empty[A]())
return Reduce(func(fas HKTRA, fa HKTA) HKTRA {
return _ap(_map(fas, ca), fa)
}, empty)
return array.Sequence[[]HKTA](fof, m.Empty(), m.Concat)
}
// ArrayOption returns a function to convert a sequence of options into an option of a sequence.
@@ -86,10 +89,10 @@ func Sequence[A, HKTA, HKTRA, HKTFRA any](
// option.Some(3),
// }
// result2 := array.ArrayOption[int]()(opts2) // None
func ArrayOption[A any]() func([]O.Option[A]) O.Option[[]A] {
return Sequence(
O.Of[[]A],
O.MonadMap[[]A, func(A) []A],
O.MonadAp[[]A, A],
func ArrayOption[A any](ma []Option[A]) Option[[]A] {
return MonadSequence(
O.Map(Of[A]),
O.ApplicativeMonoid(Monoid[A]()),
ma,
)
}

View File

@@ -24,8 +24,7 @@ import (
)
func TestSequenceOption(t *testing.T) {
seq := ArrayOption[int]()
assert.Equal(t, O.Of([]int{1, 3}), seq([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), seq([]O.Option[int]{O.Of(1), O.None[int]()}))
assert.Equal(t, O.Of([]int{1, 3}), ArrayOption([]O.Option[int]{O.Of(1), O.Of(3)}))
assert.Equal(t, O.None[[]int](), ArrayOption([]O.Option[int]{O.Of(1), O.None[int]()}))
}

View File

@@ -18,6 +18,7 @@ package array
import (
"testing"
N "github.com/IBM/fp-go/v2/number"
"github.com/stretchr/testify/assert"
)
@@ -243,7 +244,7 @@ func TestSliceComposition(t *testing.T) {
t.Run("slice then map", func(t *testing.T) {
sliced := Slice[int](2, 5)(data)
mapped := Map(func(x int) int { return x * 2 })(sliced)
mapped := Map(N.Mul(2))(sliced)
assert.Equal(t, []int{4, 6, 8}, mapped)
})

View File

@@ -32,7 +32,7 @@ import (
// // Result: [1, 1, 2, 3, 4, 5, 6, 9]
//
//go:inline
func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
func Sort[T any](ord O.Ord[T]) Operator[T, T] {
return G.Sort[[]T](ord)
}
@@ -62,7 +62,7 @@ func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
// // Result: [{"Bob", 25}, {"Alice", 30}, {"Charlie", 35}]
//
//go:inline
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) Operator[T, T] {
return G.SortByKey[[]T](ord, f)
}
@@ -93,6 +93,6 @@ func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
// // Result: [{"Jones", "Bob"}, {"Smith", "Alice"}, {"Smith", "John"}]
//
//go:inline
func SortBy[T any](ord []O.Ord[T]) func(ma []T) []T {
return G.SortBy[[]T, []O.Ord[T]](ord)
func SortBy[T any](ord []O.Ord[T]) Operator[T, T] {
return G.SortBy[[]T](ord)
}

View File

@@ -80,3 +80,25 @@ func MonadTraverse[A, B, HKTB, HKTAB, HKTRB any](
return array.MonadTraverse(fof, fmap, fap, ta, f)
}
//go:inline
func TraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
f func(int, A) HKTB) func([]A) HKTRB {
return array.TraverseWithIndex[[]A](fof, fmap, fap, f)
}
//go:inline
func MonadTraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
fof func([]B) HKTRB,
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta []A,
f func(int, A) HKTB) HKTRB {
return array.MonadTraverseWithIndex(fof, fmap, fap, ta, f)
}

9
v2/array/types.go Normal file
View File

@@ -0,0 +1,9 @@
package array
import "github.com/IBM/fp-go/v2/option"
type (
Kleisli[A, B any] = func(A) []B
Operator[A, B any] = Kleisli[[]A, B]
Option[A any] = option.Option[A]
)

View File

@@ -18,7 +18,7 @@ import (
//
//go:inline
func StrictUniq[A comparable](as []A) []A {
return G.StrictUniq[[]A](as)
return G.StrictUniq(as)
}
// Uniq converts an array of arbitrary items into an array of unique items
@@ -46,6 +46,6 @@ func StrictUniq[A comparable](as []A) []A {
// // Result: [{"Alice", 30}, {"Bob", 25}, {"Charlie", 30}]
//
//go:inline
func Uniq[A any, K comparable](f func(A) K) func(as []A) []A {
func Uniq[A any, K comparable](f func(A) K) Operator[A, A] {
return G.Uniq[[]A](f)
}

View File

@@ -36,7 +36,7 @@ import (
//
//go:inline
func ZipWith[FCT ~func(A, B) C, A, B, C any](fa []A, fb []B, f FCT) []C {
return G.ZipWith[[]A, []B, []C, FCT](fa, fb, f)
return G.ZipWith[[]A, []B, []C](fa, fb, f)
}
// Zip takes two arrays and returns an array of corresponding pairs (tuples).
@@ -79,5 +79,5 @@ func Zip[A, B any](fb []B) func([]A) []T.Tuple2[A, B] {
//
//go:inline
func Unzip[A, B any](cs []T.Tuple2[A, B]) T.Tuple2[[]A, []B] {
return G.Unzip[[]A, []B, []T.Tuple2[A, B]](cs)
return G.Unzip[[]A, []B](cs)
}

470
v2/assert/assert.go Normal file
View File

@@ -0,0 +1,470 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package assert provides functional assertion helpers for testing.
//
// This package wraps testify/assert functions in a Reader monad pattern,
// allowing for composable and functional test assertions. Each assertion
// returns a Reader that takes a *testing.T and performs the assertion.
//
// The package supports:
// - Equality and inequality assertions
// - Collection assertions (arrays, maps, strings)
// - Error handling assertions
// - Result type assertions
// - Custom predicate assertions
// - Composable test suites
//
// Example:
//
// func TestExample(t *testing.T) {
// value := 42
// assert.Equal(42)(value)(t) // Curried style
//
// // Composing multiple assertions
// arr := []int{1, 2, 3}
// assertions := assert.AllOf([]assert.Reader{
// assert.ArrayNotEmpty(arr),
// assert.ArrayLength[int](3)(arr),
// assert.ArrayContains(2)(arr),
// })
// assertions(t)
// }
package assert
import (
"fmt"
"testing"
"github.com/IBM/fp-go/v2/boolean"
"github.com/IBM/fp-go/v2/eq"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
var (
// Eq is the equal predicate checking if objects are equal
Eq = eq.FromEquals(assert.ObjectsAreEqual)
)
// wrap1 is an internal helper function that wraps testify assertion functions
// into the Reader monad pattern with curried parameters.
//
// It takes a testify assertion function and converts it into a curried function
// that first takes an expected value, then an actual value, and finally returns
// a Reader that performs the assertion when given a *testing.T.
//
// Parameters:
// - wrapped: The testify assertion function to wrap
// - expected: The expected value for comparison
// - msgAndArgs: Optional message and arguments for assertion failure
//
// Returns:
// - A Kleisli function that takes the actual value and returns a Reader
func wrap1[T any](wrapped func(t assert.TestingT, expected, actual any, msgAndArgs ...any) bool, expected T, msgAndArgs ...any) Kleisli[T] {
return func(actual T) Reader {
return func(t *testing.T) bool {
return wrapped(t, expected, actual, msgAndArgs...)
}
}
}
// NotEqual tests if the expected and the actual values are not equal
func NotEqual[T any](expected T) Kleisli[T] {
return wrap1(assert.NotEqual, expected)
}
// Equal tests if the expected and the actual values are equal
func Equal[T any](expected T) Kleisli[T] {
return wrap1(assert.Equal, expected)
}
// ArrayNotEmpty checks if an array is not empty
func ArrayNotEmpty[T any](arr []T) Reader {
return func(t *testing.T) bool {
return assert.NotEmpty(t, arr)
}
}
// RecordNotEmpty checks if an map is not empty
func RecordNotEmpty[K comparable, T any](mp map[K]T) Reader {
return func(t *testing.T) bool {
return assert.NotEmpty(t, mp)
}
}
// StringNotEmpty checks if a string is not empty
func StringNotEmpty(s string) Reader {
return func(t *testing.T) bool {
return assert.NotEmpty(t, s)
}
}
// ArrayLength tests if an array has the expected length
func ArrayLength[T any](expected int) Kleisli[[]T] {
return func(actual []T) Reader {
return func(t *testing.T) bool {
return assert.Len(t, actual, expected)
}
}
}
// RecordLength tests if a map has the expected length
func RecordLength[K comparable, T any](expected int) Kleisli[map[K]T] {
return func(actual map[K]T) Reader {
return func(t *testing.T) bool {
return assert.Len(t, actual, expected)
}
}
}
// StringLength tests if a string has the expected length
func StringLength[K comparable, T any](expected int) Kleisli[string] {
return func(actual string) Reader {
return func(t *testing.T) bool {
return assert.Len(t, actual, expected)
}
}
}
// NoError validates that there is no error
func NoError(err error) Reader {
return func(t *testing.T) bool {
return assert.NoError(t, err)
}
}
// Error validates that there is an error
func Error(err error) Reader {
return func(t *testing.T) bool {
return assert.Error(t, err)
}
}
// Success checks if a [Result] represents success
func Success[T any](res Result[T]) Reader {
return NoError(result.ToError(res))
}
// Failure checks if a [Result] represents failure
func Failure[T any](res Result[T]) Reader {
return Error(result.ToError(res))
}
// ArrayContains tests if a value is contained in an array
func ArrayContains[T any](expected T) Kleisli[[]T] {
return func(actual []T) Reader {
return func(t *testing.T) bool {
return assert.Contains(t, actual, expected)
}
}
}
// ContainsKey tests if a key is contained in a map
func ContainsKey[T any, K comparable](expected K) Kleisli[map[K]T] {
return func(actual map[K]T) Reader {
return func(t *testing.T) bool {
return assert.Contains(t, actual, expected)
}
}
}
// NotContainsKey tests if a key is not contained in a map
func NotContainsKey[T any, K comparable](expected K) Kleisli[map[K]T] {
return func(actual map[K]T) Reader {
return func(t *testing.T) bool {
return assert.NotContains(t, actual, expected)
}
}
}
// That asserts that a particular predicate matches
func That[T any](pred Predicate[T]) Kleisli[T] {
return func(a T) Reader {
return func(t *testing.T) bool {
if pred(a) {
return true
}
return assert.Fail(t, fmt.Sprintf("Preficate %v does not match value %v", pred, a))
}
}
}
// AllOf combines multiple assertion Readers into a single Reader that passes
// only if all assertions pass.
//
// This function uses boolean AND logic (MonoidAll) to combine the results of
// all assertions. If any assertion fails, the combined assertion fails.
//
// This is useful for grouping related assertions together and ensuring all
// conditions are met.
//
// Parameters:
// - readers: Array of assertion Readers to combine
//
// Returns:
// - A single Reader that performs all assertions and returns true only if all pass
//
// Example:
//
// func TestUser(t *testing.T) {
// user := User{Name: "Alice", Age: 30, Active: true}
// assertions := assert.AllOf([]assert.Reader{
// assert.Equal("Alice")(user.Name),
// assert.Equal(30)(user.Age),
// assert.Equal(true)(user.Active),
// })
// assertions(t)
// }
//
//go:inline
func AllOf(readers []Reader) Reader {
return reader.MonadReduceArrayM(readers, boolean.MonoidAll)
}
// RunAll executes a map of named test cases, running each as a subtest.
//
// This function creates a Reader that runs multiple named test cases using
// Go's t.Run for proper test isolation and reporting. Each test case is
// executed as a separate subtest with its own name.
//
// The function returns true only if all subtests pass. This allows for
// better test organization and clearer test output.
//
// Parameters:
// - testcases: Map of test names to assertion Readers
//
// Returns:
// - A Reader that executes all named test cases and returns true if all pass
//
// Example:
//
// func TestMathOperations(t *testing.T) {
// testcases := map[string]assert.Reader{
// "addition": assert.Equal(4)(2 + 2),
// "multiplication": assert.Equal(6)(2 * 3),
// "subtraction": assert.Equal(1)(3 - 2),
// }
// assert.RunAll(testcases)(t)
// }
//
//go:inline
func RunAll(testcases map[string]Reader) Reader {
return func(t *testing.T) bool {
current := true
for k, r := range testcases {
current = current && t.Run(k, func(t1 *testing.T) {
r(t1)
})
}
return current
}
}
// Local transforms a Reader that works on type R1 into a Reader that works on type R2,
// by providing a function that converts R2 to R1. This allows you to focus a test on a
// specific property or subset of a larger data structure.
//
// This is particularly useful when you have an assertion that operates on a specific field
// or property, and you want to apply it to a complete object. Instead of extracting the
// property and then asserting on it, you can transform the assertion to work directly
// on the whole object.
//
// Parameters:
// - f: A function that extracts or transforms R2 into R1
//
// Returns:
// - A function that transforms a Reader[R1, Reader] into a Reader[R2, Reader]
//
// Example:
//
// type User struct {
// Name string
// Age int
// }
//
// // Create an assertion that checks if age is positive
// ageIsPositive := assert.That(func(age int) bool { return age > 0 })
//
// // Focus this assertion on the Age field of User
// userAgeIsPositive := assert.Local(func(u User) int { return u.Age })(ageIsPositive)
//
// // Now we can test the whole User object
// user := User{Name: "Alice", Age: 30}
// userAgeIsPositive(user)(t)
//
//go:inline
func Local[R1, R2 any](f func(R2) R1) func(Kleisli[R1]) Kleisli[R2] {
return reader.Local[Reader](f)
}
// LocalL is similar to Local but uses a Lens to focus on a specific property.
// A Lens is a functional programming construct that provides a composable way to
// focus on a part of a data structure.
//
// This function is particularly useful when you want to focus a test on a specific
// field of a struct using a lens, making the code more declarative and composable.
// Lenses are often code-generated or predefined for common data structures.
//
// Parameters:
// - l: A Lens that focuses from type S to type T
//
// Returns:
// - A function that transforms a Reader[T, Reader] into a Reader[S, Reader]
//
// Example:
//
// type Person struct {
// Name string
// Email string
// }
//
// // Assume we have a lens that focuses on the Email field
// var emailLens = lens.Prop[Person, string]("Email")
//
// // Create an assertion for email format
// validEmail := assert.That(func(email string) bool {
// return strings.Contains(email, "@")
// })
//
// // Focus this assertion on the Email property using a lens
// validPersonEmail := assert.LocalL(emailLens)(validEmail)
//
// // Test a Person object
// person := Person{Name: "Bob", Email: "bob@example.com"}
// validPersonEmail(person)(t)
//
//go:inline
func LocalL[S, T any](l Lens[S, T]) func(Kleisli[T]) Kleisli[S] {
return reader.Local[Reader](l.Get)
}
// fromOptionalGetter is an internal helper that creates an assertion Reader from
// an optional getter function. It asserts that the optional value is present (Some).
func fromOptionalGetter[S, T any](getter func(S) option.Option[T], msgAndArgs ...any) Kleisli[S] {
return func(s S) Reader {
return func(t *testing.T) bool {
return assert.True(t, option.IsSome(getter(s)), msgAndArgs...)
}
}
}
// FromOptional creates an assertion that checks if an Optional can successfully extract a value.
// An Optional is an optic that represents an optional reference to a subpart of a data structure.
//
// This function is useful when you have an Optional optic and want to assert that the optional
// value is present (Some) rather than absent (None). The assertion passes if the Optional's
// GetOption returns Some, and fails if it returns None.
//
// This enables property-focused testing where you verify that a particular optional field or
// sub-structure exists and is accessible.
//
// Parameters:
// - opt: An Optional optic that focuses from type S to type T
//
// Returns:
// - A Reader that asserts the optional value is present when applied to a value of type S
//
// Example:
//
// type Config struct {
// Database *DatabaseConfig // Optional field
// }
//
// type DatabaseConfig struct {
// Host string
// Port int
// }
//
// // Create an Optional that focuses on the Database field
// dbOptional := optional.MakeOptional(
// func(c Config) option.Option[*DatabaseConfig] {
// if c.Database != nil {
// return option.Some(c.Database)
// }
// return option.None[*DatabaseConfig]()
// },
// func(c Config, db *DatabaseConfig) Config {
// c.Database = db
// return c
// },
// )
//
// // Assert that the database config is present
// hasDatabaseConfig := assert.FromOptional(dbOptional)
//
// config := Config{Database: &DatabaseConfig{Host: "localhost", Port: 5432}}
// hasDatabaseConfig(config)(t) // Passes
//
// emptyConfig := Config{Database: nil}
// hasDatabaseConfig(emptyConfig)(t) // Fails
//
//go:inline
func FromOptional[S, T any](opt Optional[S, T]) reader.Reader[S, Reader] {
return fromOptionalGetter(opt.GetOption, "Optional: %s", opt)
}
// FromPrism creates an assertion that checks if a Prism can successfully extract a value.
// A Prism is an optic used to select part of a sum type (tagged union or variant).
//
// This function is useful when you have a Prism optic and want to assert that a value
// matches a specific variant of a sum type. The assertion passes if the Prism's GetOption
// returns Some (meaning the value is of the expected variant), and fails if it returns None
// (meaning the value is a different variant).
//
// This enables variant-focused testing where you verify that a value is of a particular
// type or matches a specific condition within a sum type.
//
// Parameters:
// - p: A Prism optic that focuses from type S to type T
//
// Returns:
// - A Reader that asserts the prism successfully extracts when applied to a value of type S
//
// Example:
//
// type Result interface{ isResult() }
// type Success struct{ Value int }
// type Failure struct{ Error string }
//
// func (Success) isResult() {}
// func (Failure) isResult() {}
//
// // Create a Prism that focuses on Success variant
// successPrism := prism.MakePrism(
// func(r Result) option.Option[int] {
// if s, ok := r.(Success); ok {
// return option.Some(s.Value)
// }
// return option.None[int]()
// },
// func(v int) Result { return Success{Value: v} },
// )
//
// // Assert that the result is a Success
// isSuccess := assert.FromPrism(successPrism)
//
// result1 := Success{Value: 42}
// isSuccess(result1)(t) // Passes
//
// result2 := Failure{Error: "something went wrong"}
// isSuccess(result2)(t) // Fails
//
//go:inline
func FromPrism[S, T any](p Prism[S, T]) reader.Reader[S, Reader] {
return fromOptionalGetter(p.GetOption, "Prism: %s", p)
}

View File

@@ -16,94 +16,676 @@
package assert
import (
"fmt"
"errors"
"testing"
E "github.com/IBM/fp-go/v2/either"
EQ "github.com/IBM/fp-go/v2/eq"
"github.com/stretchr/testify/assert"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
var (
errTest = fmt.Errorf("test failure")
// Eq is the equal predicate checking if objects are equal
Eq = EQ.FromEquals(assert.ObjectsAreEqual)
)
func wrap1[T any](wrapped func(t assert.TestingT, expected, actual any, msgAndArgs ...any) bool, t *testing.T, expected T) func(actual T) E.Either[error, T] {
return func(actual T) E.Either[error, T] {
ok := wrapped(t, expected, actual)
if ok {
return E.Of[error](actual)
func TestEqual(t *testing.T) {
t.Run("should pass when values are equal", func(t *testing.T) {
result := Equal(42)(42)(t)
if !result {
t.Error("Expected Equal to pass for equal values")
}
return E.Left[T](errTest)
}
}
})
// NotEqual tests if the expected and the actual values are not equal
func NotEqual[T any](t *testing.T, expected T) func(actual T) E.Either[error, T] {
return wrap1(assert.NotEqual, t, expected)
}
// Equal tests if the expected and the actual values are equal
func Equal[T any](t *testing.T, expected T) func(actual T) E.Either[error, T] {
return wrap1(assert.Equal, t, expected)
}
// Length tests if an array has the expected length
func Length[T any](t *testing.T, expected int) func(actual []T) E.Either[error, []T] {
return func(actual []T) E.Either[error, []T] {
ok := assert.Len(t, actual, expected)
if ok {
return E.Of[error](actual)
t.Run("should fail when values are not equal", func(t *testing.T) {
mockT := &testing.T{}
result := Equal(42)(43)(mockT)
if result {
t.Error("Expected Equal to fail for different values")
}
return E.Left[[]T](errTest)
}
})
t.Run("should work with strings", func(t *testing.T) {
result := Equal("hello")("hello")(t)
if !result {
t.Error("Expected Equal to pass for equal strings")
}
})
}
// NoError validates that there is no error
func NoError[T any](t *testing.T) func(actual E.Either[error, T]) E.Either[error, T] {
return func(actual E.Either[error, T]) E.Either[error, T] {
return E.MonadFold(actual, func(e error) E.Either[error, T] {
assert.NoError(t, e)
return E.Left[T](e)
}, func(value T) E.Either[error, T] {
assert.NoError(t, nil)
return E.Right[error](value)
func TestNotEqual(t *testing.T) {
t.Run("should pass when values are not equal", func(t *testing.T) {
result := NotEqual(42)(43)(t)
if !result {
t.Error("Expected NotEqual to pass for different values")
}
})
t.Run("should fail when values are equal", func(t *testing.T) {
mockT := &testing.T{}
result := NotEqual(42)(42)(mockT)
if result {
t.Error("Expected NotEqual to fail for equal values")
}
})
}
func TestArrayNotEmpty(t *testing.T) {
t.Run("should pass for non-empty array", func(t *testing.T) {
arr := []int{1, 2, 3}
result := ArrayNotEmpty(arr)(t)
if !result {
t.Error("Expected ArrayNotEmpty to pass for non-empty array")
}
})
t.Run("should fail for empty array", func(t *testing.T) {
mockT := &testing.T{}
arr := []int{}
result := ArrayNotEmpty(arr)(mockT)
if result {
t.Error("Expected ArrayNotEmpty to fail for empty array")
}
})
}
func TestRecordNotEmpty(t *testing.T) {
t.Run("should pass for non-empty map", func(t *testing.T) {
mp := map[string]int{"a": 1, "b": 2}
result := RecordNotEmpty(mp)(t)
if !result {
t.Error("Expected RecordNotEmpty to pass for non-empty map")
}
})
t.Run("should fail for empty map", func(t *testing.T) {
mockT := &testing.T{}
mp := map[string]int{}
result := RecordNotEmpty(mp)(mockT)
if result {
t.Error("Expected RecordNotEmpty to fail for empty map")
}
})
}
func TestArrayLength(t *testing.T) {
t.Run("should pass when length matches", func(t *testing.T) {
arr := []int{1, 2, 3}
result := ArrayLength[int](3)(arr)(t)
if !result {
t.Error("Expected ArrayLength to pass when length matches")
}
})
t.Run("should fail when length doesn't match", func(t *testing.T) {
mockT := &testing.T{}
arr := []int{1, 2, 3}
result := ArrayLength[int](5)(arr)(mockT)
if result {
t.Error("Expected ArrayLength to fail when length doesn't match")
}
})
t.Run("should work with empty array", func(t *testing.T) {
arr := []string{}
result := ArrayLength[string](0)(arr)(t)
if !result {
t.Error("Expected ArrayLength to pass for empty array with expected length 0")
}
})
}
func TestRecordLength(t *testing.T) {
t.Run("should pass when map length matches", func(t *testing.T) {
mp := map[string]int{"a": 1, "b": 2}
result := RecordLength[string, int](2)(mp)(t)
if !result {
t.Error("Expected RecordLength to pass when length matches")
}
})
t.Run("should fail when map length doesn't match", func(t *testing.T) {
mockT := &testing.T{}
mp := map[string]int{"a": 1}
result := RecordLength[string, int](3)(mp)(mockT)
if result {
t.Error("Expected RecordLength to fail when length doesn't match")
}
})
}
func TestStringLength(t *testing.T) {
t.Run("should pass when string length matches", func(t *testing.T) {
str := "hello"
result := StringLength[string, int](5)(str)(t)
if !result {
t.Error("Expected StringLength to pass when length matches")
}
})
t.Run("should fail when string length doesn't match", func(t *testing.T) {
mockT := &testing.T{}
str := "hello"
result := StringLength[string, int](10)(str)(mockT)
if result {
t.Error("Expected StringLength to fail when length doesn't match")
}
})
t.Run("should work with empty string", func(t *testing.T) {
str := ""
result := StringLength[string, int](0)(str)(t)
if !result {
t.Error("Expected StringLength to pass for empty string with expected length 0")
}
})
}
func TestNoError(t *testing.T) {
t.Run("should pass when error is nil", func(t *testing.T) {
result := NoError(nil)(t)
if !result {
t.Error("Expected NoError to pass when error is nil")
}
})
t.Run("should fail when error is not nil", func(t *testing.T) {
mockT := &testing.T{}
err := errors.New("test error")
result := NoError(err)(mockT)
if result {
t.Error("Expected NoError to fail when error is not nil")
}
})
}
func TestError(t *testing.T) {
t.Run("should pass when error is not nil", func(t *testing.T) {
err := errors.New("test error")
result := Error(err)(t)
if !result {
t.Error("Expected Error to pass when error is not nil")
}
})
t.Run("should fail when error is nil", func(t *testing.T) {
mockT := &testing.T{}
result := Error(nil)(mockT)
if result {
t.Error("Expected Error to fail when error is nil")
}
})
}
func TestSuccess(t *testing.T) {
t.Run("should pass for successful result", func(t *testing.T) {
res := result.Of(42)
result := Success(res)(t)
if !result {
t.Error("Expected Success to pass for successful result")
}
})
t.Run("should fail for error result", func(t *testing.T) {
mockT := &testing.T{}
res := result.Left[int](errors.New("test error"))
result := Success(res)(mockT)
if result {
t.Error("Expected Success to fail for error result")
}
})
}
func TestFailure(t *testing.T) {
t.Run("should pass for error result", func(t *testing.T) {
res := result.Left[int](errors.New("test error"))
result := Failure(res)(t)
if !result {
t.Error("Expected Failure to pass for error result")
}
})
t.Run("should fail for successful result", func(t *testing.T) {
mockT := &testing.T{}
res := result.Of(42)
result := Failure(res)(mockT)
if result {
t.Error("Expected Failure to fail for successful result")
}
})
}
func TestArrayContains(t *testing.T) {
t.Run("should pass when element is in array", func(t *testing.T) {
arr := []int{1, 2, 3, 4, 5}
result := ArrayContains(3)(arr)(t)
if !result {
t.Error("Expected ArrayContains to pass when element is in array")
}
})
t.Run("should fail when element is not in array", func(t *testing.T) {
mockT := &testing.T{}
arr := []int{1, 2, 3}
result := ArrayContains(10)(arr)(mockT)
if result {
t.Error("Expected ArrayContains to fail when element is not in array")
}
})
t.Run("should work with strings", func(t *testing.T) {
arr := []string{"apple", "banana", "cherry"}
result := ArrayContains("banana")(arr)(t)
if !result {
t.Error("Expected ArrayContains to pass for string element")
}
})
}
func TestContainsKey(t *testing.T) {
t.Run("should pass when key exists in map", func(t *testing.T) {
mp := map[string]int{"a": 1, "b": 2, "c": 3}
result := ContainsKey[int]("b")(mp)(t)
if !result {
t.Error("Expected ContainsKey to pass when key exists")
}
})
t.Run("should fail when key doesn't exist in map", func(t *testing.T) {
mockT := &testing.T{}
mp := map[string]int{"a": 1, "b": 2}
result := ContainsKey[int]("z")(mp)(mockT)
if result {
t.Error("Expected ContainsKey to fail when key doesn't exist")
}
})
}
func TestNotContainsKey(t *testing.T) {
t.Run("should pass when key doesn't exist in map", func(t *testing.T) {
mp := map[string]int{"a": 1, "b": 2}
result := NotContainsKey[int]("z")(mp)(t)
if !result {
t.Error("Expected NotContainsKey to pass when key doesn't exist")
}
})
t.Run("should fail when key exists in map", func(t *testing.T) {
mockT := &testing.T{}
mp := map[string]int{"a": 1, "b": 2}
result := NotContainsKey[int]("a")(mp)(mockT)
if result {
t.Error("Expected NotContainsKey to fail when key exists")
}
})
}
func TestThat(t *testing.T) {
t.Run("should pass when predicate is true", func(t *testing.T) {
isEven := func(n int) bool { return n%2 == 0 }
result := That(isEven)(42)(t)
if !result {
t.Error("Expected That to pass when predicate is true")
}
})
t.Run("should fail when predicate is false", func(t *testing.T) {
mockT := &testing.T{}
isEven := func(n int) bool { return n%2 == 0 }
result := That(isEven)(43)(mockT)
if result {
t.Error("Expected That to fail when predicate is false")
}
})
t.Run("should work with string predicates", func(t *testing.T) {
startsWithH := func(s string) bool { return len(s) > 0 && s[0] == 'h' }
result := That(startsWithH)("hello")(t)
if !result {
t.Error("Expected That to pass for string predicate")
}
})
}
func TestAllOf(t *testing.T) {
t.Run("should pass when all assertions pass", func(t *testing.T) {
assertions := AllOf([]Reader{
Equal(42)(42),
Equal("hello")("hello"),
ArrayNotEmpty([]int{1, 2, 3}),
})
}
result := assertions(t)
if !result {
t.Error("Expected AllOf to pass when all assertions pass")
}
})
t.Run("should fail when any assertion fails", func(t *testing.T) {
mockT := &testing.T{}
assertions := AllOf([]Reader{
Equal(42)(42),
Equal("hello")("goodbye"),
ArrayNotEmpty([]int{1, 2, 3}),
})
result := assertions(mockT)
if result {
t.Error("Expected AllOf to fail when any assertion fails")
}
})
t.Run("should work with empty array", func(t *testing.T) {
assertions := AllOf([]Reader{})
result := assertions(t)
if !result {
t.Error("Expected AllOf to pass for empty array")
}
})
t.Run("should combine multiple array assertions", func(t *testing.T) {
arr := []int{1, 2, 3, 4, 5}
assertions := AllOf([]Reader{
ArrayNotEmpty(arr),
ArrayLength[int](5)(arr),
ArrayContains(3)(arr),
})
result := assertions(t)
if !result {
t.Error("Expected AllOf to pass for multiple array assertions")
}
})
}
// ArrayContains tests if a value is contained in an array
func ArrayContains[T any](t *testing.T, expected T) func(actual []T) E.Either[error, []T] {
return func(actual []T) E.Either[error, []T] {
ok := assert.Contains(t, actual, expected)
if ok {
return E.Of[error](actual)
func TestRunAll(t *testing.T) {
t.Run("should run all named test cases", func(t *testing.T) {
testcases := map[string]Reader{
"equality": Equal(42)(42),
"string_check": Equal("test")("test"),
"array_check": ArrayNotEmpty([]int{1, 2, 3}),
}
return E.Left[[]T](errTest)
}
result := RunAll(testcases)(t)
if !result {
t.Error("Expected RunAll to pass when all test cases pass")
}
})
// Note: Testing failure behavior of RunAll is tricky because subtests
// will actually fail in the test framework. The function works correctly
// as demonstrated by the passing test above.
t.Run("should work with empty test cases", func(t *testing.T) {
testcases := map[string]Reader{}
result := RunAll(testcases)(t)
if !result {
t.Error("Expected RunAll to pass for empty test cases")
}
})
}
// ContainsKey tests if a key is contained in a map
func ContainsKey[T any, K comparable](t *testing.T, expected K) func(actual map[K]T) E.Either[error, map[K]T] {
return func(actual map[K]T) E.Either[error, map[K]T] {
ok := assert.Contains(t, actual, expected)
if ok {
return E.Of[error](actual)
func TestEq(t *testing.T) {
t.Run("should return true for equal values", func(t *testing.T) {
if !Eq.Equals(42, 42) {
t.Error("Expected Eq to return true for equal integers")
}
return E.Left[map[K]T](errTest)
}
})
t.Run("should return false for different values", func(t *testing.T) {
if Eq.Equals(42, 43) {
t.Error("Expected Eq to return false for different integers")
}
})
t.Run("should work with strings", func(t *testing.T) {
if !Eq.Equals("hello", "hello") {
t.Error("Expected Eq to return true for equal strings")
}
if Eq.Equals("hello", "world") {
t.Error("Expected Eq to return false for different strings")
}
})
t.Run("should work with slices", func(t *testing.T) {
arr1 := []int{1, 2, 3}
arr2 := []int{1, 2, 3}
if !Eq.Equals(arr1, arr2) {
t.Error("Expected Eq to return true for equal slices")
}
})
}
// NotContainsKey tests if a key is not contained in a map
func NotContainsKey[T any, K comparable](t *testing.T, expected K) func(actual map[K]T) E.Either[error, map[K]T] {
return func(actual map[K]T) E.Either[error, map[K]T] {
ok := assert.NotContains(t, actual, expected)
if ok {
return E.Of[error](actual)
}
return E.Left[map[K]T](errTest)
func TestLocal(t *testing.T) {
type User struct {
Name string
Age int
}
t.Run("should focus assertion on a property", func(t *testing.T) {
// Create an assertion that checks if age is positive
ageIsPositive := That(func(age int) bool { return age > 0 })
// Focus this assertion on the Age field of User
userAgeIsPositive := Local(func(u User) int { return u.Age })(ageIsPositive)
// Test with a user who has a positive age
user := User{Name: "Alice", Age: 30}
result := userAgeIsPositive(user)(t)
if !result {
t.Error("Expected focused assertion to pass for positive age")
}
})
t.Run("should fail when focused property doesn't match", func(t *testing.T) {
mockT := &testing.T{}
ageIsPositive := That(func(age int) bool { return age > 0 })
userAgeIsPositive := Local(func(u User) int { return u.Age })(ageIsPositive)
// Test with a user who has zero age
user := User{Name: "Bob", Age: 0}
result := userAgeIsPositive(user)(mockT)
if result {
t.Error("Expected focused assertion to fail for zero age")
}
})
t.Run("should compose with other assertions", func(t *testing.T) {
// Create multiple focused assertions
nameNotEmpty := Local(func(u User) string { return u.Name })(
That(func(name string) bool { return len(name) > 0 }),
)
ageInRange := Local(func(u User) int { return u.Age })(
That(func(age int) bool { return age >= 18 && age <= 100 }),
)
user := User{Name: "Charlie", Age: 25}
assertions := AllOf([]Reader{
nameNotEmpty(user),
ageInRange(user),
})
result := assertions(t)
if !result {
t.Error("Expected composed focused assertions to pass")
}
})
t.Run("should work with Equal assertion", func(t *testing.T) {
// Focus Equal assertion on Name field
nameIsAlice := Local(func(u User) string { return u.Name })(Equal("Alice"))
user := User{Name: "Alice", Age: 30}
result := nameIsAlice(user)(t)
if !result {
t.Error("Expected focused Equal assertion to pass")
}
})
}
func TestLocalL(t *testing.T) {
// Note: LocalL requires lens package which provides lens operations.
// This test demonstrates the concept, but actual usage would require
// proper lens definitions.
t.Run("conceptual test for LocalL", func(t *testing.T) {
// LocalL is similar to Local but uses lenses for focusing.
// It would be used like:
// validEmail := That(func(email string) bool { return strings.Contains(email, "@") })
// validPersonEmail := LocalL(emailLens)(validEmail)
//
// The actual implementation would require lens definitions from the lens package.
// This test serves as documentation for the intended usage.
})
}
func TestFromOptional(t *testing.T) {
type DatabaseConfig struct {
Host string
Port int
}
type Config struct {
Database *DatabaseConfig
}
// Create an Optional that focuses on the Database field
dbOptional := Optional[Config, *DatabaseConfig]{
GetOption: func(c Config) option.Option[*DatabaseConfig] {
if c.Database != nil {
return option.Of(c.Database)
}
return option.None[*DatabaseConfig]()
},
Set: func(db *DatabaseConfig) func(Config) Config {
return func(c Config) Config {
c.Database = db
return c
}
},
}
t.Run("should pass when optional value is present", func(t *testing.T) {
config := Config{Database: &DatabaseConfig{Host: "localhost", Port: 5432}}
hasDatabaseConfig := FromOptional(dbOptional)
result := hasDatabaseConfig(config)(t)
if !result {
t.Error("Expected FromOptional to pass when optional value is present")
}
})
t.Run("should fail when optional value is absent", func(t *testing.T) {
mockT := &testing.T{}
emptyConfig := Config{Database: nil}
hasDatabaseConfig := FromOptional(dbOptional)
result := hasDatabaseConfig(emptyConfig)(mockT)
if result {
t.Error("Expected FromOptional to fail when optional value is absent")
}
})
t.Run("should work with nested optionals", func(t *testing.T) {
type AdvancedSettings struct {
Cache bool
}
type Settings struct {
Advanced *AdvancedSettings
}
advancedOptional := Optional[Settings, *AdvancedSettings]{
GetOption: func(s Settings) option.Option[*AdvancedSettings] {
if s.Advanced != nil {
return option.Of(s.Advanced)
}
return option.None[*AdvancedSettings]()
},
Set: func(adv *AdvancedSettings) func(Settings) Settings {
return func(s Settings) Settings {
s.Advanced = adv
return s
}
},
}
settings := Settings{Advanced: &AdvancedSettings{Cache: true}}
hasAdvanced := FromOptional(advancedOptional)
result := hasAdvanced(settings)(t)
if !result {
t.Error("Expected FromOptional to pass for nested optional")
}
})
}
// Helper types for Prism testing
type PrismTestResult interface {
isPrismTestResult()
}
type PrismTestSuccess struct {
Value int
}
type PrismTestFailure struct {
Error string
}
func (PrismTestSuccess) isPrismTestResult() {}
func (PrismTestFailure) isPrismTestResult() {}
func TestFromPrism(t *testing.T) {
// Create a Prism that focuses on Success variant using prism.MakePrism
successPrism := prism.MakePrism(
func(r PrismTestResult) option.Option[int] {
if s, ok := r.(PrismTestSuccess); ok {
return option.Of(s.Value)
}
return option.None[int]()
},
func(v int) PrismTestResult {
return PrismTestSuccess{Value: v}
},
)
// Create a Prism that focuses on Failure variant
failurePrism := prism.MakePrism(
func(r PrismTestResult) option.Option[string] {
if f, ok := r.(PrismTestFailure); ok {
return option.Of(f.Error)
}
return option.None[string]()
},
func(err string) PrismTestResult {
return PrismTestFailure{Error: err}
},
)
t.Run("should pass when prism successfully extracts", func(t *testing.T) {
result := PrismTestSuccess{Value: 42}
isSuccess := FromPrism(successPrism)
testResult := isSuccess(result)(t)
if !testResult {
t.Error("Expected FromPrism to pass when prism extracts successfully")
}
})
t.Run("should fail when prism cannot extract", func(t *testing.T) {
mockT := &testing.T{}
result := PrismTestFailure{Error: "something went wrong"}
isSuccess := FromPrism(successPrism)
testResult := isSuccess(result)(mockT)
if testResult {
t.Error("Expected FromPrism to fail when prism cannot extract")
}
})
t.Run("should work with failure prism", func(t *testing.T) {
result := PrismTestFailure{Error: "test error"}
isFailure := FromPrism(failurePrism)
testResult := isFailure(result)(t)
if !testResult {
t.Error("Expected FromPrism to pass for failure prism on failure result")
}
})
t.Run("should fail with failure prism on success result", func(t *testing.T) {
mockT := &testing.T{}
result := PrismTestSuccess{Value: 100}
isFailure := FromPrism(failurePrism)
testResult := isFailure(result)(mockT)
if testResult {
t.Error("Expected FromPrism to fail for failure prism on success result")
}
})
}

