1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/iterator/iter/iter.go
Dr. Carsten Leue 02d0be9dad fix: add traversal for sequences
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-14 14:12:44 +01:00

888 lines
22 KiB
Go

// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package iter provides functional programming utilities for Go 1.23+ iterators.
//
// This package offers a comprehensive set of operations for working with lazy sequences
// using Go's native iter.Seq and iter.Seq2 types. It follows functional programming
// principles and provides monadic operations, transformations, and reductions.
//
// The package supports:
// - Functor operations (Map, MapWithIndex, MapWithKey)
// - Monad operations (Chain, Flatten, Ap)
// - Filtering (Filter, FilterMap, FilterWithIndex, FilterWithKey)
// - Folding and reduction (Reduce, Fold, FoldMap)
// - Sequence construction (Of, From, MakeBy, Replicate)
// - Sequence combination (Zip, Prepend, Append)
//
// All operations are lazy and only execute when the sequence is consumed via iteration.
//
// Example usage:
//
// // Create a sequence and transform it
// seq := From(1, 2, 3, 4, 5)
// doubled := Map(func(x int) int { return x * 2 })(seq)
//
// // Filter and reduce
// evens := Filter(func(x int) bool { return x%2 == 0 })(doubled)
// sum := MonadReduce(evens, func(acc, x int) int { return acc + x }, 0)
// // sum = 20 (2+4+6+8+10 from doubled evens)
package iter
import (
"slices"
I "iter"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/functor"
G "github.com/IBM/fp-go/v2/internal/iter"
M "github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/option"
)
// Of creates a sequence containing a single element.
//
// Example:
//
// seq := Of(42)
// // yields: 42
//
//go:inline
func Of[A any](a A) Seq[A] {
return G.Of[Seq[A]](a)
}
// Of2 creates a key-value sequence containing a single key-value pair.
//
// Example:
//
// seq := Of2("key", 100)
// // yields: ("key", 100)
func Of2[K, A any](k K, a A) Seq2[K, A] {
return func(yield func(K, A) bool) {
yield(k, a)
}
}
// MonadMap transforms each element in a sequence using the provided function.
// This is the monadic version that takes the sequence as the first parameter.
//
// Example:
//
// seq := From(1, 2, 3)
// result := MonadMap(seq, func(x int) int { return x * 2 })
// // yields: 2, 4, 6
func MonadMap[A, B any](as Seq[A], f func(A) B) Seq[B] {
return func(yield Predicate[B]) {
for a := range as {
if !yield(f(a)) {
return
}
}
}
}
// Map returns a function that transforms each element in a sequence.
// This is the curried version of MonadMap.
//
// Example:
//
// double := Map(func(x int) int { return x * 2 })
// seq := From(1, 2, 3)
// result := double(seq)
// // yields: 2, 4, 6
//
//go:inline
func Map[A, B any](f func(A) B) Operator[A, B] {
return F.Bind2nd(MonadMap[A, B], f)
}
// MonadMapWithIndex transforms each element in a sequence using a function that also receives the element's index.
//
// Example:
//
// seq := From("a", "b", "c")
// result := MonadMapWithIndex(seq, func(i int, s string) string {
// return fmt.Sprintf("%d:%s", i, s)
// })
// // yields: "0:a", "1:b", "2:c"
func MonadMapWithIndex[A, B any](as Seq[A], f func(int, A) B) Seq[B] {
return func(yield Predicate[B]) {
var i int
for a := range as {
if !yield(f(i, a)) {
return
}
i += 1
}
}
}
// MapWithIndex returns a function that transforms elements with their indices.
// This is the curried version of MonadMapWithIndex.
//
// Example:
//
// addIndex := MapWithIndex(func(i int, s string) string {
// return fmt.Sprintf("%d:%s", i, s)
// })
// seq := From("a", "b", "c")
// result := addIndex(seq)
// // yields: "0:a", "1:b", "2:c"
//
//go:inline
func MapWithIndex[A, B any](f func(int, A) B) Operator[A, B] {
return F.Bind2nd(MonadMapWithIndex[A, B], f)
}
// MonadMapWithKey transforms values in a key-value sequence using a function that receives both key and value.
