// Copyright (c) 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package option import ( F "github.com/IBM/fp-go/v2/function" RA "github.com/IBM/fp-go/v2/internal/array" ) // TraverseArrayG transforms an array by applying a function that returns an Option to each element. // Returns Some containing the array of results if all operations succeed, None if any fails. // This is the generic version that works with custom slice types. // // Example: // // parse := func(s string) Option[int] { // n, err := strconv.Atoi(s) // if err != nil { return None[int]() } // return Some(n) // } // result := TraverseArrayG[[]string, []int](parse)([]string{"1", "2", "3"}) // Some([1, 2, 3]) // result := TraverseArrayG[[]string, []int](parse)([]string{"1", "x", "3"}) // None func TraverseArrayG[GA ~[]A, GB ~[]B, A, B any](f Kleisli[A, B]) Kleisli[GA, GB] { return RA.Traverse[GA]( Of[GB], Map[GB, func(B) GB], Ap[GB, B], f, ) } // TraverseArray transforms an array by applying a function that returns an Option to each element. // Returns Some containing the array of results if all operations succeed, None if any fails. // // Example: // // validate := func(x int) Option[int] { // if x > 0 { return Some(x * 2) } // return None[int]() // } // result := TraverseArray(validate)([]int{1, 2, 3}) // Some([2, 4, 6]) // result := TraverseArray(validate)([]int{1, -1, 3}) // None func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] { return TraverseArrayG[[]A, []B](f) } // TraverseArrayWithIndexG transforms an array by applying an indexed function that returns an Option. // The function receives both the index and the element. // This is the generic version that works with custom slice types. // // Example: // // f := func(i int, s string) Option[string] { // return Some(fmt.Sprintf("%d:%s", i, s)) // } // result := TraverseArrayWithIndexG[[]string, []string](f)([]string{"a", "b"}) // Some(["0:a", "1:b"]) func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, A, B any](f func(int, A) Option[B]) Kleisli[GA, GB] { return RA.TraverseWithIndex[GA]( Of[GB], Map[GB, func(B) GB], Ap[GB, B], f, ) } // TraverseArrayWithIndex transforms an array by applying an indexed function that returns an Option. // The function receives both the index and the element. // // Example: // // f := func(i int, x int) Option[int] { // if x > i { return Some(x) } // return None[int]() // } // result := TraverseArrayWithIndex(f)([]int{1, 2, 3}) // Some([1, 2, 3]) func TraverseArrayWithIndex[A, B any](f func(int, A) Option[B]) Kleisli[[]A, []B] { return TraverseArrayWithIndexG[[]A, []B](f) } // SequenceArrayG converts an array of Options into an Option of an array. // Returns Some containing all values if all Options are Some, None if any is None. // This is the generic version that works with custom slice types. // // Example: // // type MySlice []int // result := SequenceArrayG[MySlice]([]Option[int]{Some(1), Some(2)}) // Some(MySlice{1, 2}) // result := SequenceArrayG[MySlice]([]Option[int]{Some(1), None[int]()}) // None func SequenceArrayG[GA ~[]A, GOA ~[]Option[A], A any](ma GOA) Option[GA] { return TraverseArrayG[GOA, GA](F.Identity[Option[A]])(ma) } // SequenceArray converts an array of Options into an Option of an array. // Returns Some containing all values if all Options are Some, None if any is None. // // Example: // // result := SequenceArray([]Option[int]{Some(1), Some(2), Some(3)}) // Some([1, 2, 3]) // result := SequenceArray([]Option[int]{Some(1), None[int](), Some(3)}) // None func SequenceArray[A any](ma []Option[A]) Option[[]A] { return SequenceArrayG[[]A](ma) } // CompactArrayG filters an array of Options, keeping only the Some values and discarding None values. // This is the generic version that works with custom slice types. // // Example: // // type MySlice []int // input := []Option[int]{Some(1), None[int](), Some(3)} // result := CompactArrayG[[]Option[int], MySlice](input) // MySlice{1, 3} func CompactArrayG[A1 ~[]Option[A], A2 ~[]A, A any](fa A1) A2 { return RA.Reduce(fa, func(out A2, value Option[A]) A2 { return MonadFold(value, F.Constant(out), F.Bind1st(RA.Append[A2, A], out)) }, make(A2, 0, len(fa))) } // CompactArray filters an array of Options, keeping only the Some values and discarding None values. // // Example: // // input := []Option[int]{Some(1), None[int](), Some(3), Some(5), None[int]()} // result := CompactArray(input) // [1, 3, 5] func CompactArray[A any](fa []Option[A]) []A { return CompactArrayG[[]Option[A], []A](fa) }