22
v2/assert/types.go Normal file
View File

@@ -0,0 +1,22 @@
package assert
import (
"testing"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/optics/optional"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/predicate"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/result"
)
type (
Result[T any] = result.Result[T]
Reader = reader.Reader[*testing.T, bool]
Kleisli[T any] = reader.Reader[T, Reader]
Predicate[T any] = predicate.Predicate[T]
Lens[S, T any] = lens.Lens[S, T]
Optional[S, T any] = optional.Optional[S, T]
Prism[S, T any] = prism.Prism[S, T]
)

View File

@@ -53,7 +53,7 @@ func MakeBounded[T any](o ord.Ord[T], t, b T) Bounded[T] {
// Clamp returns a function that clamps against the bounds defined in the bounded type
func Clamp[T any](b Bounded[T]) func(T) T {
return ord.Clamp[T](b)(b.Bottom(), b.Top())
return ord.Clamp(b)(b.Bottom(), b.Top())
}
// Reverse reverses the ordering and swaps the bounds

7
v2/builder/builder.go Normal file
View File

@@ -0,0 +1,7 @@
package builder
type (
Builder[T any] interface {
Build() Result[T]
}
)

12
v2/builder/prism.go Normal file
View File

@@ -0,0 +1,12 @@
package builder
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/result"
)
// BuilderPrism createa a [Prism] that converts between a builder and its type
func BuilderPrism[T any, B Builder[T]](creator func(T) B) Prism[B, T] {
return prism.MakePrism(F.Flow2(B.Build, result.ToOption[T]), creator)
}

15
v2/builder/types.go Normal file
View File

@@ -0,0 +1,15 @@
package builder
import (
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
type (
Result[T any] = result.Result[T]
Prism[S, A any] = prism.Prism[S, A]
Option[T any] = option.Option[T]
)

View File

@@ -15,14 +15,163 @@
package bytes
// Empty returns an empty byte slice.
//
// This function returns the identity element for the byte slice Monoid,
// which is an empty byte slice. It's useful as a starting point for
// building byte slices or as a default value.
//
// Returns:
// - An empty byte slice ([]byte{})
//
// Properties:
// - Empty() is the identity element for Monoid.Concat
// - Monoid.Concat(Empty(), x) == x
// - Monoid.Concat(x, Empty()) == x
//
// Example - Basic usage:
//
// empty := Empty()
// fmt.Println(len(empty)) // 0
//
// Example - As identity element:
//
// data := []byte("hello")
// result1 := Monoid.Concat(Empty(), data) // []byte("hello")
// result2 := Monoid.Concat(data, Empty()) // []byte("hello")
//
// Example - Building byte slices:
//
// // Start with empty and build up
// buffer := Empty()
// buffer = Monoid.Concat(buffer, []byte("Hello"))
// buffer = Monoid.Concat(buffer, []byte(" "))
// buffer = Monoid.Concat(buffer, []byte("World"))
// // buffer: []byte("Hello World")
//
// See also:
// - Monoid.Empty(): Alternative way to get empty byte slice
// - ConcatAll(): For concatenating multiple byte slices
func Empty() []byte {
return Monoid.Empty()
}
// ToString converts a byte slice to a string.
//
// This function performs a direct conversion from []byte to string.
// The conversion creates a new string with a copy of the byte data.
//
// Parameters:
// - a: The byte slice to convert
//
// Returns:
// - A string containing the same data as the byte slice
//
// Performance Note:
//
// This conversion allocates a new string. For performance-critical code
// that needs to avoid allocations, consider using unsafe.String (Go 1.20+)
// or working directly with byte slices.
//
// Example - Basic conversion:
//
// bytes := []byte("hello")
// str := ToString(bytes)
// fmt.Println(str) // "hello"
//
// Example - Converting binary data:
//
// // ASCII codes for "Hello"
// data := []byte{0x48, 0x65, 0x6c, 0x6c, 0x6f}
// str := ToString(data)
// fmt.Println(str) // "Hello"
//
// Example - Empty byte slice:
//
// empty := Empty()
// str := ToString(empty)
// fmt.Println(str == "") // true
//
// Example - UTF-8 encoded text:
//
// utf8Bytes := []byte("Hello, 世界")
// str := ToString(utf8Bytes)
// fmt.Println(str) // "Hello, 世界"
//
// Example - Round-trip conversion:
//
// original := "test string"
// bytes := []byte(original)
// result := ToString(bytes)
// fmt.Println(original == result) // true
//
// See also:
// - []byte(string): For converting string to byte slice
// - Size(): For getting the length of a byte slice
func ToString(a []byte) string {
return string(a)
}
// Size returns the number of bytes in a byte slice.
//
// This function returns the length of the byte slice, which is the number
// of bytes it contains. This is equivalent to len(as) but provided as a
// named function for use in functional composition.
//
// Parameters:
// - as: The byte slice to measure
//
// Returns:
// - The number of bytes in the slice
//
// Example - Basic usage:
//
// data := []byte("hello")
// size := Size(data)
// fmt.Println(size) // 5
//
// Example - Empty slice:
//
// empty := Empty()
// size := Size(empty)
// fmt.Println(size) // 0
//
// Example - Binary data:
//
// binary := []byte{0x01, 0x02, 0x03, 0x04}
// size := Size(binary)
// fmt.Println(size) // 4
//
// Example - UTF-8 encoded text:
//
// // Note: Size returns byte count, not character count
// utf8 := []byte("Hello, 世界")
// byteCount := Size(utf8)
// fmt.Println(byteCount) // 13 (not 9 characters)
//
// Example - Using in functional composition:
//
// import "github.com/IBM/fp-go/v2/array"
//
// slices := [][]byte{
// []byte("a"),
// []byte("bb"),
// []byte("ccc"),
// }
//
// // Map to get sizes
// sizes := array.Map(Size)(slices)
// // sizes: []int{1, 2, 3}
//
// Example - Checking if slice is empty:
//
// data := []byte("test")
// isEmpty := Size(data) == 0
// fmt.Println(isEmpty) // false
//
// See also:
// - len(): Built-in function for getting slice length
// - ToString(): For converting byte slice to string
func Size(as []byte) int {
return len(as)
}

View File

@@ -187,6 +187,299 @@ func TestOrd(t *testing.T) {
})
}
// TestOrdProperties tests mathematical properties of Ord
func TestOrdProperties(t *testing.T) {
t.Run("reflexivity: x == x", func(t *testing.T) {
testCases := [][]byte{
[]byte{},
[]byte("a"),
[]byte("test"),
[]byte{0x01, 0x02, 0x03},
}
for _, tc := range testCases {
assert.Equal(t, 0, Ord.Compare(tc, tc),
"Compare(%v, %v) should be 0", tc, tc)
assert.True(t, Ord.Equals(tc, tc),
"Equals(%v, %v) should be true", tc, tc)
}
})
t.Run("antisymmetry: if x <= y and y <= x then x == y", func(t *testing.T) {
testCases := []struct {
a, b []byte
}{
{[]byte("abc"), []byte("abc")},
{[]byte{}, []byte{}},
{[]byte{0x01}, []byte{0x01}},
}
for _, tc := range testCases {
cmp1 := Ord.Compare(tc.a, tc.b)
cmp2 := Ord.Compare(tc.b, tc.a)
if cmp1 <= 0 && cmp2 <= 0 {
assert.True(t, Ord.Equals(tc.a, tc.b),
"If %v <= %v and %v <= %v, they should be equal", tc.a, tc.b, tc.b, tc.a)
}
}
})
t.Run("transitivity: if x <= y and y <= z then x <= z", func(t *testing.T) {
x := []byte("a")
y := []byte("b")
z := []byte("c")
cmpXY := Ord.Compare(x, y)
cmpYZ := Ord.Compare(y, z)
cmpXZ := Ord.Compare(x, z)
if cmpXY <= 0 && cmpYZ <= 0 {
assert.True(t, cmpXZ <= 0,
"If %v <= %v and %v <= %v, then %v <= %v", x, y, y, z, x, z)
}
})
t.Run("totality: either x <= y or y <= x", func(t *testing.T) {
testCases := []struct {
a, b []byte
}{
{[]byte("abc"), []byte("abd")},
{[]byte("xyz"), []byte("abc")},
{[]byte{}, []byte("a")},
{[]byte{0x01}, []byte{0x02}},
}
for _, tc := range testCases {
cmp1 := Ord.Compare(tc.a, tc.b)
cmp2 := Ord.Compare(tc.b, tc.a)
assert.True(t, cmp1 <= 0 || cmp2 <= 0,
"Either %v <= %v or %v <= %v must be true", tc.a, tc.b, tc.b, tc.a)
}
})
}
// TestEdgeCases tests edge cases and boundary conditions
func TestEdgeCases(t *testing.T) {
t.Run("very large byte slices", func(t *testing.T) {
large := make([]byte, 1000000)
for i := range large {
large[i] = byte(i % 256)
}
size := Size(large)
assert.Equal(t, 1000000, size)
str := ToString(large)
assert.Equal(t, 1000000, len(str))
})
t.Run("concatenating many slices", func(t *testing.T) {
slices := make([][]byte, 100)
for i := range slices {
slices[i] = []byte{byte(i)}
}
result := ConcatAll(slices...)
assert.Equal(t, 100, Size(result))
})
t.Run("null bytes in slice", func(t *testing.T) {
data := []byte{0x00, 0x01, 0x00, 0x02}
size := Size(data)
assert.Equal(t, 4, size)
str := ToString(data)
assert.Equal(t, 4, len(str))
})
t.Run("comparing slices with null bytes", func(t *testing.T) {
a := []byte{0x00, 0x01}
b := []byte{0x00, 0x02}
assert.Equal(t, -1, Ord.Compare(a, b))
})
}
// TestMonoidConcatPerformance tests concatenation performance characteristics
func TestMonoidConcatPerformance(t *testing.T) {
t.Run("ConcatAll vs repeated Concat", func(t *testing.T) {
slices := [][]byte{
[]byte("a"),
[]byte("b"),
[]byte("c"),
[]byte("d"),
[]byte("e"),
}
// Using ConcatAll
result1 := ConcatAll(slices...)
// Using repeated Concat
result2 := Monoid.Empty()
for _, s := range slices {
result2 = Monoid.Concat(result2, s)
}
assert.Equal(t, result1, result2)
assert.Equal(t, []byte("abcde"), result1)
})
}
// TestRoundTrip tests round-trip conversions
func TestRoundTrip(t *testing.T) {
t.Run("string to bytes to string", func(t *testing.T) {
original := "Hello, World! 世界"
bytes := []byte(original)
result := ToString(bytes)
assert.Equal(t, original, result)
})
t.Run("bytes to string to bytes", func(t *testing.T) {
original := []byte{0x48, 0x65, 0x6c, 0x6c, 0x6f}
str := ToString(original)
result := []byte(str)
assert.Equal(t, original, result)
})
}
// TestConcatAllVariadic tests ConcatAll with various argument counts
func TestConcatAllVariadic(t *testing.T) {
t.Run("zero arguments", func(t *testing.T) {
result := ConcatAll()
assert.Equal(t, []byte{}, result)
})
t.Run("one argument", func(t *testing.T) {
result := ConcatAll([]byte("test"))
assert.Equal(t, []byte("test"), result)
})
t.Run("two arguments", func(t *testing.T) {
result := ConcatAll([]byte("hello"), []byte("world"))
assert.Equal(t, []byte("helloworld"), result)
})
t.Run("many arguments", func(t *testing.T) {
result := ConcatAll(
[]byte("a"),
[]byte("b"),
[]byte("c"),
[]byte("d"),
[]byte("e"),
[]byte("f"),
[]byte("g"),
[]byte("h"),
[]byte("i"),
[]byte("j"),
)
assert.Equal(t, []byte("abcdefghij"), result)
})
}
// Benchmark tests
func BenchmarkToString(b *testing.B) {
data := []byte("Hello, World!")
b.Run("small", func(b *testing.B) {
for b.Loop() {
_ = ToString(data)
}
})
b.Run("large", func(b *testing.B) {
large := make([]byte, 10000)
for i := range large {
large[i] = byte(i % 256)
}
b.ResetTimer()
for b.Loop() {
_ = ToString(large)
}
})
}
func BenchmarkSize(b *testing.B) {
data := []byte("Hello, World!")
for b.Loop() {
_ = Size(data)
}
}
func BenchmarkMonoidConcat(b *testing.B) {
a := []byte("Hello")
c := []byte(" World")
b.Run("small slices", func(b *testing.B) {
for b.Loop() {
_ = Monoid.Concat(a, c)
}
})
b.Run("large slices", func(b *testing.B) {
large1 := make([]byte, 10000)
large2 := make([]byte, 10000)
b.ResetTimer()
for b.Loop() {
_ = Monoid.Concat(large1, large2)
}
})
}
func BenchmarkConcatAll(b *testing.B) {
slices := [][]byte{
[]byte("Hello"),
[]byte(" "),
[]byte("World"),
[]byte("!"),
}
b.Run("few slices", func(b *testing.B) {
for b.Loop() {
_ = ConcatAll(slices...)
}
})
b.Run("many slices", func(b *testing.B) {
many := make([][]byte, 100)
for i := range many {
many[i] = []byte{byte(i)}
}
b.ResetTimer()
for b.Loop() {
_ = ConcatAll(many...)
}
})
}
func BenchmarkOrdCompare(b *testing.B) {
a := []byte("abc")
c := []byte("abd")
b.Run("equal", func(b *testing.B) {
for b.Loop() {
_ = Ord.Compare(a, a)
}
})
b.Run("different", func(b *testing.B) {
for b.Loop() {
_ = Ord.Compare(a, c)
}
})
b.Run("large slices", func(b *testing.B) {
large1 := make([]byte, 10000)
large2 := make([]byte, 10000)
large2[9999] = 1
b.ResetTimer()
for b.Loop() {
_ = Ord.Compare(large1, large2)
}
})
}
// Example tests
func ExampleEmpty() {
empty := Empty()
@@ -219,3 +512,17 @@ func ExampleConcatAll() {
// Output:
}
func ExampleMonoid_concat() {
result := Monoid.Concat([]byte("Hello"), []byte(" World"))
println(string(result)) // Hello World
// Output:
}
func ExampleOrd_compare() {
cmp := Ord.Compare([]byte("abc"), []byte("abd"))
println(cmp) // -1 (abc < abd)
// Output:
}

4
v2/bytes/coverage.out Normal file
View File

@@ -0,0 +1,4 @@
mode: set
github.com/IBM/fp-go/v2/bytes/bytes.go:55.21,57.2 1 1
github.com/IBM/fp-go/v2/bytes/bytes.go:111.32,113.2 1 1
github.com/IBM/fp-go/v2/bytes/bytes.go:175.26,177.2 1 1

View File

@@ -23,12 +23,219 @@ import (
)
var (
// monoid for byte arrays
// Monoid is the Monoid instance for byte slices.
//
// This Monoid combines byte slices through concatenation, with an empty
// byte slice as the identity element. It satisfies the monoid laws:
//
// Identity laws:
// - Monoid.Concat(Monoid.Empty(), x) == x (left identity)
// - Monoid.Concat(x, Monoid.Empty()) == x (right identity)
//
// Associativity law:
// - Monoid.Concat(Monoid.Concat(a, b), c) == Monoid.Concat(a, Monoid.Concat(b, c))
//
// Operations:
// - Empty(): Returns an empty byte slice []byte{}
// - Concat(a, b []byte): Concatenates two byte slices
//
// Example - Basic concatenation:
//
// result := Monoid.Concat([]byte("Hello"), []byte(" World"))
// // result: []byte("Hello World")
//
// Example - Identity element:
//
// empty := Monoid.Empty()
// data := []byte("test")
// result1 := Monoid.Concat(empty, data) // []byte("test")
// result2 := Monoid.Concat(data, empty) // []byte("test")
//
// Example - Building byte buffers:
//
// buffer := Monoid.Empty()
// buffer = Monoid.Concat(buffer, []byte("Line 1\n"))
// buffer = Monoid.Concat(buffer, []byte("Line 2\n"))
// buffer = Monoid.Concat(buffer, []byte("Line 3\n"))
//
// Example - Associativity:
//
// a := []byte("a")
// b := []byte("b")
// c := []byte("c")
// left := Monoid.Concat(Monoid.Concat(a, b), c) // []byte("abc")
// right := Monoid.Concat(a, Monoid.Concat(b, c)) // []byte("abc")
// // left == right
//
// See also:
// - ConcatAll: For concatenating multiple byte slices at once
// - Empty(): Convenience function for getting empty byte slice
Monoid = A.Monoid[byte]()
// ConcatAll concatenates all bytes
// ConcatAll efficiently concatenates multiple byte slices into a single slice.
//
// This function takes a variadic number of byte slices and combines them
// into a single byte slice. It pre-allocates the exact amount of memory
// needed, making it more efficient than repeated concatenation.
//
// Parameters:
// - slices: Zero or more byte slices to concatenate
//
// Returns:
// - A new byte slice containing all input slices concatenated in order
//
// Performance:
//
// ConcatAll is more efficient than using Monoid.Concat repeatedly because
// it calculates the total size upfront and allocates memory once, avoiding
// multiple allocations and copies.
//
// Example - Basic usage:
//
// result := ConcatAll(
// []byte("Hello"),
// []byte(" "),
// []byte("World"),
// )
// // result: []byte("Hello World")
//
// Example - Empty input:
//
// result := ConcatAll()
// // result: []byte{}
//
// Example - Single slice:
//
// result := ConcatAll([]byte("test"))
// // result: []byte("test")
//
// Example - Building protocol messages:
//
// import "encoding/binary"
//
// header := []byte{0x01, 0x02}
// length := make([]byte, 4)
// binary.BigEndian.PutUint32(length, 100)
// payload := []byte("data")
// footer := []byte{0xFF}
//
// message := ConcatAll(header, length, payload, footer)
//
// Example - With empty slices:
//
// result := ConcatAll(
// []byte("a"),
// []byte{},
// []byte("b"),
// []byte{},
// []byte("c"),
// )
// // result: []byte("abc")
//
// Example - Building CSV line:
//
// fields := [][]byte{
// []byte("John"),
// []byte("Doe"),
// []byte("30"),
// }
// separator := []byte(",")
//
// // Interleave fields with separators
// parts := [][]byte{
// fields[0], separator,
// fields[1], separator,
// fields[2],
// }
// line := ConcatAll(parts...)
// // line: []byte("John,Doe,30")
//
// See also:
// - Monoid.Concat: For concatenating exactly two byte slices
// - bytes.Join: Standard library function for joining with separator
ConcatAll = A.ArrayConcatAll[byte]
// Ord implements the default ordering on bytes
// Ord is the Ord instance for byte slices providing lexicographic ordering.
//
// This Ord instance compares byte slices lexicographically (dictionary order),
// comparing bytes from left to right until a difference is found or one slice
// ends. It uses the standard library's bytes.Compare and bytes.Equal functions.
//
// Comparison rules:
// - Compares byte-by-byte from left to right
// - First differing byte determines the order
// - Shorter slice is less than longer slice if all bytes match
// - Empty slice is less than any non-empty slice
//
// Operations:
// - Compare(a, b []byte) int: Returns -1 if a < b, 0 if a == b, 1 if a > b
// - Equals(a, b []byte) bool: Returns true if slices are equal
//
// Example - Basic comparison:
//
// cmp := Ord.Compare([]byte("abc"), []byte("abd"))
// // cmp: -1 (abc < abd)
//
// cmp = Ord.Compare([]byte("xyz"), []byte("abc"))
// // cmp: 1 (xyz > abc)
//
// cmp = Ord.Compare([]byte("test"), []byte("test"))
// // cmp: 0 (equal)
//
// Example - Length differences:
//
// cmp := Ord.Compare([]byte("ab"), []byte("abc"))
// // cmp: -1 (shorter is less)
//
// cmp = Ord.Compare([]byte("abc"), []byte("ab"))
// // cmp: 1 (longer is greater)
//
// Example - Empty slices:
//
// cmp := Ord.Compare([]byte{}, []byte("a"))
// // cmp: -1 (empty is less)
//
// cmp = Ord.Compare([]byte{}, []byte{})
// // cmp: 0 (both empty)
//
// Example - Equality check:
//
// equal := Ord.Equals([]byte("test"), []byte("test"))
// // equal: true
//
// equal = Ord.Equals([]byte("test"), []byte("Test"))
// // equal: false (case-sensitive)
//
// Example - Sorting byte slices:
//
// import "github.com/IBM/fp-go/v2/array"
//
// data := [][]byte{
// []byte("zebra"),
// []byte("apple"),
// []byte("mango"),
// }
//
// sorted := array.Sort(Ord)(data)
// // sorted: [[]byte("apple"), []byte("mango"), []byte("zebra")]
//
// Example - Binary data comparison:
//
// cmp := Ord.Compare([]byte{0x01, 0x02}, []byte{0x01, 0x03})
// // cmp: -1 (0x02 < 0x03)
//
// Example - Finding minimum:
//
// import O "github.com/IBM/fp-go/v2/ord"
//
// a := []byte("xyz")
// b := []byte("abc")
// min := O.Min(Ord)(a, b)
// // min: []byte("abc")
//
// See also:
// - bytes.Compare: Standard library comparison function
// - bytes.Equal: Standard library equality function
// - array.Sort: For sorting slices using an Ord instance
Ord = O.MakeOrd(bytes.Compare, bytes.Equal)
)

View File

@@ -35,5 +35,6 @@ func Commands() []*C.Command {
IOCommand(),
IOOptionCommand(),
DICommand(),
LensCommand(),
}
}

839
v2/cli/lens.go Normal file
View File

@@ -0,0 +1,839 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cli
import (
"bytes"
"go/ast"
"go/parser"
"go/token"
"log"
"os"
"path/filepath"
"reflect"
"strings"
"text/template"
C "github.com/urfave/cli/v2"
)
const (
keyLensDir = "dir"
keyVerbose = "verbose"
lensAnnotation = "fp-go:Lens"
)
var (
flagLensDir = &C.StringFlag{
Name: keyLensDir,
Value: ".",
Usage: "Directory to scan for Go files",
}
flagVerbose = &C.BoolFlag{
Name: keyVerbose,
Aliases: []string{"v"},
Value: false,
Usage: "Enable verbose output",
}
)
// structInfo holds information about a struct that needs lens generation
type structInfo struct {
Name string
TypeParams string // e.g., "[T any]" or "[K comparable, V any]" - for type declarations
TypeParamNames string // e.g., "[T]" or "[K, V]" - for type usage in function signatures
Fields []fieldInfo
Imports map[string]string // package path -> alias
}
// fieldInfo holds information about a struct field
type fieldInfo struct {
Name string
TypeName string
BaseType string // TypeName without leading * for pointer types
IsOptional bool // true if field is a pointer or has json omitempty tag
IsComparable bool // true if the type is comparable (can use ==)
}
// templateData holds data for template rendering
type templateData struct {
PackageName string
Structs []structInfo
}
const lensStructTemplate = `
// {{.Name}}Lenses provides lenses for accessing fields of {{.Name}}
type {{.Name}}Lenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
{{.Name}} L.Lens[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
// optional fields
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O LO.LensO[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
}
// {{.Name}}RefLenses provides lenses for accessing fields of {{.Name}} via a reference to {{.Name}}
type {{.Name}}RefLenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
{{.Name}} L.Lens[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
// optional fields
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O LO.LensO[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
}
`
const lensConstructorTemplate = `
// Make{{.Name}}Lenses creates a new {{.Name}}Lenses with lenses for all fields
func Make{{.Name}}Lenses{{.TypeParams}}() {{.Name}}Lenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
lens{{.Name}} := L.MakeLens(
func(s {{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s {{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) {{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}}O := LO.FromIso[{{$.Name}}{{$.TypeParamNames}}](IO.FromZero[{{.TypeName}}]())(lens{{.Name}})
{{- end}}
{{- end}}
return {{.Name}}Lenses{{.TypeParamNames}}{
// mandatory lenses
{{- range .Fields}}
{{.Name}}: lens{{.Name}},
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O: lens{{.Name}}O,
{{- end}}
{{- end}}
}
}
// Make{{.Name}}RefLenses creates a new {{.Name}}RefLenses with lenses for all fields
func Make{{.Name}}RefLenses{{.TypeParams}}() {{.Name}}RefLenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}} := L.MakeLensStrict(
func(s *{{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- else}}
lens{{.Name}} := L.MakeLensRef(
func(s *{{$.Name}}{{$.TypeParamNames}}) {{.TypeName}} { return s.{{.Name}} },
func(s *{{$.Name}}{{$.TypeParamNames}}, v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} { s.{{.Name}} = v; return s },
)
{{- end}}
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
lens{{.Name}}O := LO.FromIso[*{{$.Name}}{{$.TypeParamNames}}](IO.FromZero[{{.TypeName}}]())(lens{{.Name}})
{{- end}}
{{- end}}
return {{.Name}}RefLenses{{.TypeParamNames}}{
// mandatory lenses
{{- range .Fields}}
{{.Name}}: lens{{.Name}},
{{- end}}
// optional lenses
{{- range .Fields}}
{{- if .IsComparable}}
{{.Name}}O: lens{{.Name}}O,
{{- end}}
{{- end}}
}
}
`
var (
structTmpl *template.Template
constructorTmpl *template.Template
)
func init() {
var err error
structTmpl, err = template.New("struct").Parse(lensStructTemplate)
if err != nil {
panic(err)
}
constructorTmpl, err = template.New("constructor").Parse(lensConstructorTemplate)
if err != nil {
panic(err)
}
}
// hasLensAnnotation checks if a comment group contains the lens annotation
func hasLensAnnotation(doc *ast.CommentGroup) bool {
if doc == nil {
return false
}
for _, comment := range doc.List {
if strings.Contains(comment.Text, lensAnnotation) {
return true
}
}
return false
}
// getTypeName extracts the type name from a field type expression
func getTypeName(expr ast.Expr) string {
switch t := expr.(type) {
case *ast.Ident:
return t.Name
case *ast.StarExpr:
return "*" + getTypeName(t.X)
case *ast.ArrayType:
return "[]" + getTypeName(t.Elt)
case *ast.MapType:
return "map[" + getTypeName(t.Key) + "]" + getTypeName(t.Value)
case *ast.SelectorExpr:
return getTypeName(t.X) + "." + t.Sel.Name
case *ast.InterfaceType:
return "interface{}"
case *ast.IndexExpr:
// Generic type with single type parameter (Go 1.18+)
// e.g., Option[string]
return getTypeName(t.X) + "[" + getTypeName(t.Index) + "]"
case *ast.IndexListExpr:
// Generic type with multiple type parameters (Go 1.18+)
// e.g., Map[string, int]
var params []string
for _, index := range t.Indices {
params = append(params, getTypeName(index))
}
return getTypeName(t.X) + "[" + strings.Join(params, ", ") + "]"
default:
return "any"
}
}
// extractImports extracts package imports from a type expression
// Returns a map of package path -> package name
func extractImports(expr ast.Expr, imports map[string]string) {
switch t := expr.(type) {
case *ast.StarExpr:
extractImports(t.X, imports)
case *ast.ArrayType:
extractImports(t.Elt, imports)
case *ast.MapType:
extractImports(t.Key, imports)
extractImports(t.Value, imports)
case *ast.SelectorExpr:
// This is a qualified identifier like "option.Option"
if ident, ok := t.X.(*ast.Ident); ok {
// ident.Name is the package name (e.g., "option")
// We need to track this for import resolution
imports[ident.Name] = ident.Name
}
case *ast.IndexExpr:
// Generic type with single type parameter
extractImports(t.X, imports)
extractImports(t.Index, imports)
case *ast.IndexListExpr:
// Generic type with multiple type parameters
extractImports(t.X, imports)
for _, index := range t.Indices {
extractImports(index, imports)
}
}
}
// hasOmitEmpty checks if a struct tag contains json omitempty
func hasOmitEmpty(tag *ast.BasicLit) bool {
if tag == nil {
return false
}
// Parse the struct tag
tagValue := strings.Trim(tag.Value, "`")
structTag := reflect.StructTag(tagValue)
jsonTag := structTag.Get("json")
// Check if omitempty is present
parts := strings.Split(jsonTag, ",")
for _, part := range parts {
if strings.TrimSpace(part) == "omitempty" {
return true
}
}
return false
}
// isPointerType checks if a type expression is a pointer
func isPointerType(expr ast.Expr) bool {
_, ok := expr.(*ast.StarExpr)
return ok
}
// isComparableType checks if a type expression represents a comparable type.
// Comparable types in Go include:
// - Basic types (bool, numeric types, string)
// - Pointer types
// - Channel types
// - Interface types
// - Structs where all fields are comparable
// - Arrays where the element type is comparable
//
// Non-comparable types include:
// - Slices
// - Maps
// - Functions
//
// typeParams is a map of type parameter names to their constraints (e.g., "T" -> "any", "K" -> "comparable")
func isComparableType(expr ast.Expr, typeParams map[string]string) bool {
switch t := expr.(type) {
case *ast.Ident:
// Check if this is a type parameter
if constraint, isTypeParam := typeParams[t.Name]; isTypeParam {
// Type parameter - check its constraint
return constraint == "comparable"
}
// Basic types and named types
// We assume named types are comparable unless they're known non-comparable types
name := t.Name
// Known non-comparable built-in types
if name == "error" {
// error is an interface, which is comparable
return true
}
// Most basic types and named types are comparable
// We can't determine if a custom type is comparable without type checking,
// so we assume it is (conservative approach)
return true
case *ast.StarExpr:
// Pointer types are always comparable
return true
case *ast.ArrayType:
// Arrays are comparable if their element type is comparable
if t.Len == nil {
// This is a slice (no length), slices are not comparable
return false
}
// Fixed-size array, check element type
return isComparableType(t.Elt, typeParams)
case *ast.MapType:
// Maps are not comparable
return false
case *ast.FuncType:
// Functions are not comparable
return false
case *ast.InterfaceType:
// Interface types are comparable
return true
case *ast.StructType:
// Structs are comparable if all fields are comparable
// We can't easily determine this without full type information,
// so we conservatively return false for struct literals
return false
case *ast.SelectorExpr:
// Qualified identifier (e.g., pkg.Type)
// We can't determine comparability without type information
// Check for known non-comparable types from standard library
if ident, ok := t.X.(*ast.Ident); ok {
pkgName := ident.Name
typeName := t.Sel.Name
// Check for known non-comparable types
if pkgName == "context" && typeName == "Context" {
// context.Context is an interface, which is comparable
return true
}
// For other qualified types, we assume they're comparable
// This is a conservative approach
}
return true
case *ast.IndexExpr, *ast.IndexListExpr:
// Generic types - we can't determine comparability without type information
// For common generic types, we can make educated guesses
var baseExpr ast.Expr
if idx, ok := t.(*ast.IndexExpr); ok {
baseExpr = idx.X
} else if idxList, ok := t.(*ast.IndexListExpr); ok {
baseExpr = idxList.X
}
if sel, ok := baseExpr.(*ast.SelectorExpr); ok {
if ident, ok := sel.X.(*ast.Ident); ok {
pkgName := ident.Name
typeName := sel.Sel.Name
// Check for known non-comparable generic types
if pkgName == "option" && typeName == "Option" {
// Option types are not comparable (they contain a slice internally)
return false
}
if pkgName == "either" && typeName == "Either" {
// Either types are not comparable
return false
}
}
}
// For other generic types, conservatively assume not comparable
log.Printf("Not comparable type: %v\n", t)
return false
case *ast.ChanType:
// Channel types are comparable
return true
default:
// Unknown type, conservatively assume not comparable
return false
}
}
// embeddedFieldResult holds both the field info and its AST type for import extraction
type embeddedFieldResult struct {
fieldInfo fieldInfo
fieldType ast.Expr
}
// extractEmbeddedFields extracts fields from an embedded struct type
// It returns a slice of embeddedFieldResult for all exported fields in the embedded struct
// typeParamsMap contains the type parameters of the parent struct (for checking comparability)
func extractEmbeddedFields(embedType ast.Expr, fileImports map[string]string, file *ast.File, typeParamsMap map[string]string) []embeddedFieldResult {
var results []embeddedFieldResult
// Get the type name of the embedded field
var typeName string
var typeIdent *ast.Ident
switch t := embedType.(type) {
case *ast.Ident:
// Direct embedded type: type MyStruct struct { EmbeddedType }
typeName = t.Name
typeIdent = t
case *ast.StarExpr:
// Pointer embedded type: type MyStruct struct { *EmbeddedType }
if ident, ok := t.X.(*ast.Ident); ok {
typeName = ident.Name
typeIdent = ident
}
case *ast.SelectorExpr:
// Qualified embedded type: type MyStruct struct { pkg.EmbeddedType }
// We can't easily resolve this without full type information
// For now, skip these
return results
}
if typeName == "" || typeIdent == nil {
return results
}
// Find the struct definition in the same file
var embeddedStructType *ast.StructType
ast.Inspect(file, func(n ast.Node) bool {
if ts, ok := n.(*ast.TypeSpec); ok {
if ts.Name.Name == typeName {
if st, ok := ts.Type.(*ast.StructType); ok {
embeddedStructType = st
return false
}
}
}
return true
})
if embeddedStructType == nil {
// Struct not found in this file, might be from another package
return results
}
// Extract fields from the embedded struct
for _, field := range embeddedStructType.Fields.List {
// Skip embedded fields within embedded structs (for now, to avoid infinite recursion)
if len(field.Names) == 0 {
continue
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
fieldTypeName := getTypeName(field.Type)
isOptional := false
baseType := fieldTypeName
// Check if field is optional
if isPointerType(field.Type) {
isOptional = true
baseType = strings.TrimPrefix(fieldTypeName, "*")
} else if hasOmitEmpty(field.Tag) {
isOptional = true
}
// Check if the type is comparable
isComparable := isComparableType(field.Type, typeParamsMap)
results = append(results, embeddedFieldResult{
fieldInfo: fieldInfo{
Name: name.Name,
TypeName: fieldTypeName,
BaseType: baseType,
IsOptional: isOptional,
IsComparable: isComparable,
},
fieldType: field.Type,
})
}
}
}
return results
}
// extractTypeParams extracts type parameters from a type spec
// Returns two strings: full params like "[T any]" and names only like "[T]"
func extractTypeParams(typeSpec *ast.TypeSpec) (string, string) {
if typeSpec.TypeParams == nil || len(typeSpec.TypeParams.List) == 0 {
return "", ""
}
var params []string
var names []string
for _, field := range typeSpec.TypeParams.List {
for _, name := range field.Names {
constraint := getTypeName(field.Type)
params = append(params, name.Name+" "+constraint)
names = append(names, name.Name)
}
}
fullParams := "[" + strings.Join(params, ", ") + "]"
nameParams := "[" + strings.Join(names, ", ") + "]"
return fullParams, nameParams
}
// buildTypeParamsMap creates a map of type parameter names to their constraints
// e.g., for "type Box[T any, K comparable]", returns {"T": "any", "K": "comparable"}
func buildTypeParamsMap(typeSpec *ast.TypeSpec) map[string]string {
typeParamsMap := make(map[string]string)
if typeSpec.TypeParams == nil || len(typeSpec.TypeParams.List) == 0 {
return typeParamsMap
}
for _, field := range typeSpec.TypeParams.List {
constraint := getTypeName(field.Type)
for _, name := range field.Names {
typeParamsMap[name.Name] = constraint
}
}
return typeParamsMap
}
// parseFile parses a Go file and extracts structs with lens annotations
func parseFile(filename string) ([]structInfo, string, error) {
fset := token.NewFileSet()
node, err := parser.ParseFile(fset, filename, nil, parser.ParseComments)
if err != nil {
return nil, "", err
}
var structs []structInfo
packageName := node.Name.Name
// Build import map: package name -> import path
fileImports := make(map[string]string)
for _, imp := range node.Imports {
path := strings.Trim(imp.Path.Value, `"`)
var name string
if imp.Name != nil {
name = imp.Name.Name
} else {
// Extract package name from path (last component)
parts := strings.Split(path, "/")
name = parts[len(parts)-1]
}
fileImports[name] = path
}
// First pass: collect all GenDecls with their doc comments
declMap := make(map[*ast.TypeSpec]*ast.CommentGroup)
ast.Inspect(node, func(n ast.Node) bool {
if gd, ok := n.(*ast.GenDecl); ok {
for _, spec := range gd.Specs {
if ts, ok := spec.(*ast.TypeSpec); ok {
declMap[ts] = gd.Doc
}
}
}
return true
})
// Second pass: process type specs
ast.Inspect(node, func(n ast.Node) bool {
// Look for type declarations
typeSpec, ok := n.(*ast.TypeSpec)
if !ok {
return true
}
// Check if it's a struct type
structType, ok := typeSpec.Type.(*ast.StructType)
if !ok {
return true
}
// Get the doc comment from our map
doc := declMap[typeSpec]
if !hasLensAnnotation(doc) {
return true
}
// Extract field information and collect imports
var fields []fieldInfo
structImports := make(map[string]string)
// Build type parameters map for this struct
typeParamsMap := buildTypeParamsMap(typeSpec)
for _, field := range structType.Fields.List {
if len(field.Names) == 0 {
// Embedded field - promote its fields
embeddedResults := extractEmbeddedFields(field.Type, fileImports, node, typeParamsMap)
for _, embResult := range embeddedResults {
// Extract imports from embedded field's type
fieldImports := make(map[string]string)
extractImports(embResult.fieldType, fieldImports)
// Resolve package names to full import paths
for pkgName := range fieldImports {
if importPath, ok := fileImports[pkgName]; ok {
structImports[importPath] = pkgName
}
}
fields = append(fields, embResult.fieldInfo)
}
continue
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
typeName := getTypeName(field.Type)
isOptional := false
baseType := typeName
isComparable := false
// Check if field is optional:
// 1. Pointer types are always optional
// 2. Non-pointer types with json omitempty tag are optional
if isPointerType(field.Type) {
isOptional = true
// Strip leading * for base type
baseType = strings.TrimPrefix(typeName, "*")
} else if hasOmitEmpty(field.Tag) {
// Non-pointer type with omitempty is also optional
isOptional = true
}
// Check if the type is comparable (for non-optional fields)
// For optional fields, we don't need to check since they use LensO
isComparable = isComparableType(field.Type, typeParamsMap)
// log.Printf("field %s, type: %v, isComparable: %b\n", name, field.Type, isComparable)
// Extract imports from this field's type
fieldImports := make(map[string]string)
extractImports(field.Type, fieldImports)
// Resolve package names to full import paths
for pkgName := range fieldImports {
if importPath, ok := fileImports[pkgName]; ok {
structImports[importPath] = pkgName
}
}
fields = append(fields, fieldInfo{
Name: name.Name,
TypeName: typeName,
BaseType: baseType,
IsOptional: isOptional,
IsComparable: isComparable,
})
}
}
}
if len(fields) > 0 {
typeParams, typeParamNames := extractTypeParams(typeSpec)
structs = append(structs, structInfo{
Name: typeSpec.Name.Name,
TypeParams: typeParams,
TypeParamNames: typeParamNames,
Fields: fields,
Imports: structImports,
})
}
return true
})
return structs, packageName, nil
}
// generateLensHelpers scans a directory for Go files and generates lens code
func generateLensHelpers(dir, filename string, verbose bool) error {
// Get absolute path
absDir, err := filepath.Abs(dir)
if err != nil {
return err
}
if verbose {
log.Printf("Scanning directory: %s", absDir)
}
// Find all Go files in the directory
files, err := filepath.Glob(filepath.Join(absDir, "*.go"))
if err != nil {
return err
}
if verbose {
log.Printf("Found %d Go files", len(files))
}
// Parse all files and collect structs
var allStructs []structInfo
var packageName string
for _, file := range files {
// Skip generated files and test files
if strings.HasSuffix(file, "_test.go") || strings.Contains(file, "gen.go") {
if verbose {
log.Printf("Skipping file: %s", filepath.Base(file))
}
continue
}
if verbose {
log.Printf("Parsing file: %s", filepath.Base(file))
}
structs, pkg, err := parseFile(file)
if err != nil {
log.Printf("Warning: failed to parse %s: %v", file, err)
continue
}
if verbose && len(structs) > 0 {
log.Printf("Found %d annotated struct(s) in %s", len(structs), filepath.Base(file))
for _, s := range structs {
log.Printf(" - %s (%d fields)", s.Name, len(s.Fields))
}
}
if packageName == "" {
packageName = pkg
}
allStructs = append(allStructs, structs...)
}
if len(allStructs) == 0 {
log.Printf("No structs with %s annotation found in %s", lensAnnotation, absDir)
return nil
}
// Collect all unique imports from all structs
allImports := make(map[string]string) // import path -> alias
for _, s := range allStructs {
for importPath, alias := range s.Imports {
allImports[importPath] = alias
}
}
// Create output file
outPath := filepath.Join(absDir, filename)
f, err := os.Create(filepath.Clean(outPath))
if err != nil {
return err
}
defer f.Close()
log.Printf("Generating lens code in [%s] for package [%s] with [%d] structs ...", outPath, packageName, len(allStructs))
// Write header
writePackage(f, packageName)
// Write imports
f.WriteString("import (\n")
// Standard fp-go imports always needed
f.WriteString("\tL \"github.com/IBM/fp-go/v2/optics/lens\"\n")
f.WriteString("\tLO \"github.com/IBM/fp-go/v2/optics/lens/option\"\n")
// f.WriteString("\tO \"github.com/IBM/fp-go/v2/option\"\n")
f.WriteString("\tIO \"github.com/IBM/fp-go/v2/optics/iso/option\"\n")
// Add additional imports collected from field types
for importPath, alias := range allImports {
f.WriteString("\t" + alias + " \"" + importPath + "\"\n")
}
f.WriteString(")\n")
// Generate lens code for each struct using templates
for _, s := range allStructs {
var buf bytes.Buffer
// Generate struct type
if err := structTmpl.Execute(&buf, s); err != nil {
return err
}
// Generate constructor
if err := constructorTmpl.Execute(&buf, s); err != nil {
return err
}
// Write to file
if _, err := f.Write(buf.Bytes()); err != nil {
return err
}
}
return nil
}
// LensCommand creates the CLI command for lens generation
func LensCommand() *C.Command {
return &C.Command{
Name: "lens",
Usage: "generate lens code for annotated structs",
Description: "Scans Go files for structs annotated with 'fp-go:Lens' and generates lens types. Pointer types and non-pointer types with json omitempty tag generate LensO (optional lens).",
Flags: []C.Flag{
flagLensDir,
flagFilename,
flagVerbose,
},
Action: func(ctx *C.Context) error {
return generateLensHelpers(
ctx.String(keyLensDir),
ctx.String(keyFilename),
ctx.Bool(keyVerbose),
)
},
}
}

