mirror of
https://github.com/IBM/fp-go.git
synced 2025-11-25 22:21:49 +02:00
103 lines
2.5 KiB
Go
103 lines
2.5 KiB
Go
// Copyright (c) 2025 IBM Corp.
|
|
// All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package testing
|
|
|
|
import (
|
|
"testing"
|
|
|
|
EQ "github.com/IBM/fp-go/v2/eq"
|
|
L "github.com/IBM/fp-go/v2/internal/monad/testing"
|
|
O "github.com/IBM/fp-go/v2/option"
|
|
)
|
|
|
|
// AssertLaws asserts the monad laws for the Option monad.
|
|
// This function verifies that Option satisfies the functor, applicative, and monad laws.
|
|
//
|
|
// The laws tested include:
|
|
// - Functor laws: identity and composition
|
|
// - Applicative laws: identity, composition, homomorphism, and interchange
|
|
// - Monad laws: left identity, right identity, and associativity
|
|
//
|
|
// Parameters:
|
|
// - t: testing instance
|
|
// - eqa, eqb, eqc: equality predicates for types A, B, and C
|
|
// - ab: a function from A to B for testing
|
|
// - bc: a function from B to C for testing
|
|
//
|
|
// Returns a function that takes a value of type A and returns true if all laws hold.
|
|
//
|
|
// Example:
|
|
//
|
|
// func TestOptionLaws(t *testing.T) {
|
|
// eqInt := eq.FromStrictEquals[int]()
|
|
// eqString := eq.FromStrictEquals[string]()
|
|
// eqBool := eq.FromStrictEquals[bool]()
|
|
//
|
|
// ab := strconv.Itoa
|
|
// bc := func(s string) bool { return len(s) > 0 }
|
|
//
|
|
// assert := AssertLaws(t, eqInt, eqString, eqBool, ab, bc)
|
|
// assert(42) // verifies laws hold for value 42
|
|
// }
|
|
func AssertLaws[A, B, C any](t *testing.T,
|
|
eqa EQ.Eq[A],
|
|
eqb EQ.Eq[B],
|
|
eqc EQ.Eq[C],
|
|
|
|
ab func(A) B,
|
|
bc func(B) C,
|
|
) func(a A) bool {
|
|
|
|
return L.AssertLaws(t,
|
|
O.Eq(eqa),
|
|
O.Eq(eqb),
|
|
O.Eq(eqc),
|
|
|
|
O.Of[A],
|
|
O.Of[B],
|
|
O.Of[C],
|
|
|
|
O.Of[func(A) A],
|
|
O.Of[func(A) B],
|
|
O.Of[func(B) C],
|
|
O.Of[func(func(A) B) B],
|
|
|
|
O.MonadMap[A, A],
|
|
O.MonadMap[A, B],
|
|
O.MonadMap[A, C],
|
|
O.MonadMap[B, C],
|
|
|
|
O.MonadMap[func(B) C, func(func(A) B) func(A) C],
|
|
|
|
O.MonadChain[A, A],
|
|
O.MonadChain[A, B],
|
|
O.MonadChain[A, C],
|
|
O.MonadChain[B, C],
|
|
|
|
O.MonadAp[A, A],
|
|
O.MonadAp[B, A],
|
|
O.MonadAp[C, B],
|
|
O.MonadAp[C, A],
|
|
|
|
O.MonadAp[B, func(A) B],
|
|
O.MonadAp[func(A) C, func(A) B],
|
|
|
|
ab,
|
|
bc,
|
|
)
|
|
|
|
}
|