//
// Example:
//
// seq := Of2("x", 10)
// result := MonadMapWithKey(seq, func(k string, v int) int { return v * 2 })
// // yields: ("x", 20)
func MonadMapWithKey[K, A, B any](as Seq2[K, A], f func(K, A) B) Seq2[K, B] {
return func(yield func(K, B) bool) {
for k, a := range as {
if !yield(k, f(k, a)) {
return
}
}
}
}
// MapWithKey returns a function that transforms values using their keys.
// This is the curried version of MonadMapWithKey.
//
// Example:
//
// doubleValue := MapWithKey(func(k string, v int) int { return v * 2 })
// seq := Of2("x", 10)
// result := doubleValue(seq)
// // yields: ("x", 20)
//
//go:inline
func MapWithKey[K, A, B any](f func(K, A) B) Operator2[K, A, B] {
return F.Bind2nd(MonadMapWithKey[K, A, B], f)
}
// MonadFilter returns a sequence containing only elements that satisfy the predicate.
//
// Example:
//
// seq := From(1, 2, 3, 4, 5)
// result := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
// // yields: 2, 4
func MonadFilter[A any](as Seq[A], pred func(A) bool) Seq[A] {
return func(yield Predicate[A]) {
for a := range as {
if pred(a) {
if !yield(a) {
return
}
}
}
}
}
// Filter returns a function that filters elements based on a predicate.
// This is the curried version of MonadFilter.
//
// Example:
//
// evens := Filter(func(x int) bool { return x%2 == 0 })
// seq := From(1, 2, 3, 4, 5)
// result := evens(seq)
// // yields: 2, 4
//
//go:inline
func Filter[A any](pred func(A) bool) Operator[A, A] {
return F.Bind2nd(MonadFilter[A], pred)
}
// MonadFilterWithIndex filters elements using a predicate that also receives the element's index.
//
// Example:
//
// seq := From("a", "b", "c", "d")
// result := MonadFilterWithIndex(seq, func(i int, s string) bool { return i%2 == 0 })
// // yields: "a", "c" (elements at even indices)
func MonadFilterWithIndex[A any](as Seq[A], pred func(int, A) bool) Seq[A] {
return func(yield Predicate[A]) {
var i int
for a := range as {
if pred(i, a) {
if !yield(a) {
return
}
}
i++
}
}
}
// FilterWithIndex returns a function that filters elements based on their index and value.
// This is the curried version of MonadFilterWithIndex.
//
// Example:
//
// evenIndices := FilterWithIndex(func(i int, s string) bool { return i%2 == 0 })
// seq := From("a", "b", "c", "d")
// result := evenIndices(seq)
// // yields: "a", "c"
//
//go:inline
func FilterWithIndex[A any](pred func(int, A) bool) Operator[A, A] {
return F.Bind2nd(MonadFilterWithIndex[A], pred)
}
// MonadFilterWithKey filters key-value pairs using a predicate that receives both key and value.
//
// Example:
//
// seq := Of2("x", 10)
// result := MonadFilterWithKey(seq, func(k string, v int) bool { return v > 5 })
// // yields: ("x", 10)
func MonadFilterWithKey[K, A any](as Seq2[K, A], pred func(K, A) bool) Seq2[K, A] {
return func(yield func(K, A) bool) {
for k, a := range as {
if pred(k, a) {
if !yield(k, a) {
return
}
}
}
}
}
// FilterWithKey returns a function that filters key-value pairs based on a predicate.
// This is the curried version of MonadFilterWithKey.
//
// Example:
//
// largeValues := FilterWithKey(func(k string, v int) bool { return v > 5 })
// seq := Of2("x", 10)
// result := largeValues(seq)
// // yields: ("x", 10)
//
//go:inline
func FilterWithKey[K, A any](pred func(K, A) bool) Operator2[K, A, A] {
return F.Bind2nd(MonadFilterWithKey[K, A], pred)
}
// MonadFilterMap applies a function that returns an Option to each element,
// keeping only the Some values and unwrapping them.
//
// Example:
//
// seq := From(1, 2, 3, 4, 5)
// result := MonadFilterMap(seq, func(x int) Option[int] {
// if x%2 == 0 {
// return option.Some(x * 10)
// }
// return option.None[int]()
// })
// // yields: 20, 40
func MonadFilterMap[A, B any](as Seq[A], f option.Kleisli[A, B]) Seq[B] {
return func(yield Predicate[B]) {
for a := range as {
if b, ok := option.Unwrap(f(a)); ok {
if !yield(b) {
return
}
}
}
}
}
// FilterMap returns a function that filters and maps in one operation.
