1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/iooption/bind.go
Dr. Carsten Leue 4f8a557072 fix: simplify type hints
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 15:24:45 +01:00

294 lines
8.1 KiB
Go

// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package iooption
import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/chain"
"github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
)
// Do creates an empty context of type [S] to be used with the [Bind] operation.
// This is the starting point for do-notation style composition.
//
// Example:
//
// type State struct {
// Name string
// Age int
// }
// result := iooption.Do(State{})
func Do[S any](
empty S,
) IOOption[S] {
return Of(empty)
}
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
// This enables sequential composition where each step can depend on the results of previous steps.
//
// The setter function takes the result of the computation and returns a function that
// updates the context from S1 to S2.
//
// Example:
//
// type State struct {
// Name string
// Age int
// }
//
// result := F.Pipe2(
// iooption.Do(State{}),
// iooption.Bind(
// func(name string) func(State) State {
// return func(s State) State { s.Name = name; return s }
// },
// func(s State) iooption.IOOption[string] {
// return iooption.FromIO(io.Of("Alice"))
// },
// ),
// iooption.Bind(
// func(age int) func(State) State {
// return func(s State) State { s.Age = age; return s }
// },
// func(s State) iooption.IOOption[int] {
// // This can access s.Name from the previous step
// return iooption.FromIO(io.Of(len(s.Name) * 10))
// },
// ),
// )
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Kleisli[IOOption[S1], S2] {
return chain.Bind(
Chain[S1, S2],
Map[T, S2],
setter,
f,
)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Kleisli[IOOption[S1], S2] {
return functor.Let(
Map[S1, S2],
setter,
f,
)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Kleisli[IOOption[S1], S2] {
return functor.LetTo(
Map[S1, S2],
setter,
b,
)
}
// BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any](
setter func(T) S1,
) Kleisli[IOOption[T], S1] {
return chain.BindTo(
Map[T, S1],
setter,
)
}
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
// the context and the value concurrently (using Applicative rather than Monad).
// This allows independent computations to be combined without one depending on the result of the other.
//
// Unlike Bind, which sequences operations, ApS can be used when operations are independent
// and can conceptually run in parallel.
//
// Example:
//
// type State struct {
// Name string
// Age int
// }
//
// // These operations are independent and can be combined with ApS
// getName := iooption.Some("Alice")
// getAge := iooption.Some(30)
//
// result := F.Pipe2(
// iooption.Do(State{}),
// iooption.ApS(
// func(name string) func(State) State {
// return func(s State) State { s.Name = name; return s }
// },
// getName,
// ),
// iooption.ApS(
// func(age int) func(State) State {
// return func(s State) State { s.Age = age; return s }
// },
// getAge,
// ),
// )
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IOOption[T],
) Kleisli[IOOption[S1], S2] {
return apply.ApS(
Ap[S2, T],
Map[S1, func(T) S2],
setter,
fa,
)
}
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type State struct {
// Name string
// Age int
// }
//
// ageLens := lens.MakeLens(
// func(s State) int { return s.Age },
// func(s State, a int) State { s.Age = a; return s },
// )
//
// result := F.Pipe2(
// iooption.Of(State{Name: "Alice"}),
// iooption.ApSL(ageLens, iooption.Some(30)),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa IOOption[T],
) Kleisli[IOOption[S], S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// an IOOption that produces the new value.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter, but return None if it would exceed 100
// increment := func(v int) iooption.IOOption[int] {
// return iooption.FromIO(io.Of(v + 1))
// }
//
// result := F.Pipe1(
// iooption.Of(Counter{Value: 42}),
// iooption.BindL(valueLens, increment),
// ) // IOOption[Counter{Value: 43}]
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[IOOption[S], S] {
return Bind(lens.Set, F.Flow2(lens.Get, f))
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in IOOption).
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// iooption.Of(Counter{Value: 21}),
// iooption.LetL(valueLens, double),
// ) // IOOption[Counter{Value: 42}]
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[IOOption[S], S] {
return Let(lens.Set, F.Flow2(lens.Get, f))
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// iooption.Of(Config{Debug: true, Timeout: 30}),
// iooption.LetToL(debugLens, false),
// ) // IOOption[Config{Debug: false, Timeout: 30}]
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[IOOption[S], S] {
return LetTo(lens.Set, b)
}