// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package generic import ( A "github.com/IBM/fp-go/v2/internal/apply" C "github.com/IBM/fp-go/v2/internal/chain" F "github.com/IBM/fp-go/v2/internal/functor" O "github.com/IBM/fp-go/v2/option" ) // Do creates an empty context of type [S] to be used with the [Bind] operation. // This is the starting point for do-notation style composition. // // Example: // // type State struct { // Config Config // User User // } // type Env struct { // ConfigService ConfigService // UserService UserService // } // result := generic.Do[ReaderEither[Env, error, State], Env, error, State](State{}) func Do[GS ~func(R) O.Option[S], R, S any]( empty S, ) GS { return Of[GS](empty) } // Bind attaches the result of a computation to a context [S1] to produce a context [S2]. // This enables sequential composition where each step can depend on the results of previous steps // and access the shared environment. // // The setter function takes the result of the computation and returns a function that // updates the context from S1 to S2. // // Example: // // type State struct { // Config Config // User User // } // type Env struct { // ConfigService ConfigService // UserService UserService // } // // result := F.Pipe2( // generic.Do[ReaderEither[Env, error, State], Env, error, State](State{}), // generic.Bind[ReaderEither[Env, error, State], ReaderEither[Env, error, State], ReaderEither[Env, error, Config], Env, error, State, State, Config]( // func(cfg Config) func(State) State { // return func(s State) State { s.Config = cfg; return s } // }, // func(s State) ReaderEither[Env, error, Config] { // return func(env Env) either.Either[error, Config] { // return env.ConfigService.Load() // } // }, // ), // generic.Bind[ReaderEither[Env, error, State], ReaderEither[Env, error, State], ReaderEither[Env, error, User], Env, error, State, State, User]( // func(user User) func(State) State { // return func(s State) State { s.User = user; return s } // }, // func(s State) ReaderEither[Env, error, User] { // // This can access s.Config from the previous step // return func(env Env) either.Either[error, User] { // return env.UserService.GetUserForConfig(s.Config) // } // }, // ), // ) func Bind[GS1 ~func(R) O.Option[S1], GS2 ~func(R) O.Option[S2], GT ~func(R) O.Option[T], R, S1, S2, T any]( setter func(T) func(S1) S2, f func(S1) GT, ) func(GS1) GS2 { return C.Bind( Chain[GS1, GS2, R, S1, S2], Map[GT, GS2, R, T, S2], setter, f, ) } // Let attaches the result of a computation to a context [S1] to produce a context [S2] func Let[GS1 ~func(R) O.Option[S1], GS2 ~func(R) O.Option[S2], R, S1, S2, T any]( key func(T) func(S1) S2, f func(S1) T, ) func(GS1) GS2 { return F.Let( Map[GS1, GS2, R, S1, S2], key, f, ) } // LetTo attaches the a value to a context [S1] to produce a context [S2] func LetTo[GS1 ~func(R) O.Option[S1], GS2 ~func(R) O.Option[S2], R, S1, S2, B any]( key func(B) func(S1) S2, b B, ) func(GS1) GS2 { return F.LetTo( Map[GS1, GS2, R, S1, S2], key, b, ) } // BindTo initializes a new state [S1] from a value [T] func BindTo[GS1 ~func(R) O.Option[S1], GT ~func(R) O.Option[T], R, S1, T any]( setter func(T) S1, ) func(GT) GS1 { return C.BindTo( Map[GT, GS1, R, T, S1], setter, ) } // ApS attaches a value to a context [S1] to produce a context [S2] by considering // the context and the value concurrently (using Applicative rather than Monad). // This allows independent computations to be combined without one depending on the result of the other. // // Unlike Bind, which sequences operations, ApS can be used when operations are independent // and can conceptually run in parallel. // // Example: // // type State struct { // Config Config // User User // } // type Env struct { // ConfigService ConfigService // UserService UserService // } // // // These operations are independent and can be combined with ApS // getConfig := func(env Env) either.Either[error, Config] { // return env.ConfigService.Load() // } // getUser := func(env Env) either.Either[error, User] { // return env.UserService.GetCurrent() // } // // result := F.Pipe2( // generic.Do[ReaderEither[Env, error, State], Env, error, State](State{}), // generic.ApS[...]( // func(cfg Config) func(State) State { // return func(s State) State { s.Config = cfg; return s } // }, // getConfig, // ), // generic.ApS[...]( // func(user User) func(State) State { // return func(s State) State { s.User = user; return s } // }, // getUser, // ), // ) func ApS[GS1 ~func(R) O.Option[S1], GS2 ~func(R) O.Option[S2], GT ~func(R) O.Option[T], R, S1, S2, T any]( setter func(T) func(S1) S2, fa GT, ) func(GS1) GS2 { return A.ApS( Ap[GT, GS2, func(R) O.Option[func(T) S2], R, T, S2], Map[GS1, func(R) O.Option[func(T) S2], R, S1, func(T) S2], setter, fa, ) }