mirror of
https://github.com/IBM/fp-go.git
synced 2025-11-23 22:14:53 +02:00
612 lines
16 KiB
Go
612 lines
16 KiB
Go
// Copyright (c) 2023 - 2025 IBM Corp.
|
|
// All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package generic
|
|
|
|
import (
|
|
"sort"
|
|
|
|
F "github.com/IBM/fp-go/v2/function"
|
|
RAG "github.com/IBM/fp-go/v2/internal/array"
|
|
FC "github.com/IBM/fp-go/v2/internal/functor"
|
|
G "github.com/IBM/fp-go/v2/internal/record"
|
|
Mg "github.com/IBM/fp-go/v2/magma"
|
|
Mo "github.com/IBM/fp-go/v2/monoid"
|
|
O "github.com/IBM/fp-go/v2/option"
|
|
"github.com/IBM/fp-go/v2/ord"
|
|
T "github.com/IBM/fp-go/v2/tuple"
|
|
)
|
|
|
|
func IsEmpty[M ~map[K]V, K comparable, V any](r M) bool {
|
|
return len(r) == 0
|
|
}
|
|
|
|
func IsNonEmpty[M ~map[K]V, K comparable, V any](r M) bool {
|
|
return len(r) > 0
|
|
}
|
|
|
|
func Keys[M ~map[K]V, GK ~[]K, K comparable, V any](r M) GK {
|
|
return collect[M, GK](r, F.First[K, V])
|
|
}
|
|
|
|
func Values[M ~map[K]V, GV ~[]V, K comparable, V any](r M) GV {
|
|
return collect[M, GV](r, F.Second[K, V])
|
|
}
|
|
|
|
func KeysOrd[M ~map[K]V, GK ~[]K, K comparable, V any](o ord.Ord[K]) func(r M) GK {
|
|
return func(r M) GK {
|
|
return collectOrd[M, GK](o, r, F.First[K, V])
|
|
}
|
|
}
|
|
|
|
func ValuesOrd[M ~map[K]V, GV ~[]V, K comparable, V any](o ord.Ord[K]) func(r M) GV {
|
|
return func(r M) GV {
|
|
return collectOrd[M, GV](o, r, F.Second[K, V])
|
|
}
|
|
}
|
|
|
|
func collectOrd[M ~map[K]V, GR ~[]R, K comparable, V, R any](o ord.Ord[K], r M, f func(K, V) R) GR {
|
|
// create the entries
|
|
entries := toEntriesOrd[M, []T.Tuple2[K, V]](o, r)
|
|
// collect this array
|
|
ft := T.Tupled2(f)
|
|
count := len(entries)
|
|
result := make(GR, count)
|
|
for i := count - 1; i >= 0; i-- {
|
|
result[i] = ft(entries[i])
|
|
}
|
|
// done
|
|
return result
|
|
}
|
|
|
|
func reduceOrd[M ~map[K]V, K comparable, V, R any](o ord.Ord[K], r M, f func(K, R, V) R, initial R) R {
|
|
// create the entries
|
|
entries := toEntriesOrd[M, []T.Tuple2[K, V]](o, r)
|
|
// collect this array
|
|
current := initial
|
|
count := len(entries)
|
|
for i := 0; i < count; i++ {
|
|
t := entries[i]
|
|
current = f(T.First(t), current, T.Second(t))
|
|
}
|
|
// done
|
|
return current
|
|
}
|
|
|
|
func collect[M ~map[K]V, GR ~[]R, K comparable, V, R any](r M, f func(K, V) R) GR {
|
|
count := len(r)
|
|
result := make(GR, count)
|
|
idx := 0
|
|
for k, v := range r {
|
|
result[idx] = f(k, v)
|
|
idx++
|
|
}
|
|
return result
|
|
}
|
|
|
|
func Collect[M ~map[K]V, GR ~[]R, K comparable, V, R any](f func(K, V) R) func(M) GR {
|
|
return F.Bind2nd(collect[M, GR, K, V, R], f)
|
|
}
|
|
|
|
func CollectOrd[M ~map[K]V, GR ~[]R, K comparable, V, R any](o ord.Ord[K]) func(f func(K, V) R) func(M) GR {
|
|
return func(f func(K, V) R) func(M) GR {
|
|
return func(r M) GR {
|
|
return collectOrd[M, GR](o, r, f)
|
|
}
|
|
}
|
|
}
|
|
|
|
func Reduce[M ~map[K]V, K comparable, V, R any](f func(R, V) R, initial R) func(M) R {
|
|
return func(r M) R {
|
|
