1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/io/bind.go
Dr. Carsten Leue 4f8a557072 fix: simplify type hints
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 15:24:45 +01:00

286 lines
7.4 KiB
Go

// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package io
import (
F "github.com/IBM/fp-go/v2/function"
INTA "github.com/IBM/fp-go/v2/internal/apply"
INTC "github.com/IBM/fp-go/v2/internal/chain"
INTF "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
)
// Do creates an empty context of type S to be used with the Bind operation.
// This is the starting point for do-notation style composition.
//
// Example:
//
// type State struct {
// user User
// posts []Post
// }
// result := pipe.Pipe2(
// io.Do(State{}),
// io.Bind("user", fetchUser),
// io.Bind("posts", func(s State) io.IO[[]Post] {
// return fetchPosts(s.user.Id)
// }),
// )
func Do[S any](
empty S,
) IO[S] {
return Of(empty)
}
// Bind attaches the result of an IO computation to a context S1 to produce a context S2.
// This is used in do-notation style composition to build up state incrementally.
//
// The setter function takes the result T and returns a function that updates S1 to S2.
//
// Example:
//
// io.Bind(func(user User) func(s State) State {
// return func(s State) State {
// s.user = user
// return s
// }
// }, fetchUser)
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Operator[S1, S2] {
return INTC.Bind(
Chain[S1, S2],
Map[T, S2],
setter,
f,
)
}
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
// Similar to Bind, but for pure (non-IO) computations.
//
// Example:
//
// io.Let(func(count int) func(s State) State {
// return func(s State) State {
// s.count = count
// return s
// }
// }, func(s State) int { return len(s.items) })
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Operator[S1, S2] {
return INTF.Let(
Map[S1, S2],
setter,
f,
)
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
// Similar to Let, but with a constant value instead of a computation.
//
// Example:
//
// io.LetTo(func(status string) func(s State) State {
// return func(s State) State {
// s.status = status
// return s
// }
// }, "ready")
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Operator[S1, S2] {
return INTF.LetTo(
Map[S1, S2],
setter,
b,
)
}
// BindTo initializes a new state S1 from a value T.
// This is typically used to start a do-notation chain from a single value.
//
// Example:
//
// io.BindTo(func(user User) State {
// return State{user: user}
// })
func BindTo[S1, T any](
setter func(T) S1,
) Operator[T, S1] {
return INTC.BindTo(
Map[T, S1],
setter,
)
}
// ApS attaches a value to a context S1 to produce a context S2 by considering
// the context and the value concurrently (using applicative operations).
// This allows parallel execution of independent computations.
//
// Example:
//
// io.ApS(func(posts []Post) func(s State) State {
// return func(s State) State {
// s.posts = posts
// return s
// }
// }, fetchPosts())
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa IO[T],
) Operator[S1, S2] {
return INTA.ApS(
Ap[S2, T],
Map[S1, func(T) S2],
setter,
fa,
)
}
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
//
// portLens := lens.MakeLens(
// func(c Config) int { return c.Port },
// func(c Config, p int) Config { c.Port = p; return c },
// )
//
// result := F.Pipe2(
// io.Of(Config{Host: "localhost"}),
// io.ApSL(portLens, io.Of(8080)),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa IO[T],
) Operator[S, S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// an IO that produces the new value.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter asynchronously
// increment := func(v int) io.IO[int] {
// return io.Of(v + 1)
// }
//
// result := F.Pipe1(
// io.Of(Counter{Value: 42}),
// io.BindL(valueLens, increment),
// ) // IO[Counter{Value: 43}]
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Operator[S, S] {
return Bind(lens.Set, F.Flow2(lens.Get, f))
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in IO).
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// io.Of(Counter{Value: 21}),
// io.LetL(valueLens, double),
// ) // IO[Counter{Value: 42}]
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Operator[S, S] {
return Let(lens.Set, F.Flow2(lens.Get, f))
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// io.Of(Config{Debug: true, Timeout: 30}),
// io.LetToL(debugLens, false),
// ) // IO[Config{Debug: false, Timeout: 30}]
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Operator[S, S] {
return LetTo(lens.Set, b)
}