mirror of
https://github.com/IBM/fp-go.git
synced 2025-11-23 22:14:53 +02:00
164 lines
4.6 KiB
Go
164 lines
4.6 KiB
Go
// Copyright (c) 2023 - 2025 IBM Corp.
|
|
// All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package generic
|
|
|
|
import (
|
|
A "github.com/IBM/fp-go/v2/internal/apply"
|
|
C "github.com/IBM/fp-go/v2/internal/chain"
|
|
F "github.com/IBM/fp-go/v2/internal/functor"
|
|
)
|
|
|
|
// Do creates an empty context of type [S] to be used with the [Bind] operation.
|
|
// This is the starting point for do-notation style composition.
|
|
//
|
|
// Example:
|
|
//
|
|
// type State struct {
|
|
// X int
|
|
// Y int
|
|
// }
|
|
// result := generic.Do[[]State, State](State{})
|
|
func Do[GS ~[]S, S any](
|
|
empty S,
|
|
) GS {
|
|
return Of[GS](empty)
|
|
}
|
|
|
|
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
|
|
// This enables sequential composition where each step can depend on the results of previous steps.
|
|
// For arrays, this produces the cartesian product where later steps can use values from earlier steps.
|
|
//
|
|
// The setter function takes the result of the computation and returns a function that
|
|
// updates the context from S1 to S2.
|
|
//
|
|
// Example:
|
|
//
|
|
// type State struct {
|
|
// X int
|
|
// Y int
|
|
// }
|
|
//
|
|
// result := F.Pipe2(
|
|
// generic.Do[[]State, State](State{}),
|
|
// generic.Bind[[]State, []State, []int, State, State, int](
|
|
// func(x int) func(State) State {
|
|
// return func(s State) State { s.X = x; return s }
|
|
// },
|
|
// func(s State) []int {
|
|
// return []int{1, 2, 3}
|
|
// },
|
|
// ),
|
|
// generic.Bind[[]State, []State, []int, State, State, int](
|
|
// func(y int) func(State) State {
|
|
// return func(s State) State { s.Y = y; return s }
|
|
// },
|
|
// func(s State) []int {
|
|
// // This can access s.X from the previous step
|
|
// return []int{s.X * 10, s.X * 20}
|
|
// },
|
|
// ),
|
|
// ) // Produces: {1,10}, {1,20}, {2,20}, {2,40}, {3,30}, {3,60}
|
|
func Bind[GS1 ~[]S1, GS2 ~[]S2, GT ~[]T, S1, S2, T any](
|
|
setter func(T) func(S1) S2,
|
|
f func(S1) GT,
|
|
) func(GS1) GS2 {
|
|
return C.Bind(
|
|
Chain[GS1, GS2, S1, S2],
|
|
Map[GT, GS2, T, S2],
|
|
setter,
|
|
f,
|
|
)
|
|
}
|
|
|
|
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
|
|
func Let[GS1 ~[]S1, GS2 ~[]S2, S1, S2, T any](
|
|
key func(T) func(S1) S2,
|
|
f func(S1) T,
|
|
) func(GS1) GS2 {
|
|
return F.Let(
|
|
Map[GS1, GS2, S1, S2],
|
|
key,
|
|
f,
|
|
)
|
|
}
|
|
|
|
// LetTo attaches the a value to a context [S1] to produce a context [S2]
|
|
func LetTo[GS1 ~[]S1, GS2 ~[]S2, S1, S2, B any](
|
|
key func(B) func(S1) S2,
|
|
b B,
|
|
) func(GS1) GS2 {
|
|
return F.LetTo(
|
|
Map[GS1, GS2, S1, S2],
|
|
key,
|
|
b,
|
|
)
|
|
}
|
|
|
|
// BindTo initializes a new state [S1] from a value [T]
|
|
func BindTo[GS1 ~[]S1, GT ~[]T, S1, T any](
|
|
setter func(T) S1,
|
|
) func(GT) GS1 {
|
|
return C.BindTo(
|
|
Map[GT, GS1, T, S1],
|
|
setter,
|
|
)
|
|
}
|
|
|
|
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
|
|
// the context and the value concurrently (using Applicative rather than Monad).
|
|
// This allows independent computations to be combined without one depending on the result of the other.
|
|
//
|
|
// Unlike Bind, which sequences operations, ApS can be used when operations are independent
|
|
// and can conceptually run in parallel. For arrays, this produces the cartesian product.
|
|
//
|
|
// Example:
|
|
//
|
|
// type State struct {
|
|
// X int
|
|
// Y string
|
|
// }
|
|
//
|
|
// // These operations are independent and can be combined with ApS
|
|
// xValues := []int{1, 2}
|
|
// yValues := []string{"a", "b"}
|
|
//
|
|
// result := F.Pipe2(
|
|
// generic.Do[[]State, State](State{}),
|
|
// generic.ApS[[]State, []State, []int, State, State, int](
|
|
// func(x int) func(State) State {
|
|
// return func(s State) State { s.X = x; return s }
|
|
// },
|
|
// xValues,
|
|
// ),
|
|
// generic.ApS[[]State, []State, []string, State, State, string](
|
|
// func(y string) func(State) State {
|
|
// return func(s State) State { s.Y = y; return s }
|
|
// },
|
|
// yValues,
|
|
// ),
|
|
// ) // [{1,"a"}, {1,"b"}, {2,"a"}, {2,"b"}]
|
|
func ApS[GS1 ~[]S1, GS2 ~[]S2, GT ~[]T, S1, S2, T any](
|
|
setter func(T) func(S1) S2,
|
|
fa GT,
|
|
) func(GS1) GS2 {
|
|
return A.ApS(
|
|
Ap[GS2, []func(T) S2, GT, S2, T],
|
|
Map[GS1, []func(T) S2, S1, func(T) S2],
|
|
setter,
|
|
fa,
|
|
)
|
|
}
|