return G.Reduce(r, f, initial)
|
|
}
|
|
}
|
|
|
|
func ReduceWithIndex[M ~map[K]V, K comparable, V, R any](f func(K, R, V) R, initial R) func(M) R {
|
|
return func(r M) R {
|
|
return G.ReduceWithIndex(r, f, initial)
|
|
}
|
|
}
|
|
|
|
func ReduceRef[M ~map[K]V, K comparable, V, R any](f func(R, *V) R, initial R) func(M) R {
|
|
return func(r M) R {
|
|
return G.ReduceRef(r, f, initial)
|
|
}
|
|
}
|
|
|
|
func ReduceRefWithIndex[M ~map[K]V, K comparable, V, R any](f func(K, R, *V) R, initial R) func(M) R {
|
|
return func(r M) R {
|
|
return G.ReduceRefWithIndex(r, f, initial)
|
|
}
|
|
}
|
|
|
|
func MonadAp[BS ~map[K]B, ABS ~map[K]func(A) B, AS ~map[K]A, K comparable, B, A any](m Mo.Monoid[BS], fab ABS, fa AS) BS {
|
|
return MonadChain(m, fab, F.Bind1st(MonadMap[AS, BS, K, A, B], fa))
|
|
}
|
|
|
|
func Ap[BS ~map[K]B, ABS ~map[K]func(A) B, AS ~map[K]A, K comparable, B, A any](m Mo.Monoid[BS]) func(fa AS) func(ABS) BS {
|
|
return func(ma AS) func(ABS) BS {
|
|
return func(abs ABS) BS {
|
|
return MonadAp(m, abs, ma)
|
|
}
|
|
}
|
|
}
|
|
|
|
func MonadMap[M ~map[K]V, N ~map[K]R, K comparable, V, R any](r M, f func(V) R) N {
|
|
return MonadMapWithIndex[M, N](r, F.Ignore1of2[K](f))
|
|
}
|
|
|
|
func MonadChainWithIndex[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](m Mo.Monoid[N], r M, f func(K, V1) N) N {
|
|
return G.ReduceWithIndex(r, func(k K, dst N, b V1) N {
|
|
return m.Concat(dst, f(k, b))
|
|
}, m.Empty())
|
|
}
|
|
|
|
func MonadChain[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](m Mo.Monoid[N], r M, f func(V1) N) N {
|
|
return G.Reduce(r, func(dst N, b V1) N {
|
|
return m.Concat(dst, f(b))
|
|
}, m.Empty())
|
|
}
|
|
|
|
func ChainWithIndex[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](m Mo.Monoid[N]) func(func(K, V1) N) func(M) N {
|
|
return func(f func(K, V1) N) func(M) N {
|
|
return func(ma M) N {
|
|
return MonadChainWithIndex(m, ma, f)
|
|
}
|
|
}
|
|
}
|
|
|
|
func Chain[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](m Mo.Monoid[N]) func(func(V1) N) func(M) N {
|
|
return func(f func(V1) N) func(M) N {
|
|
return func(ma M) N {
|
|
return MonadChain(m, ma, f)
|
|
}
|
|
}
|
|
}
|
|
|
|
func MonadMapWithIndex[M ~map[K]V, N ~map[K]R, K comparable, V, R any](r M, f func(K, V) R) N {
|
|
return G.ReduceWithIndex(r, func(k K, dst N, v V) N {
|
|
return upsertAtReadWrite(dst, k, f(k, v))
|
|
}, make(N, len(r)))
|
|
}
|
|
|
|
func MonadMapRefWithIndex[M ~map[K]V, N ~map[K]R, K comparable, V, R any](r M, f func(K, *V) R) N {
|
|
return G.ReduceRefWithIndex(r, func(k K, dst N, v *V) N {
|
|
return upsertAtReadWrite(dst, k, f(k, v))
|
|
}, make(N, len(r)))
|
|
}
|
|
|
|
func MonadMapRef[M ~map[K]V, N ~map[K]R, K comparable, V, R any](r M, f func(*V) R) N {
|
|
return MonadMapRefWithIndex[M, N](r, F.Ignore1of2[K](f))
|
|
}
|
|
|
|
func Map[M ~map[K]V, N ~map[K]R, K comparable, V, R any](f func(V) R) func(M) N {
|
|
return F.Bind2nd(MonadMap[M, N, K, V, R], f)
|
|
}
|
|
|
|
func MapRef[M ~map[K]V, N ~map[K]R, K comparable, V, R any](f func(*V) R) func(M) N {
