// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package bytes import ( "testing" "github.com/stretchr/testify/assert" ) func TestEmpty(t *testing.T) { t.Run("returns empty byte slice", func(t *testing.T) { result := Empty() assert.NotNil(t, result) assert.Equal(t, 0, len(result)) }) t.Run("is identity for Monoid", func(t *testing.T) { data := []byte("test") // Left identity: empty + data = data left := Monoid.Concat(Empty(), data) assert.Equal(t, data, left) // Right identity: data + empty = data right := Monoid.Concat(data, Empty()) assert.Equal(t, data, right) }) } func TestToString(t *testing.T) { t.Run("converts byte slice to string", func(t *testing.T) { result := ToString([]byte("hello")) assert.Equal(t, "hello", result) }) t.Run("handles empty byte slice", func(t *testing.T) { result := ToString([]byte{}) assert.Equal(t, "", result) }) t.Run("handles binary data", func(t *testing.T) { data := []byte{0x48, 0x65, 0x6c, 0x6c, 0x6f} // "Hello" result := ToString(data) assert.Equal(t, "Hello", result) }) } func TestSize(t *testing.T) { t.Run("returns size of byte slice", func(t *testing.T) { assert.Equal(t, 0, Size([]byte{})) assert.Equal(t, 5, Size([]byte("hello"))) assert.Equal(t, 10, Size([]byte("0123456789"))) }) t.Run("handles binary data", func(t *testing.T) { data := []byte{0x00, 0x01, 0x02, 0x03} assert.Equal(t, 4, Size(data)) }) } func TestMonoidConcat(t *testing.T) { t.Run("concatenates two byte slices", func(t *testing.T) { result := Monoid.Concat([]byte("Hello"), []byte(" World")) assert.Equal(t, []byte("Hello World"), result) }) t.Run("handles empty slices", func(t *testing.T) { result1 := Monoid.Concat([]byte{}, []byte("test")) assert.Equal(t, []byte("test"), result1) result2 := Monoid.Concat([]byte("test"), []byte{}) assert.Equal(t, []byte("test"), result2) result3 := Monoid.Concat([]byte{}, []byte{}) assert.Equal(t, []byte{}, result3) }) t.Run("associativity: (a + b) + c = a + (b + c)", func(t *testing.T) { a := []byte("a") b := []byte("b") c := []byte("c") left := Monoid.Concat(Monoid.Concat(a, b), c) right := Monoid.Concat(a, Monoid.Concat(b, c)) assert.Equal(t, left, right) }) } func TestConcatAll(t *testing.T) { t.Run("concatenates multiple byte slices", func(t *testing.T) { result := ConcatAll( []byte("Hello"), []byte(" "), []byte("World"), []byte("!"), ) assert.Equal(t, []byte("Hello World!"), result) }) t.Run("handles empty input", func(t *testing.T) { result := ConcatAll() assert.Equal(t, []byte{}, result) }) t.Run("handles single slice", func(t *testing.T) { result := ConcatAll([]byte("test")) assert.Equal(t, []byte("test"), result) }) t.Run("handles slices with empty elements", func(t *testing.T) { result := ConcatAll( []byte("a"), []byte{}, []byte("b"), []byte{}, []byte("c"), ) assert.Equal(t, []byte("abc"), result) }) t.Run("handles binary data", func(t *testing.T) { result := ConcatAll( []byte{0x01, 0x02}, []byte{0x03, 0x04}, []byte{0x05}, ) assert.Equal(t, []byte{0x01, 0x02, 0x03, 0x04, 0x05}, result) }) } func TestOrd(t *testing.T) { t.Run("compares byte slices lexicographically", func(t *testing.T) { // "abc" < "abd" assert.Equal(t, -1, Ord.Compare([]byte("abc"), []byte("abd"))) // "abd" > "abc" assert.Equal(t, 1, Ord.Compare([]byte("abd"), []byte("abc"))) // "abc" == "abc" assert.Equal(t, 0, Ord.Compare([]byte("abc"), []byte("abc"))) }) t.Run("handles different lengths", func(t *testing.T) { // "ab" < "abc" assert.Equal(t, -1, Ord.Compare([]byte("ab"), []byte("abc"))) // "abc" > "ab" assert.Equal(t, 1, Ord.Compare([]byte("abc"), []byte("ab"))) }) t.Run("handles empty slices", func(t *testing.T) { // "" < "a" assert.Equal(t, -1, Ord.Compare([]byte{}, []byte("a"))) // "a" > "" assert.Equal(t, 1, Ord.Compare([]byte("a"), []byte{})) // "" == "" assert.Equal(t, 0, Ord.Compare([]byte{}, []byte{})) }) t.Run("Equals method works", func(t *testing.T) { assert.True(t, Ord.Equals([]byte("test"), []byte("test"))) assert.False(t, Ord.Equals([]byte("test"), []byte("Test"))) assert.True(t, Ord.Equals([]byte{}, []byte{})) }) t.Run("handles binary data", func(t *testing.T) { assert.Equal(t, -1, Ord.Compare([]byte{0x01}, []byte{0x02})) assert.Equal(t, 1, Ord.Compare([]byte{0x02}, []byte{0x01})) assert.Equal(t, 0, Ord.Compare([]byte{0x01, 0x02}, []byte{0x01, 0x02})) }) } // TestOrdProperties tests mathematical properties of Ord func TestOrdProperties(t *testing.T) { t.Run("reflexivity: x == x", func(t *testing.T) { testCases := [][]byte{ []byte{}, []byte("a"), []byte("test"), []byte{0x01, 0x02, 0x03}, } for _, tc := range testCases { assert.Equal(t, 0, Ord.Compare(tc, tc), "Compare(%v, %v) should be 0", tc, tc) assert.True(t, Ord.Equals(tc, tc), "Equals(%v, %v) should be true", tc, tc) } }) t.Run("antisymmetry: if x <= y and y <= x then x == y", func(t *testing.T) { testCases := []struct { a, b []byte }{ {[]byte("abc"), []byte("abc")}, {[]byte{}, []byte{}}, {[]byte{0x01}, []byte{0x01}}, } for _, tc := range testCases { cmp1 := Ord.Compare(tc.a, tc.b) cmp2 := Ord.Compare(tc.b, tc.a) if cmp1 <= 0 && cmp2 <= 0 { assert.True(t, Ord.Equals(tc.a, tc.b), "If %v <= %v and %v <= %v, they should be equal", tc.a, tc.b, tc.b, tc.a) } } }) t.Run("transitivity: if x <= y and y <= z then x <= z", func(t *testing.T) { x := []byte("a") y := []byte("b") z := []byte("c") cmpXY := Ord.Compare(x, y) cmpYZ := Ord.Compare(y, z) cmpXZ := Ord.Compare(x, z) if cmpXY <= 0 && cmpYZ <= 0 { assert.True(t, cmpXZ <= 0, "If %v <= %v and %v <= %v, then %v <= %v", x, y, y, z, x, z) } }) t.Run("totality: either x <= y or y <= x", func(t *testing.T) { testCases := []struct { a, b []byte }{ {[]byte("abc"), []byte("abd")}, {[]byte("xyz"), []byte("abc")}, {[]byte{}, []byte("a")}, {[]byte{0x01}, []byte{0x02}}, } for _, tc := range testCases { cmp1 := Ord.Compare(tc.a, tc.b) cmp2 := Ord.Compare(tc.b, tc.a) assert.True(t, cmp1 <= 0 || cmp2 <= 0, "Either %v <= %v or %v <= %v must be true", tc.a, tc.b, tc.b, tc.a) } }) } // TestEdgeCases tests edge cases and boundary conditions func TestEdgeCases(t *testing.T) { t.Run("very large byte slices", func(t *testing.T) { large := make([]byte, 1000000) for i := range large { large[i] = byte(i % 256) } size := Size(large) assert.Equal(t, 1000000, size) str := ToString(large) assert.Equal(t, 1000000, len(str)) }) t.Run("concatenating many slices", func(t *testing.T) { slices := make([][]byte, 100) for i := range slices { slices[i] = []byte{byte(i)} } result := ConcatAll(slices...) assert.Equal(t, 100, Size(result)) }) t.Run("null bytes in slice", func(t *testing.T) { data := []byte{0x00, 0x01, 0x00, 0x02} size := Size(data) assert.Equal(t, 4, size) str := ToString(data) assert.Equal(t, 4, len(str)) }) t.Run("comparing slices with null bytes", func(t *testing.T) { a := []byte{0x00, 0x01} b := []byte{0x00, 0x02} assert.Equal(t, -1, Ord.Compare(a, b)) }) } // TestMonoidConcatPerformance tests concatenation performance characteristics func TestMonoidConcatPerformance(t *testing.T) { t.Run("ConcatAll vs repeated Concat", func(t *testing.T) { slices := [][]byte{ []byte("a"), []byte("b"), []byte("c"), []byte("d"), []byte("e"), } // Using ConcatAll result1 := ConcatAll(slices...) // Using repeated Concat result2 := Monoid.Empty() for _, s := range slices { result2 = Monoid.Concat(result2, s) } assert.Equal(t, result1, result2) assert.Equal(t, []byte("abcde"), result1) }) } // TestRoundTrip tests round-trip conversions func TestRoundTrip(t *testing.T) { t.Run("string to bytes to string", func(t *testing.T) { original := "Hello, World! 