// This is the curried version of MonadFilterMap.
//
// Example:
//
// evenDoubled := FilterMap(func(x int) Option[int] {
// if x%2 == 0 {
// return option.Some(x * 2)
// }
// return option.None[int]()
// })
// seq := From(1, 2, 3, 4)
// result := evenDoubled(seq)
// // yields: 4, 8
//
//go:inline
func FilterMap[A, B any](f option.Kleisli[A, B]) Operator[A, B] {
return F.Bind2nd(MonadFilterMap[A, B], f)
}
// MonadFilterMapWithIndex applies a function with index that returns an Option,
// keeping only the Some values.
//
// Example:
//
// seq := From("a", "b", "c")
// result := MonadFilterMapWithIndex(seq, func(i int, s string) Option[string] {
// if i%2 == 0 {
// return option.Some(fmt.Sprintf("%d:%s", i, s))
// }
// return option.None[string]()
// })
// // yields: "0:a", "2:c"
func MonadFilterMapWithIndex[A, B any](as Seq[A], f func(int, A) Option[B]) Seq[B] {
return func(yield Predicate[B]) {
var i int
for a := range as {
if b, ok := option.Unwrap(f(i, a)); ok {
if !yield(b) {
return
}
}
i++
}
}
}
// FilterMapWithIndex returns a function that filters and maps with index.
// This is the curried version of MonadFilterMapWithIndex.
//
// Example:
//
// evenIndexed := FilterMapWithIndex(func(i int, s string) Option[string] {
// if i%2 == 0 {
// return option.Some(s)
// }
// return option.None[string]()
// })
// seq := From("a", "b", "c", "d")
// result := evenIndexed(seq)
// // yields: "a", "c"
//
//go:inline
func FilterMapWithIndex[A, B any](f func(int, A) Option[B]) Operator[A, B] {
return F.Bind2nd(MonadFilterMapWithIndex[A, B], f)
}
// MonadFilterMapWithKey applies a function with key that returns an Option to key-value pairs,
// keeping only the Some values.
//
// Example:
//
// seq := Of2("x", 10)
// result := MonadFilterMapWithKey(seq, func(k string, v int) Option[int] {
// if v > 5 {
// return option.Some(v * 2)
// }
// return option.None[int]()
// })
// // yields: ("x", 20)
func MonadFilterMapWithKey[K, A, B any](as Seq2[K, A], f func(K, A) Option[B]) Seq2[K, B] {
return func(yield func(K, B) bool) {
for k, a := range as {
if b, ok := option.Unwrap(f(k, a)); ok {
if !yield(k, b) {
return
}
}
}
}
}
// FilterMapWithKey returns a function that filters and maps key-value pairs.
// This is the curried version of MonadFilterMapWithKey.
//
// Example:
//
// largeDoubled := FilterMapWithKey(func(k string, v int) Option[int] {
// if v > 5 {
// return option.Some(v * 2)
// }
// return option.None[int]()
// })
// seq := Of2("x", 10)
// result := largeDoubled(seq)
// // yields: ("x", 20)
//
//go:inline
func FilterMapWithKey[K, A, B any](f func(K, A) Option[B]) Operator2[K, A, B] {
return F.Bind2nd(MonadFilterMapWithKey[K, A, B], f)
}
// MonadChain applies a function that returns a sequence to each element and flattens the results.
// This is the monadic bind operation (flatMap).
//
// Example:
//
// seq := From(1, 2, 3)
// result := MonadChain(seq, func(x int) Seq[int] {
// return From(x, x*10)
// })
// // yields: 1, 10, 2, 20, 3, 30
func MonadChain[A, B any](as Seq[A], f Kleisli[A, B]) Seq[B] {
return func(yield Predicate[B]) {
for a := range as {
for b := range f(a) {
if !yield(b) {
return
}
}
}
}
}
// Chain returns a function that chains (flatMaps) a sequence transformation.
// This is the curried version of MonadChain.
//
// Example:
//
// duplicate := Chain(func(x int) Seq[int] { return From(x, x) })
// seq := From(1, 2, 3)
// result := duplicate(seq)
// // yields: 1, 1, 2, 2, 3, 3
//
//go:inline
func Chain[A, B any](f func(A) Seq[B]) Operator[A, B] {
return F.Bind2nd(MonadChain[A, B], f)
}
// Flatten flattens a sequence of sequences into a single sequence.
