// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package record import ( Mo "github.com/IBM/fp-go/v2/monoid" G "github.com/IBM/fp-go/v2/record/generic" ) // Do creates an empty context of type [S] to be used with the [Bind] operation. // This is the starting point for do-notation style composition. // // Example: // // type State struct { // Name string // Count int // } // result := record.Do[string, State]() func Do[K comparable, S any]() map[K]S { return G.Do[map[K]S, K, S]() } // Bind attaches the result of a computation to a context [S1] to produce a context [S2]. // This enables sequential composition where each step can depend on the results of previous steps. // For records, this merges values by key. // // The setter function takes the result of the computation and returns a function that // updates the context from S1 to S2. // // Example: // // type State struct { // Name string // Count int // } // // result := F.Pipe2( // record.Do[string, State](), // record.Bind(monoid.Record[string, State]())( // func(name string) func(State) State { // return func(s State) State { s.Name = name; return s } // }, // func(s State) map[string]string { // return map[string]string{"a": "Alice", "b": "Bob"} // }, // ), // record.Bind(monoid.Record[string, State]())( // func(count int) func(State) State { // return func(s State) State { s.Count = count; return s } // }, // func(s State) map[string]int { // // This can access s.Name from the previous step // return map[string]int{"a": len(s.Name), "b": len(s.Name) * 2} // }, // ), // ) func Bind[S1, T any, K comparable, S2 any](m Mo.Monoid[map[K]S2]) func(setter func(T) func(S1) S2, f func(S1) map[K]T) func(map[K]S1) map[K]S2 { return G.Bind[map[K]S1, map[K]S2, map[K]T, K, S1, S2, T](m) } // Let attaches the result of a computation to a context [S1] to produce a context [S2] func Let[S1, T any, K comparable, S2 any]( setter func(T) func(S1) S2, f func(S1) T, ) func(map[K]S1) map[K]S2 { return G.Let[map[K]S1, map[K]S2, K, S1, S2, T](setter, f) } // LetTo attaches the a value to a context [S1] to produce a context [S2] func LetTo[S1, T any, K comparable, S2 any]( setter func(T) func(S1) S2, b T, ) func(map[K]S1) map[K]S2 { return G.LetTo[map[K]S1, map[K]S2, K, S1, S2, T](setter, b) } // BindTo initializes a new state [S1] from a value [T] func BindTo[S1, T any, K comparable](setter func(T) S1) func(map[K]T) map[K]S1 { return G.BindTo[map[K]S1, map[K]T, K, S1, T](setter) } // ApS attaches a value to a context [S1] to produce a context [S2] by considering // the context and the value concurrently (using Applicative rather than Monad). // This allows independent computations to be combined without one depending on the result of the other. // // Unlike Bind, which sequences operations, ApS can be used when operations are independent // and can conceptually run in parallel. // // Example: // // type State struct { // Name string // Count int // } // // // These operations are independent and can be combined with ApS // names := map[string]string{"a": "Alice", "b": "Bob"} // counts := map[string]int{"a": 10, "b": 20} // // result := F.Pipe2( // record.Do[string, State](), // record.ApS(monoid.Record[string, State]())( // func(name string) func(State) State { // return func(s State) State { s.Name = name; return s } // }, // names, // ), // record.ApS(monoid.Record[string, State]())( // func(count int) func(State) State { // return func(s State) State { s.Count = count; return s } // }, // counts, // ), // ) // map[string]State{"a": {Name: "Alice", Count: 10}, "b": {Name: "Bob", Count: 20}} func ApS[S1, T any, K comparable, S2 any](m Mo.Monoid[map[K]S2]) func(setter func(T) func(S1) S2, fa map[K]T) func(map[K]S1) map[K]S2 { return G.ApS[map[K]S1, map[K]S2, map[K]T, K, S1, S2, T](m) }