// Copyright (c) 2023 - 2025 IBM Corp. // All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package stateless import ( G "github.com/IBM/fp-go/v2/iterator/stateless/generic" ) // Do creates an empty context of type [S] to be used with the [Bind] operation. // This is the starting point for do-notation style composition. // // Example: // // type State struct { // X int // Y int // } // result := stateless.Do(State{}) func Do[S any]( empty S, ) Iterator[S] { return G.Do[Iterator[S]](empty) } // Bind attaches the result of a computation to a context [S1] to produce a context [S2]. // This enables sequential composition where each step can depend on the results of previous steps. // For iterators, this produces the cartesian product of all values. // // The setter function takes the result of the computation and returns a function that // updates the context from S1 to S2. // // Example: // // type State struct { // X int // Y int // } // // result := F.Pipe2( // stateless.Do(State{}), // stateless.Bind( // func(x int) func(State) State { // return func(s State) State { s.X = x; return s } // }, // func(s State) stateless.Iterator[int] { // return stateless.Of(1, 2, 3) // }, // ), // stateless.Bind( // func(y int) func(State) State { // return func(s State) State { s.Y = y; return s } // }, // func(s State) stateless.Iterator[int] { // // This can access s.X from the previous step // return stateless.Of(s.X * 10, s.X * 20) // }, // ), // ) // Produces: {1,10}, {1,20}, {2,20}, {2,40}, {3,30}, {3,60} func Bind[S1, S2, T any]( setter func(T) func(S1) S2, f Kleisli[S1, T], ) Kleisli[Iterator[S1], S2] { return G.Bind[Iterator[S1], Iterator[S2]](setter, f) } // Let attaches the result of a computation to a context [S1] to produce a context [S2] func Let[S1, S2, T any]( setter func(T) func(S1) S2, f func(S1) T, ) Kleisli[Iterator[S1], S2] { return G.Let[Iterator[S1], Iterator[S2]](setter, f) } // LetTo attaches the a value to a context [S1] to produce a context [S2] func LetTo[S1, S2, T any]( setter func(T) func(S1) S2, b T, ) Kleisli[Iterator[S1], S2] { return G.LetTo[Iterator[S1], Iterator[S2]](setter, b) } // BindTo initializes a new state [S1] from a value [T] func BindTo[S1, T any]( setter func(T) S1, ) Kleisli[Iterator[T], S1] { return G.BindTo[Iterator[S1], Iterator[T]](setter) } // ApS attaches a value to a context [S1] to produce a context [S2] by considering // the context and the value concurrently (using Applicative rather than Monad). // This allows independent computations to be combined without one depending on the result of the other. // // Unlike Bind, which sequences operations, ApS can be used when operations are independent // and can conceptually run in parallel. // // Example: // // type State struct { // X int // Y int // } // // // These operations are independent and can be combined with ApS // xValues := stateless.Of(1, 2, 3) // yValues := stateless.Of(10, 20) // // result := F.Pipe2( // stateless.Do(State{}), // stateless.ApS( // func(x int) func(State) State { // return func(s State) State { s.X = x; return s } // }, // xValues, // ), // stateless.ApS( // func(y int) func(State) State { // return func(s State) State { s.Y = y; return s } // }, // yValues, // ), // ) // Produces all combinations: {1,10}, {1,20}, {2,10}, {2,20}, {3,10}, {3,20} func ApS[S1, S2, T any]( setter func(T) func(S1) S2, fa Iterator[T], ) Kleisli[Iterator[S1], S2] { return G.ApS[Iterator[func(T) S2], Iterator[S1], Iterator[S2]](setter, fa) }