//
// Example:
//
// nested := From(From(1, 2), From(3, 4), From(5))
// result := Flatten(nested)
// // yields: 1, 2, 3, 4, 5
//
//go:inline
func Flatten[A any](mma Seq[Seq[A]]) Seq[A] {
return MonadChain(mma, F.Identity[Seq[A]])
}
// MonadAp applies a sequence of functions to a sequence of values.
// This is the applicative apply operation.
//
// Example:
//
// fns := From(func(x int) int { return x * 2 }, func(x int) int { return x + 10 })
// vals := From(5, 3)
// result := MonadAp(fns, vals)
// // yields: 10, 6, 15, 13 (each function applied to each value)
//
//go:inline
func MonadAp[B, A any](fab Seq[func(A) B], fa Seq[A]) Seq[B] {
return MonadChain(fab, F.Bind1st(MonadMap[A, B], fa))
}
// Ap returns a function that applies functions to values.
// This is the curried version of MonadAp.
//
// Example:
//
// applyTo5 := Ap(From(5))
// fns := From(func(x int) int { return x * 2 }, func(x int) int { return x + 10 })
// result := applyTo5(fns)
// // yields: 10, 15
//
//go:inline
func Ap[B, A any](fa Seq[A]) Operator[func(A) B, B] {
return F.Bind2nd(MonadAp[B, A], fa)
}
// From creates a sequence from a variadic list of elements.
//
// Example:
//
// seq := From(1, 2, 3, 4, 5)
// // yields: 1, 2, 3, 4, 5
//
//go:inline
func From[A any](data ...A) Seq[A] {
return slices.Values(data)
}
// Empty returns an empty sequence that yields no elements.
//
// Example:
//
// seq := Empty[int]()
// // yields nothing
//
//go:inline
func Empty[A any]() Seq[A] {
return G.Empty[Seq[A]]()
}
// MakeBy creates a sequence of n elements by applying a function to each index.
// Returns an empty sequence if n <= 0.
//
// Example:
//
// seq := MakeBy(5, func(i int) int { return i * i })
// // yields: 0, 1, 4, 9, 16
func MakeBy[A any](n int, f func(int) A) Seq[A] {
// sanity check
if n <= 0 {
return Empty[A]()
}
// run the generator function across the input
return func(yield Predicate[A]) {
for i := range n {
if !yield(f(i)) {
return
}
}
}
}
// Replicate creates a sequence containing n copies of the same element.
//
// Example:
//
// seq := Replicate(3, "hello")
// // yields: "hello", "hello", "hello"
//
//go:inline
func Replicate[A any](n int, a A) Seq[A] {
return MakeBy(n, F.Constant1[int](a))
}
// MonadReduce reduces a sequence to a single value by applying a function to each element
// and an accumulator, starting with an initial value.
//
// Example:
//
// seq := From(1, 2, 3, 4, 5)
// sum := MonadReduce(seq, func(acc, x int) int { return acc + x }, 0)
// // returns: 15
//
//go:inline
func MonadReduce[A, B any](fa Seq[A], f func(B, A) B, initial B) B {
return G.MonadReduce(fa, f, initial)
}
// Reduce returns a function that reduces a sequence to a single value.
// This is the curried version of MonadReduce.
//
// Example:
//
// sum := Reduce(func(acc, x int) int { return acc + x }, 0)
// seq := From(1, 2, 3, 4, 5)
// result := sum(seq)
// // returns: 15
func Reduce[A, B any](f func(B, A) B, initial B) func(Seq[A]) B {
return func(fa Seq[A]) B {
return MonadReduce(fa, f, initial)
}
}
// MonadReduceWithIndex reduces a sequence using a function that also receives the element's index.
//
// Example:
//
// seq := From(10, 20, 30)
// result := MonadReduceWithIndex(seq, func(i, acc, x int) int {
// return acc + (i * x)
// }, 0)
// // returns: 0*10 + 1*20 + 2*30 = 80
//
//go:inline
func MonadReduceWithIndex[A, B any](fa Seq[A], f func(int, B, A) B, initial B) B {
return G.MonadReduceWithIndex(fa, f, initial)
}
// ReduceWithIndex returns a function that reduces with index.
// This is the curried version of MonadReduceWithIndex.