|
|
return F.Bind2nd(MonadMapRef[M, N, K, V, R], f)
|
|
}
|
|
|
|
func MapWithIndex[M ~map[K]V, N ~map[K]R, K comparable, V, R any](f func(K, V) R) func(M) N {
|
|
return F.Bind2nd(MonadMapWithIndex[M, N, K, V, R], f)
|
|
}
|
|
|
|
func MapRefWithIndex[M ~map[K]V, N ~map[K]R, K comparable, V, R any](f func(K, *V) R) func(M) N {
|
|
return F.Bind2nd(MonadMapRefWithIndex[M, N, K, V, R], f)
|
|
}
|
|
|
|
func MonadLookup[M ~map[K]V, K comparable, V any](m M, k K) O.Option[V] {
|
|
if val, ok := m[k]; ok {
|
|
return O.Some(val)
|
|
}
|
|
return O.None[V]()
|
|
}
|
|
|
|
func Lookup[M ~map[K]V, K comparable, V any](k K) func(M) O.Option[V] {
|
|
n := O.None[V]()
|
|
return func(m M) O.Option[V] {
|
|
if val, ok := m[k]; ok {
|
|
return O.Some(val)
|
|
}
|
|
return n
|
|
}
|
|
}
|
|
|
|
func Has[M ~map[K]V, K comparable, V any](k K, r M) bool {
|
|
_, ok := r[k]
|
|
return ok
|
|
}
|
|
|
|
func union[M ~map[K]V, K comparable, V any](m Mg.Magma[V], left M, right M) M {
|
|
lenLeft := len(left)
|
|
|
|
if lenLeft == 0 {
|
|
return right
|
|
}
|
|
|
|
lenRight := len(right)
|
|
if lenRight == 0 {
|
|
return left
|
|
}
|
|
|
|
result := make(M, lenLeft+lenRight)
|
|
|
|
for k, v := range left {
|
|
if val, ok := right[k]; ok {
|
|
result[k] = m.Concat(v, val)
|
|
} else {
|
|
result[k] = v
|
|
}
|
|
}
|
|
|
|
for k, v := range right {
|
|
if _, ok := left[k]; !ok {
|
|
result[k] = v
|
|
}
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
func unionLast[M ~map[K]V, K comparable, V any](left M, right M) M {
|
|
lenLeft := len(left)
|
|
|
|
if lenLeft == 0 {
|
|
return right
|
|
}
|
|
|
|
lenRight := len(right)
|
|
if lenRight == 0 {
|
|
return left
|
|
}
|
|
|
|
result := make(M, lenLeft+lenRight)
|
|
|
|
for k, v := range left {
|
|
result[k] = v
|
|
}
|
|
|
|
for k, v := range right {
|
|
result[k] = v
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
func Union[M ~map[K]V, K comparable, V any](m Mg.Magma[V]) func(M) func(M) M {
|
|
return func(right M) func(M) M {
|
|
return func(left M) M {
|
|
return union(m, left, right)
|
|
}
|
|
}
|
|
}
|
|
|
|
func UnionLast[M ~map[K]V, K comparable, V any](right M) func(M) M {
|
|
return func(left M) M {
|
|
return unionLast(left, right)
|
|
}
|
|
}
|
|
|
|
func Merge[M ~map[K]V, K comparable, V any](right M) func(M) M {
|
|
return UnionLast(right)
|
|
}
|
|
|
|
func UnionFirst[M ~map[K]V, K comparable, V any](right M) func(M) M {
|
|
return func(left M) M {
|
|
return unionLast(right, left)
|
|
}
|
|
}
|
|
|
|
func Empty[M ~map[K]V, K comparable, V any]() M {
|
|
return make(M)
|
|
}
|
|
|
|
func Size[M ~map[K]V, K comparable, V any](r M) int {
|
|
return len(r)
|
|
}
|
|
|
|
func ToArray[M ~map[K]V, GT ~[]T.Tuple2[K, V], K comparable, V any](r M) GT {
|
|
return collect[M, GT](r, T.MakeTuple2[K, V])
|
|
}
|
|
|
|
func toEntriesOrd[M ~map[K]V, GT ~[]T.Tuple2[K, V], K comparable, V any](o ord.Ord[K], r M) GT {
|
|
// total number of elements
|
|
count := len(r)
|
|
// produce an array that we can sort by key
|
|
entries := make(GT, count)
|
|
