1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/lazy/apply.go
Dr. Carsten Leue eb7fc9f77b fix: better tests for Lazy
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 10:46:07 +01:00

95 lines
2.8 KiB
Go

// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lazy
import (
IO "github.com/IBM/fp-go/v2/io"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// ApplySemigroup lifts a Semigroup[A] to a Semigroup[Lazy[A]].
// This allows you to combine lazy computations using the semigroup operation
// on their underlying values.
//
// The resulting semigroup's Concat operation will evaluate both lazy computations
// and combine their results using the original semigroup's operation.
//
// Parameters:
// - s: A semigroup for values of type A
//
// Returns:
// - A semigroup for lazy computations of type A
//
// Example:
//
// import (
// M "github.com/IBM/fp-go/v2/monoid"
// "github.com/IBM/fp-go/v2/lazy"
// )
//
// // Create a semigroup for lazy integers using addition
// intAddSemigroup := lazy.ApplySemigroup(M.MonoidSum[int]())
//
// lazy1 := lazy.Of(5)
// lazy2 := lazy.Of(10)
//
// // Combine the lazy computations
// result := intAddSemigroup.Concat(lazy1, lazy2)() // 15
func ApplySemigroup[A any](s S.Semigroup[A]) S.Semigroup[Lazy[A]] {
return IO.ApplySemigroup(s)
}
// ApplicativeMonoid lifts a Monoid[A] to a Monoid[Lazy[A]].
// This allows you to combine lazy computations using the monoid operation
// on their underlying values, with an identity element.
//
// The resulting monoid's Concat operation will evaluate both lazy computations
// and combine their results using the original monoid's operation. The Empty
// operation returns a lazy computation that produces the monoid's identity element.
//
// Parameters:
// - m: A monoid for values of type A
//
// Returns:
// - A monoid for lazy computations of type A
//
// Example:
//
// import (
// M "github.com/IBM/fp-go/v2/monoid"
// "github.com/IBM/fp-go/v2/lazy"
// )
//
// // Create a monoid for lazy integers using addition
// intAddMonoid := lazy.ApplicativeMonoid(M.MonoidSum[int]())
//
// // Get the identity element (0 wrapped in lazy)
// empty := intAddMonoid.Empty()() // 0
//
// lazy1 := lazy.Of(5)
// lazy2 := lazy.Of(10)
//
// // Combine the lazy computations
// result := intAddMonoid.Concat(lazy1, lazy2)() // 15
//
// // Identity laws hold:
// // Concat(Empty(), x) == x
// // Concat(x, Empty()) == x
func ApplicativeMonoid[A any](m M.Monoid[A]) M.Monoid[Lazy[A]] {
return IO.ApplicativeMonoid(m)
}