// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ioeither import ( F "github.com/IBM/fp-go/v2/function" "github.com/IBM/fp-go/v2/internal/apply" "github.com/IBM/fp-go/v2/internal/chain" "github.com/IBM/fp-go/v2/internal/functor" L "github.com/IBM/fp-go/v2/optics/lens" ) // Do creates an empty context of type [S] to be used with the [Bind] operation. // This is the starting point for do-notation style composition. // // Example: // // type State struct { // User User // Posts []Post // } // result := ioeither.Do[error](State{}) func Do[E, S any]( empty S, ) IOEither[E, S] { return Of[E](empty) } // Bind attaches the result of a computation to a context [S1] to produce a context [S2]. // This enables sequential composition where each step can depend on the results of previous steps. // // The setter function takes the result of the computation and returns a function that // updates the context from S1 to S2. // // Example: // // type State struct { // User User // Posts []Post // } // // result := F.Pipe2( // ioeither.Do[error](State{}), // ioeither.Bind( // func(user User) func(State) State { // return func(s State) State { s.User = user; return s } // }, // func(s State) ioeither.IOEither[error, User] { // return ioeither.TryCatch(func() (User, error) { // return fetchUser() // }) // }, // ), // ioeither.Bind( // func(posts []Post) func(State) State { // return func(s State) State { s.Posts = posts; return s } // }, // func(s State) ioeither.IOEither[error, []Post] { // // This can access s.User from the previous step // return ioeither.TryCatch(func() ([]Post, error) { // return fetchPostsForUser(s.User.ID) // }) // }, // ), // ) func Bind[E, S1, S2, T any]( setter func(T) func(S1) S2, f Kleisli[E, S1, T], ) Operator[E, S1, S2] { return chain.Bind( Chain[E, S1, S2], Map[E, T, S2], setter, f, ) } // Let attaches the result of a computation to a context [S1] to produce a context [S2] func Let[E, S1, S2, T any]( setter func(T) func(S1) S2, f func(S1) T, ) Operator[E, S1, S2] { return functor.Let( Map[E, S1, S2], setter, f, ) } // LetTo attaches the a value to a context [S1] to produce a context [S2] func LetTo[E, S1, S2, T any]( setter func(T) func(S1) S2, b T, ) Operator[E, S1, S2] { return functor.LetTo( Map[E, S1, S2], setter, b, ) } // BindTo initializes a new state [S1] from a value [T] func BindTo[E, S1, T any]( setter func(T) S1, ) Operator[E, T, S1] { return chain.BindTo( Map[E, T, S1], setter, ) } // ApS attaches a value to a context [S1] to produce a context [S2] by considering // the context and the value concurrently (using Applicative rather than Monad). // This allows independent computations to be combined without one depending on the result of the other. // // Unlike Bind, which sequences operations, ApS can be used when operations are independent // and can conceptually run in parallel. // // Example: // // type State struct { // User User // Posts []Post // } // // // These operations are independent and can be combined with ApS // getUser := ioeither.Right[error](User{ID: 1, Name: "Alice"}) // getPosts := ioeither.Right[error]([]Post{{ID: 1, Title: "Hello"}}) // // result := F.Pipe2( // ioeither.Do[error](State{}), // ioeither.ApS( // func(user User) func(State) State { // return func(s State) State { s.User = user; return s } // }, // getUser, // ), // ioeither.ApS( // func(posts []Post) func(State) State { // return func(s State) State { s.Posts = posts; return s } // }, // getPosts, // ), // ) func ApS[E, S1, S2, T any]( setter func(T) func(S1) S2, fa IOEither[E, T], ) Operator[E, S1, S2] { return apply.ApS( Ap[S2, E, T], Map[E, S1, func(T) S2], setter, fa, ) } // ApSL attaches a value to a context using a lens-based setter. // This is a convenience function that combines ApS with a lens, allowing you to use // optics to update nested structures in a more composable way. // // The lens parameter provides both the getter and setter for a field within the structure S. // This eliminates the need to manually write setter functions. // // Example: // // type Config struct { // Host string // Port int // } // // portLens := lens.MakeLens( // func(c Config) int { return c.Port }, // func(c Config, p int) Config { c.Port = p; return c }, // ) // // result := F.Pipe2( // ioeither.Of[error](Config{Host: "localhost"}), // ioeither.ApSL(portLens, ioeither.Of[error](8080)), // ) func ApSL[E, S, T any]( lens L.Lens[S, T], fa IOEither[E, T], ) Operator[E, S, S] { return ApS(lens.Set, fa) } // BindL attaches the result of a computation to a context using a lens-based setter. // This is a convenience function that combines Bind with a lens, allowing you to use // optics to update nested structures based on their current values. // // The lens parameter provides both the getter and setter for a field within the structure S. // The computation function f receives the current value of the focused field and returns // an IOEither that produces the new value. // // Example: // // type Counter struct { // Value int // } // // valueLens := lens.MakeLens( // func(c Counter) int { return c.Value }, // func(c Counter, v int) Counter { c.Value = v; return c }, // ) // // increment := func(v int) ioeither.IOEither[error, int] { // return ioeither.TryCatch(func() (int, error) { // if v >= 100 { // return 0, errors.New("overflow") // } // return v + 1, nil // }) // } // // result := F.Pipe1( // ioeither.Of[error](Counter{Value: 42}), // ioeither.BindL(valueLens, increment), // ) func BindL[E, S, T any]( lens L.Lens[S, T], f Kleisli[E, T, T], ) Operator[E, S, S] { return Bind(lens.Set, F.Flow2(lens.Get, f)) } // LetL attaches the result of a pure computation to a context using a lens-based setter. // This is a convenience function that combines Let with a lens, allowing you to use // optics to update nested structures with pure transformations. // // The lens parameter provides both the getter and setter for a field within the structure S. // The transformation function f receives the current value of the focused field and returns // the new value directly (not wrapped in IOEither). // // Example: // // type Counter struct { // Value int // } // // valueLens := lens.MakeLens( // func(c Counter) int { return c.Value }, // func(c Counter, v int) Counter { c.Value = v; return c }, // ) // // double := func(v int) int { return v * 2 } // // result := F.Pipe1( // ioeither.Of[error](Counter{Value: 21}), // ioeither.LetL(valueLens, double), // ) func LetL[E, S, T any]( lens L.Lens[S, T], f func(T) T, ) Operator[E, S, S] { return Let[E](lens.Set, F.Flow2(lens.Get, f)) } // LetToL attaches a constant value to a context using a lens-based setter. // This is a convenience function that combines LetTo with a lens, allowing you to use // optics to set nested fields to specific values. // // The lens parameter provides the setter for a field within the structure S. // Unlike LetL which transforms the current value, LetToL simply replaces it with // the provided constant value b. // // Example: // // type Config struct { // Debug bool // Timeout int // } // // debugLens := lens.MakeLens( // func(c Config) bool { return c.Debug }, // func(c Config, d bool) Config { c.Debug = d; return c }, // ) // // result := F.Pipe1( // ioeither.Of[error](Config{Debug: true, Timeout: 30}), // ioeither.LetToL(debugLens, false), // ) func LetToL[E, S, T any]( lens L.Lens[S, T], b T, ) Operator[E, S, S] { return LetTo[E](lens.Set, b) }