1084
v2/cli/lens_test.go Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -27,7 +27,7 @@ import (
func TestMap(t *testing.T) {
fa := Make[string, int]("foo")
assert.Equal(t, fa, F.Pipe1(fa, Map[string, int](utils.Double)))
assert.Equal(t, fa, F.Pipe1(fa, Map[string](utils.Double)))
}
func TestOf(t *testing.T) {

11
v2/constant/monoid.go Normal file
View File

@@ -0,0 +1,11 @@
package constant
import (
"github.com/IBM/fp-go/v2/function"
M "github.com/IBM/fp-go/v2/monoid"
)
// Monoid returns a [M.Monoid] that returns a constant value in all operations
func Monoid[A any](a A) M.Monoid[A] {
return M.MakeMonoid(function.Constant2[A, A](a), a)
}

View File

@@ -13,20 +13,19 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package ioeither
package ioresult
import (
"context"
"github.com/IBM/fp-go/v2/either"
IOE "github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/result"
)
// withContext wraps an existing IOEither and performs a context check for cancellation before delegating
func WithContext[A any](ctx context.Context, ma IOE.IOEither[error, A]) IOE.IOEither[error, A] {
return func() either.Either[error, A] {
func WithContext[A any](ctx context.Context, ma IOResult[A]) IOResult[A] {
return func() Result[A] {
if err := context.Cause(ctx); err != nil {
return either.Left[A](err)
return result.Left[A](err)
}
return ma()
}

View File

@@ -0,0 +1,11 @@
package ioresult
import (
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/result"
)
type (
IOResult[T any] = ioresult.IOResult[T]
Result[T any] = result.Result[T]
)

View File

@@ -1,251 +0,0 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:27.21,29.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:35.47,42.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:48.47,54.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:60.47,66.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:71.46,76.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/bind.go:82.47,89.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/bracket.go:33.21,44.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/cancel.go:35.65,36.47 1 1
github.com/IBM/fp-go/v2/context/readerioeither/cancel.go:36.47,37.44 1 1
github.com/IBM/fp-go/v2/context/readerioeither/cancel.go:37.44,39.4 1 1
github.com/IBM/fp-go/v2/context/readerioeither/cancel.go:40.3,40.40 1 1
github.com/IBM/fp-go/v2/context/readerioeither/eq.go:42.84,44.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:18.91,20.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:24.93,26.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:30.101,32.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:36.103,38.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:43.36,48.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:53.36,58.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:63.36,68.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:71.98,76.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:79.101,84.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:87.101,92.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:95.129,96.68 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:96.68,102.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:106.132,107.68 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:107.68,113.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:117.132,118.68 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:118.68,124.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:129.113,131.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:135.115,137.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:143.40,150.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:156.40,163.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:169.40,176.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:179.126,185.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:188.129,194.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:197.129,203.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:206.185,207.76 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:207.76,215.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:219.188,220.76 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:220.76,228.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:232.188,233.76 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:233.76,241.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:246.125,248.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:252.127,254.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:261.44,270.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:277.44,286.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:293.44,302.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:305.154,312.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:315.157,322.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:325.157,332.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:335.241,336.84 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:336.84,346.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:350.244,351.84 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:351.84,361.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:365.244,366.84 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:366.84,376.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:381.137,383.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:387.139,389.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:397.48,408.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:416.48,427.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:435.48,446.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:449.182,457.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:460.185,468.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:471.185,479.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:482.297,483.92 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:483.92,495.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:499.300,500.92 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:500.92,512.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:516.300,517.92 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:517.92,529.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:534.149,536.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:540.151,542.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:551.52,564.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:573.52,586.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:595.52,608.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:611.210,620.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:623.213,632.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:635.213,644.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:647.353,648.100 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:648.100,662.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:666.356,667.100 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:667.100,681.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:685.356,686.100 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:686.100,700.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:705.161,707.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:711.163,713.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:723.56,738.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:748.56,763.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:773.56,788.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:791.238,801.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:804.241,814.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:817.241,827.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:830.409,831.108 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:831.108,847.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:851.412,852.108 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:852.108,868.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:872.412,873.108 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:873.108,889.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:894.173,896.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:900.175,902.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:913.60,930.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:941.60,958.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:969.60,986.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:989.266,1000.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1003.269,1014.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1017.269,1028.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1031.465,1032.116 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1032.116,1050.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1054.468,1055.116 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1055.116,1073.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1077.468,1078.116 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1078.116,1096.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1101.185,1103.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1107.187,1109.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1121.64,1140.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1152.64,1171.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1183.64,1202.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1205.294,1217.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1220.297,1232.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1235.297,1247.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1250.521,1251.124 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1251.124,1271.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1275.524,1276.124 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1276.124,1296.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1300.524,1301.124 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1301.124,1321.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1326.197,1328.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1332.199,1334.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1347.68,1368.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1381.68,1402.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1415.68,1436.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1439.322,1452.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1455.325,1468.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1471.325,1484.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1487.577,1488.132 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1488.132,1510.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1514.580,1515.132 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1515.132,1537.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1541.580,1542.132 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1542.132,1564.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1569.210,1571.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1575.212,1577.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1591.74,1614.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1628.74,1651.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1665.74,1688.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1691.356,1705.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1708.359,1722.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1725.359,1739.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1742.645,1743.144 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1743.144,1767.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1771.648,1772.144 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1772.144,1796.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1800.648,1801.144 1 0
github.com/IBM/fp-go/v2/context/readerioeither/gen.go:1801.144,1825.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:36.61,43.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:52.64,59.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:68.64,75.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:85.61,93.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/monoid.go:103.63,108.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:42.55,44.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:52.45,54.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:62.42,64.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:74.78,76.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:85.75,87.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:97.72,99.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:108.69,110.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:120.96,122.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:131.93,133.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:143.101,145.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:154.71,156.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:165.39,167.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:169.93,173.56 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:173.56,174.32 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:174.32,174.47 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:189.98,194.47 3 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:194.47,196.44 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:196.44,198.4 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:200.3,200.27 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:200.27,202.45 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:202.45,204.5 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:207.4,213.47 5 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:227.95,229.17 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:229.17,231.3 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:232.2,232.28 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:243.98,245.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:254.91,256.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:265.94,267.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:276.94,278.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:288.95,290.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:299.73,301.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:307.44,309.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:319.95,321.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:330.95,332.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:342.100,344.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:353.100,355.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:364.116,366.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:375.75,377.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:386.47,388.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:398.51,400.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:406.39,407.47 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:407.47,408.27 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:408.27,411.4 2 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:423.87,425.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:434.87,436.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:446.92,448.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:457.92,459.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:468.115,470.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:479.85,480.54 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:480.54,481.48 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:481.48,482.28 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:482.28,487.12 3 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:488.30,489.22 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:490.23,491.47 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:505.59,511.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:520.66,522.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:531.83,533.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:543.97,545.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:554.64,556.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:566.62,568.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:577.78,579.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:589.80,591.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:600.76,602.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:612.136,614.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:623.91,625.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/reader.go:634.71,636.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/resource.go:58.151,63.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/semigroup.go:39.41,43.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/sync.go:46.78,54.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:31.89,39.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:48.103,56.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:65.71,67.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:75.112,83.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:92.124,100.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:108.94,110.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:120.95,128.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:137.92,145.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:148.106,156.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:165.74,167.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:170.118,178.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:181.115,189.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:192.127,200.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:203.97,205.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:215.95,223.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:232.92,240.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:243.106,251.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:260.74,262.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:265.115,273.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:276.127,284.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:287.118,295.2 1 0
github.com/IBM/fp-go/v2/context/readerioeither/traverse.go:304.97,306.2 1 0

View File

@@ -1,15 +0,0 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:117.52,119.103 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:119.103,120.80 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:120.80,121.41 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:121.41,123.19 2 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:123.19,126.6 2 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:127.5,127.20 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:132.2,132.93 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:132.93,133.80 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:133.80,134.41 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:134.41,136.19 2 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:136.19,138.6 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:139.5,139.20 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:144.2,150.50 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/builder/builder.go:150.50,153.4 2 1

View File

@@ -1,11 +0,0 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:111.76,116.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:134.49,136.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:161.90,162.65 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:162.65,166.76 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:166.76,176.5 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:198.73,203.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:222.74,227.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:234.76,236.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:245.74,254.2 1 1
github.com/IBM/fp-go/v2/context/readerioeither/http/request.go:281.76,286.2 1 1

View File

@@ -1,720 +0,0 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
import (
"context"
"time"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/errors"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/readerioeither"
)
const (
// useParallel is the feature flag to control if we use the parallel or the sequential implementation of ap
useParallel = true
)
// FromEither converts an [Either] into a [ReaderIOEither].
// The resulting computation ignores the context and immediately returns the Either value.
//
// Parameters:
// - e: The Either value to lift into ReaderIOEither
//
// Returns a ReaderIOEither that produces the given Either value.
//
//go:inline
func FromEither[A any](e Either[A]) ReaderIOEither[A] {
return readerioeither.FromEither[context.Context](e)
}
// Left creates a [ReaderIOEither] that represents a failed computation with the given error.
//
// Parameters:
// - l: The error value
//
// Returns a ReaderIOEither that always fails with the given error.
func Left[A any](l error) ReaderIOEither[A] {
return readerioeither.Left[context.Context, A](l)
}
// Right creates a [ReaderIOEither] that represents a successful computation with the given value.
//
// Parameters:
// - r: The success value
//
// Returns a ReaderIOEither that always succeeds with the given value.
//
//go:inline
func Right[A any](r A) ReaderIOEither[A] {
return readerioeither.Right[context.Context, error](r)
}
// MonadMap transforms the success value of a [ReaderIOEither] using the provided function.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIOEither to transform
// - f: The transformation function
//
// Returns a new ReaderIOEither with the transformed value.
//
//go:inline
func MonadMap[A, B any](fa ReaderIOEither[A], f func(A) B) ReaderIOEither[B] {
return readerioeither.MonadMap(fa, f)
}
// Map transforms the success value of a [ReaderIOEither] using the provided function.
// This is the curried version of [MonadMap], useful for composition.
//
// Parameters:
// - f: The transformation function
//
// Returns a function that transforms a ReaderIOEither.
//
//go:inline
func Map[A, B any](f func(A) B) Operator[A, B] {
return readerioeither.Map[context.Context, error](f)
}
// MonadMapTo replaces the success value of a [ReaderIOEither] with a constant value.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIOEither to transform
// - b: The constant value to use
//
// Returns a new ReaderIOEither with the constant value.
//
//go:inline
func MonadMapTo[A, B any](fa ReaderIOEither[A], b B) ReaderIOEither[B] {
return readerioeither.MonadMapTo(fa, b)
}
// MapTo replaces the success value of a [ReaderIOEither] with a constant value.
// This is the curried version of [MonadMapTo].
//
// Parameters:
// - b: The constant value to use
//
// Returns a function that transforms a ReaderIOEither.
//
//go:inline
func MapTo[A, B any](b B) Operator[A, B] {
return readerioeither.MapTo[context.Context, error, A](b)
}
// MonadChain sequences two [ReaderIOEither] computations, where the second depends on the result of the first.
// If the first computation fails, the second is not executed.
//
// Parameters:
// - ma: The first ReaderIOEither
// - f: Function that produces the second ReaderIOEither based on the first's result
//
// Returns a new ReaderIOEither representing the sequenced computation.
//
//go:inline
func MonadChain[A, B any](ma ReaderIOEither[A], f Kleisli[A, B]) ReaderIOEither[B] {
return readerioeither.MonadChain(ma, f)
}
// Chain sequences two [ReaderIOEither] computations, where the second depends on the result of the first.
// This is the curried version of [MonadChain], useful for composition.
//
// Parameters:
// - f: Function that produces the second ReaderIOEither based on the first's result
//
// Returns a function that sequences ReaderIOEither computations.
//
//go:inline
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return readerioeither.Chain(f)
}
// MonadChainFirst sequences two [ReaderIOEither] computations but returns the result of the first.
// The second computation is executed for its side effects only.
//
// Parameters:
// - ma: The first ReaderIOEither
// - f: Function that produces the second ReaderIOEither
//
// Returns a ReaderIOEither with the result of the first computation.
//
//go:inline
func MonadChainFirst[A, B any](ma ReaderIOEither[A], f Kleisli[A, B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirst(ma, f)
}
// ChainFirst sequences two [ReaderIOEither] computations but returns the result of the first.
// This is the curried version of [MonadChainFirst].
//
// Parameters:
// - f: Function that produces the second ReaderIOEither
//
// Returns a function that sequences ReaderIOEither computations.
//
//go:inline
func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return readerioeither.ChainFirst(f)
}
// Of creates a [ReaderIOEither] that always succeeds with the given value.
// This is the same as [Right] and represents the monadic return operation.
//
// Parameters:
// - a: The value to wrap
//
// Returns a ReaderIOEither that always succeeds with the given value.
//
//go:inline
func Of[A any](a A) ReaderIOEither[A] {
return readerioeither.Of[context.Context, error](a)
}
func withCancelCauseFunc[A any](cancel context.CancelCauseFunc, ma IOEither[A]) IOEither[A] {
return function.Pipe3(
ma,
ioeither.Swap[error, A],
ioeither.ChainFirstIOK[A](func(err error) func() any {
return io.FromImpure(func() { cancel(err) })
}),
ioeither.Swap[A, error],
)
}
// MonadApPar implements parallel applicative application for [ReaderIOEither].
// It executes both computations in parallel and creates a sub-context that will be canceled
// if either operation fails. This provides automatic cancellation propagation.
//
// Parameters:
// - fab: ReaderIOEither containing a function
// - fa: ReaderIOEither containing a value
//
// Returns a ReaderIOEither with the function applied to the value.
func MonadApPar[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) ReaderIOEither[B] {
// context sensitive input
cfab := WithContext(fab)
cfa := WithContext(fa)
return func(ctx context.Context) IOEither[B] {
// quick check for cancellation
if err := context.Cause(ctx); err != nil {
return ioeither.Left[B](err)
}
return func() Either[B] {
// quick check for cancellation
if err := context.Cause(ctx); err != nil {
return either.Left[B](err)
}
// create sub-contexts for fa and fab, so they can cancel one other
ctxSub, cancelSub := context.WithCancelCause(ctx)
defer cancelSub(nil) // cancel has to be called in all paths
fabIOE := withCancelCauseFunc(cancelSub, cfab(ctxSub))
faIOE := withCancelCauseFunc(cancelSub, cfa(ctxSub))
return ioeither.MonadApPar(fabIOE, faIOE)()
}
}
}
// MonadAp implements applicative application for [ReaderIOEither].
// By default, it uses parallel execution ([MonadApPar]) but can be configured to use
// sequential execution ([MonadApSeq]) via the useParallel constant.
//
// Parameters:
// - fab: ReaderIOEither containing a function
// - fa: ReaderIOEither containing a value
//
// Returns a ReaderIOEither with the function applied to the value.
func MonadAp[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) ReaderIOEither[B] {
// dispatch to the configured version
if useParallel {
return MonadApPar(fab, fa)
}
return MonadApSeq(fab, fa)
}
// MonadApSeq implements sequential applicative application for [ReaderIOEither].
// It executes the function computation first, then the value computation.
//
// Parameters:
// - fab: ReaderIOEither containing a function
// - fa: ReaderIOEither containing a value
//
// Returns a ReaderIOEither with the function applied to the value.
//
//go:inline
func MonadApSeq[B, A any](fab ReaderIOEither[func(A) B], fa ReaderIOEither[A]) ReaderIOEither[B] {
return readerioeither.MonadApSeq(fab, fa)
}
// Ap applies a function wrapped in a [ReaderIOEither] to a value wrapped in a ReaderIOEither.
// This is the curried version of [MonadAp], using the default execution mode.
//
// Parameters:
// - fa: ReaderIOEither containing a value
//
// Returns a function that applies a ReaderIOEither function to the value.
//
//go:inline
func Ap[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadAp[B, A], fa)
}
// ApSeq applies a function wrapped in a [ReaderIOEither] to a value sequentially.
// This is the curried version of [MonadApSeq].
//
// Parameters:
// - fa: ReaderIOEither containing a value
//
// Returns a function that applies a ReaderIOEither function to the value sequentially.
//
//go:inline
func ApSeq[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApSeq[B, A], fa)
}
// ApPar applies a function wrapped in a [ReaderIOEither] to a value in parallel.
// This is the curried version of [MonadApPar].
//
// Parameters:
// - fa: ReaderIOEither containing a value
//
// Returns a function that applies a ReaderIOEither function to the value in parallel.
//
//go:inline
func ApPar[B, A any](fa ReaderIOEither[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApPar[B, A], fa)
}
// FromPredicate creates a [ReaderIOEither] from a predicate function.
// If the predicate returns true, the value is wrapped in Right; otherwise, Left with the error from onFalse.
//
// Parameters:
// - pred: Predicate function to test the value
// - onFalse: Function to generate an error when predicate fails
//
// Returns a function that converts a value to ReaderIOEither based on the predicate.
//
//go:inline
func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) Kleisli[A, A] {
return readerioeither.FromPredicate[context.Context](pred, onFalse)
}
// OrElse provides an alternative [ReaderIOEither] computation if the first one fails.
// The alternative is only executed if the first computation results in a Left (error).
//
// Parameters:
// - onLeft: Function that produces an alternative ReaderIOEither from the error
//
// Returns a function that provides fallback behavior for failed computations.
//
//go:inline
func OrElse[A any](onLeft Kleisli[error, A]) Operator[A, A] {
return readerioeither.OrElse[context.Context](onLeft)
}
// Ask returns a [ReaderIOEither] that provides access to the context.
// This is useful for accessing the [context.Context] within a computation.
//
// Returns a ReaderIOEither that produces the context.
//
//go:inline
func Ask() ReaderIOEither[context.Context] {
return readerioeither.Ask[context.Context, error]()
}
// MonadChainEitherK chains a function that returns an [Either] into a [ReaderIOEither] computation.
// This is useful for integrating pure Either-returning functions into ReaderIOEither workflows.
//
// Parameters:
// - ma: The ReaderIOEither to chain from
// - f: Function that produces an Either
//
// Returns a new ReaderIOEither with the chained computation.
//
//go:inline
func MonadChainEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) ReaderIOEither[B] {
return readerioeither.MonadChainEitherK[context.Context](ma, f)
}
// ChainEitherK chains a function that returns an [Either] into a [ReaderIOEither] computation.
// This is the curried version of [MonadChainEitherK].
//
// Parameters:
// - f: Function that produces an Either
//
// Returns a function that chains the Either-returning function.
//
//go:inline
func ChainEitherK[A, B any](f func(A) Either[B]) Operator[A, B] {
return readerioeither.ChainEitherK[context.Context](f)
}
// MonadChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// The Either-returning function is executed for its validation/side effects only.
//
// Parameters:
// - ma: The ReaderIOEither to chain from
// - f: Function that produces an Either
//
// Returns a ReaderIOEither with the original value if both computations succeed.
//
//go:inline
func MonadChainFirstEitherK[A, B any](ma ReaderIOEither[A], f func(A) Either[B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirstEitherK[context.Context](ma, f)
}
// ChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// This is the curried version of [MonadChainFirstEitherK].
//
// Parameters:
// - f: Function that produces an Either
//
// Returns a function that chains the Either-returning function.
//
//go:inline
func ChainFirstEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return readerioeither.ChainFirstEitherK[context.Context](f)
}
// ChainOptionK chains a function that returns an [Option] into a [ReaderIOEither] computation.
// If the Option is None, the provided error function is called.
//
// Parameters:
// - onNone: Function to generate an error when Option is None
//
// Returns a function that chains Option-returning functions into ReaderIOEither.
//
//go:inline
func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operator[A, B] {
return readerioeither.ChainOptionK[context.Context, A, B](onNone)
}
// FromIOEither converts an [IOEither] into a [ReaderIOEither].
// The resulting computation ignores the context.
//
// Parameters:
// - t: The IOEither to convert
//
// Returns a ReaderIOEither that executes the IOEither.
//
//go:inline
func FromIOEither[A any](t ioeither.IOEither[error, A]) ReaderIOEither[A] {
return readerioeither.FromIOEither[context.Context](t)
}
// FromIO converts an [IO] into a [ReaderIOEither].
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - t: The IO to convert
//
// Returns a ReaderIOEither that executes the IO and wraps the result in Right.
//
//go:inline
func FromIO[A any](t IO[A]) ReaderIOEither[A] {
return readerioeither.FromIO[context.Context, error](t)
}
// FromLazy converts a [Lazy] computation into a [ReaderIOEither].
// The Lazy computation always succeeds, so it's wrapped in Right.
// This is an alias for [FromIO] since Lazy and IO have the same structure.
//
// Parameters:
// - t: The Lazy computation to convert
//
// Returns a ReaderIOEither that executes the Lazy computation and wraps the result in Right.
//
//go:inline
func FromLazy[A any](t Lazy[A]) ReaderIOEither[A] {
return readerioeither.FromIO[context.Context, error](t)
}
// Never returns a [ReaderIOEither] that blocks indefinitely until the context is canceled.
// This is useful for creating computations that wait for external cancellation signals.
//
// Returns a ReaderIOEither that waits for context cancellation and returns the cancellation error.
func Never[A any]() ReaderIOEither[A] {
return func(ctx context.Context) IOEither[A] {
return func() Either[A] {
<-ctx.Done()
return either.Left[A](context.Cause(ctx))
}
}
}
// MonadChainIOK chains a function that returns an [IO] into a [ReaderIOEither] computation.
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - ma: The ReaderIOEither to chain from
// - f: Function that produces an IO
//
// Returns a new ReaderIOEither with the chained IO computation.
//
//go:inline
func MonadChainIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEither[B] {
return readerioeither.MonadChainIOK(ma, f)
}
// ChainIOK chains a function that returns an [IO] into a [ReaderIOEither] computation.
// This is the curried version of [MonadChainIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainIOK[A, B any](f func(A) IO[B]) Operator[A, B] {
return readerioeither.ChainIOK[context.Context, error](f)
}
// MonadChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// The IO computation is executed for its side effects only.
//
// Parameters:
// - ma: The ReaderIOEither to chain from
// - f: Function that produces an IO
//
// Returns a ReaderIOEither with the original value after executing the IO.
//
//go:inline
func MonadChainFirstIOK[A, B any](ma ReaderIOEither[A], f func(A) IO[B]) ReaderIOEither[A] {
return readerioeither.MonadChainFirstIOK(ma, f)
}
// ChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// This is the curried version of [MonadChainFirstIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainFirstIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return readerioeither.ChainFirstIOK[context.Context, error](f)
}
// ChainIOEitherK chains a function that returns an [IOEither] into a [ReaderIOEither] computation.
// This is useful for integrating IOEither-returning functions into ReaderIOEither workflows.
//
// Parameters:
// - f: Function that produces an IOEither
//
// Returns a function that chains the IOEither-returning function.
//
//go:inline
func ChainIOEitherK[A, B any](f func(A) ioeither.IOEither[error, B]) Operator[A, B] {
return readerioeither.ChainIOEitherK[context.Context](f)
}
// Delay creates an operation that delays execution by the specified duration.
// The computation waits for either the delay to expire or the context to be canceled.
//
// Parameters:
// - delay: The duration to wait before executing the computation
//
// Returns a function that delays a ReaderIOEither computation.
func Delay[A any](delay time.Duration) Operator[A, A] {
return func(ma ReaderIOEither[A]) ReaderIOEither[A] {
return func(ctx context.Context) IOEither[A] {
return func() Either[A] {
// manage the timeout
timeoutCtx, cancelTimeout := context.WithTimeout(ctx, delay)
defer cancelTimeout()
// whatever comes first
select {
case <-timeoutCtx.Done():
return ma(ctx)()
case <-ctx.Done():
return either.Left[A](context.Cause(ctx))
}
}
}
}
}
// Timer returns the current time after waiting for the specified delay.
// This is useful for creating time-based computations.
//
// Parameters:
// - delay: The duration to wait before returning the time
//
// Returns a ReaderIOEither that produces the current time after the delay.
func Timer(delay time.Duration) ReaderIOEither[time.Time] {
return function.Pipe2(
io.Now,
FromIO[time.Time],
Delay[time.Time](delay),
)
}
// Defer creates a [ReaderIOEither] by lazily generating a new computation each time it's executed.
// This is useful for creating computations that should be re-evaluated on each execution.
//
// Parameters:
// - gen: Lazy generator function that produces a ReaderIOEither
//
// Returns a ReaderIOEither that generates a fresh computation on each execution.
//
//go:inline
func Defer[A any](gen Lazy[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.Defer(gen)
}
// TryCatch wraps a function that returns a tuple (value, error) into a [ReaderIOEither].
// This is the standard way to convert Go error-returning functions into ReaderIOEither.
//
// Parameters:
// - f: Function that takes a context and returns a function producing (value, error)
//
// Returns a ReaderIOEither that wraps the error-returning function.
//
//go:inline
func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOEither[A] {
return readerioeither.TryCatch(f, errors.IdentityError)
}
// MonadAlt provides an alternative [ReaderIOEither] if the first one fails.
// The alternative is lazily evaluated only if needed.
//
// Parameters:
// - first: The primary ReaderIOEither to try
// - second: Lazy alternative ReaderIOEither to use if first fails
//
// Returns a ReaderIOEither that tries the first, then the second if first fails.
//
//go:inline
func MonadAlt[A any](first ReaderIOEither[A], second Lazy[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.MonadAlt(first, second)
}
// Alt provides an alternative [ReaderIOEither] if the first one fails.
// This is the curried version of [MonadAlt].
//
// Parameters:
// - second: Lazy alternative ReaderIOEither to use if first fails
//
// Returns a function that provides fallback behavior.
//
//go:inline
func Alt[A any](second Lazy[ReaderIOEither[A]]) Operator[A, A] {
return readerioeither.Alt(second)
}
// Memoize computes the value of the provided [ReaderIOEither] monad lazily but exactly once.
// The context used to compute the value is the context of the first call, so do not use this
// method if the value has a functional dependency on the content of the context.
//
// Parameters:
// - rdr: The ReaderIOEither to memoize
//
// Returns a ReaderIOEither that caches its result after the first execution.
//
//go:inline
func Memoize[A any](rdr ReaderIOEither[A]) ReaderIOEither[A] {
return readerioeither.Memoize(rdr)
}
// Flatten converts a nested [ReaderIOEither] into a flat [ReaderIOEither].
// This is equivalent to [MonadChain] with the identity function.
//
// Parameters:
// - rdr: The nested ReaderIOEither to flatten
//
// Returns a flattened ReaderIOEither.
//
//go:inline
func Flatten[A any](rdr ReaderIOEither[ReaderIOEither[A]]) ReaderIOEither[A] {
return readerioeither.Flatten(rdr)
}
// MonadFlap applies a value to a function wrapped in a [ReaderIOEither].
// This is the reverse of [MonadAp], useful in certain composition scenarios.
//
// Parameters:
// - fab: ReaderIOEither containing a function
// - a: The value to apply to the function
//
// Returns a ReaderIOEither with the function applied to the value.
//
//go:inline
func MonadFlap[B, A any](fab ReaderIOEither[func(A) B], a A) ReaderIOEither[B] {
return readerioeither.MonadFlap(fab, a)
}
// Flap applies a value to a function wrapped in a [ReaderIOEither].
// This is the curried version of [MonadFlap].
//
// Parameters:
// - a: The value to apply to the function
//
// Returns a function that applies the value to a ReaderIOEither function.
//
//go:inline
func Flap[B, A any](a A) Operator[func(A) B, B] {
return readerioeither.Flap[context.Context, error, B](a)
}
// Fold handles both success and error cases of a [ReaderIOEither] by providing handlers for each.
// Both handlers return ReaderIOEither, allowing for further composition.
//
// Parameters:
// - onLeft: Handler for error case
// - onRight: Handler for success case
//
// Returns a function that folds a ReaderIOEither into a new ReaderIOEither.
//
//go:inline
func Fold[A, B any](onLeft Kleisli[error, B], onRight Kleisli[A, B]) Operator[A, B] {
return readerioeither.Fold(onLeft, onRight)
}
// GetOrElse extracts the value from a [ReaderIOEither], providing a default via a function if it fails.
// The result is a [ReaderIO] that always succeeds.
//
// Parameters:
// - onLeft: Function to provide a default value from the error
//
// Returns a function that converts a ReaderIOEither to a ReaderIO.
//
//go:inline
func GetOrElse[A any](onLeft func(error) ReaderIO[A]) func(ReaderIOEither[A]) ReaderIO[A] {
return readerioeither.GetOrElse(onLeft)
}
// OrLeft transforms the error of a [ReaderIOEither] using the provided function.
// The success value is left unchanged.
//
// Parameters:
// - onLeft: Function to transform the error
//
// Returns a function that transforms the error of a ReaderIOEither.
//
//go:inline
func OrLeft[A any](onLeft func(error) ReaderIO[error]) Operator[A, A] {
return readerioeither.OrLeft[A](onLeft)
}

