// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package endomorphism import ( "github.com/IBM/fp-go/v2/function" "github.com/IBM/fp-go/v2/identity" ) // MonadAp applies an endomorphism to a value in a monadic context. // // This function applies the endomorphism fab to the value fa, returning the result. // It's the monadic application operation for endomorphisms. // // Parameters: // - fab: An endomorphism to apply // - fa: The value to apply the endomorphism to // // Returns: // - The result of applying fab to fa // // Example: // // double := func(x int) int { return x * 2 } // result := endomorphism.MonadAp(double, 5) // Returns: 10 func MonadAp[A any](fab Endomorphism[A], fa A) A { return identity.MonadAp(fab, fa) } // Ap returns a function that applies a value to an endomorphism. // // This is the curried version of MonadAp. It takes a value and returns a function // that applies that value to any endomorphism. // // Parameters: // - fa: The value to be applied // // Returns: // - A function that takes an endomorphism and applies fa to it // // Example: // // applyFive := endomorphism.Ap(5) // double := func(x int) int { return x * 2 } // result := applyFive(double) // Returns: 10 func Ap[A any](fa A) func(Endomorphism[A]) A { return identity.Ap[A](fa) } // MonadCompose composes two endomorphisms, executing them from right to left. // // MonadCompose creates a new endomorphism that applies f2 first, then f1. // This follows the mathematical notation of function composition: (f1 ∘ f2)(x) = f1(f2(x)) // // IMPORTANT: The execution order is RIGHT-TO-LEFT: // - f2 is applied first to the input // - f1 is applied to the result of f2 // // This is different from Chain/MonadChain which executes LEFT-TO-RIGHT. // // Parameters: // - f1: The second function to apply (outer function) // - f2: The first function to apply (inner function) // // Returns: // - A new endomorphism that applies f2, then f1 // // Example: // // double := func(x int) int { return x * 2 } // increment := func(x int) int { return x + 1 } // // // MonadCompose executes RIGHT-TO-LEFT: increment first, then double // composed := endomorphism.MonadCompose(double, increment) // result := composed(5) // (5 + 1) * 2 = 12 // // // Compare with Chain which executes LEFT-TO-RIGHT: // chained := endomorphism.MonadChain(double, increment) // result2 := chained(5) // (5 * 2) + 1 = 11 func MonadCompose[A any](f, g Endomorphism[A]) Endomorphism[A] { return function.Flow2(g, f) } // Compose returns a function that composes an endomorphism with another, executing right to left. // // This is the curried version of MonadCompose. It takes an endomorphism g and returns // a function that composes any endomorphism with g, applying g first (inner function), // then the input endomorphism (outer function). // // IMPORTANT: Execution order is RIGHT-TO-LEFT (mathematical composition): // - g is applied first to the input // - The endomorphism passed to the returned function is applied to the result of g // // This follows the mathematical composition notation where Compose(g)(f) = f ∘ g // // Parameters: // - g: The first endomorphism to apply (inner function) // // Returns: // - A function that takes an endomorphism f and composes it with g (right-to-left) // // Example: // // increment := func(x int) int { return x + 1 } // composeWithIncrement := endomorphism.Compose(increment) // double := func(x int) int { return x * 2 } // // // Composes double with increment (RIGHT-TO-LEFT: increment first, then double) // composed := composeWithIncrement(double) // result := composed(5) // (5 + 1) * 2 = 12 // // // Compare with Chain which executes LEFT-TO-RIGHT: // chainWithIncrement := endomorphism.Chain(increment) // chained := chainWithIncrement(double) // result2 := chained(5) // (5 * 2) + 1 = 11 func Compose[A any](g Endomorphism[A]) Endomorphism[Endomorphism[A]] { return function.Bind2nd(MonadCompose, g) } // MonadChain chains two endomorphisms together, executing them from left to right. // // This is the monadic bind operation for endomorphisms. It composes two endomorphisms // ma and f, returning a new endomorphism that applies ma first, then f. // // IMPORTANT: The execution order is LEFT-TO-RIGHT: // - f is applied first to the input // - g is applied to the result of ma // // This is different from Compose which executes RIGHT-TO-LEFT. // // Parameters: // - f: The first endomorphism to apply // - g: The second endomorphism to apply // // Returns: // - A new endomorphism that applies ma, then f // // Example: // // double := func(x int) int { return x * 2 } // increment := func(x int) int { return x + 1 } // // // MonadChain executes LEFT-TO-RIGHT: double first, then increment // chained := endomorphism.MonadChain(double, increment) // result := chained(5) // (5 * 2) + 1 = 11 // // // Compare with Compose which executes RIGHT-TO-LEFT: // composed := endomorphism.Compose(increment, double) // result2 := composed(5) // (5 * 2) + 1 = 11 (same result, different parameter order) func MonadChain[A any](f Endomorphism[A], g Endomorphism[A]) Endomorphism[A] { return function.Flow2(f, g) } // Chain returns a function that chains an endomorphism with another, executing left to right. // // This is the curried version of MonadChain. It takes an endomorphism f and returns // a function that chains any endomorphism with f, applying the input endomorphism first, // then f. // // IMPORTANT: Execution order is LEFT-TO-RIGHT: // - The endomorphism passed to the returned function is applied first // - f is applied to the result // // Parameters: // - f: The second endomorphism to apply // // Returns: // - A function that takes an endomorphism and chains it with f (left-to-right) // // Example: // // increment := func(x int) int { return x + 1 } // chainWithIncrement := endomorphism.Chain(increment) // double := func(x int) int { return x * 2 } // // // Chains double (first) with increment (second) // chained := chainWithIncrement(double) // result := chained(5) // (5 * 2) + 1 = 11 func Chain[A any](f Endomorphism[A]) Endomorphism[Endomorphism[A]] { return function.Bind2nd(MonadChain, f) }