世界" bytes := []byte(original) result := ToString(bytes) assert.Equal(t, original, result) }) t.Run("bytes to string to bytes", func(t *testing.T) { original := []byte{0x48, 0x65, 0x6c, 0x6c, 0x6f} str := ToString(original) result := []byte(str) assert.Equal(t, original, result) }) } // TestConcatAllVariadic tests ConcatAll with various argument counts func TestConcatAllVariadic(t *testing.T) { t.Run("zero arguments", func(t *testing.T) { result := ConcatAll() assert.Equal(t, []byte{}, result) }) t.Run("one argument", func(t *testing.T) { result := ConcatAll([]byte("test")) assert.Equal(t, []byte("test"), result) }) t.Run("two arguments", func(t *testing.T) { result := ConcatAll([]byte("hello"), []byte("world")) assert.Equal(t, []byte("helloworld"), result) }) t.Run("many arguments", func(t *testing.T) { result := ConcatAll( []byte("a"), []byte("b"), []byte("c"), []byte("d"), []byte("e"), []byte("f"), []byte("g"), []byte("h"), []byte("i"), []byte("j"), ) assert.Equal(t, []byte("abcdefghij"), result) }) } // Benchmark tests func BenchmarkToString(b *testing.B) { data := []byte("Hello, World!") b.Run("small", func(b *testing.B) { for b.Loop() { _ = ToString(data) } }) b.Run("large", func(b *testing.B) { large := make([]byte, 10000) for i := range large { large[i] = byte(i % 256) } b.ResetTimer() for b.Loop() { _ = ToString(large) } }) } func BenchmarkSize(b *testing.B) { data := []byte("Hello, World!") for b.Loop() { _ = Size(data) } } func BenchmarkMonoidConcat(b *testing.B) { a := []byte("Hello") c := []byte(" World") b.Run("small slices", func(b *testing.B) { for b.Loop() { _ = Monoid.Concat(a, c) } }) b.Run("large slices", func(b *testing.B) { large1 := make([]byte, 10000) large2 := make([]byte, 10000) b.ResetTimer() for b.Loop() { _ = Monoid.Concat(large1, large2) } }) } func BenchmarkConcatAll(b *testing.B) { slices := [][]byte{ []byte("Hello"), []byte(" "), []byte("World"), []byte("!"), } b.Run("few slices", func(b *testing.B) { for b.Loop() { _ = ConcatAll(slices...) } }) b.Run("many slices", func(b *testing.B) { many := make([][]byte, 100) for i := range many { many[i] = []byte{byte(i)} } b.ResetTimer() for b.Loop() { _ = ConcatAll(many...) } }) } func BenchmarkOrdCompare(b *testing.B) { a := []byte("abc") c := []byte("abd") b.Run("equal", func(b *testing.B) { for b.Loop() { _ = Ord.Compare(a, a) } }) b.Run("different", func(b *testing.B) { for b.Loop() { _ = Ord.Compare(a, c) } }) b.Run("large slices", func(b *testing.B) { large1 := make([]byte, 10000) large2 := make([]byte, 10000) large2[9999] = 1 b.ResetTimer() for b.Loop() { _ = Ord.Compare(large1, large2) } }) } // Example tests func ExampleEmpty() { empty := Empty() println(len(empty)) // 0 // Output: } func ExampleToString() { str := ToString([]byte("hello")) println(str) // hello // Output: } func ExampleSize() { size := Size([]byte("hello")) println(size) // 5 // Output: } func ExampleConcatAll() { result := ConcatAll( []byte("Hello"), []byte(" "), []byte("World"), ) println(string(result)) // Hello World // Output: } func ExampleMonoid_concat() { result := Monoid.Concat([]byte("Hello"), []byte(" World")) println(string(result)) // Hello World // Output: } func ExampleOrd_compare() { cmp := Ord.Compare([]byte("abc"), []byte("abd")) println(cmp) // -1 (abc < abd) // Output: }