View File

@@ -1,532 +0,0 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
import (
"context"
"errors"
"fmt"
"testing"
"time"
E "github.com/IBM/fp-go/v2/either"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
func TestFromEither(t *testing.T) {
ctx := t.Context()
// Test with Right
rightVal := E.Right[error](42)
result := FromEither(rightVal)(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left
err := errors.New("test error")
leftVal := E.Left[int](err)
result = FromEither(leftVal)(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestLeftRight(t *testing.T) {
ctx := t.Context()
// Test Left
err := errors.New("test error")
result := Left[int](err)(ctx)()
assert.True(t, E.IsLeft(result))
// Test Right
result = Right(42)(ctx)()
assert.True(t, E.IsRight(result))
val, _ := E.Unwrap(result)
assert.Equal(t, 42, val)
}
func TestOf(t *testing.T) {
ctx := t.Context()
result := Of(42)(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestMonadMap(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadMap(Right(42), func(x int) int { return x * 2 })(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with Left
err := errors.New("test error")
result = MonadMap(Left[int](err), func(x int) int { return x * 2 })(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestMonadMapTo(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadMapTo(Right(42), "hello")(ctx)()
assert.Equal(t, E.Right[error]("hello"), result)
// Test with Left
err := errors.New("test error")
result = MonadMapTo(Left[int](err), "hello")(ctx)()
assert.Equal(t, E.Left[string](err), result)
}
func TestMonadChain(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChain(Right(42), func(x int) ReaderIOEither[int] {
return Right(x * 2)
})(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with Left
err := errors.New("test error")
result = MonadChain(Left[int](err), func(x int) ReaderIOEither[int] {
return Right(x * 2)
})(ctx)()
assert.Equal(t, E.Left[int](err), result)
// Test where function returns Left
result = MonadChain(Right(42), func(x int) ReaderIOEither[int] {
return Left[int](errors.New("chain error"))
})(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestMonadChainFirst(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainFirst(Right(42), func(x int) ReaderIOEither[string] {
return Right("ignored")
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left in first
err := errors.New("test error")
result = MonadChainFirst(Left[int](err), func(x int) ReaderIOEither[string] {
return Right("ignored")
})(ctx)()
assert.Equal(t, E.Left[int](err), result)
// Test with Left in second
result = MonadChainFirst(Right(42), func(x int) ReaderIOEither[string] {
return Left[string](errors.New("chain error"))
})(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestMonadApSeq(t *testing.T) {
ctx := t.Context()
// Test with both Right
fct := Right(func(x int) int { return x * 2 })
val := Right(42)
result := MonadApSeq(fct, val)(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with Left function
err := errors.New("function error")
fct = Left[func(int) int](err)
result = MonadApSeq(fct, val)(ctx)()
assert.Equal(t, E.Left[int](err), result)
// Test with Left value
fct = Right(func(x int) int { return x * 2 })
err = errors.New("value error")
val = Left[int](err)
result = MonadApSeq(fct, val)(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestMonadApPar(t *testing.T) {
ctx := t.Context()
// Test with both Right
fct := Right(func(x int) int { return x * 2 })
val := Right(42)
result := MonadApPar(fct, val)(ctx)()
assert.Equal(t, E.Right[error](84), result)
}
func TestFromPredicate(t *testing.T) {
ctx := t.Context()
pred := func(x int) bool { return x > 0 }
onFalse := func(x int) error { return fmt.Errorf("value %d is not positive", x) }
// Test with predicate true
result := FromPredicate(pred, onFalse)(42)(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with predicate false
result = FromPredicate(pred, onFalse)(-1)(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestAsk(t *testing.T) {
ctx := context.WithValue(t.Context(), "key", "value")
result := Ask()(ctx)()
assert.True(t, E.IsRight(result))
retrievedCtx, _ := E.Unwrap(result)
assert.Equal(t, "value", retrievedCtx.Value("key"))
}
func TestMonadChainEitherK(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainEitherK(Right(42), func(x int) E.Either[error, int] {
return E.Right[error](x * 2)
})(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with Left in Either
result = MonadChainEitherK(Right(42), func(x int) E.Either[error, int] {
return E.Left[int](errors.New("either error"))
})(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestMonadChainFirstEitherK(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainFirstEitherK(Right(42), func(x int) E.Either[error, string] {
return E.Right[error]("ignored")
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left in Either
result = MonadChainFirstEitherK(Right(42), func(x int) E.Either[error, string] {
return E.Left[string](errors.New("either error"))
})(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestChainOptionKFunc(t *testing.T) {
ctx := t.Context()
onNone := func() error { return errors.New("none error") }
// Test with Some
chainFunc := ChainOptionK[int, int](onNone)
result := chainFunc(func(x int) O.Option[int] {
return O.Some(x * 2)
})(Right(42))(ctx)()
assert.Equal(t, E.Right[error](84), result)
// Test with None
result = chainFunc(func(x int) O.Option[int] {
return O.None[int]()
})(Right(42))(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestFromIOEither(t *testing.T) {
ctx := t.Context()
// Test with Right
ioe := func() E.Either[error, int] {
return E.Right[error](42)
}
result := FromIOEither(ioe)(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left
err := errors.New("test error")
ioe = func() E.Either[error, int] {
return E.Left[int](err)
}
result = FromIOEither(ioe)(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestFromIO(t *testing.T) {
ctx := t.Context()
io := func() int { return 42 }
result := FromIO(io)(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestFromLazy(t *testing.T) {
ctx := t.Context()
lazy := func() int { return 42 }
result := FromLazy(lazy)(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestNeverWithCancel(t *testing.T) {
ctx, cancel := context.WithCancel(t.Context())
// Start Never in a goroutine
done := make(chan E.Either[error, int])
go func() {
done <- Never[int]()(ctx)()
}()
// Cancel the context
cancel()
// Should receive cancellation error
result := <-done
assert.True(t, E.IsLeft(result))
}
func TestMonadChainIOK(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainIOK(Right(42), func(x int) func() int {
return func() int { return x * 2 }
})(ctx)()
assert.Equal(t, E.Right[error](84), result)
}
func TestMonadChainFirstIOK(t *testing.T) {
ctx := t.Context()
// Test with Right
result := MonadChainFirstIOK(Right(42), func(x int) func() string {
return func() string { return "ignored" }
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestDelayFunc(t *testing.T) {
ctx := t.Context()
delay := 100 * time.Millisecond
start := time.Now()
delayFunc := Delay[int](delay)
result := delayFunc(Right(42))(ctx)()
elapsed := time.Since(start)
assert.True(t, E.IsRight(result))
assert.GreaterOrEqual(t, elapsed, delay)
}
func TestDefer(t *testing.T) {
ctx := t.Context()
count := 0
gen := func() ReaderIOEither[int] {
count++
return Right(count)
}
deferred := Defer(gen)
// First call
result1 := deferred(ctx)()
assert.Equal(t, E.Right[error](1), result1)
// Second call should generate new value
result2 := deferred(ctx)()
assert.Equal(t, E.Right[error](2), result2)
}
func TestTryCatch(t *testing.T) {
ctx := t.Context()
// Test success
result := TryCatch(func(ctx context.Context) func() (int, error) {
return func() (int, error) {
return 42, nil
}
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test error
err := errors.New("test error")
result = TryCatch(func(ctx context.Context) func() (int, error) {
return func() (int, error) {
return 0, err
}
})(ctx)()
assert.Equal(t, E.Left[int](err), result)
}
func TestMonadAlt(t *testing.T) {
ctx := t.Context()
// Test with Right (alternative not called)
result := MonadAlt(Right(42), func() ReaderIOEither[int] {
return Right(99)
})(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left (alternative called)
err := errors.New("test error")
result = MonadAlt(Left[int](err), func() ReaderIOEither[int] {
return Right(99)
})(ctx)()
assert.Equal(t, E.Right[error](99), result)
}
func TestMemoize(t *testing.T) {
ctx := t.Context()
count := 0
rdr := Memoize(FromLazy(func() int {
count++
return count
}))
// First call
result1 := rdr(ctx)()
assert.Equal(t, E.Right[error](1), result1)
// Second call should return memoized value
result2 := rdr(ctx)()
assert.Equal(t, E.Right[error](1), result2)
}
func TestFlatten(t *testing.T) {
ctx := t.Context()
nested := Right(Right(42))
result := Flatten(nested)(ctx)()
assert.Equal(t, E.Right[error](42), result)
}
func TestMonadFlap(t *testing.T) {
ctx := t.Context()
fab := Right(func(x int) int { return x * 2 })
result := MonadFlap(fab, 42)(ctx)()
assert.Equal(t, E.Right[error](84), result)
}
func TestWithContext(t *testing.T) {
// Test with non-canceled context
ctx := t.Context()
result := WithContext(Right(42))(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with canceled context
ctx, cancel := context.WithCancel(t.Context())
cancel()
result = WithContext(Right(42))(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestMonadAp(t *testing.T) {
ctx := t.Context()
// Test with both Right
fct := Right(func(x int) int { return x * 2 })
val := Right(42)
result := MonadAp(fct, val)(ctx)()
assert.Equal(t, E.Right[error](84), result)
}
// Test traverse functions
func TestSequenceArray(t *testing.T) {
ctx := t.Context()
// Test with all Right
arr := []ReaderIOEither[int]{Right(1), Right(2), Right(3)}
result := SequenceArray(arr)(ctx)()
assert.True(t, E.IsRight(result))
vals, _ := E.Unwrap(result)
assert.Equal(t, []int{1, 2, 3}, vals)
// Test with one Left
err := errors.New("test error")
arr = []ReaderIOEither[int]{Right(1), Left[int](err), Right(3)}
result = SequenceArray(arr)(ctx)()
assert.True(t, E.IsLeft(result))
}
func TestTraverseArray(t *testing.T) {
ctx := t.Context()
// Test transformation
arr := []int{1, 2, 3}
result := TraverseArray(func(x int) ReaderIOEither[int] {
return Right(x * 2)
})(arr)(ctx)()
assert.True(t, E.IsRight(result))
vals, _ := E.Unwrap(result)
assert.Equal(t, []int{2, 4, 6}, vals)
}
func TestSequenceRecord(t *testing.T) {
ctx := t.Context()
// Test with all Right
rec := map[string]ReaderIOEither[int]{
"a": Right(1),
"b": Right(2),
}
result := SequenceRecord(rec)(ctx)()
assert.True(t, E.IsRight(result))
vals, _ := E.Unwrap(result)
assert.Equal(t, 1, vals["a"])
assert.Equal(t, 2, vals["b"])
}
func TestTraverseRecord(t *testing.T) {
ctx := t.Context()
// Test transformation
rec := map[string]int{"a": 1, "b": 2}
result := TraverseRecord[string](func(x int) ReaderIOEither[int] {
return Right(x * 2)
})(rec)(ctx)()
assert.True(t, E.IsRight(result))
vals, _ := E.Unwrap(result)
assert.Equal(t, 2, vals["a"])
assert.Equal(t, 4, vals["b"])
}
// Test monoid functions
func TestAltSemigroup(t *testing.T) {
ctx := t.Context()
sg := AltSemigroup[int]()
// Test with Right (first succeeds)
result := sg.Concat(Right(42), Right(99))(ctx)()
assert.Equal(t, E.Right[error](42), result)
// Test with Left then Right (fallback)
err := errors.New("test error")
result = sg.Concat(Left[int](err), Right(99))(ctx)()
assert.Equal(t, E.Right[error](99), result)
}
// Test Do notation
func TestDo(t *testing.T) {
ctx := t.Context()
type State struct {
Value int
}
result := Do(State{Value: 42})(ctx)()
assert.True(t, E.IsRight(result))
state, _ := E.Unwrap(result)
assert.Equal(t, 42, state.Value)
}

View File

@@ -0,0 +1,374 @@
# ReaderIOResult Benchmarks
This document describes the benchmark suite for the `context/readerioeither` package and how to interpret the results to identify performance bottlenecks.
## Running Benchmarks
To run all benchmarks:
```bash
cd context/readerioeither
go test -bench=. -benchmem
```
To run specific benchmarks:
```bash
go test -bench=BenchmarkMap -benchmem
go test -bench=BenchmarkChain -benchmem
go test -bench=BenchmarkApPar -benchmem
```
To run with more iterations for stable results:
```bash
go test -bench=. -benchmem -benchtime=100000x
```
## Benchmark Categories
### 1. Core Constructors
- `BenchmarkLeft` - Creating Left (error) values (~64ns, 2 allocs)
- `BenchmarkRight` - Creating Right (success) values (~64ns, 2 allocs)
- `BenchmarkOf` - Creating Right values via Of (~47ns, 2 allocs)
**Key Insights:**
- All constructors allocate 2 times (64B total)
- `Of` is slightly faster than `Right` due to inlining
- Construction is very fast, suitable for hot paths
### 2. Conversion Operations
- `BenchmarkFromEither_Right/Left` - Converting Either to ReaderIOResult (~70ns, 2 allocs)
- `BenchmarkFromIO` - Converting IO to ReaderIOResult (~78ns, 3 allocs)
- `BenchmarkFromIOEither_Right/Left` - Converting IOEither (~23ns, 1 alloc)
**Key Insights:**
- FromIOEither is the fastest conversion (~23ns)
- FromIO has an extra allocation due to wrapping
- All conversions are lightweight
### 3. Execution Operations
- `BenchmarkExecute_Right` - Executing Right computation (~37ns, 1 alloc)
- `BenchmarkExecute_Left` - Executing Left computation (~48ns, 1 alloc)
- `BenchmarkExecute_WithContext` - Executing with context (~42ns, 1 alloc)
**Key Insights:**
- Execution is very fast with minimal allocations
- Left path is slightly slower due to error handling
- Context overhead is minimal (~5ns)
### 4. Functor Operations (Map)
- `BenchmarkMonadMap_Right/Left` - Direct map (~135ns, 5 allocs)
- `BenchmarkMap_Right/Left` - Curried map (~24ns, 1 alloc)
- `BenchmarkMapTo_Right` - Replacing with constant (~69ns, 1 alloc)
**Key Insights:**
- **Bottleneck:** MonadMap has 5 allocations (128B)
- Curried Map is ~5x faster with fewer allocations
- **Recommendation:** Use curried `Map` instead of `MonadMap`
### 5. Monad Operations (Chain)
- `BenchmarkMonadChain_Right/Left` - Direct chain (~190ns, 6 allocs)
- `BenchmarkChain_Right/Left` - Curried chain (~28ns, 1 alloc)
- `BenchmarkChainFirst_Right/Left` - Chain preserving original (~27ns, 1 alloc)
- `BenchmarkFlatten_Right/Left` - Removing nesting (~147ns, 7 allocs)
**Key Insights:**
- **Bottleneck:** MonadChain has 6 allocations (160B)
- Curried Chain is ~7x faster
- ChainFirst is as fast as Chain
- **Bottleneck:** Flatten has 7 allocations
- **Recommendation:** Use curried `Chain` instead of `MonadChain`
### 6. Applicative Operations (Ap)
- `BenchmarkMonadApSeq_RightRight` - Sequential apply (~281ns, 8 allocs)
- `BenchmarkMonadApPar_RightRight` - Parallel apply (~49ns, 3 allocs)
- `BenchmarkExecuteApSeq_RightRight` - Executing sequential (~1403ns, 8 allocs)
- `BenchmarkExecuteApPar_RightRight` - Executing parallel (~5606ns, 61 allocs)
**Key Insights:**
- **Major Bottleneck:** Parallel execution has 61 allocations (1896B)
- Construction of ApPar is fast (~49ns), but execution is expensive
- Sequential execution is faster for simple operations (~1.4μs vs ~5.6μs)
- **Recommendation:** Use ApSeq for simple operations, ApPar only for truly independent, expensive computations
- Parallel overhead includes context management and goroutine coordination
### 7. Alternative Operations
- `BenchmarkAlt_RightRight/LeftRight` - Providing alternatives (~210-344ns, 6 allocs)
- `BenchmarkOrElse_Right/Left` - Recovery from Left (~40-52ns, 2 allocs)
**Key Insights:**
- Alt has significant overhead (6 allocations)
- OrElse is much more efficient for error recovery
- **Recommendation:** Prefer OrElse over Alt when possible
### 8. Chain Operations with Different Types
- `BenchmarkChainEitherK_Right/Left` - Chaining Either (~25ns, 1 alloc)
- `BenchmarkChainIOK_Right/Left` - Chaining IO (~55ns, 1 alloc)
- `BenchmarkChainIOEitherK_Right/Left` - Chaining IOEither (~53ns, 1 alloc)
**Key Insights:**
- All chain-K operations are efficient
- ChainEitherK is fastest (pure transformation)
- ChainIOK and ChainIOEitherK have similar performance
### 9. Context Operations
- `BenchmarkAsk` - Accessing context (~52ns, 3 allocs)
- `BenchmarkDefer` - Lazy generation (~34ns, 1 alloc)
- `BenchmarkMemoize` - Caching results (~82ns, 4 allocs)
**Key Insights:**
- Ask has 3 allocations for context wrapping
- Defer is lightweight
- Memoize has overhead but pays off for expensive computations
### 10. Delay Operations
- `BenchmarkDelay_Construction` - Creating delayed computation (~19ns, 1 alloc)
- `BenchmarkTimer_Construction` - Creating timer (~92ns, 3 allocs)
**Key Insights:**
- Delay construction is very cheap
- Timer has additional overhead for time operations
### 11. TryCatch Operations
- `BenchmarkTryCatch_Success/Error` - Creating TryCatch (~33ns, 1 alloc)
- `BenchmarkExecuteTryCatch_Success/Error` - Executing TryCatch (~3ns, 0 allocs)
**Key Insights:**
- TryCatch construction is cheap
- Execution is extremely fast with zero allocations
- Excellent for wrapping Go error-returning functions
### 12. Pipeline Operations
- `BenchmarkPipeline_Map_Right/Left` - Single Map in pipeline (~200-306ns, 9 allocs)
- `BenchmarkPipeline_Chain_Right/Left` - Single Chain in pipeline (~155-217ns, 7 allocs)
- `BenchmarkPipeline_Complex_Right/Left` - Multiple operations (~777-1039ns, 25 allocs)
- `BenchmarkExecutePipeline_Complex_Right` - Executing complex pipeline (~533ns, 10 allocs)
**Key Insights:**
- **Major Bottleneck:** Pipeline operations allocate heavily
- Single Map: ~200ns with 9 allocations (224B)
- Complex pipeline: ~900ns with 25 allocations (640B)
- **Recommendation:** Avoid F.Pipe in hot paths, use direct function calls
### 13. Do-Notation Operations
- `BenchmarkDo` - Creating empty context (~45ns, 2 allocs)
- `BenchmarkBind_Right` - Binding values (~25ns, 1 alloc)
- `BenchmarkLet_Right` - Pure computations (~23ns, 1 alloc)
- `BenchmarkApS_Right` - Applicative binding (~99ns, 4 allocs)
**Key Insights:**
- Do-notation operations are efficient
- Bind and Let are very fast
- ApS has more overhead (4 allocations)
- Much better than either package's Bind (~130ns vs ~25ns)
### 14. Traverse Operations
- `BenchmarkTraverseArray_Empty` - Empty array (~689ns, 13 allocs)
- `BenchmarkTraverseArray_Small` - 3 elements (~1971ns, 37 allocs)
- `BenchmarkTraverseArray_Medium` - 10 elements (~4386ns, 93 allocs)
- `BenchmarkTraverseArraySeq_Small` - Sequential (~1885ns, 52 allocs)
- `BenchmarkTraverseArrayPar_Small` - Parallel (~1362ns, 37 allocs)
- `BenchmarkExecuteTraverseArraySeq_Small` - Executing sequential (~1080ns, 34 allocs)
- `BenchmarkExecuteTraverseArrayPar_Small` - Executing parallel (~18560ns, 202 allocs)
**Key Insights:**
- **Bottleneck:** Traverse operations allocate per element
- Empty array still has 13 allocations (overhead)
- Parallel construction is faster but execution is much slower
- **Major Bottleneck:** Parallel execution: ~18.5μs with 202 allocations
- Sequential execution is ~17x faster for small arrays
- **Recommendation:** Use sequential traverse for small collections, parallel only for large, expensive operations
### 15. Record Operations
- `BenchmarkTraverseRecord_Small` - 3 entries (~1444ns, 55 allocs)
- `BenchmarkSequenceRecord_Small` - 3 entries (~1073ns, 54 allocs)
**Key Insights:**
- Record operations have high allocation overhead
- Similar performance to array traversal
- Allocations scale with map size
### 16. Resource Management
- `BenchmarkWithResource_Success` - Creating resource wrapper (~193ns, 8 allocs)
- `BenchmarkExecuteWithResource_Success` - Executing with resource (varies)
- `BenchmarkExecuteWithResource_ErrorInBody` - Error handling (varies)
**Key Insights:**
- Resource management has 8 allocations for safety
- Ensures proper cleanup even on errors
- Overhead is acceptable for resource safety guarantees
### 17. Context Cancellation
- `BenchmarkExecute_CanceledContext` - Executing with canceled context
- `BenchmarkExecuteApPar_CanceledContext` - Parallel with canceled context
**Key Insights:**
- Cancellation is handled efficiently
- Minimal overhead for checking cancellation
- ApPar respects cancellation properly
## Performance Bottlenecks Summary
### Critical Bottlenecks (>100ns or >5 allocations)
1. **Pipeline operations with F.Pipe** (~200-1000ns, 9-25 allocations)
- **Impact:** High - commonly used pattern
- **Mitigation:** Use direct function calls in hot paths
- **Example:**
```go
// Slow (200ns, 9 allocs)
result := F.Pipe1(rioe, Map[int](transform))
// Fast (24ns, 1 alloc)
result := Map[int](transform)(rioe)
```
2. **MonadMap and MonadChain** (~135-207ns, 5-6 allocations)
- **Impact:** High - fundamental operations
- **Mitigation:** Use curried versions (Map, Chain)
- **Speedup:** 5-7x faster
3. **Parallel applicative execution** (~5.6μs, 61 allocations)
- **Impact:** High when used
- **Mitigation:** Use ApSeq for simple operations
- **Note:** Only use ApPar for truly independent, expensive computations
4. **Parallel traverse execution** (~18.5μs, 202 allocations)
- **Impact:** High for collections
- **Mitigation:** Use sequential traverse for small collections
- **Threshold:** Consider parallel only for >100 elements with expensive operations
5. **Alt operations** (~210-344ns, 6 allocations)
- **Impact:** Medium
- **Mitigation:** Use OrElse for error recovery (40-52ns, 2 allocs)
### Minor Bottlenecks (50-100ns or 3-4 allocations)
6. **Flatten operations** (~147ns, 7 allocations)
- **Impact:** Low - less commonly used
- **Mitigation:** Avoid unnecessary nesting
7. **Memoize** (~82ns, 4 allocations)
- **Impact:** Low - overhead pays off for expensive computations
- **Mitigation:** Only use for computations >1μs
8. **ApS in do-notation** (~99ns, 4 allocations)
- **Impact:** Low
- **Mitigation:** Use Let or Bind when possible
## Optimization Recommendations
### For Hot Paths
1. **Use curried functions over Monad* versions:**
```go
// Instead of:
result := MonadMap(rioe, transform) // 135ns, 5 allocs
// Use:
result := Map[int](transform)(rioe) // 24ns, 1 alloc
```
2. **Avoid F.Pipe in performance-critical code:**
```go
// Instead of:
result := F.Pipe3(rioe, Map(f1), Chain(f2), Map(f3)) // 1000ns, 25 allocs
// Use:
result := Map(f3)(Chain(f2)(Map(f1)(rioe))) // Much faster
```
3. **Use sequential operations for small collections:**
```go
// For arrays with <10 elements:
result := TraverseArraySeq(f)(arr) // 1.9μs, 52 allocs
// Instead of:
result := TraverseArrayPar(f)(arr) // 18.5μs, 202 allocs (when executed)
```
4. **Prefer OrElse over Alt for error recovery:**
```go
// Instead of:
result := Alt(alternative)(rioe) // 210-344ns, 6 allocs
// Use:
result := OrElse(recover)(rioe) // 40-52ns, 2 allocs
```
### For Context Operations
- Context operations are generally efficient
- Ask has 3 allocations but is necessary for context access
- Cancellation checking is fast and should be used liberally
### For Resource Management
- WithResource overhead (8 allocations) is acceptable for safety
- Always use for resources that need cleanup
- The RAII pattern prevents resource leaks
### Memory Considerations
- Most operations have 1-2 allocations
- Monad* versions have 5-8 allocations
- Pipeline operations allocate heavily
- Parallel operations have significant allocation overhead
- Traverse operations allocate per element
## Comparative Analysis
### Fastest Operations (<50ns, <2 allocations)
- Constructors (Left, Right, Of)
- Execution (Execute_Right/Left)
- Curried operations (Map, Chain, ChainFirst)
- TryCatch execution
- Chain-K operations
- Let and Bind in do-notation
### Medium Speed (50-200ns, 2-8 allocations)
- Conversion operations
- MonadMap, MonadChain
- Flatten
- Memoize
- Resource management construction
- Traverse construction
### Slower Operations (>200ns or >8 allocations)
- Pipeline operations
- Alt operations
- Traverse operations (especially parallel)
- Applicative operations (especially parallel execution)
## Parallel vs Sequential Trade-offs
### When to Use Sequential (ApSeq, TraverseArraySeq)
- Small collections (<10 elements)
- Fast operations (<1μs per element)
- When allocations matter
- Default choice for most use cases
### When to Use Parallel (ApPar, TraverseArrayPar)
- Large collections (>100 elements)
- Expensive operations (>10μs per element)
- Independent computations
- When latency matters more than throughput
- I/O-bound operations
### Parallel Overhead
- Construction: ~50ns, 3 allocs
- Execution: +4-17μs, +40-160 allocs
- Context management and goroutine coordination
- Only worthwhile for truly expensive operations
## Conclusion
The `context/readerioeither` package is well-optimized with most operations completing in nanoseconds with minimal allocations. Key recommendations:
1. Use curried functions (Map, Chain) instead of Monad* versions (5-7x faster)
2. Avoid F.Pipe in hot paths (5-10x slower)
3. Use sequential operations by default; parallel only for expensive, independent computations
4. Prefer OrElse over Alt for error recovery (5x faster)
5. TryCatch is excellent for wrapping Go functions (near-zero execution cost)
6. Context operations are efficient; use liberally
7. Resource management overhead is acceptable for safety guarantees
For typical use cases, the performance is excellent. Only in extremely hot paths (millions of operations per second) should you consider the micro-optimizations suggested above.

View File

@@ -0,0 +1,724 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/result"
)
// Do creates an empty context of type [S] to be used with the [Bind] operation.
// This is the starting point for do-notation style composition.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
// result := readerioeither.Do(State{})
//
//go:inline
func Do[S any](
empty S,
) ReaderIOResult[S] {
return RIOR.Of[context.Context](empty)
}
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
// This enables sequential composition where each step can depend on the results of previous steps
// and access the context.Context from the environment.
//
// The setter function takes the result of the computation and returns a function that
// updates the context from S1 to S2.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.Bind(
// func(user User) func(State) State {
// return func(s State) State { s.User = user; return s }
// },
// func(s State) readerioeither.ReaderIOResult[User] {
// return func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// },
// ),
// readerioeither.Bind(
// func(cfg Config) func(State) State {
// return func(s State) State { s.Config = cfg; return s }
// },
// func(s State) readerioeither.ReaderIOResult[Config] {
// // This can access s.User from the previous step
// return func(ctx context.Context) ioeither.IOEither[error, Config] {
// return ioeither.TryCatch(func() (Config, error) {
// return fetchConfigForUser(ctx, s.User.ID)
// })
// }
// },
// ),
// )
//
//go:inline
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Operator[S1, S2] {
return RIOR.Bind(setter, f)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
//
//go:inline
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Operator[S1, S2] {
return RIOR.Let[context.Context](setter, f)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
//
//go:inline
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Operator[S1, S2] {
return RIOR.LetTo[context.Context](setter, b)
}
// BindTo initializes a new state [S1] from a value [T]
//
//go:inline
func BindTo[S1, T any](
setter func(T) S1,
) Operator[T, S1] {
return RIOR.BindTo[context.Context](setter)
}
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
// the context and the value concurrently (using Applicative rather than Monad).
// This allows independent computations to be combined without one depending on the result of the other.
//
// Unlike Bind, which sequences operations, ApS can be used when operations are independent
// and can conceptually run in parallel.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// // These operations are independent and can be combined with ApS
// getUser := func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// getConfig := func(ctx context.Context) ioeither.IOEither[error, Config] {
// return ioeither.TryCatch(func() (Config, error) {
// return fetchConfig(ctx)
// })
// }
//
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.ApS(
// func(user User) func(State) State {
// return func(s State) State { s.User = user; return s }
// },
// getUser,
// ),
// readerioeither.ApS(
// func(cfg Config) func(State) State {
// return func(s State) State { s.Config = cfg; return s }
// },
// getConfig,
// ),
// )
//
//go:inline
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderIOResult[T],
) Operator[S1, S2] {
return apply.ApS(
Ap,
Map,
setter,
fa,
)
}
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// getUser := func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// result := F.Pipe2(
// readerioeither.Of(State{}),
// readerioeither.ApSL(userLens, getUser),
// )
//
//go:inline
func ApSL[S, T any](
lens L.Lens[S, T],
fa ReaderIOResult[T],
) Operator[S, S] {
return ApS(lens.Set, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a ReaderIOResult computation that produces an updated value.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.BindL(userLens, func(user User) readerioeither.ReaderIOResult[User] {
// return func(ctx context.Context) ioeither.IOEither[error, User] {
// return ioeither.TryCatch(func() (User, error) {
// return fetchUser(ctx)
// })
// }
// }),
// )
//
//go:inline
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Operator[S, S] {
return RIOR.BindL(lens, f)
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a ReaderIOResult).
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// result := F.Pipe2(
// readerioeither.Do(State{User: User{Name: "Alice"}}),
// readerioeither.LetL(userLens, func(user User) User {
// user.Name = "Bob"
// return user
// }),
// )
//
//go:inline
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Operator[S, S] {
return RIOR.LetL[context.Context](lens, f)
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type State struct {
// User User
// Config Config
// }
//
// userLens := lens.MakeLens(
// func(s State) User { return s.User },
// func(s State, u User) State { s.User = u; return s },
// )
//
// newUser := User{Name: "Bob", ID: 123}
// result := F.Pipe2(
// readerioeither.Do(State{}),
// readerioeither.LetToL(userLens, newUser),
// )
//
//go:inline
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Operator[S, S] {
return RIOR.LetToL[context.Context](lens, b)
}
// BindIOEitherK is a variant of Bind that works with IOEither computations.
// It lifts an IOEither Kleisli arrow into the ReaderIOResult context (with context.Context as environment).
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IOEither Kleisli arrow (S1 -> IOEither[error, T])
//
//go:inline
func BindIOEitherK[S1, S2, T any](
setter func(T) func(S1) S2,
f ioresult.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromIOEither[T]))
}
// BindIOResultK is a variant of Bind that works with IOResult computations.
// This is an alias for BindIOEitherK for consistency with the Result naming convention.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IOResult Kleisli arrow (S1 -> IOResult[T])
//
//go:inline
func BindIOResultK[S1, S2, T any](
setter func(T) func(S1) S2,
f ioresult.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromIOResult[T]))
}
// BindIOK is a variant of Bind that works with IO computations.
// It lifts an IO Kleisli arrow into the ReaderIOResult context.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An IO Kleisli arrow (S1 -> IO[T])
//
//go:inline
func BindIOK[S1, S2, T any](
setter func(T) func(S1) S2,
f io.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromIO[T]))
}
// BindReaderK is a variant of Bind that works with Reader computations.
// It lifts a Reader Kleisli arrow (with context.Context) into the ReaderIOResult context.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A Reader Kleisli arrow (S1 -> Reader[context.Context, T])
//
//go:inline
func BindReaderK[S1, S2, T any](
setter func(T) func(S1) S2,
f reader.Kleisli[context.Context, S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromReader[T]))
}
// BindReaderIOK is a variant of Bind that works with ReaderIO computations.
// It lifts a ReaderIO Kleisli arrow (with context.Context) into the ReaderIOResult context.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A ReaderIO Kleisli arrow (S1 -> ReaderIO[context.Context, T])
//
//go:inline
func BindReaderIOK[S1, S2, T any](
setter func(T) func(S1) S2,
f readerio.Kleisli[context.Context, S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromReaderIO[T]))
}
// BindEitherK is a variant of Bind that works with Either (Result) computations.
// It lifts an Either Kleisli arrow into the ReaderIOResult context.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: An Either Kleisli arrow (S1 -> Either[error, T])
//
//go:inline
func BindEitherK[S1, S2, T any](
setter func(T) func(S1) S2,
f result.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromEither[T]))
}
// BindResultK is a variant of Bind that works with Result computations.
// This is an alias for BindEitherK for consistency with the Result naming convention.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - f: A Result Kleisli arrow (S1 -> Result[T])
//
//go:inline
func BindResultK[S1, S2, T any](
setter func(T) func(S1) S2,
f result.Kleisli[S1, T],
) Operator[S1, S2] {
return Bind(setter, F.Flow2(f, FromResult[T]))
}
// BindIOEitherKL is a lens-based variant of BindIOEitherK.
// It combines a lens with an IOEither Kleisli arrow, focusing on a specific field
// within the state structure.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IOEither Kleisli arrow (T -> IOEither[error, T])
//
//go:inline
func BindIOEitherKL[S, T any](
lens L.Lens[S, T],
f ioresult.Kleisli[T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromIOEither[T]))
}
// BindIOResultKL is a lens-based variant of BindIOResultK.
// This is an alias for BindIOEitherKL for consistency with the Result naming convention.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IOResult Kleisli arrow (T -> IOResult[T])
//
//go:inline
func BindIOResultKL[S, T any](
lens L.Lens[S, T],
f ioresult.Kleisli[T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromIOEither[T]))
}
// BindIOKL is a lens-based variant of BindIOK.
// It combines a lens with an IO Kleisli arrow, focusing on a specific field
// within the state structure.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: An IO Kleisli arrow (T -> IO[T])
//
//go:inline
func BindIOKL[S, T any](
lens L.Lens[S, T],
f io.Kleisli[T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromIO[T]))
}
// BindReaderKL is a lens-based variant of BindReaderK.
// It combines a lens with a Reader Kleisli arrow (with context.Context), focusing on a specific field
// within the state structure.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: A Reader Kleisli arrow (T -> Reader[context.Context, T])
//
//go:inline
func BindReaderKL[S, T any](
lens L.Lens[S, T],
f reader.Kleisli[context.Context, T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromReader[T]))
}
// BindReaderIOKL is a lens-based variant of BindReaderIOK.
// It combines a lens with a ReaderIO Kleisli arrow (with context.Context), focusing on a specific field
// within the state structure.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - f: A ReaderIO Kleisli arrow (T -> ReaderIO[context.Context, T])
//
//go:inline
func BindReaderIOKL[S, T any](
lens L.Lens[S, T],
f readerio.Kleisli[context.Context, T, T],
) Operator[S, S] {
return BindL(lens, F.Flow2(f, FromReaderIO[T]))
}
// ApIOEitherS is an applicative variant that works with IOEither values.
// Unlike BindIOEitherK, this uses applicative composition (ApS) instead of monadic
// composition (Bind), allowing independent computations to be combined.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IOEither value
//
//go:inline
func ApIOEitherS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IOResult[T],
) Operator[S1, S2] {
return F.Bind2nd(F.Flow2[ReaderIOResult[S1], ioresult.Operator[S1, S2]], ioeither.ApS(setter, fa))
}
// ApIOResultS is an applicative variant that works with IOResult values.
// This is an alias for ApIOEitherS for consistency with the Result naming convention.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IOResult value
//
//go:inline
func ApIOResultS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IOResult[T],
) Operator[S1, S2] {
return F.Bind2nd(F.Flow2[ReaderIOResult[S1], ioresult.Operator[S1, S2]], ioeither.ApS(setter, fa))
}
// ApIOS is an applicative variant that works with IO values.
// It lifts an IO value into the ReaderIOResult context using applicative composition.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An IO value
//
//go:inline
func ApIOS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IO[T],
) Operator[S1, S2] {
return ApS(setter, FromIO(fa))
}
// ApReaderS is an applicative variant that works with Reader values.
// It lifts a Reader value (with context.Context) into the ReaderIOResult context using applicative composition.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A Reader value
//
//go:inline
func ApReaderS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Reader[context.Context, T],
) Operator[S1, S2] {
return ApS(setter, FromReader(fa))
}
// ApReaderIOS is an applicative variant that works with ReaderIO values.
// It lifts a ReaderIO value (with context.Context) into the ReaderIOResult context using applicative composition.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A ReaderIO value
//
//go:inline
func ApReaderIOS[S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderIO[T],
) Operator[S1, S2] {
return ApS(setter, FromReaderIO(fa))
}
// ApEitherS is an applicative variant that works with Either (Result) values.
// It lifts an Either value into the ReaderIOResult context using applicative composition.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: An Either value
//
//go:inline
func ApEitherS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Result[T],
) Operator[S1, S2] {
return ApS(setter, FromEither(fa))
}
// ApResultS is an applicative variant that works with Result values.
// This is an alias for ApEitherS for consistency with the Result naming convention.
//
// Parameters:
// - setter: Updates state from S1 to S2 using result T
// - fa: A Result value
//
//go:inline
func ApResultS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Result[T],
) Operator[S1, S2] {
return ApS(setter, FromResult(fa))
}
// ApIOEitherSL is a lens-based variant of ApIOEitherS.
// It combines a lens with an IOEither value using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IOEither value
//
//go:inline
func ApIOEitherSL[S, T any](
lens L.Lens[S, T],
fa IOResult[T],
) Operator[S, S] {
return F.Bind2nd(F.Flow2[ReaderIOResult[S], ioresult.Operator[S, S]], ioresult.ApSL(lens, fa))
}
// ApIOResultSL is a lens-based variant of ApIOResultS.
// This is an alias for ApIOEitherSL for consistency with the Result naming convention.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IOResult value
//
//go:inline
func ApIOResultSL[S, T any](
lens L.Lens[S, T],
fa IOResult[T],
) Operator[S, S] {
return F.Bind2nd(F.Flow2[ReaderIOResult[S], ioresult.Operator[S, S]], ioresult.ApSL(lens, fa))
}
// ApIOSL is a lens-based variant of ApIOS.
// It combines a lens with an IO value using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An IO value
//
//go:inline
func ApIOSL[S, T any](
lens L.Lens[S, T],
fa IO[T],
) Operator[S, S] {
return ApSL(lens, FromIO(fa))
}
// ApReaderSL is a lens-based variant of ApReaderS.
// It combines a lens with a Reader value (with context.Context) using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A Reader value
//
//go:inline
func ApReaderSL[S, T any](
lens L.Lens[S, T],
fa Reader[context.Context, T],
) Operator[S, S] {
return ApSL(lens, FromReader(fa))
}
// ApReaderIOSL is a lens-based variant of ApReaderIOS.
// It combines a lens with a ReaderIO value (with context.Context) using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A ReaderIO value
//
//go:inline
func ApReaderIOSL[S, T any](
lens L.Lens[S, T],
fa ReaderIO[T],
) Operator[S, S] {
return ApSL(lens, FromReaderIO(fa))
}
// ApEitherSL is a lens-based variant of ApEitherS.
// It combines a lens with an Either value using applicative composition.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: An Either value
//
//go:inline
func ApEitherSL[S, T any](
lens L.Lens[S, T],
fa Result[T],
) Operator[S, S] {
return ApSL(lens, FromEither(fa))
}
// ApResultSL is a lens-based variant of ApResultS.
// This is an alias for ApEitherSL for consistency with the Result naming convention.
//
// Parameters:
// - lens: A lens focusing on field T within state S
// - fa: A Result value
//
//go:inline
func ApResultSL[S, T any](
lens L.Lens[S, T],
fa Result[T],
) Operator[S, S] {
return ApSL(lens, FromResult(fa))
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -26,11 +26,11 @@ import (
"github.com/stretchr/testify/assert"
)
func getLastName(s utils.Initial) ReaderIOEither[string] {
func getLastName(s utils.Initial) ReaderIOResult[string] {
return Of("Doe")
}
func getGivenName(s utils.WithLastName) ReaderIOEither[string] {
func getGivenName(s utils.WithLastName) ReaderIOResult[string] {
return Of("John")
}
@@ -229,7 +229,7 @@ func TestApS_ChainedWithBind(t *testing.T) {
}
}
getDependentValue := func(s State) ReaderIOEither[string] {
getDependentValue := func(s State) ReaderIOResult[string] {
// This depends on the Independent field
return Of(s.Independent + "-dependent")
}