//
// Example:
//
// weightedSum := ReduceWithIndex(func(i, acc, x int) int {
// return acc + (i * x)
// }, 0)
// seq := From(10, 20, 30)
// result := weightedSum(seq)
// // returns: 80
func ReduceWithIndex[A, B any](f func(int, B, A) B, initial B) func(Seq[A]) B {
return func(fa Seq[A]) B {
return MonadReduceWithIndex(fa, f, initial)
}
}
// MonadReduceWithKey reduces a key-value sequence using a function that receives the key.
//
// Example:
//
// seq := Of2("x", 10)
// result := MonadReduceWithKey(seq, func(k string, acc int, v int) int {
// return acc + v
// }, 0)
// // returns: 10
func MonadReduceWithKey[K, A, B any](fa Seq2[K, A], f func(K, B, A) B, initial B) B {
current := initial
for k, a := range fa {
current = f(k, current, a)
}
return current
}
// ReduceWithKey returns a function that reduces key-value pairs.
// This is the curried version of MonadReduceWithKey.
//
// Example:
//
// sumValues := ReduceWithKey(func(k string, acc int, v int) int {
// return acc + v
// }, 0)
// seq := Of2("x", 10)
// result := sumValues(seq)
// // returns: 10
func ReduceWithKey[K, A, B any](f func(K, B, A) B, initial B) func(Seq2[K, A]) B {
return func(fa Seq2[K, A]) B {
return MonadReduceWithKey(fa, f, initial)
}
}
// MonadFold folds a sequence using a monoid's concat operation and empty value.
//
// Example:
//
// import "github.com/IBM/fp-go/v2/number"
// seq := From(1, 2, 3, 4, 5)
// sum := MonadFold(seq, number.MonoidSum[int]())
// // returns: 15
//
//go:inline
func MonadFold[A any](fa Seq[A], m M.Monoid[A]) A {
return MonadReduce(fa, m.Concat, m.Empty())
}
// Fold returns a function that folds a sequence using a monoid.
// This is the curried version of MonadFold.
//
// Example:
//
// import "github.com/IBM/fp-go/v2/number"
// sumAll := Fold(number.MonoidSum[int]())
// seq := From(1, 2, 3, 4, 5)
// result := sumAll(seq)
// // returns: 15
//
//go:inline
func Fold[A any](m M.Monoid[A]) func(Seq[A]) A {
return Reduce(m.Concat, m.Empty())
}
// MonadFoldMap maps each element to a monoid value and combines them using the monoid.
//
// Example:
//
// import "github.com/IBM/fp-go/v2/string"
// seq := From(1, 2, 3)
// result := MonadFoldMap(seq, func(x int) string {
// return fmt.Sprintf("%d ", x)
// }, string.Monoid)
// // returns: "1 2 3 "
//
//go:inline
func MonadFoldMap[A, B any](fa Seq[A], f func(A) B, m M.Monoid[B]) B {
return MonadReduce(fa, func(b B, a A) B {
return m.Concat(b, f(a))
}, m.Empty())
}
// FoldMap returns a function that maps and folds using a monoid.
// This is the curried version of MonadFoldMap.
//
// Example:
//
// import "github.com/IBM/fp-go/v2/string"
// stringify := FoldMap(string.Monoid)(func(x int) string {
// return fmt.Sprintf("%d ", x)
// })
// seq := From(1, 2, 3)
// result := stringify(seq)
// // returns: "1 2 3 "
//
//go:inline
func FoldMap[A, B any](m M.Monoid[B]) func(func(A) B) func(Seq[A]) B {
return func(f func(A) B) func(Seq[A]) B {
return func(as Seq[A]) B {
return MonadFoldMap(as, f, m)
}
}
}
// MonadFoldMapWithIndex maps each element with its index to a monoid value and combines them.
//
// Example:
//
// import "github.com/IBM/fp-go/v2/string"
// seq := From("a", "b", "c")
// result := MonadFoldMapWithIndex(seq, func(i int, s string) string {
// return fmt.Sprintf("%d:%s ", i, s)
// }, string.Monoid)
// // returns: "0:a 1:b 2:c "
//
//go:inline
func MonadFoldMapWithIndex[A, B any](fa Seq[A], f func(int, A) B, m M.Monoid[B]) B {
return MonadReduceWithIndex(fa, func(i int, b B, a A) B {
return m.Concat(b, f(i, a))
}, m.Empty())
}
// FoldMapWithIndex returns a function that maps with index and folds.
