// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package reader import ( F "github.com/IBM/fp-go/v2/function" "github.com/IBM/fp-go/v2/internal/apply" "github.com/IBM/fp-go/v2/internal/chain" "github.com/IBM/fp-go/v2/internal/functor" L "github.com/IBM/fp-go/v2/optics/lens" ) // Do creates an empty context of type [S] to be used with the [Bind] operation. // This is the starting point for the do-notation style of composing Reader computations. // // Example: // // type State struct { // Name string // Age int // } // type Config struct { // DefaultName string // DefaultAge int // } // // result := function.Pipe3( // reader.Do[Config](State{}), // reader.Bind( // func(name string) func(State) State { // return func(s State) State { s.Name = name; return s } // }, // func(s State) reader.Reader[Config, string] { // return reader.Asks(func(c Config) string { return c.DefaultName }) // }, // ), // reader.Bind( // func(age int) func(State) State { // return func(s State) State { s.Age = age; return s } // }, // func(s State) reader.Reader[Config, int] { // return reader.Asks(func(c Config) int { return c.DefaultAge }) // }, // ), // ) func Do[R, S any]( empty S, ) Reader[R, S] { return Of[R](empty) } // Bind attaches the result of a computation to a context [S1] to produce a context [S2]. // This enables building up complex computations in a pipeline where each step can depend // on the results of previous steps and access the shared environment. // // The setter function takes the result of the computation and returns a function that // updates the context from S1 to S2. // // Example: // // type State struct { Value int } // type Config struct { Increment int } // // addIncrement := reader.Bind( // func(inc int) func(State) State { // return func(s State) State { return State{Value: s.Value + inc} } // }, // func(s State) reader.Reader[Config, int] { // return reader.Asks(func(c Config) int { return c.Increment }) // }, // ) func Bind[R, S1, S2, T any]( setter func(T) func(S1) S2, f Kleisli[R, S1, T], ) Operator[R, S1, S2] { return chain.Bind( Chain[R, S1, S2], Map[R, T, S2], setter, f, ) } // Let attaches the result of a pure computation to a context [S1] to produce a context [S2]. // Unlike Bind, the computation function f does not return a Reader, just a plain value. // This is useful for transformations that don't need to access the environment. // // Example: // // type State struct { // FirstName string // LastName string // FullName string // } // // addFullName := reader.Let( // func(full string) func(State) State { // return func(s State) State { s.FullName = full; return s } // }, // func(s State) string { // return s.FirstName + " " + s.LastName // }, // ) func Let[R, S1, S2, T any]( setter func(T) func(S1) S2, f func(S1) T, ) Operator[R, S1, S2] { return functor.Let( Map[R, S1, S2], setter, f, ) } // LetTo attaches a constant value to a context [S1] to produce a context [S2]. // This is useful for adding fixed values to the context without any computation. // // Example: // // type State struct { // Name string // Version string // } // // addVersion := reader.LetTo( // func(v string) func(State) State { // return func(s State) State { s.Version = v; return s } // }, // "1.0.0", // ) func LetTo[R, S1, S2, T any]( setter func(T) func(S1) S2, b T, ) Operator[R, S1, S2] { return functor.LetTo( Map[R, S1, S2], setter, b, ) } // BindTo initializes a new state [S1] from a value [T]. // This is typically used to start a binding chain by wrapping an initial Reader value // into a state structure. // // Example: // // type State struct { Name string } // type Config struct { DefaultName string } // // getName := reader.Asks(func(c Config) string { return c.DefaultName }) // initState := reader.BindTo(func(name string) State { // return State{Name: name} // }) // result := initState(getName) func BindTo[R, S1, T any]( setter func(T) S1, ) Operator[R, T, S1] { return chain.BindTo( Map[R, T, S1], setter, ) } // ApS attaches a value to a context [S1] to produce a context [S2] by considering // the context and the value concurrently (using Applicative rather than Monad). // // This is useful when you have independent computations that can be combined without // one depending on the result of the other. // // Example: // // type State struct { // Host string // Port int // } // type Config struct { // Host string // Port int // } // // getPort := reader.Asks(func(c Config) int { return c.Port }) // addPort := reader.ApS( // func(port int) func(State) State { // return func(s State) State { s.Port = port; return s } // }, // getPort, // ) func ApS[R, S1, S2, T any]( setter func(T) func(S1) S2, fa Reader[R, T], ) Operator[R, S1, S2] { return apply.ApS( Ap[S2, R, T], Map[R, S1, func(T) S2], setter, fa, ) } // ApSL attaches a value to a context using a lens-based setter. // This is a convenience function that combines ApS with a lens, allowing you to use // optics to update nested structures in a more composable way. // // The lens parameter provides both the getter and setter for a field within the structure S. // This eliminates the need to manually write setter functions. // // Example: // // type State struct { // Host string // Port int // } // type Config struct { // DefaultHost string // DefaultPort int // } // // portLens := lens.MakeLens( // func(s State) int { return s.Port }, // func(s State, p int) State { s.Port = p; return s }, // ) // // getPort := reader.Asks(func(c Config) int { return c.DefaultPort }) // result := F.Pipe2( // reader.Of[Config](State{Host: "localhost"}), // reader.ApSL(portLens, getPort), // ) func ApSL[R, S, T any]( lens L.Lens[S, T], fa Reader[R, T], ) Operator[R, S, S] { return ApS(lens.Set, fa) } // BindL is a variant of Bind that uses a lens to focus on a specific part of the context. // This provides a more ergonomic API when working with nested structures, eliminating // the need to manually write setter functions. // // The lens parameter provides both a getter and setter for a field of type T within // the context S. The function f receives the current value of the focused field and // returns a Reader computation that produces an updated value. // // Example: // // type State struct { // Config ConfigData // Status string // } // type ConfigData struct { // Host string // Port int // } // type Env struct { // DefaultHost string // DefaultPort int // } // // configLens := lens.MakeLens( // func(s State) ConfigData { return s.Config }, // func(s State, c ConfigData) State { s.Config = c; return s }, // ) // // result := F.Pipe2( // reader.Do[Env](State{}), // reader.BindL(configLens, func(cfg ConfigData) reader.Reader[Env, ConfigData] { // return reader.Asks(func(e Env) ConfigData { // return ConfigData{Host: e.DefaultHost, Port: e.DefaultPort} // }) // }), // ) func BindL[R, S, T any]( lens L.Lens[S, T], f Kleisli[R, T, T], ) Operator[R, S, S] { return Bind[R, S, S, T](lens.Set, F.Flow2(lens.Get, f)) } // LetL is a variant of Let that uses a lens to focus on a specific part of the context. // This provides a more ergonomic API when working with nested structures, eliminating // the need to manually write setter functions. // // The lens parameter provides both a getter and setter for a field of type T within // the context S. The function f receives the current value of the focused field and // returns a new value (without wrapping in a Reader). // // Example: // // type State struct { // Config ConfigData // Status string // } // type ConfigData struct { // Host string // Port int // } // // configLens := lens.MakeLens( // func(s State) ConfigData { return s.Config }, // func(s State, c ConfigData) State { s.Config = c; return s }, // ) // // result := F.Pipe2( // reader.Do[any](State{Config: ConfigData{Host: "localhost"}}), // reader.LetL(configLens, func(cfg ConfigData) ConfigData { // cfg.Port = 8080 // return cfg // }), // ) func LetL[R, S, T any]( lens L.Lens[S, T], f func(T) T, ) Operator[R, S, S] { return Let[R, S, S, T](lens.Set, F.Flow2(lens.Get, f)) } // LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context. // This provides a more ergonomic API when working with nested structures, eliminating // the need to manually write setter functions. // // The lens parameter provides both a getter and setter for a field of type T within // the context S. The value b is set directly to the focused field. // // Example: // // type State struct { // Config ConfigData // Status string // } // type ConfigData struct { // Host string // Port int // } // // configLens := lens.MakeLens( // func(s State) ConfigData { return s.Config }, // func(s State, c ConfigData) State { s.Config = c; return s }, // ) // // newConfig := ConfigData{Host: "localhost", Port: 8080} // result := F.Pipe2( // reader.Do[any](State{}), // reader.LetToL(configLens, newConfig), // ) func LetToL[R, S, T any]( lens L.Lens[S, T], b T, ) Operator[R, S, S] { return LetTo[R, S, S, T](lens.Set, b) }