View File

@@ -13,13 +13,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/internal/bracket"
"github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
// Bracket makes sure that a resource is cleaned up in the event of an error. The release action is called regardless of
@@ -27,18 +24,9 @@ import (
func Bracket[
A, B, ANY any](
acquire ReaderIOEither[A],
acquire ReaderIOResult[A],
use Kleisli[A, B],
release func(A, Either[B]) ReaderIOEither[ANY],
) ReaderIOEither[B] {
return bracket.Bracket[ReaderIOEither[A], ReaderIOEither[B], ReaderIOEither[ANY], Either[B], A, B](
readerio.Of[context.Context, Either[B]],
MonadChain[A, B],
readerio.MonadChain[context.Context, Either[B], Either[B]],
MonadChain[ANY, B],
acquire,
use,
release,
)
release func(A, Either[B]) ReaderIOResult[ANY],
) ReaderIOResult[B] {
return RIOR.Bracket(acquire, use, release)
}

View File

@@ -13,26 +13,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
CIOE "github.com/IBM/fp-go/v2/context/ioeither"
CIOE "github.com/IBM/fp-go/v2/context/ioresult"
"github.com/IBM/fp-go/v2/ioeither"
)
// WithContext wraps an existing [ReaderIOEither] and performs a context check for cancellation before delegating.
// WithContext wraps an existing [ReaderIOResult] and performs a context check for cancellation before delegating.
// This ensures that if the context is already canceled, the computation short-circuits immediately
// without executing the wrapped computation.
//
// This is useful for adding cancellation awareness to computations that might not check the context themselves.
//
// Parameters:
// - ma: The ReaderIOEither to wrap with context checking
// - ma: The ReaderIOResult to wrap with context checking
//
// Returns a ReaderIOEither that checks for cancellation before executing.
func WithContext[A any](ma ReaderIOEither[A]) ReaderIOEither[A] {
// Returns a ReaderIOResult that checks for cancellation before executing.
func WithContext[A any](ma ReaderIOResult[A]) ReaderIOResult[A] {
return func(ctx context.Context) IOEither[A] {
if err := context.Cause(ctx); err != nil {
return ioeither.Left[A](err)

View File

@@ -0,0 +1,251 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:27.21,29.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:35.47,42.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:48.47,54.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:60.47,66.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:71.46,76.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/bind.go:82.47,89.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/bracket.go:33.21,44.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/cancel.go:35.65,36.47 1 1
github.com/IBM/fp-go/v2/context/readerioresult/cancel.go:36.47,37.44 1 1
github.com/IBM/fp-go/v2/context/readerioresult/cancel.go:37.44,39.4 1 1
github.com/IBM/fp-go/v2/context/readerioresult/cancel.go:40.3,40.40 1 1
github.com/IBM/fp-go/v2/context/readerioresult/eq.go:42.84,44.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:18.91,20.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:24.93,26.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:30.101,32.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:36.103,38.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:43.36,48.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:53.36,58.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:63.36,68.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:71.98,76.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:79.101,84.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:87.101,92.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:95.129,96.68 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:96.68,102.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:106.132,107.68 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:107.68,113.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:117.132,118.68 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:118.68,124.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:129.113,131.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:135.115,137.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:143.40,150.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:156.40,163.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:169.40,176.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:179.126,185.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:188.129,194.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:197.129,203.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:206.185,207.76 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:207.76,215.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:219.188,220.76 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:220.76,228.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:232.188,233.76 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:233.76,241.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:246.125,248.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:252.127,254.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:261.44,270.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:277.44,286.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:293.44,302.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:305.154,312.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:315.157,322.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:325.157,332.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:335.241,336.84 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:336.84,346.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:350.244,351.84 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:351.84,361.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:365.244,366.84 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:366.84,376.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:381.137,383.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:387.139,389.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:397.48,408.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:416.48,427.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:435.48,446.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:449.182,457.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:460.185,468.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:471.185,479.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:482.297,483.92 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:483.92,495.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:499.300,500.92 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:500.92,512.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:516.300,517.92 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:517.92,529.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:534.149,536.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:540.151,542.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:551.52,564.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:573.52,586.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:595.52,608.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:611.210,620.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:623.213,632.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:635.213,644.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:647.353,648.100 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:648.100,662.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:666.356,667.100 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:667.100,681.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:685.356,686.100 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:686.100,700.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:705.161,707.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:711.163,713.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:723.56,738.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:748.56,763.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:773.56,788.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:791.238,801.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:804.241,814.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:817.241,827.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:830.409,831.108 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:831.108,847.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:851.412,852.108 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:852.108,868.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:872.412,873.108 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:873.108,889.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:894.173,896.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:900.175,902.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:913.60,930.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:941.60,958.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:969.60,986.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:989.266,1000.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1003.269,1014.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1017.269,1028.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1031.465,1032.116 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1032.116,1050.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1054.468,1055.116 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1055.116,1073.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1077.468,1078.116 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1078.116,1096.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1101.185,1103.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1107.187,1109.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1121.64,1140.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1152.64,1171.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1183.64,1202.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1205.294,1217.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1220.297,1232.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1235.297,1247.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1250.521,1251.124 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1251.124,1271.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1275.524,1276.124 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1276.124,1296.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1300.524,1301.124 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1301.124,1321.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1326.197,1328.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1332.199,1334.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1347.68,1368.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1381.68,1402.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1415.68,1436.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1439.322,1452.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1455.325,1468.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1471.325,1484.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1487.577,1488.132 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1488.132,1510.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1514.580,1515.132 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1515.132,1537.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1541.580,1542.132 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1542.132,1564.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1569.210,1571.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1575.212,1577.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1591.74,1614.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1628.74,1651.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1665.74,1688.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1691.356,1705.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1708.359,1722.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1725.359,1739.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1742.645,1743.144 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1743.144,1767.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1771.648,1772.144 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1772.144,1796.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1800.648,1801.144 1 0
github.com/IBM/fp-go/v2/context/readerioresult/gen.go:1801.144,1825.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:36.61,43.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:52.64,59.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:68.64,75.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:85.61,93.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/monoid.go:103.63,108.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:42.55,44.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:52.45,54.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:62.42,64.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:74.78,76.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:85.75,87.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:97.72,99.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:108.69,110.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:120.96,122.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:131.93,133.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:143.101,145.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:154.71,156.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:165.39,167.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:169.93,173.56 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:173.56,174.32 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:174.32,174.47 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:189.98,194.47 3 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:194.47,196.44 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:196.44,198.4 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:200.3,200.27 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:200.27,202.45 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:202.45,204.5 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:207.4,213.47 5 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:227.95,229.17 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:229.17,231.3 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:232.2,232.28 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:243.98,245.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:254.91,256.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:265.94,267.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:276.94,278.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:288.95,290.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:299.73,301.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:307.44,309.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:319.95,321.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:330.95,332.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:342.100,344.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:353.100,355.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:364.116,366.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:375.75,377.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:386.47,388.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:398.51,400.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:406.39,407.47 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:407.47,408.27 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:408.27,411.4 2 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:423.87,425.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:434.87,436.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:446.92,448.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:457.92,459.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:468.115,470.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:479.85,480.54 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:480.54,481.48 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:481.48,482.28 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:482.28,487.12 3 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:488.30,489.22 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:490.23,491.47 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:505.59,511.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:520.66,522.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:531.83,533.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:543.97,545.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:554.64,556.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:566.62,568.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:577.78,579.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:589.80,591.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:600.76,602.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:612.136,614.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:623.91,625.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/reader.go:634.71,636.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/resource.go:58.151,63.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/semigroup.go:39.41,43.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/sync.go:46.78,54.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:31.89,39.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:48.103,56.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:65.71,67.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:75.112,83.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:92.124,100.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:108.94,110.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:120.95,128.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:137.92,145.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:148.106,156.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:165.74,167.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:170.118,178.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:181.115,189.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:192.127,200.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:203.97,205.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:215.95,223.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:232.92,240.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:243.106,251.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:260.74,262.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:265.115,273.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:276.127,284.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:287.118,295.2 1 0
github.com/IBM/fp-go/v2/context/readerioresult/traverse.go:304.97,306.2 1 0

View File

@@ -13,13 +13,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Package readerioeither provides a specialized version of [readerioeither.ReaderIOEither] that uses
// package readerioresult provides a specialized version of [readerioeither.ReaderIOResult] that uses
// [context.Context] as the context type and [error] as the left (error) type. This package is designed
// for typical Go applications where context-aware, effectful computations with error handling are needed.
//
// # Core Concept
//
// ReaderIOEither[A] represents a computation that:
// ReaderIOResult[A] represents a computation that:
// - Depends on a [context.Context] (Reader aspect)
// - Performs side effects (IO aspect)
// - Can fail with an [error] (Either aspect)
@@ -27,7 +27,7 @@
//
// The type is defined as:
//
// ReaderIOEither[A] = func(context.Context) func() Either[error, A]
// ReaderIOResult[A] = func(context.Context) func() Either[error, A]
//
// This combines three powerful functional programming concepts:
// - Reader: Dependency injection via context
@@ -50,7 +50,7 @@
// - [Left]: Create failed computations
// - [FromEither], [FromIO], [FromIOEither]: Convert from other types
// - [TryCatch]: Wrap error-returning functions
// - [Eitherize0-10]: Convert standard Go functions to ReaderIOEither
// - [Eitherize0-10]: Convert standard Go functions to ReaderIOResult
//
// Transformation:
// - [Map]: Transform success values
@@ -90,15 +90,15 @@
// import (
// "context"
// "fmt"
// RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
// RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
// F "github.com/IBM/fp-go/v2/function"
// )
//
// // Define a computation that reads from context and may fail
// func fetchUser(id string) RIOE.ReaderIOEither[User] {
// func fetchUser(id string) RIOE.ReaderIOResult[User] {
// return F.Pipe2(
// RIOE.Ask(),
// RIOE.Chain(func(ctx context.Context) RIOE.ReaderIOEither[User] {
// RIOE.Chain(func(ctx context.Context) RIOE.ReaderIOResult[User] {
// return RIOE.TryCatch(func(ctx context.Context) func() (User, error) {
// return func() (User, error) {
// return userService.Get(ctx, id)
@@ -138,8 +138,8 @@
// openFile("data.txt"),
// closeFile,
// ),
// func(use func(func(*os.File) RIOE.ReaderIOEither[string]) RIOE.ReaderIOEither[string]) RIOE.ReaderIOEither[string] {
// return use(func(file *os.File) RIOE.ReaderIOEither[string] {
// func(use func(func(*os.File) RIOE.ReaderIOResult[string]) RIOE.ReaderIOResult[string]) RIOE.ReaderIOResult[string] {
// return use(func(file *os.File) RIOE.ReaderIOResult[string] {
// return readContent(file)
// })
// },
@@ -166,4 +166,4 @@
// result := computation(ctx)() // Returns Left with cancellation error
//
//go:generate go run ../.. contextreaderioeither --count 10 --filename gen.go
package readerioeither
package readerioresult

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -22,14 +22,14 @@ import (
RIOE "github.com/IBM/fp-go/v2/readerioeither"
)
// Eq implements the equals predicate for values contained in the [ReaderIOEither] monad.
// It creates an equality checker that can compare two ReaderIOEither values by executing them
// Eq implements the equals predicate for values contained in the [ReaderIOResult] monad.
// It creates an equality checker that can compare two ReaderIOResult values by executing them
// with a given context and comparing their results using the provided Either equality checker.
//
// Parameters:
// - eq: Equality checker for Either[A] values
//
// Returns a function that takes a context and returns an equality checker for ReaderIOEither[A].
// Returns a function that takes a context and returns an equality checker for ReaderIOResult[A].
//
// Example:
//
@@ -41,6 +41,6 @@ import (
// equal := eqRIE(ctx).Equals(Right[int](42), Right[int](42)) // true
//
//go:inline
func Eq[A any](eq eq.Eq[Either[A]]) func(context.Context) eq.Eq[ReaderIOEither[A]] {
func Eq[A any](eq eq.Eq[Either[A]]) func(context.Context) eq.Eq[ReaderIOResult[A]] {
return RIOE.Eq[context.Context](eq)
}

View File

@@ -18,7 +18,7 @@ package exec
import (
"context"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/exec"
F "github.com/IBM/fp-go/v2/function"
GE "github.com/IBM/fp-go/v2/internal/exec"
@@ -30,7 +30,7 @@ var (
Command = F.Curry3(command)
)
func command(name string, args []string, in []byte) RIOE.ReaderIOEither[exec.CommandOutput] {
func command(name string, args []string, in []byte) RIOE.ReaderIOResult[exec.CommandOutput] {
return func(ctx context.Context) IOE.IOEither[error, exec.CommandOutput] {
return IOE.TryCatchError(func() (exec.CommandOutput, error) {
return GE.Exec(ctx, name, args, in)

View File

@@ -20,7 +20,7 @@ import (
"io"
"os"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
ET "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/file"
@@ -44,7 +44,7 @@ var (
)
// Close closes an object
func Close[C io.Closer](c C) RIOE.ReaderIOEither[any] {
func Close[C io.Closer](c C) RIOE.ReaderIOResult[any] {
return F.Pipe2(
c,
IOEF.Close[C],
@@ -53,8 +53,8 @@ func Close[C io.Closer](c C) RIOE.ReaderIOEither[any] {
}
// ReadFile reads a file in the scope of a context
func ReadFile(path string) RIOE.ReaderIOEither[[]byte] {
return RIOE.WithResource[[]byte](Open(path), Close[*os.File])(func(r *os.File) RIOE.ReaderIOEither[[]byte] {
func ReadFile(path string) RIOE.ReaderIOResult[[]byte] {
return RIOE.WithResource[[]byte](Open(path), Close[*os.File])(func(r *os.File) RIOE.ReaderIOResult[[]byte] {
return func(ctx context.Context) IOE.IOEither[error, []byte] {
return func() ET.Either[error, []byte] {
return file.ReadAll(ctx, r)

View File

@@ -19,7 +19,7 @@ import (
"context"
"fmt"
R "github.com/IBM/fp-go/v2/context/readerioeither"
R "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
J "github.com/IBM/fp-go/v2/json"

View File

@@ -18,7 +18,7 @@ package file
import (
"os"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
IO "github.com/IBM/fp-go/v2/io"
IOF "github.com/IBM/fp-go/v2/io/file"
@@ -38,7 +38,7 @@ var (
)
// CreateTemp created a temp file with proper parametrization
func CreateTemp(dir, pattern string) RIOE.ReaderIOEither[*os.File] {
func CreateTemp(dir, pattern string) RIOE.ReaderIOResult[*os.File] {
return F.Pipe2(
IOEF.CreateTemp(dir, pattern),
RIOE.FromIOEither[*os.File],
@@ -47,6 +47,6 @@ func CreateTemp(dir, pattern string) RIOE.ReaderIOEither[*os.File] {
}
// WithTempFile creates a temporary file, then invokes a callback to create a resource based on the file, then close and remove the temp file
func WithTempFile[A any](f func(*os.File) RIOE.ReaderIOEither[A]) RIOE.ReaderIOEither[A] {
func WithTempFile[A any](f func(*os.File) RIOE.ReaderIOResult[A]) RIOE.ReaderIOResult[A] {
return RIOE.WithResource[A](onCreateTempFile, onReleaseTempFile)(f)
}

View File

@@ -20,7 +20,7 @@ import (
"os"
"testing"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/stretchr/testify/assert"
@@ -35,7 +35,7 @@ func TestWithTempFile(t *testing.T) {
func TestWithTempFileOnClosedFile(t *testing.T) {
res := WithTempFile(func(f *os.File) RIOE.ReaderIOEither[[]byte] {
res := WithTempFile(func(f *os.File) RIOE.ReaderIOResult[[]byte] {
return F.Pipe2(
f,
onWriteAll[*os.File]([]byte("Carsten")),

View File

@@ -19,12 +19,12 @@ import (
"context"
"io"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
)
func onWriteAll[W io.Writer](data []byte) func(w W) RIOE.ReaderIOEither[[]byte] {
return func(w W) RIOE.ReaderIOEither[[]byte] {
func onWriteAll[W io.Writer](data []byte) func(w W) RIOE.ReaderIOResult[[]byte] {
return func(w W) RIOE.ReaderIOResult[[]byte] {
return F.Pipe1(
RIOE.TryCatch(func(_ context.Context) func() ([]byte, error) {
return func() ([]byte, error) {
@@ -38,9 +38,9 @@ func onWriteAll[W io.Writer](data []byte) func(w W) RIOE.ReaderIOEither[[]byte]
}
// WriteAll uses a generator function to create a stream, writes data to it and closes it
func WriteAll[W io.WriteCloser](data []byte) func(acquire RIOE.ReaderIOEither[W]) RIOE.ReaderIOEither[[]byte] {
func WriteAll[W io.WriteCloser](data []byte) func(acquire RIOE.ReaderIOResult[W]) RIOE.ReaderIOResult[[]byte] {
onWrite := onWriteAll[W](data)
return func(onCreate RIOE.ReaderIOEither[W]) RIOE.ReaderIOEither[[]byte] {
return func(onCreate RIOE.ReaderIOResult[W]) RIOE.ReaderIOResult[[]byte] {
return RIOE.WithResource[[]byte](
onCreate,
Close[W])(
@@ -50,7 +50,7 @@ func WriteAll[W io.WriteCloser](data []byte) func(acquire RIOE.ReaderIOEither[W]
}
// Write uses a generator function to create a stream, writes data to it and closes it
func Write[R any, W io.WriteCloser](acquire RIOE.ReaderIOEither[W]) func(use func(W) RIOE.ReaderIOEither[R]) RIOE.ReaderIOEither[R] {
func Write[R any, W io.WriteCloser](acquire RIOE.ReaderIOResult[W]) func(use func(W) RIOE.ReaderIOResult[R]) RIOE.ReaderIOResult[R] {
return RIOE.WithResource[R](
acquire,
Close[W])

View File

@@ -14,12 +14,12 @@
// limitations under the License.
// Package builder provides utilities for building HTTP requests in a functional way
// using the ReaderIOEither monad. It integrates with the http/builder package to
// using the ReaderIOResult monad. It integrates with the http/builder package to
// create composable, type-safe HTTP request builders with proper error handling
// and context support.
//
// The main function, Requester, converts a Builder from the http/builder package
// into a ReaderIOEither that produces HTTP requests. This allows for:
// into a ReaderIOResult that produces HTTP requests. This allows for:
// - Immutable request building with method chaining
// - Automatic header management including Content-Length
// - Support for requests with and without bodies
@@ -31,7 +31,7 @@
// import (
// "context"
// B "github.com/IBM/fp-go/v2/http/builder"
// RB "github.com/IBM/fp-go/v2/context/readerioeither/http/builder"
// RB "github.com/IBM/fp-go/v2/context/readerioresult/http/builder"
// )
//
// builder := F.Pipe3(
@@ -51,17 +51,17 @@ import (
"net/http"
"strconv"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOEH "github.com/IBM/fp-go/v2/context/readerioeither/http"
E "github.com/IBM/fp-go/v2/either"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
RIOEH "github.com/IBM/fp-go/v2/context/readerioresult/http"
F "github.com/IBM/fp-go/v2/function"
R "github.com/IBM/fp-go/v2/http/builder"
H "github.com/IBM/fp-go/v2/http/headers"
LZ "github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/result"
)
// Requester converts an http/builder.Builder into a ReaderIOEither that produces HTTP requests.
// Requester converts an http/builder.Builder into a ReaderIOResult that produces HTTP requests.
// It handles both requests with and without bodies, automatically managing headers including
// Content-Length for requests with bodies.
//
@@ -86,14 +86,14 @@ import (
// - builder: A pointer to an http/builder.Builder containing request configuration
//
// Returns:
// - A Requester (ReaderIOEither[*http.Request]) that, when executed with a context,
// - A Requester (ReaderIOResult[*http.Request]) that, when executed with a context,
// produces either an error or a configured *http.Request
//
// Example with body:
//
// import (
// B "github.com/IBM/fp-go/v2/http/builder"
// RB "github.com/IBM/fp-go/v2/context/readerioeither/http/builder"
// RB "github.com/IBM/fp-go/v2/context/readerioresult/http/builder"
// )
//
// builder := F.Pipe3(
@@ -116,7 +116,7 @@ import (
// result := requester(context.Background())()
func Requester(builder *R.Builder) RIOEH.Requester {
withBody := F.Curry3(func(data []byte, url string, method string) RIOE.ReaderIOEither[*http.Request] {
withBody := F.Curry3(func(data []byte, url string, method string) RIOE.ReaderIOResult[*http.Request] {
return RIOE.TryCatch(func(ctx context.Context) func() (*http.Request, error) {
return func() (*http.Request, error) {
req, err := http.NewRequestWithContext(ctx, method, url, bytes.NewReader(data))
@@ -129,7 +129,7 @@ func Requester(builder *R.Builder) RIOEH.Requester {
})
})
withoutBody := F.Curry2(func(url string, method string) RIOE.ReaderIOEither[*http.Request] {
withoutBody := F.Curry2(func(url string, method string) RIOE.ReaderIOResult[*http.Request] {
return RIOE.TryCatch(func(ctx context.Context) func() (*http.Request, error) {
return func() (*http.Request, error) {
req, err := http.NewRequestWithContext(ctx, method, url, nil)
@@ -143,10 +143,10 @@ func Requester(builder *R.Builder) RIOEH.Requester {
return F.Pipe5(
builder.GetBody(),
O.Fold(LZ.Of(E.Of[error](withoutBody)), E.Map[error](withBody)),
E.Ap[func(string) RIOE.ReaderIOEither[*http.Request]](builder.GetTargetURL()),
E.Flap[error, RIOE.ReaderIOEither[*http.Request]](builder.GetMethod()),
E.GetOrElse(RIOE.Left[*http.Request]),
O.Fold(LZ.Of(result.Of(withoutBody)), result.Map(withBody)),
result.Ap[RIOE.Kleisli[string, *http.Request]](builder.GetTargetURL()),
result.Flap[RIOE.ReaderIOResult[*http.Request]](builder.GetMethod()),
result.GetOrElse(RIOE.Left[*http.Request]),
RIOE.Map(func(req *http.Request) *http.Request {
req.Header = H.Monoid.Concat(req.Header, builder.GetHeaders())
return req

View File

@@ -21,7 +21,7 @@ import (
"net/url"
"testing"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
R "github.com/IBM/fp-go/v2/http/builder"

View File

@@ -0,0 +1,15 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:117.52,119.103 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:119.103,120.80 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:120.80,121.41 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:121.41,123.19 2 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:123.19,126.6 2 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:127.5,127.20 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:132.2,132.93 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:132.93,133.80 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:133.80,134.41 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:134.41,136.19 2 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:136.19,138.6 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:139.5,139.20 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:144.2,150.50 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/builder/builder.go:150.50,153.4 2 1

View File

@@ -0,0 +1,11 @@
mode: set
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:111.76,116.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:134.49,136.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:161.90,162.65 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:162.65,166.76 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:166.76,176.5 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:198.73,203.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:222.74,227.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:234.76,236.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:245.74,254.2 1 1
github.com/IBM/fp-go/v2/context/readerioresult/http/request.go:281.76,286.2 1 1

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Package http provides functional HTTP client utilities built on top of ReaderIOEither monad.
// Package http provides functional HTTP client utilities built on top of ReaderIOResult monad.
// It offers a composable way to make HTTP requests with context support, error handling,
// and response parsing capabilities. The package follows functional programming principles
// to ensure type-safe, testable, and maintainable HTTP operations.
@@ -36,7 +36,7 @@ import (
"net/http"
B "github.com/IBM/fp-go/v2/bytes"
RIOE "github.com/IBM/fp-go/v2/context/readerioeither"
RIOE "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
H "github.com/IBM/fp-go/v2/http"
IOE "github.com/IBM/fp-go/v2/ioeither"
@@ -50,13 +50,13 @@ type (
// It represents a computation that, given a context, produces either an error
// or an HTTP request. This allows for composable request building with proper
// error handling and context propagation.
Requester = RIOE.ReaderIOEither[*http.Request]
Requester = RIOE.ReaderIOResult[*http.Request]
// Client is an interface for executing HTTP requests in a functional way.
// It wraps the standard http.Client and provides a Do method that works
// with the ReaderIOEither monad for composable, type-safe HTTP operations.
// with the ReaderIOResult monad for composable, type-safe HTTP operations.
Client interface {
// Do executes an HTTP request and returns the response wrapped in a ReaderIOEither.
// Do executes an HTTP request and returns the response wrapped in a ReaderIOResult.
// It takes a Requester (which builds the request) and returns a computation that,
// when executed with a context, performs the HTTP request and returns either
// an error or the HTTP response.
@@ -65,8 +65,8 @@ type (
// - req: A Requester that builds the HTTP request
//
// Returns:
// - A ReaderIOEither that produces either an error or an *http.Response
Do(Requester) RIOE.ReaderIOEither[*http.Response]
// - A ReaderIOResult that produces either an error or an *http.Response
Do(Requester) RIOE.ReaderIOResult[*http.Response]
}
// client is the internal implementation of the Client interface.
@@ -108,7 +108,7 @@ var (
MakeGetRequest = makeRequest("GET", nil)
)
func (client client) Do(req Requester) RIOE.ReaderIOEither[*http.Response] {
func (client client) Do(req Requester) RIOE.ReaderIOResult[*http.Response] {
return F.Pipe1(
req,
RIOE.ChainIOEitherK(client.doIOE),
@@ -117,7 +117,7 @@ func (client client) Do(req Requester) RIOE.ReaderIOEither[*http.Response] {
// MakeClient creates a functional HTTP client wrapper around a standard http.Client.
// The returned Client provides methods for executing HTTP requests in a functional,
// composable way using the ReaderIOEither monad.
// composable way using the ReaderIOResult monad.
//
// Parameters:
// - httpClient: A standard *http.Client to wrap (e.g., http.DefaultClient)
@@ -149,7 +149,7 @@ func MakeClient(httpClient *http.Client) Client {
// - client: The HTTP client to use for executing the request
//
// Returns:
// - A function that takes a Requester and returns a ReaderIOEither[FullResponse]
// - A function that takes a Requester and returns a ReaderIOResult[FullResponse]
// where FullResponse is a tuple of (*http.Response, []byte)
//
// Example:
@@ -158,8 +158,8 @@ func MakeClient(httpClient *http.Client) Client {
// request := MakeGetRequest("https://api.example.com/data")
// fullResp := ReadFullResponse(client)(request)
// result := fullResp(context.Background())()
func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOEither[H.FullResponse] {
return func(req Requester) RIOE.ReaderIOEither[H.FullResponse] {
func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOResult[H.FullResponse] {
return func(req Requester) RIOE.ReaderIOResult[H.FullResponse] {
return F.Flow3(
client.Do(req),
IOE.ChainEitherK(H.ValidateResponse),
@@ -186,7 +186,7 @@ func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOEither[H.FullR
// - client: The HTTP client to use for executing the request
//
// Returns:
// - A function that takes a Requester and returns a ReaderIOEither[[]byte]
// - A function that takes a Requester and returns a ReaderIOResult[[]byte]
// containing the response body as bytes
//
// Example:
@@ -195,7 +195,7 @@ func ReadFullResponse(client Client) func(Requester) RIOE.ReaderIOEither[H.FullR
// request := MakeGetRequest("https://api.example.com/data")
// readBytes := ReadAll(client)
// result := readBytes(request)(context.Background())()
func ReadAll(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
func ReadAll(client Client) func(Requester) RIOE.ReaderIOResult[[]byte] {
return F.Flow2(
ReadFullResponse(client),
RIOE.Map(H.Body),
@@ -210,7 +210,7 @@ func ReadAll(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
// - client: The HTTP client to use for executing the request
//
// Returns:
// - A function that takes a Requester and returns a ReaderIOEither[string]
// - A function that takes a Requester and returns a ReaderIOResult[string]
// containing the response body as a string
//
// Example:
@@ -219,7 +219,7 @@ func ReadAll(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
// request := MakeGetRequest("https://api.example.com/text")
// readText := ReadText(client)
// result := readText(request)(context.Background())()
func ReadText(client Client) func(Requester) RIOE.ReaderIOEither[string] {
func ReadText(client Client) func(Requester) RIOE.ReaderIOResult[string] {
return F.Flow2(
ReadAll(client),
RIOE.Map(B.ToString),
@@ -231,7 +231,7 @@ func ReadText(client Client) func(Requester) RIOE.ReaderIOEither[string] {
// Deprecated: Use [ReadJSON] instead. This function is kept for backward compatibility
// but will be removed in a future version. The capitalized version follows Go naming
// conventions for acronyms.
func ReadJson[A any](client Client) func(Requester) RIOE.ReaderIOEither[A] {
func ReadJson[A any](client Client) func(Requester) RIOE.ReaderIOResult[A] {
return ReadJSON[A](client)
}
@@ -242,7 +242,7 @@ func ReadJson[A any](client Client) func(Requester) RIOE.ReaderIOEither[A] {
// 3. Reads the response body as bytes
//
// This function is used internally by ReadJSON to ensure proper JSON response handling.
func readJSON(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
func readJSON(client Client) func(Requester) RIOE.ReaderIOResult[[]byte] {
return F.Flow3(
ReadFullResponse(client),
RIOE.ChainFirstEitherK(F.Flow2(
@@ -264,7 +264,7 @@ func readJSON(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
// - client: The HTTP client to use for executing the request
//
// Returns:
// - A function that takes a Requester and returns a ReaderIOEither[A]
// - A function that takes a Requester and returns a ReaderIOResult[A]
// containing the parsed JSON data
//
// Example:
@@ -278,7 +278,7 @@ func readJSON(client Client) func(Requester) RIOE.ReaderIOEither[[]byte] {
// request := MakeGetRequest("https://api.example.com/user/1")
// readUser := ReadJSON[User](client)
// result := readUser(request)(context.Background())()
func ReadJSON[A any](client Client) func(Requester) RIOE.ReaderIOEither[A] {
func ReadJSON[A any](client Client) func(Requester) RIOE.ReaderIOResult[A] {
return F.Flow2(
readJSON(client),
RIOE.ChainEitherK(J.Unmarshal[A]),

View File

@@ -22,7 +22,7 @@ import (
H "net/http"
R "github.com/IBM/fp-go/v2/context/readerioeither"
R "github.com/IBM/fp-go/v2/context/readerioresult"
E "github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/errors"
F "github.com/IBM/fp-go/v2/function"
@@ -66,7 +66,7 @@ func (b simpleRequestBuilder) WithHeader(key, value string) simpleRequestBuilder
return b
}
func (b simpleRequestBuilder) Build() R.ReaderIOEither[*H.Request] {
func (b simpleRequestBuilder) Build() R.ReaderIOResult[*H.Request] {
return func(ctx context.Context) IOE.IOEither[error, *H.Request] {
return IOE.TryCatchError(func() (*H.Request, error) {
req, err := H.NewRequestWithContext(ctx, b.method, b.url, nil)

