// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package identity import ( A "github.com/IBM/fp-go/v2/internal/apply" C "github.com/IBM/fp-go/v2/internal/chain" F "github.com/IBM/fp-go/v2/internal/functor" ) // Do creates an empty context of type [S] to be used with the [Bind] operation. // This is the starting point for do-notation style composition. // // Example: // // type State struct { // X int // Y int // } // result := identity.Do(State{}) func Do[S any]( empty S, ) S { return empty } // Bind attaches the result of a computation to a context [S1] to produce a context [S2]. // This enables sequential composition where each step can depend on the results of previous steps. // // The setter function takes the result of the computation and returns a function that // updates the context from S1 to S2. // // Example: // // type State struct { // X int // Y int // } // // result := F.Pipe2( // identity.Do(State{}), // identity.Bind( // func(x int) func(State) State { // return func(s State) State { s.X = x; return s } // }, // func(s State) int { // return 42 // }, // ), // identity.Bind( // func(y int) func(State) State { // return func(s State) State { s.Y = y; return s } // }, // func(s State) int { // // This can access s.X from the previous step // return s.X * 2 // }, // ), // ) // State{X: 42, Y: 84} func Bind[S1, S2, T any]( setter func(T) func(S1) S2, f func(S1) T, ) func(S1) S2 { return C.Bind( Chain[S1, S2], Map[T, S2], setter, f, ) } // Let attaches the result of a computation to a context [S1] to produce a context [S2] func Let[S1, S2, T any]( key func(T) func(S1) S2, f func(S1) T, ) func(S1) S2 { return F.Let( Map[S1, S2], key, f, ) } // LetTo attaches the a value to a context [S1] to produce a context [S2] func LetTo[S1, S2, B any]( key func(B) func(S1) S2, b B, ) func(S1) S2 { return F.LetTo( Map[S1, S2], key, b, ) } // BindTo initializes a new state [S1] from a value [T] func BindTo[S1, T any]( setter func(T) S1, ) func(T) S1 { return C.BindTo( Map[T, S1], setter, ) } // ApS attaches a value to a context [S1] to produce a context [S2] by considering // the context and the value concurrently (using Applicative rather than Monad). // This allows independent computations to be combined without one depending on the result of the other. // // Unlike Bind, which sequences operations, ApS can be used when operations are independent // and can conceptually run in parallel. // // Example: // // type State struct { // X int // Y int // } // // // These operations are independent and can be combined with ApS // result := F.Pipe2( // identity.Do(State{}), // identity.ApS( // func(x int) func(State) State { // return func(s State) State { s.X = x; return s } // }, // 42, // ), // identity.ApS( // func(y int) func(State) State { // return func(s State) State { s.Y = y; return s } // }, // 100, // ), // ) // State{X: 42, Y: 100} func ApS[S1, S2, T any]( setter func(T) func(S1) S2, fa T, ) func(S1) S2 { return A.ApS( Ap[S2, T], Map[S1, func(T) S2], setter, fa, ) }