idx := 0
|
|
for k, v := range r {
|
|
entries[idx] = T.MakeTuple2(k, v)
|
|
idx++
|
|
}
|
|
sort.Slice(entries, func(i, j int) bool {
|
|
return o.Compare(T.First(entries[i]), T.First(entries[j])) < 0
|
|
})
|
|
// final entries
|
|
return entries
|
|
}
|
|
|
|
func ToEntriesOrd[M ~map[K]V, GT ~[]T.Tuple2[K, V], K comparable, V any](o ord.Ord[K]) func(r M) GT {
|
|
return F.Bind1st(toEntriesOrd[M, GT, K, V], o)
|
|
}
|
|
|
|
func ToEntries[M ~map[K]V, GT ~[]T.Tuple2[K, V], K comparable, V any](r M) GT {
|
|
return ToArray[M, GT](r)
|
|
}
|
|
|
|
// FromFoldableMap uses the reduce method for a higher kinded type to transform
|
|
// its values into a tuple. The key and value are then used to populate the map. Duplicate
|
|
// values are resolved via the provided [Mg.Magma]
|
|
func FromFoldableMap[
|
|
FCT ~func(A) T.Tuple2[K, V],
|
|
HKTA any,
|
|
FOLDABLE ~func(func(M, A) M, M) func(HKTA) M,
|
|
M ~map[K]V,
|
|
A any,
|
|
K comparable,
|
|
V any](m Mg.Magma[V], fld FOLDABLE) func(f FCT) func(fa HKTA) M {
|
|
return func(f FCT) func(fa HKTA) M {
|
|
return fld(func(dst M, a A) M {
|
|
if IsEmpty(dst) {
|
|
dst = make(M)
|
|
}
|
|
e := f(a)
|
|
k := T.First(e)
|
|
old, ok := dst[k]
|
|
if ok {
|
|
dst[k] = m.Concat(old, T.Second(e))
|
|
} else {
|
|
dst[k] = T.Second(e)
|
|
}
|
|
return dst
|
|
}, Empty[M]())
|
|
}
|
|
}
|
|
|
|
func FromFoldable[
|
|
HKTA any,
|
|
FOLDABLE ~func(func(M, T.Tuple2[K, V]) M, M) func(HKTA) M,
|
|
M ~map[K]V,
|
|
K comparable,
|
|
V any](m Mg.Magma[V], red FOLDABLE) func(fa HKTA) M {
|
|
return FromFoldableMap[func(T.Tuple2[K, V]) T.Tuple2[K, V]](m, red)(F.Identity[T.Tuple2[K, V]])
|
|
}
|
|
|
|
func FromArrayMap[
|
|
FCT ~func(A) T.Tuple2[K, V],
|
|
GA ~[]A,
|
|
M ~map[K]V,
|
|
A any,
|
|
K comparable,
|
|
V any](m Mg.Magma[V]) func(f FCT) func(fa GA) M {
|
|
return FromFoldableMap[FCT](m, F.Bind23of3(RAG.Reduce[GA, A, M]))
|
|
}
|
|
|
|
func FromArray[
|
|
GA ~[]T.Tuple2[K, V],
|
|
M ~map[K]V,
|
|
K comparable,
|
|
V any](m Mg.Magma[V]) func(fa GA) M {
|
|
return FromFoldable(m, F.Bind23of3(RAG.Reduce[GA, T.Tuple2[K, V], M]))
|
|
}
|
|
|
|
func FromEntries[M ~map[K]V, GT ~[]T.Tuple2[K, V], K comparable, V any](fa GT) M {
|
|
m := make(M)
|
|
for _, t := range fa {
|
|
upsertAtReadWrite(m, t.F1, t.F2)
|
|
}
|
|
return m
|
|
}
|
|
|
|
func duplicate[M ~map[K]V, K comparable, V any](r M) M {
|
|
return MonadMap[M, M](r, F.Identity[V])
|
|
}
|
|
|
|
func upsertAt[M ~map[K]V, K comparable, V any](r M, k K, v V) M {
|
|
dup := duplicate(r)
|
|
dup[k] = v
|
|
return dup
|
|
}
|
|
|
|
func deleteAt[M ~map[K]V, K comparable, V any](r M, k K) M {
|
|
dup := duplicate(r)
|
|
delete(dup, k)
|
|
return dup
|
|
}
|
|
|
|
func upsertAtReadWrite[M ~map[K]V, K comparable, V any](r M, k K, v V) M {
|
|
r[k] = v
|
|
return r
|
|
}
|
|
|
|
func UpsertAt[M ~map[K]V, K comparable, V any](k K, v V) func(M) M {
|
|
return func(ma M) M {
|
|
return upsertAt(ma, k, v)
|
|
}
|
|
}
|
|
|
|
func DeleteAt[M ~map[K]V, K comparable, V any](k K) func(M) M {
|
|
return F.Bind2nd(deleteAt[M, K, V], k)