View File

@@ -13,96 +13,75 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/monoid"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
type (
Monoid[A any] = monoid.Monoid[ReaderIOEither[A]]
Monoid[A any] = monoid.Monoid[ReaderIOResult[A]]
)
// ApplicativeMonoid returns a [Monoid] that concatenates [ReaderIOEither] instances via their applicative.
// ApplicativeMonoid returns a [Monoid] that concatenates [ReaderIOResult] instances via their applicative.
// This uses the default applicative behavior (parallel or sequential based on useParallel flag).
//
// The monoid combines two ReaderIOEither values by applying the underlying monoid's combine operation
// The monoid combines two ReaderIOResult values by applying the underlying monoid's combine operation
// to their success values using applicative application.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderIOEither[A].
// Returns a Monoid for ReaderIOResult[A].
func ApplicativeMonoid[A any](m monoid.Monoid[A]) Monoid[A] {
return monoid.ApplicativeMonoid(
Of[A],
MonadMap[A, func(A) A],
MonadAp[A, A],
m,
)
return RIOR.ApplicativeMonoid[context.Context](m)
}
// ApplicativeMonoidSeq returns a [Monoid] that concatenates [ReaderIOEither] instances via their applicative.
// ApplicativeMonoidSeq returns a [Monoid] that concatenates [ReaderIOResult] instances via their applicative.
// This explicitly uses sequential execution for combining values.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderIOEither[A] with sequential execution.
// Returns a Monoid for ReaderIOResult[A] with sequential execution.
func ApplicativeMonoidSeq[A any](m monoid.Monoid[A]) Monoid[A] {
return monoid.ApplicativeMonoid(
Of[A],
MonadMap[A, func(A) A],
MonadApSeq[A, A],
m,
)
return RIOR.ApplicativeMonoidSeq[context.Context](m)
}
// ApplicativeMonoidPar returns a [Monoid] that concatenates [ReaderIOEither] instances via their applicative.
// ApplicativeMonoidPar returns a [Monoid] that concatenates [ReaderIOResult] instances via their applicative.
// This explicitly uses parallel execution for combining values.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderIOEither[A] with parallel execution.
// Returns a Monoid for ReaderIOResult[A] with parallel execution.
func ApplicativeMonoidPar[A any](m monoid.Monoid[A]) Monoid[A] {
return monoid.ApplicativeMonoid(
Of[A],
MonadMap[A, func(A) A],
MonadApPar[A, A],
m,
)
return RIOR.ApplicativeMonoidPar[context.Context](m)
}
// AlternativeMonoid is the alternative [Monoid] for [ReaderIOEither].
// This combines ReaderIOEither values using the alternative semantics,
// AlternativeMonoid is the alternative [Monoid] for [ReaderIOResult].
// This combines ReaderIOResult values using the alternative semantics,
// where the second value is only evaluated if the first fails.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderIOEither[A] with alternative semantics.
// Returns a Monoid for ReaderIOResult[A] with alternative semantics.
func AlternativeMonoid[A any](m monoid.Monoid[A]) Monoid[A] {
return monoid.AlternativeMonoid(
Of[A],
MonadMap[A, func(A) A],
MonadAp[A, A],
MonadAlt[A],
m,
)
return RIOR.AlternativeMonoid[context.Context](m)
}
// AltMonoid is the alternative [Monoid] for a [ReaderIOEither].
// AltMonoid is the alternative [Monoid] for a [ReaderIOResult].
// This creates a monoid where the empty value is provided lazily,
// and combination uses the Alt operation (try first, fallback to second on failure).
//
// Parameters:
// - zero: Lazy computation that provides the empty/identity value
//
// Returns a Monoid for ReaderIOEither[A] with Alt-based combination.
func AltMonoid[A any](zero Lazy[ReaderIOEither[A]]) Monoid[A] {
return monoid.AltMonoid(
zero,
MonadAlt[A],
)
// Returns a Monoid for ReaderIOResult[A] with Alt-based combination.
func AltMonoid[A any](zero Lazy[ReaderIOResult[A]]) Monoid[A] {
return RIOR.AltMonoid(zero)
}

View File

@@ -0,0 +1,960 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
"time"
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/errors"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/readeroption"
)
const (
// useParallel is the feature flag to control if we use the parallel or the sequential implementation of ap
useParallel = true
)
// FromEither converts an [Either] into a [ReaderIOResult].
// The resulting computation ignores the context and immediately returns the Either value.
//
// Parameters:
// - e: The Either value to lift into ReaderIOResult
//
// Returns a ReaderIOResult that produces the given Either value.
//
//go:inline
func FromEither[A any](e Either[A]) ReaderIOResult[A] {
return RIOR.FromEither[context.Context](e)
}
// FromEither converts an [Either] into a [ReaderIOResult].
// The resulting computation ignores the context and immediately returns the Either value.
//
// Parameters:
// - e: The Either value to lift into ReaderIOResult
//
// Returns a ReaderIOResult that produces the given Either value.
//
//go:inline
func FromResult[A any](e Result[A]) ReaderIOResult[A] {
return RIOR.FromEither[context.Context](e)
}
// Left creates a [ReaderIOResult] that represents a failed computation with the given error.
//
// Parameters:
// - l: The error value
//
// Returns a ReaderIOResult that always fails with the given error.
func Left[A any](l error) ReaderIOResult[A] {
return RIOR.Left[context.Context, A](l)
}
// Right creates a [ReaderIOResult] that represents a successful computation with the given value.
//
// Parameters:
// - r: The success value
//
// Returns a ReaderIOResult that always succeeds with the given value.
//
//go:inline
func Right[A any](r A) ReaderIOResult[A] {
return RIOR.Right[context.Context](r)
}
// MonadMap transforms the success value of a [ReaderIOResult] using the provided function.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIOResult to transform
// - f: The transformation function
//
// Returns a new ReaderIOResult with the transformed value.
//
//go:inline
func MonadMap[A, B any](fa ReaderIOResult[A], f func(A) B) ReaderIOResult[B] {
return RIOR.MonadMap(fa, f)
}
// Map transforms the success value of a [ReaderIOResult] using the provided function.
// This is the curried version of [MonadMap], useful for composition.
//
// Parameters:
// - f: The transformation function
//
// Returns a function that transforms a ReaderIOResult.
//
//go:inline
func Map[A, B any](f func(A) B) Operator[A, B] {
return RIOR.Map[context.Context](f)
}
// MonadMapTo replaces the success value of a [ReaderIOResult] with a constant value.
// If the computation fails, the error is propagated unchanged.
//
// Parameters:
// - fa: The ReaderIOResult to transform
// - b: The constant value to use
//
// Returns a new ReaderIOResult with the constant value.
//
//go:inline
func MonadMapTo[A, B any](fa ReaderIOResult[A], b B) ReaderIOResult[B] {
return RIOR.MonadMapTo(fa, b)
}
// MapTo replaces the success value of a [ReaderIOResult] with a constant value.
// This is the curried version of [MonadMapTo].
//
// Parameters:
// - b: The constant value to use
//
// Returns a function that transforms a ReaderIOResult.
//
//go:inline
func MapTo[A, B any](b B) Operator[A, B] {
return RIOR.MapTo[context.Context, A](b)
}
// MonadChain sequences two [ReaderIOResult] computations, where the second depends on the result of the first.
// If the first computation fails, the second is not executed.
//
// Parameters:
// - ma: The first ReaderIOResult
// - f: Function that produces the second ReaderIOResult based on the first's result
//
// Returns a new ReaderIOResult representing the sequenced computation.
//
//go:inline
func MonadChain[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIOResult[B] {
return RIOR.MonadChain(ma, f)
}
// Chain sequences two [ReaderIOResult] computations, where the second depends on the result of the first.
// This is the curried version of [MonadChain], useful for composition.
//
// Parameters:
// - f: Function that produces the second ReaderIOResult based on the first's result
//
// Returns a function that sequences ReaderIOResult computations.
//
//go:inline
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return RIOR.Chain(f)
}
// MonadChainFirst sequences two [ReaderIOResult] computations but returns the result of the first.
// The second computation is executed for its side effects only.
//
// Parameters:
// - ma: The first ReaderIOResult
// - f: Function that produces the second ReaderIOResult
//
// Returns a ReaderIOResult with the result of the first computation.
//
//go:inline
func MonadChainFirst[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirst(ma, f)
}
//go:inline
func MonadTap[A, B any](ma ReaderIOResult[A], f Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadTap(ma, f)
}
// ChainFirst sequences two [ReaderIOResult] computations but returns the result of the first.
// This is the curried version of [MonadChainFirst].
//
// Parameters:
// - f: Function that produces the second ReaderIOResult
//
// Returns a function that sequences ReaderIOResult computations.
//
//go:inline
func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIOR.ChainFirst(f)
}
//go:inline
func Tap[A, B any](f Kleisli[A, B]) Operator[A, A] {
return RIOR.Tap(f)
}
// Of creates a [ReaderIOResult] that always succeeds with the given value.
// This is the same as [Right] and represents the monadic return operation.
//
// Parameters:
// - a: The value to wrap
//
// Returns a ReaderIOResult that always succeeds with the given value.
//
//go:inline
func Of[A any](a A) ReaderIOResult[A] {
return RIOR.Of[context.Context](a)
}
func withCancelCauseFunc[A any](cancel context.CancelCauseFunc, ma IOResult[A]) IOResult[A] {
return function.Pipe3(
ma,
ioresult.Swap[A],
ioeither.ChainFirstIOK[A](func(err error) func() any {
return io.FromImpure(func() { cancel(err) })
}),
ioeither.Swap[A],
)
}
// MonadApPar implements parallel applicative application for [ReaderIOResult].
// It executes both computations in parallel and creates a sub-context that will be canceled
// if either operation fails. This provides automatic cancellation propagation.
//
// Parameters:
// - fab: ReaderIOResult containing a function
// - fa: ReaderIOResult containing a value
//
// Returns a ReaderIOResult with the function applied to the value.
func MonadApPar[B, A any](fab ReaderIOResult[func(A) B], fa ReaderIOResult[A]) ReaderIOResult[B] {
// context sensitive input
cfab := WithContext(fab)
cfa := WithContext(fa)
return func(ctx context.Context) IOResult[B] {
// quick check for cancellation
if err := context.Cause(ctx); err != nil {
return ioeither.Left[B](err)
}
return func() Result[B] {
// quick check for cancellation
if err := context.Cause(ctx); err != nil {
return either.Left[B](err)
}
// create sub-contexts for fa and fab, so they can cancel one other
ctxSub, cancelSub := context.WithCancelCause(ctx)
defer cancelSub(nil) // cancel has to be called in all paths
fabIOE := withCancelCauseFunc(cancelSub, cfab(ctxSub))
faIOE := withCancelCauseFunc(cancelSub, cfa(ctxSub))
return ioresult.MonadApPar(fabIOE, faIOE)()
}
}
}
// MonadAp implements applicative application for [ReaderIOResult].
// By default, it uses parallel execution ([MonadApPar]) but can be configured to use
// sequential execution ([MonadApSeq]) via the useParallel constant.
//
// Parameters:
// - fab: ReaderIOResult containing a function
// - fa: ReaderIOResult containing a value
//
// Returns a ReaderIOResult with the function applied to the value.
func MonadAp[B, A any](fab ReaderIOResult[func(A) B], fa ReaderIOResult[A]) ReaderIOResult[B] {
// dispatch to the configured version
if useParallel {
return MonadApPar(fab, fa)
}
return MonadApSeq(fab, fa)
}
// MonadApSeq implements sequential applicative application for [ReaderIOResult].
// It executes the function computation first, then the value computation.
//
// Parameters:
// - fab: ReaderIOResult containing a function
// - fa: ReaderIOResult containing a value
//
// Returns a ReaderIOResult with the function applied to the value.
//
//go:inline
func MonadApSeq[B, A any](fab ReaderIOResult[func(A) B], fa ReaderIOResult[A]) ReaderIOResult[B] {
return RIOR.MonadApSeq(fab, fa)
}
// Ap applies a function wrapped in a [ReaderIOResult] to a value wrapped in a ReaderIOResult.
// This is the curried version of [MonadAp], using the default execution mode.
//
// Parameters:
// - fa: ReaderIOResult containing a value
//
// Returns a function that applies a ReaderIOResult function to the value.
//
//go:inline
func Ap[B, A any](fa ReaderIOResult[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadAp[B, A], fa)
}
// ApSeq applies a function wrapped in a [ReaderIOResult] to a value sequentially.
// This is the curried version of [MonadApSeq].
//
// Parameters:
// - fa: ReaderIOResult containing a value
//
// Returns a function that applies a ReaderIOResult function to the value sequentially.
//
//go:inline
func ApSeq[B, A any](fa ReaderIOResult[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApSeq[B, A], fa)
}
// ApPar applies a function wrapped in a [ReaderIOResult] to a value in parallel.
// This is the curried version of [MonadApPar].
//
// Parameters:
// - fa: ReaderIOResult containing a value
//
// Returns a function that applies a ReaderIOResult function to the value in parallel.
//
//go:inline
func ApPar[B, A any](fa ReaderIOResult[A]) Operator[func(A) B, B] {
return function.Bind2nd(MonadApPar[B, A], fa)
}
// FromPredicate creates a [ReaderIOResult] from a predicate function.
// If the predicate returns true, the value is wrapped in Right; otherwise, Left with the error from onFalse.
//
// Parameters:
// - pred: Predicate function to test the value
// - onFalse: Function to generate an error when predicate fails
//
// Returns a function that converts a value to ReaderIOResult based on the predicate.
//
//go:inline
func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) Kleisli[A, A] {
return RIOR.FromPredicate[context.Context](pred, onFalse)
}
// OrElse provides an alternative [ReaderIOResult] computation if the first one fails.
// The alternative is only executed if the first computation results in a Left (error).
//
// Parameters:
// - onLeft: Function that produces an alternative ReaderIOResult from the error
//
// Returns a function that provides fallback behavior for failed computations.
//
//go:inline
func OrElse[A any](onLeft Kleisli[error, A]) Operator[A, A] {
return RIOR.OrElse(onLeft)
}
// Ask returns a [ReaderIOResult] that provides access to the context.
// This is useful for accessing the [context.Context] within a computation.
//
// Returns a ReaderIOResult that produces the context.
//
//go:inline
func Ask() ReaderIOResult[context.Context] {
return RIOR.Ask[context.Context]()
}
// MonadChainEitherK chains a function that returns an [Either] into a [ReaderIOResult] computation.
// This is useful for integrating pure Either-returning functions into ReaderIOResult workflows.
//
// Parameters:
// - ma: The ReaderIOResult to chain from
// - f: Function that produces an Either
//
// Returns a new ReaderIOResult with the chained computation.
//
//go:inline
func MonadChainEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B]) ReaderIOResult[B] {
return RIOR.MonadChainEitherK(ma, f)
}
// ChainEitherK chains a function that returns an [Either] into a [ReaderIOResult] computation.
// This is the curried version of [MonadChainEitherK].
//
// Parameters:
// - f: Function that produces an Either
//
// Returns a function that chains the Either-returning function.
//
//go:inline
func ChainEitherK[A, B any](f func(A) Either[B]) Operator[A, B] {
return RIOR.ChainEitherK[context.Context](f)
}
// MonadChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// The Either-returning function is executed for its validation/side effects only.
//
// Parameters:
// - ma: The ReaderIOResult to chain from
// - f: Function that produces an Either
//
// Returns a ReaderIOResult with the original value if both computations succeed.
//
//go:inline
func MonadChainFirstEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstEitherK(ma, f)
}
//go:inline
func MonadTapEitherK[A, B any](ma ReaderIOResult[A], f func(A) Either[B]) ReaderIOResult[A] {
return RIOR.MonadTapEitherK(ma, f)
}
// ChainFirstEitherK chains a function that returns an [Either] but keeps the original value.
// This is the curried version of [MonadChainFirstEitherK].
//
// Parameters:
// - f: Function that produces an Either
//
// Returns a function that chains the Either-returning function.
//
//go:inline
func ChainFirstEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return RIOR.ChainFirstEitherK[context.Context](f)
}
//go:inline
func TapEitherK[A, B any](f func(A) Either[B]) Operator[A, A] {
return RIOR.TapEitherK[context.Context](f)
}
// ChainOptionK chains a function that returns an [Option] into a [ReaderIOResult] computation.
// If the Option is None, the provided error function is called.
//
// Parameters:
// - onNone: Function to generate an error when Option is None
//
// Returns a function that chains Option-returning functions into ReaderIOResult.
//
//go:inline
func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operator[A, B] {
return RIOR.ChainOptionK[context.Context, A, B](onNone)
}
// FromIOEither converts an [IOResult] into a [ReaderIOResult].
// The resulting computation ignores the context.
//
// Parameters:
// - t: The IOResult to convert
//
// Returns a ReaderIOResult that executes the IOResult.
//
//go:inline
func FromIOEither[A any](t IOResult[A]) ReaderIOResult[A] {
return RIOR.FromIOEither[context.Context](t)
}
//go:inline
func FromIOResult[A any](t IOResult[A]) ReaderIOResult[A] {
return RIOR.FromIOResult[context.Context](t)
}
// FromIO converts an [IO] into a [ReaderIOResult].
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - t: The IO to convert
//
// Returns a ReaderIOResult that executes the IO and wraps the result in Right.
//
//go:inline
func FromIO[A any](t IO[A]) ReaderIOResult[A] {
return RIOR.FromIO[context.Context](t)
}
//go:inline
func FromReader[A any](t Reader[context.Context, A]) ReaderIOResult[A] {
return RIOR.FromReader(t)
}
//go:inline
func FromReaderIO[A any](t ReaderIO[A]) ReaderIOResult[A] {
return RIOR.FromReaderIO(t)
}
// FromLazy converts a [Lazy] computation into a [ReaderIOResult].
// The Lazy computation always succeeds, so it's wrapped in Right.
// This is an alias for [FromIO] since Lazy and IO have the same structure.
//
// Parameters:
// - t: The Lazy computation to convert
//
// Returns a ReaderIOResult that executes the Lazy computation and wraps the result in Right.
//
//go:inline
func FromLazy[A any](t Lazy[A]) ReaderIOResult[A] {
return RIOR.FromIO[context.Context](t)
}
// Never returns a [ReaderIOResult] that blocks indefinitely until the context is canceled.
// This is useful for creating computations that wait for external cancellation signals.
//
// Returns a ReaderIOResult that waits for context cancellation and returns the cancellation error.
func Never[A any]() ReaderIOResult[A] {
return func(ctx context.Context) IOResult[A] {
return func() Either[A] {
<-ctx.Done()
return either.Left[A](context.Cause(ctx))
}
}
}
// MonadChainIOK chains a function that returns an [IO] into a [ReaderIOResult] computation.
// The IO computation always succeeds, so it's wrapped in Right.
//
// Parameters:
// - ma: The ReaderIOResult to chain from
// - f: Function that produces an IO
//
// Returns a new ReaderIOResult with the chained IO computation.
//
//go:inline
func MonadChainIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderIOResult[B] {
return RIOR.MonadChainIOK(ma, f)
}
// ChainIOK chains a function that returns an [IO] into a [ReaderIOResult] computation.
// This is the curried version of [MonadChainIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainIOK[A, B any](f func(A) IO[B]) Operator[A, B] {
return RIOR.ChainIOK[context.Context](f)
}
// MonadChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// The IO computation is executed for its side effects only.
//
// Parameters:
// - ma: The ReaderIOResult to chain from
// - f: Function that produces an IO
//
// Returns a ReaderIOResult with the original value after executing the IO.
//
//go:inline
func MonadChainFirstIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstIOK(ma, f)
}
//go:inline
func MonadTapIOK[A, B any](ma ReaderIOResult[A], f func(A) IO[B]) ReaderIOResult[A] {
return RIOR.MonadTapIOK(ma, f)
}
// ChainFirstIOK chains a function that returns an [IO] but keeps the original value.
// This is the curried version of [MonadChainFirstIOK].
//
// Parameters:
// - f: Function that produces an IO
//
// Returns a function that chains the IO-returning function.
//
//go:inline
func ChainFirstIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIOR.ChainFirstIOK[context.Context](f)
}
//go:inline
func TapIOK[A, B any](f func(A) IO[B]) Operator[A, A] {
return RIOR.TapIOK[context.Context](f)
}
// ChainIOEitherK chains a function that returns an [IOResult] into a [ReaderIOResult] computation.
// This is useful for integrating IOResult-returning functions into ReaderIOResult workflows.
//
// Parameters:
// - f: Function that produces an IOResult
//
// Returns a function that chains the IOResult-returning function.
//
//go:inline
func ChainIOEitherK[A, B any](f func(A) IOResult[B]) Operator[A, B] {
return RIOR.ChainIOEitherK[context.Context](f)
}
// Delay creates an operation that delays execution by the specified duration.
// The computation waits for either the delay to expire or the context to be canceled.
//
// Parameters:
// - delay: The duration to wait before executing the computation
//
// Returns a function that delays a ReaderIOResult computation.
func Delay[A any](delay time.Duration) Operator[A, A] {
return func(ma ReaderIOResult[A]) ReaderIOResult[A] {
return func(ctx context.Context) IOResult[A] {
return func() Either[A] {
// manage the timeout
timeoutCtx, cancelTimeout := context.WithTimeout(ctx, delay)
defer cancelTimeout()
// whatever comes first
select {
case <-timeoutCtx.Done():
return ma(ctx)()
case <-ctx.Done():
return either.Left[A](context.Cause(ctx))
}
}
}
}
}
// Timer returns the current time after waiting for the specified delay.
// This is useful for creating time-based computations.
//
// Parameters:
// - delay: The duration to wait before returning the time
//
// Returns a ReaderIOResult that produces the current time after the delay.
func Timer(delay time.Duration) ReaderIOResult[time.Time] {
return function.Pipe2(
io.Now,
FromIO[time.Time],
Delay[time.Time](delay),
)
}
// Defer creates a [ReaderIOResult] by lazily generating a new computation each time it's executed.
// This is useful for creating computations that should be re-evaluated on each execution.
//
// Parameters:
// - gen: Lazy generator function that produces a ReaderIOResult
//
// Returns a ReaderIOResult that generates a fresh computation on each execution.
//
//go:inline
func Defer[A any](gen Lazy[ReaderIOResult[A]]) ReaderIOResult[A] {
return RIOR.Defer(gen)
}
// TryCatch wraps a function that returns a tuple (value) into a [ReaderIOResult].
// This is the standard way to convert Go error-returning functions into ReaderIOResult.
//
// Parameters:
// - f: Function that takes a context and returns a function producing (value)
//
// Returns a ReaderIOResult that wraps the error-returning function.
//
//go:inline
func TryCatch[A any](f func(context.Context) func() (A, error)) ReaderIOResult[A] {
return RIOR.TryCatch(f, errors.Identity)
}
// MonadAlt provides an alternative [ReaderIOResult] if the first one fails.
// The alternative is lazily evaluated only if needed.
//
// Parameters:
// - first: The primary ReaderIOResult to try
// - second: Lazy alternative ReaderIOResult to use if first fails
//
// Returns a ReaderIOResult that tries the first, then the second if first fails.
//
//go:inline
func MonadAlt[A any](first ReaderIOResult[A], second Lazy[ReaderIOResult[A]]) ReaderIOResult[A] {
return RIOR.MonadAlt(first, second)
}
// Alt provides an alternative [ReaderIOResult] if the first one fails.
// This is the curried version of [MonadAlt].
//
// Parameters:
// - second: Lazy alternative ReaderIOResult to use if first fails
//
// Returns a function that provides fallback behavior.
//
//go:inline
func Alt[A any](second Lazy[ReaderIOResult[A]]) Operator[A, A] {
return RIOR.Alt(second)
}
// Memoize computes the value of the provided [ReaderIOResult] monad lazily but exactly once.
// The context used to compute the value is the context of the first call, so do not use this
// method if the value has a functional dependency on the content of the context.
//
// Parameters:
// - rdr: The ReaderIOResult to memoize
//
// Returns a ReaderIOResult that caches its result after the first execution.
//
//go:inline
func Memoize[A any](rdr ReaderIOResult[A]) ReaderIOResult[A] {
return RIOR.Memoize(rdr)
}
// Flatten converts a nested [ReaderIOResult] into a flat [ReaderIOResult].
// This is equivalent to [MonadChain] with the identity function.
//
// Parameters:
// - rdr: The nested ReaderIOResult to flatten
//
// Returns a flattened ReaderIOResult.
//
//go:inline
func Flatten[A any](rdr ReaderIOResult[ReaderIOResult[A]]) ReaderIOResult[A] {
return RIOR.Flatten(rdr)
}
// MonadFlap applies a value to a function wrapped in a [ReaderIOResult].
// This is the reverse of [MonadAp], useful in certain composition scenarios.
//
// Parameters:
// - fab: ReaderIOResult containing a function
// - a: The value to apply to the function
//
// Returns a ReaderIOResult with the function applied to the value.
//
//go:inline
func MonadFlap[B, A any](fab ReaderIOResult[func(A) B], a A) ReaderIOResult[B] {
return RIOR.MonadFlap(fab, a)
}
// Flap applies a value to a function wrapped in a [ReaderIOResult].
// This is the curried version of [MonadFlap].
//
// Parameters:
// - a: The value to apply to the function
//
// Returns a function that applies the value to a ReaderIOResult function.
//
//go:inline
func Flap[B, A any](a A) Operator[func(A) B, B] {
return RIOR.Flap[context.Context, B](a)
}
// Fold handles both success and error cases of a [ReaderIOResult] by providing handlers for each.
// Both handlers return ReaderIOResult, allowing for further composition.
//
// Parameters:
// - onLeft: Handler for error case
// - onRight: Handler for success case
//
// Returns a function that folds a ReaderIOResult into a new ReaderIOResult.
//
//go:inline
func Fold[A, B any](onLeft Kleisli[error, B], onRight Kleisli[A, B]) Operator[A, B] {
return RIOR.Fold(onLeft, onRight)
}
// GetOrElse extracts the value from a [ReaderIOResult], providing a default via a function if it fails.
// The result is a [ReaderIO] that always succeeds.
//
// Parameters:
// - onLeft: Function to provide a default value from the error
//
// Returns a function that converts a ReaderIOResult to a ReaderIO.
//
//go:inline
func GetOrElse[A any](onLeft func(error) ReaderIO[A]) func(ReaderIOResult[A]) ReaderIO[A] {
return RIOR.GetOrElse(onLeft)
}
// OrLeft transforms the error of a [ReaderIOResult] using the provided function.
// The success value is left unchanged.
//
// Parameters:
// - onLeft: Function to transform the error
//
// Returns a function that transforms the error of a ReaderIOResult.
//
//go:inline
func OrLeft[A any](onLeft func(error) ReaderIO[error]) Operator[A, A] {
return RIOR.OrLeft[A](onLeft)
}
//go:inline
func FromReaderEither[A any](ma ReaderEither[context.Context, error, A]) ReaderIOResult[A] {
return RIOR.FromReaderEither(ma)
}
//go:inline
func FromReaderResult[A any](ma ReaderResult[A]) ReaderIOResult[A] {
return RIOR.FromReaderEither(ma)
}
//go:inline
func FromReaderOption[A any](onNone func() error) Kleisli[ReaderOption[context.Context, A], A] {
return RIOR.FromReaderOption[context.Context, A](onNone)
}
//go:inline
func MonadChainReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderK(ma, f)
}
//go:inline
func ChainReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderK(f)
}
//go:inline
func MonadChainFirstReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderK(ma, f)
}
//go:inline
func MonadTapReaderK[A, B any](ma ReaderIOResult[A], f reader.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderK(ma, f)
}
//go:inline
func ChainFirstReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderK(f)
}
//go:inline
func TapReaderK[A, B any](f reader.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderK(f)
}
//go:inline
func MonadChainReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderResultK(ma, f)
}
//go:inline
func ChainReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, B] {
return RIOR.ChainReaderResultK(f)
}
//go:inline
func MonadChainFirstReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderResultK(ma, f)
}
//go:inline
func MonadTapReaderResultK[A, B any](ma ReaderIOResult[A], f readerresult.Kleisli[A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderResultK(ma, f)
}
//go:inline
func ChainFirstReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderResultK(f)
}
//go:inline
func TapReaderResultK[A, B any](f readerresult.Kleisli[A, B]) Operator[A, A] {
return RIOR.TapReaderResultK(f)
}
//go:inline
func MonadChainReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[B] {
return RIOR.MonadChainReaderIOK(ma, f)
}
//go:inline
func ChainReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderIOK(f)
}
//go:inline
func MonadChainFirstReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstReaderIOK(ma, f)
}
//go:inline
func MonadTapReaderIOK[A, B any](ma ReaderIOResult[A], f readerio.Kleisli[context.Context, A, B]) ReaderIOResult[A] {
return RIOR.MonadTapReaderIOK(ma, f)
}
//go:inline
func ChainFirstReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderIOK(f)
}
//go:inline
func TapReaderIOK[A, B any](f readerio.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderIOK(f)
}
//go:inline
func ChainReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, B] {
return RIOR.ChainReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func ChainFirstReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.ChainFirstReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func TapReaderOptionK[A, B any](onNone func() error) func(readeroption.Kleisli[context.Context, A, B]) Operator[A, A] {
return RIOR.TapReaderOptionK[context.Context, A, B](onNone)
}
//go:inline
func Read[A any](r context.Context) func(ReaderIOResult[A]) IOResult[A] {
return RIOR.Read[A](r)
}
// MonadChainLeft chains a computation on the left (error) side of a [ReaderIOResult].
// If the input is a Left value, it applies the function f to transform the error and potentially
// change the error type. If the input is a Right value, it passes through unchanged.
//
//go:inline
func MonadChainLeft[A any](fa ReaderIOResult[A], f Kleisli[error, A]) ReaderIOResult[A] {
return RIOR.MonadChainLeft(fa, f)
}
// ChainLeft is the curried version of [MonadChainLeft].
// It returns a function that chains a computation on the left (error) side of a [ReaderIOResult].
//
//go:inline
func ChainLeft[A any](f Kleisli[error, A]) func(ReaderIOResult[A]) ReaderIOResult[A] {
return RIOR.ChainLeft(f)
}
// MonadChainFirstLeft chains a computation on the left (error) side but always returns the original error.
// If the input is a Left value, it applies the function f to the error and executes the resulting computation,
// but always returns the original Left error regardless of what f returns (Left or Right).
// If the input is a Right value, it passes through unchanged without calling f.
//
// This is useful for side effects on errors (like logging or metrics) where you want to perform an action
// when an error occurs but always propagate the original error, ensuring the error path is preserved.
//
//go:inline
func MonadChainFirstLeft[A, B any](ma ReaderIOResult[A], f Kleisli[error, B]) ReaderIOResult[A] {
return RIOR.MonadChainFirstLeft(ma, f)
}
//go:inline
func MonadTapLeft[A, B any](ma ReaderIOResult[A], f Kleisli[error, B]) ReaderIOResult[A] {
return RIOR.MonadTapLeft(ma, f)
}
// ChainFirstLeft is the curried version of [MonadChainFirstLeft].
// It returns a function that chains a computation on the left (error) side while always preserving the original error.
//
// This is particularly useful for adding error handling side effects (like logging, metrics, or notifications)
// in a functional pipeline. The original error is always returned regardless of what f returns (Left or Right),
// ensuring the error path is preserved.
//
//go:inline
func ChainFirstLeft[A, B any](f Kleisli[error, B]) Operator[A, A] {
return RIOR.ChainFirstLeft[A](f)
}
//go:inline
func TapLeft[A, B any](f Kleisli[error, B]) Operator[A, A] {
return RIOR.TapLeft[A](f)
}

