// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package iooption import ( "github.com/IBM/fp-go/v2/internal/apply" "github.com/IBM/fp-go/v2/internal/chain" "github.com/IBM/fp-go/v2/internal/functor" L "github.com/IBM/fp-go/v2/optics/lens" ) // Do creates an empty context of type [S] to be used with the [Bind] operation. // This is the starting point for do-notation style composition. // // Example: // // type State struct { // Name string // Age int // } // result := iooption.Do(State{}) func Do[S any]( empty S, ) IOOption[S] { return Of(empty) } // Bind attaches the result of a computation to a context [S1] to produce a context [S2]. // This enables sequential composition where each step can depend on the results of previous steps. // // The setter function takes the result of the computation and returns a function that // updates the context from S1 to S2. // // Example: // // type State struct { // Name string // Age int // } // // result := F.Pipe2( // iooption.Do(State{}), // iooption.Bind( // func(name string) func(State) State { // return func(s State) State { s.Name = name; return s } // }, // func(s State) iooption.IOOption[string] { // return iooption.FromIO(io.Of("Alice")) // }, // ), // iooption.Bind( // func(age int) func(State) State { // return func(s State) State { s.Age = age; return s } // }, // func(s State) iooption.IOOption[int] { // // This can access s.Name from the previous step // return iooption.FromIO(io.Of(len(s.Name) * 10)) // }, // ), // ) func Bind[S1, S2, T any]( setter func(T) func(S1) S2, f Kleisli[S1, T], ) Kleisli[IOOption[S1], S2] { return chain.Bind( Chain[S1, S2], Map[T, S2], setter, f, ) } // Let attaches the result of a computation to a context [S1] to produce a context [S2] func Let[S1, S2, T any]( setter func(T) func(S1) S2, f func(S1) T, ) Kleisli[IOOption[S1], S2] { return functor.Let( Map[S1, S2], setter, f, ) } // LetTo attaches the a value to a context [S1] to produce a context [S2] func LetTo[S1, S2, T any]( setter func(T) func(S1) S2, b T, ) Kleisli[IOOption[S1], S2] { return functor.LetTo( Map[S1, S2], setter, b, ) } // BindTo initializes a new state [S1] from a value [T] func BindTo[S1, T any]( setter func(T) S1, ) Kleisli[IOOption[T], S1] { return chain.BindTo( Map[T, S1], setter, ) } // ApS attaches a value to a context [S1] to produce a context [S2] by considering // the context and the value concurrently (using Applicative rather than Monad). // This allows independent computations to be combined without one depending on the result of the other. // // Unlike Bind, which sequences operations, ApS can be used when operations are independent // and can conceptually run in parallel. // // Example: // // type State struct { // Name string // Age int // } // // // These operations are independent and can be combined with ApS // getName := iooption.Some("Alice") // getAge := iooption.Some(30) // // result := F.Pipe2( // iooption.Do(State{}), // iooption.ApS( // func(name string) func(State) State { // return func(s State) State { s.Name = name; return s } // }, // getName, // ), // iooption.ApS( // func(age int) func(State) State { // return func(s State) State { s.Age = age; return s } // }, // getAge, // ), // ) func ApS[S1, S2, T any]( setter func(T) func(S1) S2, fa IOOption[T], ) Kleisli[IOOption[S1], S2] { return apply.ApS( Ap[S2, T], Map[S1, func(T) S2], setter, fa, ) } // ApSL attaches a value to a context using a lens-based setter. // This is a convenience function that combines ApS with a lens, allowing you to use // optics to update nested structures in a more composable way. // // The lens parameter provides both the getter and setter for a field within the structure S. // This eliminates the need to manually write setter functions. // // Example: // // type State struct { // Name string // Age int // } // // ageLens := lens.MakeLens( // func(s State) int { return s.Age }, // func(s State, a int) State { s.Age = a; return s }, // ) // // result := F.Pipe2( // iooption.Of(State{Name: "Alice"}), // iooption.ApSL(ageLens, iooption.Some(30)), // ) func ApSL[S, T any]( lens L.Lens[S, T], fa IOOption[T], ) Kleisli[IOOption[S], S] { return ApS(lens.Set, fa) } // BindL attaches the result of a computation to a context using a lens-based setter. // This is a convenience function that combines Bind with a lens, allowing you to use // optics to update nested structures based on their current values. // // The lens parameter provides both the getter and setter for a field within the structure S. // The computation function f receives the current value of the focused field and returns // an IOOption that produces the new value. // // Example: // // type Counter struct { // Value int // } // // valueLens := lens.MakeLens( // func(c Counter) int { return c.Value }, // func(c Counter, v int) Counter { c.Value = v; return c }, // ) // // // Increment the counter, but return None if it would exceed 100 // increment := func(v int) iooption.IOOption[int] { // return iooption.FromIO(io.Of(v + 1)) // } // // result := F.Pipe1( // iooption.Of(Counter{Value: 42}), // iooption.BindL(valueLens, increment), // ) // IOOption[Counter{Value: 43}] func BindL[S, T any]( lens L.Lens[S, T], f Kleisli[T, T], ) Kleisli[IOOption[S], S] { return Bind[S, S, T](lens.Set, func(s S) IOOption[T] { return f(lens.Get(s)) }) } // LetL attaches the result of a pure computation to a context using a lens-based setter. // This is a convenience function that combines Let with a lens, allowing you to use // optics to update nested structures with pure transformations. // // The lens parameter provides both the getter and setter for a field within the structure S. // The transformation function f receives the current value of the focused field and returns // the new value directly (not wrapped in IOOption). // // Example: // // type Counter struct { // Value int // } // // valueLens := lens.MakeLens( // func(c Counter) int { return c.Value }, // func(c Counter, v int) Counter { c.Value = v; return c }, // ) // // // Double the counter value // double := func(v int) int { return v * 2 } // // result := F.Pipe1( // iooption.Of(Counter{Value: 21}), // iooption.LetL(valueLens, double), // ) // IOOption[Counter{Value: 42}] func LetL[S, T any]( lens L.Lens[S, T], f func(T) T, ) Kleisli[IOOption[S], S] { return Let[S, S, T](lens.Set, func(s S) T { return f(lens.Get(s)) }) } // LetToL attaches a constant value to a context using a lens-based setter. // This is a convenience function that combines LetTo with a lens, allowing you to use // optics to set nested fields to specific values. // // The lens parameter provides the setter for a field within the structure S. // Unlike LetL which transforms the current value, LetToL simply replaces it with // the provided constant value b. // // Example: // // type Config struct { // Debug bool // Timeout int // } // // debugLens := lens.MakeLens( // func(c Config) bool { return c.Debug }, // func(c Config, d bool) Config { c.Debug = d; return c }, // ) // // result := F.Pipe1( // iooption.Of(Config{Debug: true, Timeout: 30}), // iooption.LetToL(debugLens, false), // ) // IOOption[Config{Debug: false, Timeout: 30}] func LetToL[S, T any]( lens L.Lens[S, T], b T, ) Kleisli[IOOption[S], S] { return LetTo[S, S, T](lens.Set, b) }