|
|
}
|
|
|
|
func Singleton[M ~map[K]V, K comparable, V any](k K, v V) M {
|
|
return M{k: v}
|
|
}
|
|
|
|
func filterMapWithIndex[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](fa M, f func(K, V1) O.Option[V2]) N {
|
|
return G.ReduceWithIndex(fa, func(key K, n N, value V1) N {
|
|
return O.MonadFold(f(key, value), F.Constant(n), func(v V2) N {
|
|
return upsertAtReadWrite(n, key, v)
|
|
})
|
|
}, make(N))
|
|
}
|
|
|
|
func filterWithIndex[M ~map[K]V, K comparable, V any](fa M, f func(K, V) bool) M {
|
|
return filterMapWithIndex[M, M](fa, func(k K, v V) O.Option[V] {
|
|
if f(k, v) {
|
|
return O.Of(v)
|
|
}
|
|
return O.None[V]()
|
|
})
|
|
}
|
|
|
|
func filter[M ~map[K]V, K comparable, V any](fa M, f func(K) bool) M {
|
|
return filterWithIndex(fa, F.Ignore2of2[V](f))
|
|
}
|
|
|
|
// Filter creates a new map with only the elements that match the predicate
|
|
func Filter[M ~map[K]V, K comparable, V any](f func(K) bool) func(M) M {
|
|
return F.Bind2nd(filter[M, K, V], f)
|
|
}
|
|
|
|
// FilterWithIndex creates a new map with only the elements that match the predicate
|
|
func FilterWithIndex[M ~map[K]V, K comparable, V any](f func(K, V) bool) func(M) M {
|
|
return F.Bind2nd(filterWithIndex[M, K, V], f)
|
|
}
|
|
|
|
// FilterMapWithIndex creates a new map with only the elements for which the transformation function creates a Some
|
|
func FilterMapWithIndex[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](f func(K, V1) O.Option[V2]) func(M) N {
|
|
return F.Bind2nd(filterMapWithIndex[M, N, K, V1, V2], f)
|
|
}
|
|
|
|
// FilterMap creates a new map with only the elements for which the transformation function creates a Some
|
|
func FilterMap[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](f func(V1) O.Option[V2]) func(M) N {
|
|
return F.Bind2nd(filterMapWithIndex[M, N, K, V1, V2], F.Ignore1of2[K](f))
|
|
}
|
|
|
|
// Flatten converts a nested map into a regular map
|
|
func Flatten[M ~map[K]N, N ~map[K]V, K comparable, V any](m Mo.Monoid[N]) func(M) N {
|
|
return Chain[M](m)(F.Identity[N])
|
|
}
|
|
|
|
// FilterChainWithIndex creates a new map with only the elements for which the transformation function creates a Some
|
|
func FilterChainWithIndex[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](m Mo.Monoid[N]) func(func(K, V1) O.Option[N]) func(M) N {
|
|
flatten := Flatten[map[K]N](m)
|
|
return func(f func(K, V1) O.Option[N]) func(M) N {
|
|
return F.Flow2(
|
|
FilterMapWithIndex[M, map[K]N](f),
|
|
flatten,
|
|
)
|
|
}
|
|
}
|
|
|
|
// FilterChain creates a new map with only the elements for which the transformation function creates a Some
|
|
func FilterChain[M ~map[K]V1, N ~map[K]V2, K comparable, V1, V2 any](m Mo.Monoid[N]) func(func(V1) O.Option[N]) func(M) N {
|
|
flatten := Flatten[map[K]N](m)
|
|
return func(f func(V1) O.Option[N]) func(M) N {
|
|
return F.Flow2(
|
|
FilterMap[M, map[K]N](f),
|
|
flatten,
|
|
)
|
|
}
|
|
}
|
|
|
|
// IsNil checks if the map is set to nil
|
|
func IsNil[M ~map[K]V, K comparable, V any](m M) bool {
|