View File

@@ -0,0 +1,886 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
"errors"
"testing"
"time"
E "github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
IOE "github.com/IBM/fp-go/v2/ioeither"
N "github.com/IBM/fp-go/v2/number"
)
var (
benchErr = errors.New("benchmark error")
benchCtx = context.Background()
benchResult Either[int]
benchRIOE ReaderIOResult[int]
benchInt int
)
// Benchmark core constructors
func BenchmarkLeft(b *testing.B) {
b.ReportAllocs()
for b.Loop() {
benchRIOE = Left[int](benchErr)
}
}
func BenchmarkRight(b *testing.B) {
b.ReportAllocs()
for b.Loop() {
benchRIOE = Right(42)
}
}
func BenchmarkOf(b *testing.B) {
b.ReportAllocs()
for b.Loop() {
benchRIOE = Of(42)
}
}
func BenchmarkFromEither_Right(b *testing.B) {
either := E.Right[error](42)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = FromEither(either)
}
}
func BenchmarkFromEither_Left(b *testing.B) {
either := E.Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = FromEither(either)
}
}
func BenchmarkFromIO(b *testing.B) {
io := func() int { return 42 }
b.ReportAllocs()
for b.Loop() {
benchRIOE = FromIO(io)
}
}
func BenchmarkFromIOEither_Right(b *testing.B) {
ioe := IOE.Of[error](42)
b.ReportAllocs()
for b.Loop() {
benchRIOE = FromIOEither(ioe)
}
}
func BenchmarkFromIOEither_Left(b *testing.B) {
ioe := IOE.Left[int](benchErr)
b.ReportAllocs()
for b.Loop() {
benchRIOE = FromIOEither(ioe)
}
}
// Benchmark execution
func BenchmarkExecute_Right(b *testing.B) {
rioe := Right(42)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
func BenchmarkExecute_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
func BenchmarkExecute_WithContext(b *testing.B) {
rioe := Right(42)
ctx, cancel := context.WithCancel(benchCtx)
defer cancel()
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(ctx)()
}
}
// Benchmark functor operations
func BenchmarkMonadMap_Right(b *testing.B) {
rioe := Right(42)
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadMap(rioe, mapper)
}
}
func BenchmarkMonadMap_Left(b *testing.B) {
rioe := Left[int](benchErr)
mapper := N.Mul(2)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadMap(rioe, mapper)
}
}
func BenchmarkMap_Right(b *testing.B) {
rioe := Right(42)
mapper := Map(N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
func BenchmarkMap_Left(b *testing.B) {
rioe := Left[int](benchErr)
mapper := Map(N.Mul(2))
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
func BenchmarkMapTo_Right(b *testing.B) {
rioe := Right(42)
mapper := MapTo[int](99)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = mapper(rioe)
}
}
// Benchmark monad operations
func BenchmarkMonadChain_Right(b *testing.B) {
rioe := Right(42)
chainer := func(a int) ReaderIOResult[int] { return Right(a * 2) }
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadChain(rioe, chainer)
}
}
func BenchmarkMonadChain_Left(b *testing.B) {
rioe := Left[int](benchErr)
chainer := func(a int) ReaderIOResult[int] { return Right(a * 2) }
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadChain(rioe, chainer)
}
}
func BenchmarkChain_Right(b *testing.B) {
rioe := Right(42)
chainer := Chain(func(a int) ReaderIOResult[int] { return Right(a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkChain_Left(b *testing.B) {
rioe := Left[int](benchErr)
chainer := Chain(func(a int) ReaderIOResult[int] { return Right(a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkChainFirst_Right(b *testing.B) {
rioe := Right(42)
chainer := ChainFirst(func(a int) ReaderIOResult[string] { return Right("logged") })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkChainFirst_Left(b *testing.B) {
rioe := Left[int](benchErr)
chainer := ChainFirst(func(a int) ReaderIOResult[string] { return Right("logged") })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkFlatten_Right(b *testing.B) {
nested := Right(Right(42))
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = Flatten(nested)
}
}
func BenchmarkFlatten_Left(b *testing.B) {
nested := Left[ReaderIOResult[int]](benchErr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = Flatten(nested)
}
}
// Benchmark applicative operations
func BenchmarkMonadApSeq_RightRight(b *testing.B) {
fab := Right(N.Mul(2))
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
func BenchmarkMonadApSeq_RightLeft(b *testing.B) {
fab := Right(N.Mul(2))
fa := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
func BenchmarkMonadApSeq_LeftRight(b *testing.B) {
fab := Left[func(int) int](benchErr)
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadApSeq(fab, fa)
}
}
func BenchmarkMonadApPar_RightRight(b *testing.B) {
fab := Right(N.Mul(2))
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
func BenchmarkMonadApPar_RightLeft(b *testing.B) {
fab := Right(N.Mul(2))
fa := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
func BenchmarkMonadApPar_LeftRight(b *testing.B) {
fab := Left[func(int) int](benchErr)
fa := Right(42)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = MonadApPar(fab, fa)
}
}
// Benchmark execution of applicative operations
func BenchmarkExecuteApSeq_RightRight(b *testing.B) {
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApSeq(fab, fa)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
func BenchmarkExecuteApPar_RightRight(b *testing.B) {
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApPar(fab, fa)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
// Benchmark alternative operations
func BenchmarkAlt_RightRight(b *testing.B) {
rioe := Right(42)
alternative := Alt(func() ReaderIOResult[int] { return Right(99) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = alternative(rioe)
}
}
func BenchmarkAlt_LeftRight(b *testing.B) {
rioe := Left[int](benchErr)
alternative := Alt(func() ReaderIOResult[int] { return Right(99) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = alternative(rioe)
}
}
func BenchmarkOrElse_Right(b *testing.B) {
rioe := Right(42)
recover := OrElse(func(e error) ReaderIOResult[int] { return Right(0) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = recover(rioe)
}
}
func BenchmarkOrElse_Left(b *testing.B) {
rioe := Left[int](benchErr)
recover := OrElse(func(e error) ReaderIOResult[int] { return Right(0) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = recover(rioe)
}
}
// Benchmark chain operations with different types
func BenchmarkChainEitherK_Right(b *testing.B) {
rioe := Right(42)
chainer := ChainEitherK(func(a int) Either[int] { return E.Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkChainEitherK_Left(b *testing.B) {
rioe := Left[int](benchErr)
chainer := ChainEitherK(func(a int) Either[int] { return E.Right[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkChainIOK_Right(b *testing.B) {
rioe := Right(42)
chainer := ChainIOK(func(a int) func() int { return func() int { return a * 2 } })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkChainIOK_Left(b *testing.B) {
rioe := Left[int](benchErr)
chainer := ChainIOK(func(a int) func() int { return func() int { return a * 2 } })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkChainIOEitherK_Right(b *testing.B) {
rioe := Right(42)
chainer := ChainIOEitherK(func(a int) IOEither[int] { return IOE.Of[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
func BenchmarkChainIOEitherK_Left(b *testing.B) {
rioe := Left[int](benchErr)
chainer := ChainIOEitherK(func(a int) IOEither[int] { return IOE.Of[error](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = chainer(rioe)
}
}
// Benchmark context operations
func BenchmarkAsk(b *testing.B) {
b.ReportAllocs()
for b.Loop() {
_ = Ask()
}
}
func BenchmarkDefer(b *testing.B) {
gen := func() ReaderIOResult[int] { return Right(42) }
b.ReportAllocs()
for b.Loop() {
benchRIOE = Defer(gen)
}
}
func BenchmarkMemoize(b *testing.B) {
rioe := Right(42)
b.ReportAllocs()
for b.Loop() {
benchRIOE = Memoize(rioe)
}
}
// Benchmark delay operations
func BenchmarkDelay_Construction(b *testing.B) {
rioe := Right(42)
b.ReportAllocs()
for b.Loop() {
benchRIOE = Delay[int](time.Millisecond)(rioe)
}
}
func BenchmarkTimer_Construction(b *testing.B) {
b.ReportAllocs()
for b.Loop() {
_ = Timer(time.Millisecond)
}
}
// Benchmark TryCatch
func BenchmarkTryCatch_Success(b *testing.B) {
f := func(ctx context.Context) func() (int, error) {
return func() (int, error) { return 42, nil }
}
b.ReportAllocs()
for b.Loop() {
benchRIOE = TryCatch(f)
}
}
func BenchmarkTryCatch_Error(b *testing.B) {
f := func(ctx context.Context) func() (int, error) {
return func() (int, error) { return 0, benchErr }
}
b.ReportAllocs()
for b.Loop() {
benchRIOE = TryCatch(f)
}
}
func BenchmarkExecuteTryCatch_Success(b *testing.B) {
f := func(ctx context.Context) func() (int, error) {
return func() (int, error) { return 42, nil }
}
rioe := TryCatch(f)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
func BenchmarkExecuteTryCatch_Error(b *testing.B) {
f := func(ctx context.Context) func() (int, error) {
return func() (int, error) { return 0, benchErr }
}
rioe := TryCatch(f)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
// Benchmark pipeline operations
func BenchmarkPipeline_Map_Right(b *testing.B) {
rioe := Right(21)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Map(N.Mul(2)),
)
}
}
func BenchmarkPipeline_Map_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Map(N.Mul(2)),
)
}
}
func BenchmarkPipeline_Chain_Right(b *testing.B) {
rioe := Right(21)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain(func(x int) ReaderIOResult[int] { return Right(x * 2) }),
)
}
}
func BenchmarkPipeline_Chain_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain(func(x int) ReaderIOResult[int] { return Right(x * 2) }),
)
}
}
func BenchmarkPipeline_Complex_Right(b *testing.B) {
rioe := Right(10)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = F.Pipe3(
rioe,
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(N.Mul(2)),
)
}
}
func BenchmarkPipeline_Complex_Left(b *testing.B) {
rioe := Left[int](benchErr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchRIOE = F.Pipe3(
rioe,
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(N.Mul(2)),
)
}
}
func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
rioe := F.Pipe3(
Right(10),
Map(N.Mul(2)),
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
Map(N.Mul(2)),
)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
// Benchmark do-notation operations
func BenchmarkDo(b *testing.B) {
type State struct{ value int }
b.ReportAllocs()
for b.Loop() {
_ = Do(State{})
}
}
func BenchmarkBind_Right(b *testing.B) {
type State struct{ value int }
initial := Do(State{})
binder := Bind(
func(v int) func(State) State {
return func(s State) State { return State{value: v} }
},
func(s State) ReaderIOResult[int] {
return Right(42)
},
)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = binder(initial)
}
}
func BenchmarkLet_Right(b *testing.B) {
type State struct{ value int }
initial := Right(State{value: 10})
letter := Let(
func(v int) func(State) State {
return func(s State) State { return State{value: s.value + v} }
},
func(s State) int { return 32 },
)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = letter(initial)
}
}
func BenchmarkApS_Right(b *testing.B) {
type State struct{ value int }
initial := Right(State{value: 10})
aps := ApS(
func(v int) func(State) State {
return func(s State) State { return State{value: v} }
},
Right(42),
)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = aps(initial)
}
}
// Benchmark traverse operations
func BenchmarkTraverseArray_Empty(b *testing.B) {
arr := []int{}
traverser := TraverseArray(func(x int) ReaderIOResult[int] {
return Right(x * 2)
})
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = traverser(arr)
}
}
func BenchmarkTraverseArray_Small(b *testing.B) {
arr := []int{1, 2, 3}
traverser := TraverseArray(func(x int) ReaderIOResult[int] {
return Right(x * 2)
})
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = traverser(arr)
}
}
func BenchmarkTraverseArray_Medium(b *testing.B) {
arr := make([]int, 10)
for i := range arr {
arr[i] = i
}
traverser := TraverseArray(func(x int) ReaderIOResult[int] {
return Right(x * 2)
})
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = traverser(arr)
}
}
func BenchmarkTraverseArraySeq_Small(b *testing.B) {
arr := []int{1, 2, 3}
traverser := TraverseArraySeq(func(x int) ReaderIOResult[int] {
return Right(x * 2)
})
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = traverser(arr)
}
}
func BenchmarkTraverseArrayPar_Small(b *testing.B) {
arr := []int{1, 2, 3}
traverser := TraverseArrayPar(func(x int) ReaderIOResult[int] {
return Right(x * 2)
})
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = traverser(arr)
}
}
func BenchmarkSequenceArray_Small(b *testing.B) {
arr := []ReaderIOResult[int]{
Right(1),
Right(2),
Right(3),
}
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = SequenceArray(arr)
}
}
func BenchmarkExecuteTraverseArray_Small(b *testing.B) {
arr := []int{1, 2, 3}
rioe := TraverseArray(func(x int) ReaderIOResult[int] {
return Right(x * 2)
})(arr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = rioe(benchCtx)()
}
}
func BenchmarkExecuteTraverseArraySeq_Small(b *testing.B) {
arr := []int{1, 2, 3}
rioe := TraverseArraySeq(func(x int) ReaderIOResult[int] {
return Right(x * 2)
})(arr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = rioe(benchCtx)()
}
}
func BenchmarkExecuteTraverseArrayPar_Small(b *testing.B) {
arr := []int{1, 2, 3}
rioe := TraverseArrayPar(func(x int) ReaderIOResult[int] {
return Right(x * 2)
})(arr)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = rioe(benchCtx)()
}
}
// Benchmark record operations
func BenchmarkTraverseRecord_Small(b *testing.B) {
rec := map[string]int{"a": 1, "b": 2, "c": 3}
traverser := TraverseRecord[string](func(x int) ReaderIOResult[int] {
return Right(x * 2)
})
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = traverser(rec)
}
}
func BenchmarkSequenceRecord_Small(b *testing.B) {
rec := map[string]ReaderIOResult[int]{
"a": Right(1),
"b": Right(2),
"c": Right(3),
}
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = SequenceRecord(rec)
}
}
// Benchmark resource management
func BenchmarkWithResource_Success(b *testing.B) {
acquire := Right(42)
release := func(int) ReaderIOResult[int] { return Right(0) }
body := func(x int) ReaderIOResult[int] { return Right(x * 2) }
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
_ = WithResource[int](acquire, release)(body)
}
}
func BenchmarkExecuteWithResource_Success(b *testing.B) {
acquire := Right(42)
release := func(int) ReaderIOResult[int] { return Right(0) }
body := func(x int) ReaderIOResult[int] { return Right(x * 2) }
rioe := WithResource[int](acquire, release)(body)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
func BenchmarkExecuteWithResource_ErrorInBody(b *testing.B) {
acquire := Right(42)
release := func(int) ReaderIOResult[int] { return Right(0) }
body := func(x int) ReaderIOResult[int] { return Left[int](benchErr) }
rioe := WithResource[int](acquire, release)(body)
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(benchCtx)()
}
}
// Benchmark context cancellation
func BenchmarkExecute_CanceledContext(b *testing.B) {
rioe := Right(42)
ctx, cancel := context.WithCancel(benchCtx)
cancel() // Cancel immediately
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(ctx)()
}
}
func BenchmarkExecuteApPar_CanceledContext(b *testing.B) {
fab := Right(N.Mul(2))
fa := Right(42)
rioe := MonadApPar(fab, fa)
ctx, cancel := context.WithCancel(benchCtx)
cancel() // Cancel immediately
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
benchResult = rioe(ctx)()
}
}

View File

@@ -0,0 +1,878 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioresult
import (
"context"
"errors"
"fmt"
"testing"
"time"
E "github.com/IBM/fp-go/v2/either"
IOG "github.com/IBM/fp-go/v2/io"
IOE "github.com/IBM/fp-go/v2/ioeither"
M "github.com/IBM/fp-go/v2/monoid"
N "github.com/IBM/fp-go/v2/number"
O "github.com/IBM/fp-go/v2/option"
R "github.com/IBM/fp-go/v2/reader"
"github.com/stretchr/testify/assert"
)
func TestFromEither(t *testing.T) {
t.Run("Right value", func(t *testing.T) {
either := E.Right[error]("success")
result := FromEither(either)
assert.Equal(t, E.Right[error]("success"), result(context.Background())())
})
t.Run("Left value", func(t *testing.T) {
err := errors.New("test error")
either := E.Left[string](err)
result := FromEither(either)
assert.Equal(t, E.Left[string](err), result(context.Background())())
})
}
func TestFromResult(t *testing.T) {
t.Run("Success", func(t *testing.T) {
result := FromResult(E.Right[error](42))
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("Error", func(t *testing.T) {
err := errors.New("test error")
result := FromResult(E.Left[int](err))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestLeft(t *testing.T) {
err := errors.New("test error")
result := Left[string](err)
assert.Equal(t, E.Left[string](err), result(context.Background())())
}
func TestRight(t *testing.T) {
result := Right("success")
assert.Equal(t, E.Right[error]("success"), result(context.Background())())
}
func TestOf(t *testing.T) {
result := Of(42)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestMonadMap(t *testing.T) {
t.Run("Map over Right", func(t *testing.T) {
result := MonadMap(Of(5), N.Mul(2))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("Map over Left", func(t *testing.T) {
err := errors.New("test error")
result := MonadMap(Left[int](err), N.Mul(2))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMap(t *testing.T) {
t.Run("Map with success", func(t *testing.T) {
mapper := Map(N.Mul(2))
result := mapper(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("Map with error", func(t *testing.T) {
err := errors.New("test error")
mapper := Map(N.Mul(2))
result := mapper(Left[int](err))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMonadMapTo(t *testing.T) {
t.Run("MapTo with success", func(t *testing.T) {
result := MonadMapTo(Of("original"), 42)
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("MapTo with error", func(t *testing.T) {
err := errors.New("test error")
result := MonadMapTo(Left[string](err), 42)
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMapTo(t *testing.T) {
mapper := MapTo[string](42)
result := mapper(Of("original"))
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestMonadChain(t *testing.T) {
t.Run("Chain with success", func(t *testing.T) {
result := MonadChain(Of(5), func(x int) ReaderIOResult[int] {
return Of(x * 2)
})
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("Chain with error in first", func(t *testing.T) {
err := errors.New("test error")
result := MonadChain(Left[int](err), func(x int) ReaderIOResult[int] {
return Of(x * 2)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
t.Run("Chain with error in second", func(t *testing.T) {
err := errors.New("test error")
result := MonadChain(Of(5), func(x int) ReaderIOResult[int] {
return Left[int](err)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestChain(t *testing.T) {
chainer := Chain(func(x int) ReaderIOResult[int] {
return Of(x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestMonadChainFirst(t *testing.T) {
t.Run("ChainFirst keeps first value", func(t *testing.T) {
result := MonadChainFirst(Of(5), func(x int) ReaderIOResult[string] {
return Of("ignored")
})
assert.Equal(t, E.Right[error](5), result(context.Background())())
})
t.Run("ChainFirst propagates error from second", func(t *testing.T) {
err := errors.New("test error")
result := MonadChainFirst(Of(5), func(x int) ReaderIOResult[string] {
return Left[string](err)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestChainFirst(t *testing.T) {
chainer := ChainFirst(func(x int) ReaderIOResult[string] {
return Of("ignored")
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](5), result(context.Background())())
}
func TestMonadApSeq(t *testing.T) {
t.Run("ApSeq with success", func(t *testing.T) {
fab := Of(N.Mul(2))
fa := Of(5)
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ApSeq with error in function", func(t *testing.T) {
err := errors.New("test error")
fab := Left[func(int) int](err)
fa := Of(5)
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
t.Run("ApSeq with error in value", func(t *testing.T) {
err := errors.New("test error")
fab := Of(N.Mul(2))
fa := Left[int](err)
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestApSeq(t *testing.T) {
fa := Of(5)
fab := Of(N.Mul(2))
result := MonadApSeq(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestApPar(t *testing.T) {
t.Run("ApPar with success", func(t *testing.T) {
fa := Of(5)
fab := Of(N.Mul(2))
result := MonadApPar(fab, fa)
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ApPar with cancelled context", func(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
cancel()
fa := Of(5)
fab := Of(N.Mul(2))
result := MonadApPar(fab, fa)
res := result(ctx)()
assert.True(t, E.IsLeft(res))
})
}
func TestFromPredicate(t *testing.T) {
t.Run("Predicate true", func(t *testing.T) {
pred := FromPredicate(
func(x int) bool { return x > 0 },
func(x int) error { return fmt.Errorf("value %d is not positive", x) },
)
result := pred(5)
assert.Equal(t, E.Right[error](5), result(context.Background())())
})
t.Run("Predicate false", func(t *testing.T) {
pred := FromPredicate(
func(x int) bool { return x > 0 },
func(x int) error { return fmt.Errorf("value %d is not positive", x) },
)
result := pred(-5)
res := result(context.Background())()
assert.True(t, E.IsLeft(res))
})
}
func TestOrElse(t *testing.T) {
t.Run("OrElse with success", func(t *testing.T) {
fallback := OrElse(func(err error) ReaderIOResult[int] {
return Of(42)
})
result := fallback(Of(10))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("OrElse with error", func(t *testing.T) {
err := errors.New("test error")
fallback := OrElse(func(err error) ReaderIOResult[int] {
return Of(42)
})
result := fallback(Left[int](err))
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
}
func TestAsk(t *testing.T) {
result := Ask()
ctx := context.Background()
res := result(ctx)()
assert.True(t, E.IsRight(res))
ctxResult := E.ToOption(res)
assert.True(t, O.IsSome(ctxResult))
}
func TestMonadChainEitherK(t *testing.T) {
t.Run("ChainEitherK with success", func(t *testing.T) {
result := MonadChainEitherK(Of(5), func(x int) Either[int] {
return E.Right[error](x * 2)
})
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ChainEitherK with error", func(t *testing.T) {
err := errors.New("test error")
result := MonadChainEitherK(Of(5), func(x int) Either[int] {
return E.Left[int](err)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestChainEitherK(t *testing.T) {
chainer := ChainEitherK(func(x int) Either[int] {
return E.Right[error](x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestMonadChainFirstEitherK(t *testing.T) {
t.Run("ChainFirstEitherK keeps first value", func(t *testing.T) {
result := MonadChainFirstEitherK(Of(5), func(x int) Either[string] {
return E.Right[error]("ignored")
})
assert.Equal(t, E.Right[error](5), result(context.Background())())
})
t.Run("ChainFirstEitherK propagates error", func(t *testing.T) {
err := errors.New("test error")
result := MonadChainFirstEitherK(Of(5), func(x int) Either[string] {
return E.Left[string](err)
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestChainFirstEitherK(t *testing.T) {
chainer := ChainFirstEitherK(func(x int) Either[string] {
return E.Right[error]("ignored")
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](5), result(context.Background())())
}
func TestChainOptionK(t *testing.T) {
t.Run("ChainOptionK with Some", func(t *testing.T) {
chainer := ChainOptionK[int, int](func() error {
return errors.New("none error")
})(func(x int) Option[int] {
return O.Some(x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ChainOptionK with None", func(t *testing.T) {
chainer := ChainOptionK[int, int](func() error {
return errors.New("none error")
})(func(x int) Option[int] {
return O.None[int]()
})
result := chainer(Of(5))
res := result(context.Background())()
assert.True(t, E.IsLeft(res))
})
}
func TestFromIOEither(t *testing.T) {
t.Run("FromIOEither with success", func(t *testing.T) {
ioe := IOE.Of[error](42)
result := FromIOEither(ioe)
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("FromIOEither with error", func(t *testing.T) {
err := errors.New("test error")
ioe := IOE.Left[int](err)
result := FromIOEither(ioe)
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestFromIOResult(t *testing.T) {
ioe := IOE.Of[error](42)
result := FromIOResult(ioe)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestFromIO(t *testing.T) {
io := IOG.Of(42)
result := FromIO(io)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestFromReader(t *testing.T) {
reader := R.Of[context.Context](42)
result := FromReader(reader)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestFromLazy(t *testing.T) {
lazy := func() int { return 42 }
result := FromLazy(lazy)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestNever(t *testing.T) {
t.Run("Never with cancelled context", func(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
result := Never[int]()
// Cancel immediately
cancel()
res := result(ctx)()
assert.True(t, E.IsLeft(res))
})
t.Run("Never with timeout", func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer cancel()
result := Never[int]()
res := result(ctx)()
assert.True(t, E.IsLeft(res))
})
}
func TestMonadChainIOK(t *testing.T) {
result := MonadChainIOK(Of(5), func(x int) IOG.IO[int] {
return IOG.Of(x * 2)
})
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestChainIOK(t *testing.T) {
chainer := ChainIOK(func(x int) IOG.IO[int] {
return IOG.Of(x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestMonadChainFirstIOK(t *testing.T) {
result := MonadChainFirstIOK(Of(5), func(x int) IOG.IO[string] {
return IOG.Of("ignored")
})
assert.Equal(t, E.Right[error](5), result(context.Background())())
}
func TestChainFirstIOK(t *testing.T) {
chainer := ChainFirstIOK(func(x int) IOG.IO[string] {
return IOG.Of("ignored")
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](5), result(context.Background())())
}
func TestChainIOEitherK(t *testing.T) {
t.Run("ChainIOEitherK with success", func(t *testing.T) {
chainer := ChainIOEitherK(func(x int) IOResult[int] {
return IOE.Of[error](x * 2)
})
result := chainer(Of(5))
assert.Equal(t, E.Right[error](10), result(context.Background())())
})
t.Run("ChainIOEitherK with error", func(t *testing.T) {
err := errors.New("test error")
chainer := ChainIOEitherK(func(x int) IOResult[int] {
return IOE.Left[int](err)
})
result := chainer(Of(5))
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestDelay(t *testing.T) {
t.Run("Delay with success", func(t *testing.T) {
start := time.Now()
delayed := Delay[int](100 * time.Millisecond)
result := delayed(Of(42))
res := result(context.Background())()
elapsed := time.Since(start)
assert.True(t, E.IsRight(res))
assert.GreaterOrEqual(t, elapsed, 100*time.Millisecond)
})
t.Run("Delay with cancelled context", func(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
delayed := Delay[int](100 * time.Millisecond)
result := delayed(Of(42))
// Cancel after starting but before delay completes
cancel()
res := result(ctx)()
// The result might be either Left (if cancelled) or Right (if completed before cancel)
// This is a race condition, so we just verify it completes
assert.True(t, E.IsLeft(res) || E.IsRight(res))
})
}
func TestDefer(t *testing.T) {
counter := 0
deferred := Defer(func() ReaderIOResult[int] {
counter++
return Of(counter)
})
// First execution
res1 := deferred(context.Background())()
assert.True(t, E.IsRight(res1))
// Second execution should generate a new computation
res2 := deferred(context.Background())()
assert.True(t, E.IsRight(res2))
// Counter should be incremented for each execution
assert.Equal(t, 2, counter)
}
func TestTryCatch(t *testing.T) {
t.Run("TryCatch with success", func(t *testing.T) {
result := TryCatch(func(ctx context.Context) func() (int, error) {
return func() (int, error) {
return 42, nil
}
})
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("TryCatch with error", func(t *testing.T) {
err := errors.New("test error")
result := TryCatch(func(ctx context.Context) func() (int, error) {
return func() (int, error) {
return 0, err
}
})
assert.Equal(t, E.Left[int](err), result(context.Background())())
})
}
func TestMonadAlt(t *testing.T) {
t.Run("Alt with first success", func(t *testing.T) {
first := Of(42)
second := func() ReaderIOResult[int] { return Of(100) }
result := MonadAlt(first, second)
assert.Equal(t, E.Right[error](42), result(context.Background())())
})
t.Run("Alt with first error", func(t *testing.T) {
err := errors.New("test error")
first := Left[int](err)
second := func() ReaderIOResult[int] { return Of(100) }
result := MonadAlt(first, second)
assert.Equal(t, E.Right[error](100), result(context.Background())())
})
}
func TestAlt(t *testing.T) {
err := errors.New("test error")
alternative := Alt(func() ReaderIOResult[int] { return Of(100) })
result := alternative(Left[int](err))
assert.Equal(t, E.Right[error](100), result(context.Background())())
}
func TestMemoize(t *testing.T) {
counter := 0
computation := Memoize(FromLazy(func() int {
counter++
return counter
}))
// First execution
res1 := computation(context.Background())()
assert.True(t, E.IsRight(res1))
val1 := E.ToOption(res1)
v1, _ := O.Unwrap(val1)
assert.Equal(t, 1, v1)
// Second execution should return cached value
res2 := computation(context.Background())()
assert.True(t, E.IsRight(res2))
val2 := E.ToOption(res2)
v2, _ := O.Unwrap(val2)
assert.Equal(t, 1, v2)
// Counter should only be incremented once
assert.Equal(t, 1, counter)
}
func TestFlatten(t *testing.T) {
nested := Of(Of(42))
result := Flatten(nested)
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestMonadFlap(t *testing.T) {
fab := Of(N.Mul(2))
result := MonadFlap(fab, 5)
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestFlap(t *testing.T) {
flapper := Flap[int](5)
result := flapper(Of(N.Mul(2)))
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestFold(t *testing.T) {
t.Run("Fold with success", func(t *testing.T) {
folder := Fold(
func(err error) ReaderIOResult[string] {
return Of("error: " + err.Error())
},
func(x int) ReaderIOResult[string] {
return Of(fmt.Sprintf("success: %d", x))
},
)
result := folder(Of(42))
assert.Equal(t, E.Right[error]("success: 42"), result(context.Background())())
})
t.Run("Fold with error", func(t *testing.T) {
err := errors.New("test error")
folder := Fold(
func(err error) ReaderIOResult[string] {
return Of("error: " + err.Error())
},
func(x int) ReaderIOResult[string] {
return Of(fmt.Sprintf("success: %d", x))
},
)
result := folder(Left[int](err))
assert.Equal(t, E.Right[error]("error: test error"), result(context.Background())())
})
}
func TestGetOrElse(t *testing.T) {
t.Run("GetOrElse with success", func(t *testing.T) {
getter := GetOrElse(func(err error) ReaderIO[int] {
return func(ctx context.Context) IOG.IO[int] {
return IOG.Of(0)
}
})
result := getter(Of(42))
assert.Equal(t, 42, result(context.Background())())
})
t.Run("GetOrElse with error", func(t *testing.T) {
err := errors.New("test error")
getter := GetOrElse(func(err error) ReaderIO[int] {
return func(ctx context.Context) IOG.IO[int] {
return IOG.Of(0)
}
})
result := getter(Left[int](err))
assert.Equal(t, 0, result(context.Background())())
})
}
func TestWithContext(t *testing.T) {
t.Run("WithContext with valid context", func(t *testing.T) {
computation := WithContext(Of(42))
result := computation(context.Background())()
assert.Equal(t, E.Right[error](42), result)
})
t.Run("WithContext with cancelled context", func(t *testing.T) {
ctx, cancel := context.WithCancel(context.Background())
cancel()
computation := WithContext(Of(42))
result := computation(ctx)()
assert.True(t, E.IsLeft(result))
})
}
func TestEitherize0(t *testing.T) {
f := func(ctx context.Context) (int, error) {
return 42, nil
}
eitherized := Eitherize0(f)
result := eitherized()
assert.Equal(t, E.Right[error](42), result(context.Background())())
}
func TestUneitherize0(t *testing.T) {
f := func() ReaderIOResult[int] {
return Of(42)
}
uneitherized := Uneitherize0(f)
result, err := uneitherized(context.Background())
assert.NoError(t, err)
assert.Equal(t, 42, result)
}
func TestEitherize1(t *testing.T) {
f := func(ctx context.Context, x int) (int, error) {
return x * 2, nil
}
eitherized := Eitherize1(f)
result := eitherized(5)
assert.Equal(t, E.Right[error](10), result(context.Background())())
}
func TestUneitherize1(t *testing.T) {
f := func(x int) ReaderIOResult[int] {
return Of(x * 2)
}
uneitherized := Uneitherize1(f)
result, err := uneitherized(context.Background(), 5)
assert.NoError(t, err)
assert.Equal(t, 10, result)
}
func TestSequenceT2(t *testing.T) {
result := SequenceT2(Of(1), Of(2))
res := result(context.Background())()
assert.True(t, E.IsRight(res))
tuple := E.ToOption(res)
assert.True(t, O.IsSome(tuple))
t1, _ := O.Unwrap(tuple)
assert.Equal(t, 1, t1.F1)
assert.Equal(t, 2, t1.F2)
}
func TestSequenceSeqT2(t *testing.T) {
result := SequenceSeqT2(Of(1), Of(2))
res := result(context.Background())()
assert.True(t, E.IsRight(res))
}
func TestSequenceParT2(t *testing.T) {
result := SequenceParT2(Of(1), Of(2))
res := result(context.Background())()
assert.True(t, E.IsRight(res))
}
func TestTraverseArray(t *testing.T) {
t.Run("TraverseArray with success", func(t *testing.T) {
arr := []int{1, 2, 3}
traverser := TraverseArray(func(x int) ReaderIOResult[int] {
return Of(x * 2)
})
result := traverser(arr)
res := result(context.Background())()
assert.True(t, E.IsRight(res))
arrOpt := E.ToOption(res)
assert.True(t, O.IsSome(arrOpt))
resultArr, _ := O.Unwrap(arrOpt)
assert.Equal(t, []int{2, 4, 6}, resultArr)
})
t.Run("TraverseArray with error", func(t *testing.T) {
arr := []int{1, 2, 3}
err := errors.New("test error")
traverser := TraverseArray(func(x int) ReaderIOResult[int] {
if x == 2 {
return Left[int](err)
}
return Of(x * 2)
})
result := traverser(arr)
res := result(context.Background())()
assert.True(t, E.IsLeft(res))
})
}
func TestSequenceArray(t *testing.T) {
arr := []ReaderIOResult[int]{Of(1), Of(2), Of(3)}
result := SequenceArray(arr)
res := result(context.Background())()
assert.True(t, E.IsRight(res))
arrOpt := E.ToOption(res)
assert.True(t, O.IsSome(arrOpt))
resultArr, _ := O.Unwrap(arrOpt)
assert.Equal(t, []int{1, 2, 3}, resultArr)
}
func TestTraverseRecord(t *testing.T) {
rec := map[string]int{"a": 1, "b": 2}
result := TraverseRecord[string](func(x int) ReaderIOResult[int] {
return Of(x * 2)
})(rec)
res := result(context.Background())()
assert.True(t, E.IsRight(res))
recOpt := E.ToOption(res)
assert.True(t, O.IsSome(recOpt))
resultRec, _ := O.Unwrap(recOpt)
assert.Equal(t, 2, resultRec["a"])
assert.Equal(t, 4, resultRec["b"])
}
func TestSequenceRecord(t *testing.T) {
rec := map[string]ReaderIOResult[int]{
"a": Of(1),
"b": Of(2),
}
result := SequenceRecord(rec)
res := result(context.Background())()
assert.True(t, E.IsRight(res))
recOpt := E.ToOption(res)
assert.True(t, O.IsSome(recOpt))
resultRec, _ := O.Unwrap(recOpt)
assert.Equal(t, 1, resultRec["a"])
assert.Equal(t, 2, resultRec["b"])
}
func TestAltSemigroup(t *testing.T) {
sg := AltSemigroup[int]()
err := errors.New("test error")
result := sg.Concat(Left[int](err), Of(42))
res := result(context.Background())()
assert.Equal(t, E.Right[error](42), res)
}
func TestApplicativeMonoid(t *testing.T) {
// Test with int addition monoid
intAddMonoid := ApplicativeMonoid(M.MakeMonoid(
func(a, b int) int { return a + b },
0,
))
result := intAddMonoid.Concat(Of(5), Of(10))
res := result(context.Background())()
assert.Equal(t, E.Right[error](15), res)
}
func TestBracket(t *testing.T) {
t.Run("Bracket with success", func(t *testing.T) {
var acquired, released bool
acquire := FromLazy(func() int {
acquired = true
return 42
})
use := func(x int) ReaderIOResult[int] {
return Of(x * 2)
}
release := func(x int, result Either[int]) ReaderIOResult[any] {
return FromLazy(func() any {
released = true
return nil
})
}
result := Bracket(acquire, use, release)
res := result(context.Background())()
assert.True(t, acquired)
assert.True(t, released)
assert.Equal(t, E.Right[error](84), res)
})
t.Run("Bracket with error in use", func(t *testing.T) {
var acquired, released bool
err := errors.New("use error")
acquire := FromLazy(func() int {
acquired = true
return 42
})
use := func(x int) ReaderIOResult[int] {
return Left[int](err)
}
release := func(x int, result Either[int]) ReaderIOResult[any] {
return FromLazy(func() any {
released = true
return nil
})
}
result := Bracket(acquire, use, release)
res := result(context.Background())()
assert.True(t, acquired)
assert.True(t, released)
assert.Equal(t, E.Left[int](err), res)
})
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -143,7 +143,7 @@ func TestCanceledApply(t *testing.T) {
applied := F.Pipe1(
fct,
Ap[string, string](errValue),
Ap[string](errValue),
)
res := applied(context.Background())()
@@ -156,7 +156,7 @@ func TestRegularApply(t *testing.T) {
applied := F.Pipe1(
fct,
Ap[string, string](value),
Ap[string](value),
)
res := applied(context.Background())()
@@ -171,14 +171,14 @@ func TestWithResourceNoErrors(t *testing.T) {
return countAcquire
})
release := func(int) ReaderIOEither[int] {
release := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countRelease++
return countRelease
})
}
body := func(int) ReaderIOEither[int] {
body := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countBody++
return countBody
@@ -203,7 +203,7 @@ func TestWithResourceErrorInBody(t *testing.T) {
return countAcquire
})
release := func(int) ReaderIOEither[int] {
release := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countRelease++
return countRelease
@@ -211,7 +211,7 @@ func TestWithResourceErrorInBody(t *testing.T) {
}
err := fmt.Errorf("error in body")
body := func(int) ReaderIOEither[int] {
body := func(int) ReaderIOResult[int] {
return Left[int](err)
}
@@ -231,14 +231,14 @@ func TestWithResourceErrorInAcquire(t *testing.T) {
err := fmt.Errorf("error in acquire")
acquire := Left[int](err)
release := func(int) ReaderIOEither[int] {
release := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countRelease++
return countRelease
})
}
body := func(int) ReaderIOEither[int] {
body := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countBody++
return countBody
@@ -264,11 +264,11 @@ func TestWithResourceErrorInRelease(t *testing.T) {
})
err := fmt.Errorf("error in release")
release := func(int) ReaderIOEither[int] {
release := func(int) ReaderIOResult[int] {
return Left[int](err)
}
body := func(int) ReaderIOEither[int] {
body := func(int) ReaderIOResult[int] {
return FromLazy(func() int {
countBody++
return countBody
@@ -284,3 +284,160 @@ func TestWithResourceErrorInRelease(t *testing.T) {
assert.Equal(t, 0, countRelease)
assert.Equal(t, E.Left[int](err), res)
}
func TestMonadChainFirstLeft(t *testing.T) {
ctx := context.Background()
// Test with Left value - function returns Left, always preserves original error
t.Run("Left value with function returning Left preserves original error", func(t *testing.T) {
sideEffectCalled := false
originalErr := fmt.Errorf("original error")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("new error")) // This error is ignored
},
)
actualResult := result(ctx)()
assert.True(t, sideEffectCalled)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Left value - function returns Right, still returns original Left
t.Run("Left value with function returning Right still returns original Left", func(t *testing.T) {
var capturedError error
originalErr := fmt.Errorf("validation failed")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
capturedError = e
return Right(999) // This Right value is ignored
},
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, capturedError)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Right value - should pass through without calling function
t.Run("Right value passes through", func(t *testing.T) {
sideEffectCalled := false
result := MonadChainFirstLeft(
Right(42),
func(e error) ReaderIOResult[int] {
sideEffectCalled = true
return Left[int](fmt.Errorf("should not be called"))
},
)
assert.False(t, sideEffectCalled)
assert.Equal(t, E.Right[error](42), result(ctx)())
})
// Test that side effects are executed but original error is always preserved
t.Run("Side effects executed but original error preserved", func(t *testing.T) {
effectCount := 0
originalErr := fmt.Errorf("original error")
result := MonadChainFirstLeft(
Left[int](originalErr),
func(e error) ReaderIOResult[int] {
effectCount++
// Try to return Right, but original Left should still be returned
return Right(999)
},
)
actualResult := result(ctx)()
assert.Equal(t, 1, effectCount)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
}
func TestChainFirstLeft(t *testing.T) {
ctx := context.Background()
// Test with Left value - function returns Left, always preserves original error
t.Run("Left value with function returning Left preserves error", func(t *testing.T) {
var captured error
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Left[int](fmt.Errorf("ignored error"))
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, captured)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Left value - function returns Right, still returns original Left
t.Run("Left value with function returning Right still returns original Left", func(t *testing.T) {
var captured error
originalErr := fmt.Errorf("test error")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
captured = e
return Right(42) // This Right is ignored
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
actualResult := result(ctx)()
assert.Equal(t, originalErr, captured)
assert.Equal(t, E.Left[int](originalErr), actualResult)
})
// Test with Right value - should pass through without calling function
t.Run("Right value passes through", func(t *testing.T) {
called := false
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
called = true
return Right(0)
})
result := F.Pipe1(
Right(100),
chainFn,
)
assert.False(t, called)
assert.Equal(t, E.Right[error](100), result(ctx)())
})
// Test that original error is always preserved regardless of what f returns
t.Run("Original error always preserved", func(t *testing.T) {
originalErr := fmt.Errorf("original")
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
// Try to return Right, but original Left should still be returned
return Right(999)
})
result := F.Pipe1(
Left[int](originalErr),
chainFn,
)
assert.Equal(t, E.Left[int](originalErr), result(ctx)())
})
// Test logging with Left preservation
t.Run("Logging with Left preservation", func(t *testing.T) {
errorLog := []string{}
originalErr := fmt.Errorf("step1")
logError := ChainFirstLeft[string](func(e error) ReaderIOResult[string] {
errorLog = append(errorLog, "Logged: "+e.Error())
return Left[string](fmt.Errorf("log entry")) // This is ignored
})
result := F.Pipe2(
Left[string](originalErr),
logError,
ChainLeft(func(e error) ReaderIOResult[string] {
return Left[string](fmt.Errorf("step2"))
}),
)
actualResult := result(ctx)()
assert.Equal(t, []string{"Logged: step1"}, errorLog)
assert.Equal(t, E.Left[string](fmt.Errorf("step2")), actualResult)
})
}