// This is the curried version of MonadFoldMapWithIndex.
//
// Example:
//
// import "github.com/IBM/fp-go/v2/string"
// indexedStringify := FoldMapWithIndex(string.Monoid)(func(i int, s string) string {
// return fmt.Sprintf("%d:%s ", i, s)
// })
// seq := From("a", "b", "c")
// result := indexedStringify(seq)
// // returns: "0:a 1:b 2:c "
//
//go:inline
func FoldMapWithIndex[A, B any](m M.Monoid[B]) func(func(int, A) B) func(Seq[A]) B {
return func(f func(int, A) B) func(Seq[A]) B {
return func(as Seq[A]) B {
return MonadFoldMapWithIndex(as, f, m)
}
}
}
// MonadFoldMapWithKey maps each key-value pair to a monoid value and combines them.
//
// Example:
//
// import "github.com/IBM/fp-go/v2/string"
// seq := Of2("x", 10)
// result := MonadFoldMapWithKey(seq, func(k string, v int) string {
// return fmt.Sprintf("%s:%d ", k, v)
// }, string.Monoid)
// // returns: "x:10 "
//
//go:inline
func MonadFoldMapWithKey[K, A, B any](fa Seq2[K, A], f func(K, A) B, m M.Monoid[B]) B {
return MonadReduceWithKey(fa, func(k K, b B, a A) B {
return m.Concat(b, f(k, a))
}, m.Empty())
}
// FoldMapWithKey returns a function that maps with key and folds.
// This is the curried version of MonadFoldMapWithKey.
//
//go:inline
func FoldMapWithKey[K, A, B any](m M.Monoid[B]) func(func(K, A) B) func(Seq2[K, A]) B {
return func(f func(K, A) B) func(Seq2[K, A]) B {
return func(as Seq2[K, A]) B {
return MonadFoldMapWithKey(as, f, m)
}
}
}
// MonadFlap applies a fixed value to a sequence of functions.
// This is the dual of MonadAp.
//
// Example:
//
// fns := From(func(x int) int { return x * 2 }, func(x int) int { return x + 10 })
// result := MonadFlap(fns, 5)
// // yields: 10, 15
//
//go:inline
func MonadFlap[B, A any](fab Seq[func(A) B], a A) Seq[B] {
return functor.MonadFlap(MonadMap[func(A) B, B], fab, a)
}
// Flap returns a function that applies a fixed value to functions.
// This is the curried version of MonadFlap.
//
//go:inline
func Flap[B, A any](a A) Operator[func(A) B, B] {
return functor.Flap(Map[func(A) B, B], a)
}
// Prepend returns a function that adds an element to the beginning of a sequence.
//
// Example:
//
// seq := From(2, 3, 4)
// result := Prepend(1)(seq)
// // yields: 1, 2, 3, 4
//
//go:inline
func Prepend[A any](head A) Operator[A, A] {
return G.Prepend[Seq[A]](head)
}
// Append returns a function that adds an element to the end of a sequence.
//
// Example:
//
// seq := From(1, 2, 3)
// result := Append(4)(seq)
// // yields: 1, 2, 3, 4
//
//go:inline
func Append[A any](tail A) Operator[A, A] {
return G.Append[Seq[A]](tail)
}
// MonadZip combines two sequences into a sequence of pairs.
// The resulting sequence stops when either input sequence is exhausted.
//
// Example:
//
// seqA := From(1, 2, 3)
// seqB := From("a", "b")
// result := MonadZip(seqB, seqA)
// // yields: (1, "a"), (2, "b")
func MonadZip[A, B any](fb Seq[B], fa Seq[A]) Seq2[A, B] {
return func(yield func(A, B) bool) {
na, sa := I.Pull(fa)
defer sa()
for b := range fb {
a, ok := na()
if !ok {
return
}
if !yield(a, b) {
return
}
}
}
}
// Zip returns a function that zips a sequence with another sequence.
// This is the curried version of MonadZip.
//
// Example:
//
// seqA := From(1, 2, 3)
// zipWithA := Zip(seqA)
// seqB := From("a", "b", "c")
// result := zipWithA(seqB)
// // yields: (1, "a"), (2, "b"), (3, "c")
//
//go:inline
func Zip[A, B any](fa Seq[A]) func(Seq[B]) Seq2[A, B] {
return F.Bind2nd(MonadZip[A, B], fa)
}