// Copyright (c) 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package option import ( "github.com/IBM/fp-go/v2/function" A "github.com/IBM/fp-go/v2/internal/apply" C "github.com/IBM/fp-go/v2/internal/chain" F "github.com/IBM/fp-go/v2/internal/functor" L "github.com/IBM/fp-go/v2/optics/lens" ) // Do creates an empty context of type S to be used with the Bind operation. // This is the starting point for building up a context using do-notation style. // // Example: // // type Result struct { // x int // y string // } // result := Do(Result{}) func Do[S any]( empty S, ) Option[S] { return Of(empty) } // Bind attaches the result of a computation to a context S1 to produce a context S2. // This is used in do-notation style to sequentially build up a context. // // Example: // // type State struct { x int; y int } // result := F.Pipe2( // Do(State{}), // Bind(func(x int) func(State) State { // return func(s State) State { s.x = x; return s } // }, func(s State) Option[int] { return Some(42) }), // ) func Bind[S1, S2, A any]( setter func(A) func(S1) S2, f Kleisli[S1, A], ) Kleisli[Option[S1], S2] { return C.Bind( Chain[S1, S2], Map[A, S2], setter, f, ) } // Let attaches the result of a pure computation to a context S1 to produce a context S2. // Unlike Bind, the computation function returns a plain value, not an Option. // // Example: // // type State struct { x int; computed int } // result := F.Pipe2( // Do(State{x: 5}), // Let(func(c int) func(State) State { // return func(s State) State { s.computed = c; return s } // }, func(s State) int { return s.x * 2 }), // ) func Let[S1, S2, B any]( key func(B) func(S1) S2, f func(S1) B, ) Kleisli[Option[S1], S2] { return F.Let( Map[S1, S2], key, f, ) } // LetTo attaches a constant value to a context S1 to produce a context S2. // // Example: // // type State struct { x int; name string } // result := F.Pipe2( // Do(State{x: 5}), // LetTo(func(n string) func(State) State { // return func(s State) State { s.name = n; return s } // }, "example"), // ) func LetTo[S1, S2, B any]( key func(B) func(S1) S2, b B, ) Kleisli[Option[S1], S2] { return F.LetTo( Map[S1, S2], key, b, ) } // BindTo initializes a new state S1 from a value T. // This is typically used as the first operation after creating an Option value. // // Example: // // type State struct { value int } // result := F.Pipe1( // Some(42), // BindTo(func(x int) State { return State{value: x} }), // ) func BindTo[S1, T any]( setter func(T) S1, ) Kleisli[Option[T], S1] { return C.BindTo( Map[T, S1], setter, ) } // ApS attaches a value to a context S1 to produce a context S2 by considering the context and the value concurrently. // This uses the applicative functor pattern, allowing parallel composition. // // Example: // // type State struct { x int; y int } // result := F.Pipe2( // Do(State{}), // ApS(func(x int) func(State) State { // return func(s State) State { s.x = x; return s } // }, Some(42)), // ) func ApS[S1, S2, T any]( setter func(T) func(S1) S2, fa Option[T], ) Kleisli[Option[S1], S2] { return A.ApS( Ap[S2, T], Map[S1, func(T) S2], setter, fa, ) } // ApSL attaches a value to a context using a lens-based setter. // This is a convenience function that combines ApS with a lens, allowing you to use // optics to update nested structures in a more composable way. // // The lens parameter provides both the getter and setter for a field within the structure S. // This eliminates the need to manually write setter functions. // // Example: // // type Address struct { // Street string // City string // } // // type Person struct { // Name string // Address Address // } // // // Create a lens for the Address field // addressLens := lens.MakeLens( // func(p Person) Address { return p.Address }, // func(p Person, a Address) Person { p.Address = a; return p }, // ) // // // Use ApSL to update the address // result := F.Pipe2( // option.Some(Person{Name: "Alice"}), // option.ApSL( // addressLens, // option.Some(Address{Street: "Main St", City: "NYC"}), // ), // ) func ApSL[S, T any]( lens L.Lens[S, T], fa Option[T], ) Kleisli[Option[S], S] { return ApS(lens.Set, fa) } // BindL attaches the result of a computation to a context using a lens-based setter. // This is a convenience function that combines Bind with a lens, allowing you to use // optics to update nested structures based on their current values. // // The lens parameter provides both the getter and setter for a field within the structure S. // The computation function f receives the current value of the focused field and returns // an Option that produces the new value. // // Unlike ApSL, BindL uses monadic sequencing, meaning the computation f can depend on // the current value of the focused field. // // Example: // // type Counter struct { // Value int // } // // valueLens := lens.MakeLens( // func(c Counter) int { return c.Value }, // func(c Counter, v int) Counter { c.Value = v; return c }, // ) // // // Increment the counter, but return None if it would exceed 100 // increment := func(v int) option.Option[int] { // if v >= 100 { // return option.None[int]() // } // return option.Some(v + 1) // } // // result := F.Pipe1( // option.Some(Counter{Value: 42}), // option.BindL(valueLens, increment), // ) // Some(Counter{Value: 43}) func BindL[S, T any]( lens L.Lens[S, T], f Kleisli[T, T], ) Kleisli[Option[S], S] { return Bind(lens.Set, function.Flow2(lens.Get, f)) } // LetL attaches the result of a pure computation to a context using a lens-based setter. // This is a convenience function that combines Let with a lens, allowing you to use // optics to update nested structures with pure transformations. // // The lens parameter provides both the getter and setter for a field within the structure S. // The transformation function f receives the current value of the focused field and returns // the new value directly (not wrapped in Option). // // This is useful for pure transformations that cannot fail, such as mathematical operations, // string manipulations, or other deterministic updates. // // Example: // // type Counter struct { // Value int // } // // valueLens := lens.MakeLens( // func(c Counter) int { return c.Value }, // func(c Counter, v int) Counter { c.Value = v; return c }, // ) // // // Double the counter value // double := func(v int) int { return v * 2 } // // result := F.Pipe1( // option.Some(Counter{Value: 21}), // option.LetL(valueLens, double), // ) // Some(Counter{Value: 42}) func LetL[S, T any]( lens L.Lens[S, T], f func(T) T, ) Kleisli[Option[S], S] { return Let(lens.Set, function.Flow2(lens.Get, f)) } // LetToL attaches a constant value to a context using a lens-based setter. // This is a convenience function that combines LetTo with a lens, allowing you to use // optics to set nested fields to specific values. // // The lens parameter provides the setter for a field within the structure S. // Unlike LetL which transforms the current value, LetToL simply replaces it with // the provided constant value b. // // This is useful for resetting fields, initializing values, or setting fields to // predetermined constants. // // Example: // // type Config struct { // Debug bool // Timeout int // } // // debugLens := lens.MakeLens( // func(c Config) bool { return c.Debug }, // func(c Config, d bool) Config { c.Debug = d; return c }, // ) // // result := F.Pipe1( // option.Some(Config{Debug: true, Timeout: 30}), // option.LetToL(debugLens, false), // ) // Some(Config{Debug: false, Timeout: 30}) func LetToL[S, T any]( lens L.Lens[S, T], b T, ) Kleisli[Option[S], S] { return LetTo(lens.Set, b) }