View File

@@ -13,13 +13,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/function"
RIE "github.com/IBM/fp-go/v2/readerioeither"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
)
// WithResource constructs a function that creates a resource, then operates on it and then releases the resource.
@@ -32,22 +29,22 @@ import (
// - onRelease: Releases the resource (always called, even on error)
//
// Parameters:
// - onCreate: ReaderIOEither that creates the resource
// - onCreate: ReaderIOResult that creates the resource
// - onRelease: Function to release the resource
//
// Returns a function that takes a resource-using function and returns a ReaderIOEither.
// Returns a function that takes a resource-using function and returns a ReaderIOResult.
//
// Example:
//
// file := WithResource(
// openFile("data.txt"),
// func(f *os.File) ReaderIOEither[any] {
// func(f *os.File) ReaderIOResult[any] {
// return TryCatch(func(ctx context.Context) func() (any, error) {
// return func() (any, error) { return nil, f.Close() }
// })
// },
// )
// result := file(func(f *os.File) ReaderIOEither[string] {
// result := file(func(f *os.File) ReaderIOResult[string] {
// return TryCatch(func(ctx context.Context) func() (string, error) {
// return func() (string, error) {
// data, err := io.ReadAll(f)
@@ -55,9 +52,6 @@ import (
// }
// })
// })
func WithResource[A, R, ANY any](onCreate ReaderIOEither[R], onRelease func(R) ReaderIOEither[ANY]) Kleisli[Kleisli[R, A], A] {
return function.Flow2(
function.Bind2nd(function.Flow2[func(R) ReaderIOEither[A], Operator[A, A], R, ReaderIOEither[A], ReaderIOEither[A]], WithContext[A]),
RIE.WithResource[A, context.Context, error, R](WithContext(onCreate), onRelease),
)
func WithResource[A, R, ANY any](onCreate ReaderIOResult[R], onRelease Kleisli[R, ANY]) Kleisli[Kleisli[R, A], A] {
return RIOR.WithResource[A](onCreate, onRelease)
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -37,7 +37,7 @@ var (
)
)
func closeFile(f *os.File) ReaderIOEither[string] {
func closeFile(f *os.File) ReaderIOResult[string] {
return F.Pipe1(
TryCatch(func(_ context.Context) func() (string, error) {
return func() (string, error) {
@@ -52,7 +52,7 @@ func ExampleWithResource() {
stringReader := WithResource[string](openFile("data/file.txt"), closeFile)
rdr := stringReader(func(f *os.File) ReaderIOEither[string] {
rdr := stringReader(func(f *os.File) ReaderIOResult[string] {
return F.Pipe2(
TryCatch(func(_ context.Context) func() ([]byte, error) {
return func() ([]byte, error) {

View File

@@ -13,21 +13,21 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"github.com/IBM/fp-go/v2/semigroup"
)
type (
Semigroup[A any] = semigroup.Semigroup[ReaderIOEither[A]]
Semigroup[A any] = semigroup.Semigroup[ReaderIOResult[A]]
)
// AltSemigroup is a [Semigroup] that tries the first item and then the second one using an alternative.
// This creates a semigroup where combining two ReaderIOEither values means trying the first one,
// This creates a semigroup where combining two ReaderIOResult values means trying the first one,
// and if it fails, trying the second one. This is useful for implementing fallback behavior.
//
// Returns a Semigroup for ReaderIOEither[A] with Alt-based combination.
// Returns a Semigroup for ReaderIOResult[A] with Alt-based combination.
//
// Example:
//

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
@@ -29,9 +29,9 @@ import (
// The lock parameter should return a CancelFunc that releases the lock when called.
//
// Parameters:
// - lock: ReaderIOEither that acquires a lock and returns a CancelFunc to release it
// - lock: ReaderIOResult that acquires a lock and returns a CancelFunc to release it
//
// Returns a function that wraps a ReaderIOEither with lock protection.
// Returns a function that wraps a ReaderIOResult with lock protection.
//
// Example:
//
@@ -43,9 +43,9 @@ import (
// }
// })
// protectedOp := WithLock(lock)(myOperation)
func WithLock[A any](lock ReaderIOEither[context.CancelFunc]) Operator[A, A] {
func WithLock[A any](lock ReaderIOResult[context.CancelFunc]) Operator[A, A] {
return function.Flow2(
function.Constant1[context.CancelFunc, ReaderIOEither[A]],
function.Constant1[context.CancelFunc, ReaderIOResult[A]],
WithResource[A](lock, function.Flow2(
io.FromImpure[context.CancelFunc],
FromIO[any],

View File

@@ -13,23 +13,23 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/array"
"github.com/IBM/fp-go/v2/internal/record"
)
// TraverseArray transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// TraverseArray transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This uses the default applicative behavior (parallel or sequential based on useParallel flag).
//
// Parameters:
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a function that transforms an array into a ReaderIOEither of an array.
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -38,15 +38,15 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
)
}
// TraverseArrayWithIndex transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// TraverseArrayWithIndex transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// The transformation function receives both the index and the element.
//
// Parameters:
// - f: Function that transforms each element with its index into a ReaderIOEither
// - f: Function that transforms each element with its index into a ReaderIOResult
//
// Returns a function that transforms an array into a ReaderIOEither of an array.
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
Ap[[]B, B],
@@ -55,23 +55,23 @@ func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[
)
}
// SequenceArray converts a homogeneous sequence of ReaderIOEither into a ReaderIOEither of sequence.
// SequenceArray converts a homogeneous sequence of ReaderIOResult into a ReaderIOResult of sequence.
// This is equivalent to TraverseArray with the identity function.
//
// Parameters:
// - ma: Array of ReaderIOEither values
// - ma: Array of ReaderIOResult values
//
// Returns a ReaderIOEither containing an array of values.
func SequenceArray[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
return TraverseArray(function.Identity[ReaderIOEither[A]])(ma)
// Returns a ReaderIOResult containing an array of values.
func SequenceArray[A any](ma []ReaderIOResult[A]) ReaderIOResult[[]A] {
return TraverseArray(function.Identity[ReaderIOResult[A]])(ma)
}
// TraverseRecord transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]].
// TraverseRecord transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]].
//
// Parameters:
// - f: Function that transforms each value into a ReaderIOEither
// - f: Function that transforms each value into a ReaderIOResult
//
// Returns a function that transforms a map into a ReaderIOEither of a map.
// Returns a function that transforms a map into a ReaderIOResult of a map.
func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A](
Of[map[K]B],
@@ -82,14 +82,14 @@ func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, ma
)
}
// TraverseRecordWithIndex transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]].
// TraverseRecordWithIndex transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]].
// The transformation function receives both the key and the value.
//
// Parameters:
// - f: Function that transforms each key-value pair into a ReaderIOEither
// - f: Function that transforms each key-value pair into a ReaderIOResult
//
// Returns a function that transforms a map into a ReaderIOEither of a map.
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
// Returns a function that transforms a map into a ReaderIOResult of a map.
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) ReaderIOResult[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A](
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
@@ -99,26 +99,26 @@ func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) ReaderIOEither
)
}
// SequenceRecord converts a homogeneous map of ReaderIOEither into a ReaderIOEither of map.
// SequenceRecord converts a homogeneous map of ReaderIOResult into a ReaderIOResult of map.
//
// Parameters:
// - ma: Map of ReaderIOEither values
// - ma: Map of ReaderIOResult values
//
// Returns a ReaderIOEither containing a map of values.
func SequenceRecord[K comparable, A any](ma map[K]ReaderIOEither[A]) ReaderIOEither[map[K]A] {
return TraverseRecord[K](function.Identity[ReaderIOEither[A]])(ma)
// Returns a ReaderIOResult containing a map of values.
func SequenceRecord[K comparable, A any](ma map[K]ReaderIOResult[A]) ReaderIOResult[map[K]A] {
return TraverseRecord[K](function.Identity[ReaderIOResult[A]])(ma)
}
// MonadTraverseArraySeq transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// MonadTraverseArraySeq transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This explicitly uses sequential execution.
//
// Parameters:
// - as: The array to traverse
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a ReaderIOEither containing an array of transformed values.
func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B] {
return array.MonadTraverse[[]A](
// Returns a ReaderIOResult containing an array of transformed values.
func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B] {
return array.MonadTraverse(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
@@ -127,48 +127,46 @@ func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B
)
}
// TraverseArraySeq transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// TraverseArraySeq transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This is the curried version of [MonadTraverseArraySeq] with sequential execution.
//
// Parameters:
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a function that transforms an array into a ReaderIOEither of an array.
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArraySeq[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]]
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApSeq[[]B, B],
f,
)
}
// SequenceArraySeq converts a homogeneous sequence of ReaderIOEither into a ReaderIOEither of sequence.
// SequenceArraySeq converts a homogeneous sequence of ReaderIOResult into a ReaderIOResult of sequence.
// This explicitly uses sequential execution.
//
// Parameters:
// - ma: Array of ReaderIOEither values
// - ma: Array of ReaderIOResult values
//
// Returns a ReaderIOEither containing an array of values.
func SequenceArraySeq[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
return MonadTraverseArraySeq(ma, function.Identity[ReaderIOEither[A]])
// Returns a ReaderIOResult containing an array of values.
func SequenceArraySeq[A any](ma []ReaderIOResult[A]) ReaderIOResult[[]A] {
return MonadTraverseArraySeq(ma, function.Identity[ReaderIOResult[A]])
}
// MonadTraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOEither[map[K]B] {
return record.MonadTraverse[map[K]A](
// MonadTraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOResult[map[K]B] {
return record.MonadTraverse(
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
ApSeq[map[K]B, B],
@@ -177,7 +175,7 @@ func MonadTraverseRecordSeq[K comparable, A, B any](as map[K]A, f Kleisli[A, B])
)
}
// TraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
// TraverseRecordSeq uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func TraverseRecordSeq[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A](
Of[map[K]B],
@@ -188,8 +186,8 @@ func TraverseRecordSeq[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A,
)
}
// TraverseRecordWithIndexSeq uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func TraverseRecordWithIndexSeq[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
// TraverseRecordWithIndexSeq uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func TraverseRecordWithIndexSeq[K comparable, A, B any](f func(K, A) ReaderIOResult[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A](
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
@@ -200,20 +198,20 @@ func TraverseRecordWithIndexSeq[K comparable, A, B any](f func(K, A) ReaderIOEit
}
// SequenceRecordSeq converts a homogeneous sequence of either into an either of sequence
func SequenceRecordSeq[K comparable, A any](ma map[K]ReaderIOEither[A]) ReaderIOEither[map[K]A] {
return MonadTraverseRecordSeq(ma, function.Identity[ReaderIOEither[A]])
func SequenceRecordSeq[K comparable, A any](ma map[K]ReaderIOResult[A]) ReaderIOResult[map[K]A] {
return MonadTraverseRecordSeq(ma, function.Identity[ReaderIOResult[A]])
}
// MonadTraverseArrayPar transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// MonadTraverseArrayPar transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This explicitly uses parallel execution.
//
// Parameters:
// - as: The array to traverse
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a ReaderIOEither containing an array of transformed values.
func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B] {
return array.MonadTraverse[[]A](
// Returns a ReaderIOResult containing an array of transformed values.
func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B] {
return array.MonadTraverse(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
@@ -222,46 +220,44 @@ func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOEither[[]B
)
}
// TraverseArrayPar transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]].
// TraverseArrayPar transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]].
// This is the curried version of [MonadTraverseArrayPar] with parallel execution.
//
// Parameters:
// - f: Function that transforms each element into a ReaderIOEither
// - f: Function that transforms each element into a ReaderIOResult
//
// Returns a function that transforms an array into a ReaderIOEither of an array.
// Returns a function that transforms an array into a ReaderIOResult of an array.
func TraverseArrayPar[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
return array.Traverse[[]A](
return array.Traverse(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[[]B]]
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOEither[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex[[]A](
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
return array.TraverseWithIndex(
Of[[]B],
Map[[]B, func(B) []B],
ApPar[[]B, B],
f,
)
}
// SequenceArrayPar converts a homogeneous sequence of ReaderIOEither into a ReaderIOEither of sequence.
// SequenceArrayPar converts a homogeneous sequence of ReaderIOResult into a ReaderIOResult of sequence.
// This explicitly uses parallel execution.
//
// Parameters:
// - ma: Array of ReaderIOEither values
// - ma: Array of ReaderIOResult values
//
// Returns a ReaderIOEither containing an array of values.
func SequenceArrayPar[A any](ma []ReaderIOEither[A]) ReaderIOEither[[]A] {
return MonadTraverseArrayPar(ma, function.Identity[ReaderIOEither[A]])
// Returns a ReaderIOResult containing an array of values.
func SequenceArrayPar[A any](ma []ReaderIOResult[A]) ReaderIOResult[[]A] {
return MonadTraverseArrayPar(ma, function.Identity[ReaderIOResult[A]])
}
// TraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
// TraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func TraverseRecordPar[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
return record.Traverse[map[K]A](
Of[map[K]B],
@@ -272,8 +268,8 @@ func TraverseRecordPar[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A,
)
}
// TraverseRecordWithIndexPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOEither[B]) Kleisli[map[K]A, map[K]B] {
// TraverseRecordWithIndexPar uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOResult[B]) Kleisli[map[K]A, map[K]B] {
return record.TraverseWithIndex[map[K]A](
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
@@ -283,9 +279,9 @@ func TraverseRecordWithIndexPar[K comparable, A, B any](f func(K, A) ReaderIOEit
)
}
// MonadTraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOEither[B]] and then resolves that into a [ReaderIOEither[map[K]B]]
func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOEither[map[K]B] {
return record.MonadTraverse[map[K]A](
// MonadTraverseRecordPar uses transforms a record [map[K]A] into [map[K]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[map[K]B]]
func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f Kleisli[A, B]) ReaderIOResult[map[K]B] {
return record.MonadTraverse(
Of[map[K]B],
Map[map[K]B, func(B) map[K]B],
ApPar[map[K]B, B],
@@ -294,13 +290,13 @@ func MonadTraverseRecordPar[K comparable, A, B any](as map[K]A, f Kleisli[A, B])
)
}
// SequenceRecordPar converts a homogeneous map of ReaderIOEither into a ReaderIOEither of map.
// SequenceRecordPar converts a homogeneous map of ReaderIOResult into a ReaderIOResult of map.
// This explicitly uses parallel execution.
//
// Parameters:
// - ma: Map of ReaderIOEither values
// - ma: Map of ReaderIOResult values
//
// Returns a ReaderIOEither containing a map of values.
func SequenceRecordPar[K comparable, A any](ma map[K]ReaderIOEither[A]) ReaderIOEither[map[K]A] {
return MonadTraverseRecordPar(ma, function.Identity[ReaderIOEither[A]])
// Returns a ReaderIOResult containing a map of values.
func SequenceRecordPar[K comparable, A any](ma map[K]ReaderIOResult[A]) ReaderIOResult[map[K]A] {
return MonadTraverseRecordPar(ma, function.Identity[ReaderIOResult[A]])
}

View File

@@ -13,19 +13,24 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readerioeither
package readerioresult
import (
"context"
"github.com/IBM/fp-go/v2/context/ioresult"
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readereither"
"github.com/IBM/fp-go/v2/readerio"
"github.com/IBM/fp-go/v2/readerioeither"
RIOR "github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/readeroption"
"github.com/IBM/fp-go/v2/result"
)
type (
@@ -40,6 +45,8 @@ type (
// Either[A] is equivalent to Either[error, A] from the either package.
Either[A any] = either.Either[error, A]
Result[A any] = result.Result[A]
// Lazy represents a deferred computation that produces a value of type A when executed.
// The computation is not executed until explicitly invoked.
Lazy[A any] = lazy.Lazy[A]
@@ -56,6 +63,8 @@ type (
// IOEither[A] is equivalent to func() Either[error, A]
IOEither[A any] = ioeither.IOEither[error, A]
IOResult[A any] = ioresult.IOResult[A]
// Reader represents a computation that depends on a context of type R.
// This is used for dependency injection and accessing shared context.
//
@@ -68,21 +77,21 @@ type (
// ReaderIO[A] is equivalent to func(context.Context) func() A
ReaderIO[A any] = readerio.ReaderIO[context.Context, A]
// ReaderIOEither is the main type of this package. It represents a computation that:
// ReaderIOResult is the main type of this package. It represents a computation that:
// - Depends on a [context.Context] (Reader aspect)
// - Performs side effects (IO aspect)
// - Can fail with an [error] (Either aspect)
// - Produces a value of type A on success
//
// This is a specialization of [readerioeither.ReaderIOEither] with:
// This is a specialization of [readerioeither.ReaderIOResult] with:
// - Context type fixed to [context.Context]
// - Error type fixed to [error]
//
// The type is defined as:
// ReaderIOEither[A] = func(context.Context) func() Either[error, A]
// ReaderIOResult[A] = func(context.Context) func() Either[error, A]
//
// Example usage:
// func fetchUser(id string) ReaderIOEither[User] {
// func fetchUser(id string) ReaderIOResult[User] {
// return func(ctx context.Context) func() Either[error, User] {
// return func() Either[error, User] {
// user, err := userService.Get(ctx, id)
@@ -97,14 +106,14 @@ type (
// The computation is executed by providing a context and then invoking the result:
// ctx := context.Background()
// result := fetchUser("123")(ctx)()
ReaderIOEither[A any] = readerioeither.ReaderIOEither[context.Context, error, A]
ReaderIOResult[A any] = RIOR.ReaderIOResult[context.Context, A]
Kleisli[A, B any] = reader.Reader[A, ReaderIOEither[B]]
Kleisli[A, B any] = reader.Reader[A, ReaderIOResult[B]]
// Operator represents a transformation from one ReaderIOEither to another.
// Operator represents a transformation from one ReaderIOResult to another.
// This is useful for point-free style composition and building reusable transformations.
//
// Operator[A, B] is equivalent to Kleisli[ReaderIOEither[A], B]
// Operator[A, B] is equivalent to Kleisli[ReaderIOResult[A], B]
//
// Example usage:
// // Define a reusable transformation
@@ -112,5 +121,9 @@ type (
//
// // Apply the transformation
// result := toUpper(computation)
Operator[A, B any] = Kleisli[ReaderIOEither[A], B]
Operator[A, B any] = Kleisli[ReaderIOResult[A], B]
ReaderResult[A any] = readerresult.ReaderResult[A]
ReaderEither[R, E, A any] = readereither.ReaderEither[R, E, A]
ReaderOption[R, A any] = readeroption.ReaderOption[R, A]
)

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import "github.com/IBM/fp-go/v2/readereither"
@@ -23,11 +23,11 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
}
// TraverseArrayWithIndex transforms an array
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderEither[B]) Kleisli[[]A, []B] {
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderResult[B]) Kleisli[[]A, []B] {
return readereither.TraverseArrayWithIndex(f)
}
// SequenceArray converts a homogeneous sequence of either into an either of sequence
func SequenceArray[A any](ma []ReaderEither[A]) ReaderEither[[]A] {
func SequenceArray[A any](ma []ReaderResult[A]) ReaderResult[[]A] {
return readereither.SequenceArray(ma)
}

View File

@@ -13,11 +13,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
F "github.com/IBM/fp-go/v2/function"
L "github.com/IBM/fp-go/v2/optics/lens"
G "github.com/IBM/fp-go/v2/readereither/generic"
)
@@ -34,8 +33,8 @@ import (
// result := readereither.Do(State{})
func Do[S any](
empty S,
) ReaderEither[S] {
return G.Do[ReaderEither[S], context.Context, error, S](empty)
) ReaderResult[S] {
return G.Do[ReaderResult[S]](empty)
}
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
@@ -58,7 +57,7 @@ func Do[S any](
// func(uid string) func(State) State {
// return func(s State) State { s.UserID = uid; return s }
// },
// func(s State) readereither.ReaderEither[string] {
// func(s State) readereither.ReaderResult[string] {
// return func(ctx context.Context) either.Either[error, string] {
// if uid, ok := ctx.Value("userID").(string); ok {
// return either.Right[error](uid)
@@ -71,7 +70,7 @@ func Do[S any](
// func(tid string) func(State) State {
// return func(s State) State { s.TenantID = tid; return s }
// },
// func(s State) readereither.ReaderEither[string] {
// func(s State) readereither.ReaderResult[string] {
// // This can access s.UserID from the previous step
// return func(ctx context.Context) either.Either[error, string] {
// return either.Right[error]("tenant-" + s.UserID)
@@ -82,31 +81,31 @@ func Do[S any](
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Kleisli[ReaderEither[S1], S2] {
return G.Bind[ReaderEither[S1], ReaderEither[S2], ReaderEither[T], context.Context, error, S1, S2, T](setter, f)
) Kleisli[ReaderResult[S1], S2] {
return G.Bind[ReaderResult[S1], ReaderResult[S2]](setter, f)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Kleisli[ReaderEither[S1], S2] {
return G.Let[ReaderEither[S1], ReaderEither[S2], context.Context, error, S1, S2, T](setter, f)
) Kleisli[ReaderResult[S1], S2] {
return G.Let[ReaderResult[S1], ReaderResult[S2]](setter, f)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Kleisli[ReaderEither[S1], S2] {
return G.LetTo[ReaderEither[S1], ReaderEither[S2], context.Context, error, S1, S2, T](setter, b)
) Kleisli[ReaderResult[S1], S2] {
return G.LetTo[ReaderResult[S1], ReaderResult[S2]](setter, b)
}
// BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any](
setter func(T) S1,
) Kleisli[ReaderEither[T], S1] {
return G.BindTo[ReaderEither[S1], ReaderEither[T], context.Context, error, S1, T](setter)
) Kleisli[ReaderResult[T], S1] {
return G.BindTo[ReaderResult[S1], ReaderResult[T]](setter)
}
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
@@ -148,9 +147,9 @@ func BindTo[S1, T any](
// )
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderEither[T],
) Kleisli[ReaderEither[S1], S2] {
return G.ApS[ReaderEither[S1], ReaderEither[S2], ReaderEither[T], context.Context, error, S1, S2, T](setter, fa)
fa ReaderResult[T],
) Kleisli[ReaderResult[S1], S2] {
return G.ApS[ReaderResult[S1], ReaderResult[S2]](setter, fa)
}
// ApSL is a variant of ApS that uses a lens to focus on a specific field in the state.
@@ -159,10 +158,10 @@ func ApS[S1, S2, T any](
//
// Parameters:
// - lens: A lens that focuses on a field of type T within state S
// - fa: A ReaderEither computation that produces a value of type T
// - fa: A ReaderResult computation that produces a value of type T
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S] by setting the focused field
// - A function that transforms ReaderResult[S] to ReaderResult[S] by setting the focused field
//
// Example:
//
@@ -186,8 +185,8 @@ func ApS[S1, S2, T any](
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa ReaderEither[T],
) Kleisli[ReaderEither[S], S] {
fa ReaderResult[T],
) Kleisli[ReaderResult[S], S] {
return ApS(lens.Set, fa)
}
@@ -199,10 +198,10 @@ func ApSL[S, T any](
//
// Parameters:
// - lens: A lens that focuses on a field of type T within state S
// - f: A function that takes the current field value and returns a ReaderEither computation
// - f: A function that takes the current field value and returns a ReaderResult computation
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
// - A function that transforms ReaderResult[S] to ReaderResult[S]
//
// Example:
//
@@ -215,7 +214,7 @@ func ApSL[S, T any](
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// increment := func(v int) readereither.ReaderEither[int] {
// increment := func(v int) readereither.ReaderResult[int] {
// return func(ctx context.Context) either.Either[error, int] {
// if v >= 100 {
// return either.Left[int](errors.New("value too large"))
@@ -231,10 +230,8 @@ func ApSL[S, T any](
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[ReaderEither[S], S] {
return Bind[S, S, T](lens.Set, func(s S) ReaderEither[T] {
return f(lens.Get(s))
})
) Kleisli[ReaderResult[S], S] {
return Bind(lens.Set, F.Flow2(lens.Get, f))
}
// LetL is a variant of Let that uses a lens to focus on a specific field in the state.
@@ -245,7 +242,7 @@ func BindL[S, T any](
// - f: A pure function that transforms the field value
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
// - A function that transforms ReaderResult[S] to ReaderResult[S]
//
// Example:
//
@@ -268,10 +265,8 @@ func BindL[S, T any](
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[ReaderEither[S], S] {
return Let[S, S, T](lens.Set, func(s S) T {
return f(lens.Get(s))
})
) Kleisli[ReaderResult[S], S] {
return Let(lens.Set, F.Flow2(lens.Get, f))
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific field in the state.
@@ -282,7 +277,7 @@ func LetL[S, T any](
// - b: The constant value to set
//
// Returns:
// - A function that transforms ReaderEither[S] to ReaderEither[S]
// - A function that transforms ReaderResult[S] to ReaderResult[S]
//
// Example:
//
@@ -304,6 +299,6 @@ func LetL[S, T any](
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[ReaderEither[S], S] {
return LetTo[S, S, T](lens.Set, b)
) Kleisli[ReaderResult[S], S] {
return LetTo(lens.Set, b)
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -25,11 +25,11 @@ import (
"github.com/stretchr/testify/assert"
)
func getLastName(s utils.Initial) ReaderEither[string] {
func getLastName(s utils.Initial) ReaderResult[string] {
return Of("Doe")
}
func getGivenName(s utils.WithLastName) ReaderEither[string] {
func getGivenName(s utils.WithLastName) ReaderResult[string] {
return Of("John")
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -21,8 +21,8 @@ import (
E "github.com/IBM/fp-go/v2/either"
)
// withContext wraps an existing ReaderEither and performs a context check for cancellation before deletating
func WithContext[A any](ma ReaderEither[A]) ReaderEither[A] {
// withContext wraps an existing ReaderResult and performs a context check for cancellation before deletating
func WithContext[A any](ma ReaderResult[A]) ReaderResult[A] {
return func(ctx context.Context) E.Either[error, A] {
if err := context.Cause(ctx); err != nil {
return E.Left[A](err)

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -24,7 +24,7 @@ import (
// these functions curry a golang function with the context as the firsr parameter into a either reader with the context as the last parameter
// this goes back to the advice in https://pkg.go.dev/context to put the context as a first parameter as a convention
func Curry0[A any](f func(context.Context) (A, error)) ReaderEither[A] {
func Curry0[A any](f func(context.Context) (A, error)) ReaderResult[A] {
return readereither.Curry0(f)
}

View File

@@ -18,11 +18,10 @@ package exec
import (
"context"
"github.com/IBM/fp-go/v2/context/readereither"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/exec"
"github.com/IBM/fp-go/v2/function"
INTE "github.com/IBM/fp-go/v2/internal/exec"
"github.com/IBM/fp-go/v2/result"
)
var (
@@ -32,8 +31,8 @@ var (
Command = function.Curry3(command)
)
func command(name string, args []string, in []byte) readereither.ReaderEither[exec.CommandOutput] {
return func(ctx context.Context) either.Either[error, exec.CommandOutput] {
return either.TryCatchError(INTE.Exec(ctx, name, args, in))
func command(name string, args []string, in []byte) ReaderResult[exec.CommandOutput] {
return func(ctx context.Context) Result[exec.CommandOutput] {
return result.TryCatchError(INTE.Exec(ctx, name, args, in))
}
}

View File

@@ -0,0 +1,27 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// package readerresult implements a specialization of the Reader monad assuming a golang context as the context of the monad and a standard golang error
package exec
import (
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/result"
)
type (
Result[T any] = result.Result[T]
ReaderResult[T any] = readerresult.ReaderResult[T]
)

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -24,7 +24,7 @@ import (
// these functions curry a golang function with the context as the firsr parameter into a either reader with the context as the last parameter
// this goes back to the advice in https://pkg.go.dev/context to put the context as a first parameter as a convention
func From0[A any](f func(context.Context) (A, error)) func() ReaderEither[A] {
func From0[A any](f func(context.Context) (A, error)) func() ReaderResult[A] {
return readereither.From0(f)
}
@@ -32,10 +32,10 @@ func From1[T1, A any](f func(context.Context, T1) (A, error)) Kleisli[T1, A] {
return readereither.From1(f)
}
func From2[T1, T2, A any](f func(context.Context, T1, T2) (A, error)) func(T1, T2) ReaderEither[A] {
func From2[T1, T2, A any](f func(context.Context, T1, T2) (A, error)) func(T1, T2) ReaderResult[A] {
return readereither.From2(f)
}
func From3[T1, T2, T3, A any](f func(context.Context, T1, T2, T3) (A, error)) func(T1, T2, T3) ReaderEither[A] {
func From3[T1, T2, T3, A any](f func(context.Context, T1, T2, T3) (A, error)) func(T1, T2, T3) ReaderResult[A] {
return readereither.From3(f)
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"context"
@@ -21,19 +21,19 @@ import (
"github.com/IBM/fp-go/v2/readereither"
)
func FromEither[A any](e Either[A]) ReaderEither[A] {
func FromEither[A any](e Either[A]) ReaderResult[A] {
return readereither.FromEither[context.Context](e)
}
func Left[A any](l error) ReaderEither[A] {
func Left[A any](l error) ReaderResult[A] {
return readereither.Left[context.Context, A](l)
}
func Right[A any](r A) ReaderEither[A] {
func Right[A any](r A) ReaderResult[A] {
return readereither.Right[context.Context, error](r)
}
func MonadMap[A, B any](fa ReaderEither[A], f func(A) B) ReaderEither[B] {
func MonadMap[A, B any](fa ReaderResult[A], f func(A) B) ReaderResult[B] {
return readereither.MonadMap(fa, f)
}
@@ -41,7 +41,7 @@ func Map[A, B any](f func(A) B) Operator[A, B] {
return readereither.Map[context.Context, error](f)
}
func MonadChain[A, B any](ma ReaderEither[A], f Kleisli[A, B]) ReaderEither[B] {
func MonadChain[A, B any](ma ReaderResult[A], f Kleisli[A, B]) ReaderResult[B] {
return readereither.MonadChain(ma, f)
}
@@ -49,15 +49,15 @@ func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return readereither.Chain(f)
}
func Of[A any](a A) ReaderEither[A] {
func Of[A any](a A) ReaderResult[A] {
return readereither.Of[context.Context, error](a)
}
func MonadAp[A, B any](fab ReaderEither[func(A) B], fa ReaderEither[A]) ReaderEither[B] {
func MonadAp[A, B any](fab ReaderResult[func(A) B], fa ReaderResult[A]) ReaderResult[B] {
return readereither.MonadAp(fab, fa)
}
func Ap[A, B any](fa ReaderEither[A]) func(ReaderEither[func(A) B]) ReaderEither[B] {
func Ap[A, B any](fa ReaderResult[A]) func(ReaderResult[func(A) B]) ReaderResult[B] {
return readereither.Ap[B](fa)
}
@@ -65,19 +65,19 @@ func FromPredicate[A any](pred func(A) bool, onFalse func(A) error) Kleisli[A, A
return readereither.FromPredicate[context.Context](pred, onFalse)
}
func OrElse[A any](onLeft Kleisli[error, A]) Kleisli[ReaderEither[A], A] {
func OrElse[A any](onLeft Kleisli[error, A]) Kleisli[ReaderResult[A], A] {
return readereither.OrElse(onLeft)
}
func Ask() ReaderEither[context.Context] {
func Ask() ReaderResult[context.Context] {
return readereither.Ask[context.Context, error]()
}
func MonadChainEitherK[A, B any](ma ReaderEither[A], f func(A) Either[B]) ReaderEither[B] {
func MonadChainEitherK[A, B any](ma ReaderResult[A], f func(A) Either[B]) ReaderResult[B] {
return readereither.MonadChainEitherK(ma, f)
}
func ChainEitherK[A, B any](f func(A) Either[B]) func(ma ReaderEither[A]) ReaderEither[B] {
func ChainEitherK[A, B any](f func(A) Either[B]) func(ma ReaderResult[A]) ReaderResult[B] {
return readereither.ChainEitherK[context.Context](f)
}
@@ -85,10 +85,15 @@ func ChainOptionK[A, B any](onNone func() error) func(func(A) Option[B]) Operato
return readereither.ChainOptionK[context.Context, A, B](onNone)
}
func MonadFlap[B, A any](fab ReaderEither[func(A) B], a A) ReaderEither[B] {
func MonadFlap[B, A any](fab ReaderResult[func(A) B], a A) ReaderResult[B] {
return readereither.MonadFlap(fab, a)
}
func Flap[B, A any](a A) Operator[func(A) B, B] {
return readereither.Flap[context.Context, error, B](a)
}
//go:inline
func Read[A any](r context.Context) func(ReaderResult[A]) Result[A] {
return readereither.Read[error, A](r)
}

View File

@@ -13,7 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
package readerresult
import (
"github.com/IBM/fp-go/v2/readereither"
@@ -22,18 +22,18 @@ import (
// SequenceT converts n inputs of higher kinded types into a higher kinded types of n strongly typed values, represented as a tuple
func SequenceT1[A any](a ReaderEither[A]) ReaderEither[tuple.Tuple1[A]] {
func SequenceT1[A any](a ReaderResult[A]) ReaderResult[tuple.Tuple1[A]] {
return readereither.SequenceT1(a)
}
func SequenceT2[A, B any](a ReaderEither[A], b ReaderEither[B]) ReaderEither[tuple.Tuple2[A, B]] {
func SequenceT2[A, B any](a ReaderResult[A], b ReaderResult[B]) ReaderResult[tuple.Tuple2[A, B]] {
return readereither.SequenceT2(a, b)
}
func SequenceT3[A, B, C any](a ReaderEither[A], b ReaderEither[B], c ReaderEither[C]) ReaderEither[tuple.Tuple3[A, B, C]] {
func SequenceT3[A, B, C any](a ReaderResult[A], b ReaderResult[B], c ReaderResult[C]) ReaderResult[tuple.Tuple3[A, B, C]] {
return readereither.SequenceT3(a, b, c)
}
func SequenceT4[A, B, C, D any](a ReaderEither[A], b ReaderEither[B], c ReaderEither[C], d ReaderEither[D]) ReaderEither[tuple.Tuple4[A, B, C, D]] {
func SequenceT4[A, B, C, D any](a ReaderResult[A], b ReaderResult[B], c ReaderResult[C], d ReaderResult[D]) ReaderResult[tuple.Tuple4[A, B, C, D]] {
return readereither.SequenceT4(a, b, c, d)
}

View File

@@ -13,8 +13,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Package readereither implements a specialization of the Reader monad assuming a golang context as the context of the monad and a standard golang error
package readereither
// package readerresult implements a specialization of the Reader monad assuming a golang context as the context of the monad and a standard golang error
package readerresult
import (
"context"
@@ -23,14 +23,16 @@ import (
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readereither"
"github.com/IBM/fp-go/v2/result"
)
type (
Option[A any] = option.Option[A]
Either[A any] = either.Either[error, A]
// ReaderEither is a specialization of the Reader monad for the typical golang scenario
ReaderEither[A any] = readereither.ReaderEither[context.Context, error, A]
Result[A any] = result.Result[A]
// ReaderResult is a specialization of the Reader monad for the typical golang scenario
ReaderResult[A any] = readereither.ReaderEither[context.Context, error, A]
Kleisli[A, B any] = reader.Reader[A, ReaderEither[B]]
Operator[A, B any] = Kleisli[ReaderEither[A], B]
Kleisli[A, B any] = reader.Reader[A, ReaderResult[B]]
Operator[A, B any] = Kleisli[ReaderResult[A], B]
)

Some files were not shown because too many files have changed in this diff Show More