|
return m == nil
|
|
}
|
|
|
|
// IsNonNil checks if the map is set to nil
|
|
func IsNonNil[M ~map[K]V, K comparable, V any](m M) bool {
|
|
return m != nil
|
|
}
|
|
|
|
// ConstNil return a nil map
|
|
func ConstNil[M ~map[K]V, K comparable, V any]() M {
|
|
return (M)(nil)
|
|
}
|
|
|
|
func FoldMap[AS ~map[K]A, K comparable, A, B any](m Mo.Monoid[B]) func(func(A) B) func(AS) B {
|
|
return func(f func(A) B) func(AS) B {
|
|
return Reduce[AS](func(cur B, a A) B {
|
|
return m.Concat(cur, f(a))
|
|
}, m.Empty())
|
|
}
|
|
}
|
|
|
|
func Fold[AS ~map[K]A, K comparable, A any](m Mo.Monoid[A]) func(AS) A {
|
|
return Reduce[AS](m.Concat, m.Empty())
|
|
}
|
|
|
|
func FoldMapWithIndex[AS ~map[K]A, K comparable, A, B any](m Mo.Monoid[B]) func(func(K, A) B) func(AS) B {
|
|
return func(f func(K, A) B) func(AS) B {
|
|
return ReduceWithIndex[AS](func(k K, cur B, a A) B {
|
|
return m.Concat(cur, f(k, a))
|
|
}, m.Empty())
|
|
}
|
|
}
|
|
|
|
func ReduceOrdWithIndex[M ~map[K]V, K comparable, V, R any](o ord.Ord[K]) func(func(K, R, V) R, R) func(M) R {
|
|
return func(f func(K, R, V) R, initial R) func(M) R {
|
|
return func(m M) R {
|
|
return reduceOrd(o, m, f, initial)
|
|
}
|
|
}
|
|
}
|
|
|
|
func ReduceOrd[M ~map[K]V, K comparable, V, R any](o ord.Ord[K]) func(func(R, V) R, R) func(M) R {
|
|
ro := ReduceOrdWithIndex[M, K, V, R](o)
|
|
return func(f func(R, V) R, initial R) func(M) R {
|
|
return ro(F.Ignore1of3[K](f), initial)
|
|
}
|
|
}
|
|
|
|
func FoldMapOrd[AS ~map[K]A, K comparable, A, B any](o ord.Ord[K]) func(m Mo.Monoid[B]) func(func(A) B) func(AS) B {
|
|
red := ReduceOrd[AS, K, A, B](o)
|
|
return func(m Mo.Monoid[B]) func(func(A) B) func(AS) B {
|
|
return func(f func(A) B) func(AS) B {
|
|
return red(func(cur B, a A) B {
|
|
return m.Concat(cur, f(a))
|
|
}, m.Empty())
|
|
}
|
|
}
|
|
}
|
|
|
|
func FoldOrd[AS ~map[K]A, K comparable, A any](o ord.Ord[K]) func(m Mo.Monoid[A]) func(AS) A {
|
|
red := ReduceOrd[AS, K, A, A](o)
|
|
return func(m Mo.Monoid[A]) func(AS) A {
|
|
return red(m.Concat, m.Empty())
|
|
}
|
|
}
|
|
|
|
func FoldMapOrdWithIndex[AS ~map[K]A, K comparable, A, B any](o ord.Ord[K]) func(m Mo.Monoid[B]) func(func(K, A) B) func(AS) B {
|
|
red := ReduceOrdWithIndex[AS, K, A, B](o)
|
|
return func(m Mo.Monoid[B]) func(func(K, A) B) func(AS) B {
|
|
return func(f func(K, A) B) func(AS) B {
|
|
return red(func(k K, cur B, a A) B {
|
|
return m.Concat(cur, f(k, a))
|
|
}, m.Empty())
|
|
}
|
|
}
|
|
}
|
|
|
|
func MonadFlap[GFAB ~map[K]func(A) B, GB ~map[K]B, K comparable, A, B any](fab GFAB, a A) GB {
|
|
return FC.MonadFlap(MonadMap[GFAB, GB], fab, a)
|
|
}
|
|
|
|
func Flap[GFAB ~map[K]func(A) B, GB ~map[K]B, K comparable, A, B any](a A) func(GFAB) GB {
|
|
return FC.Flap(Map[GFAB, GB], a)
|
|
}
|
|
|
|
func Copy[M ~map[K]V, K comparable, V any](m M) M {
|
|
return duplicate(m)
|
|
}
|
|
|
|
func Clone[M ~map[K]V, K comparable, V any](f func(V) V) func(m M) M {
|
|
// impementation assumes that map does not optimize for the empty map
|
|
return Map[M, M](f)
|
|
}
|