1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/endomorphism/endomorphism_test.go
Carsten Leue 3385c705dc Implement v2 using type aliases (#141)
* fix: initial checkin of v2

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: slowly migrate IO

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: migrate MonadTraverseArray and TraverseArray

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: migrate traversal

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: complete migration of IO

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: migrate ioeither

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: refactorY

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: next step in migration

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: adjust IO generation code

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: get rid of more IO methods

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: get rid of more IO

* fix: convert iooption

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: convert reader

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: convert a bit of reader

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: new build script

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: cleanup

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: reformat

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: simplify

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: some cleanup

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: adjust Pair to Haskell semantic

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: documentation and testcases

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: some performance optimizations

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: remove coverage

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: better doc

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

---------

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-06 09:27:00 +01:00

400 lines
12 KiB
Go

// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package endomorphism
import (
"testing"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
"github.com/stretchr/testify/assert"
)
// Test helper functions
func double(x int) int {
return x * 2
}
func increment(x int) int {
return x + 1
}
func square(x int) int {
return x * x
}
func negate(x int) int {
return -x
}
// TestCurry2 tests the Curry2 function
func TestCurry2(t *testing.T) {
add := func(x, y int) int {
return x + y
}
curriedAdd := Curry2(add)
addFive := curriedAdd(5)
result := addFive(10)
assert.Equal(t, 15, result, "Curry2 should curry binary function correctly")
// Test with different values
addTen := curriedAdd(10)
assert.Equal(t, 25, addTen(15), "Curry2 should work with different values")
}
// TestCurry3 tests the Curry3 function
func TestCurry3(t *testing.T) {
combine := func(x, y, z int) int {
return x + y + z
}
curriedCombine := Curry3(combine)
addTen := curriedCombine(5)(5)
result := addTen(20)
assert.Equal(t, 30, result, "Curry3 should curry ternary function correctly")
// Test with different values
addFifteen := curriedCombine(5)(10)
assert.Equal(t, 35, addFifteen(20), "Curry3 should work with different values")
}
// TestMonadAp tests the MonadAp function
func TestMonadAp(t *testing.T) {
result := MonadAp(double, 5)
assert.Equal(t, 10, result, "MonadAp should apply endomorphism to value")
result2 := MonadAp(increment, 10)
assert.Equal(t, 11, result2, "MonadAp should work with different endomorphisms")
result3 := MonadAp(square, 4)
assert.Equal(t, 16, result3, "MonadAp should work with square function")
}
// TestAp tests the Ap function
func TestAp(t *testing.T) {
applyFive := Ap(5)
result := applyFive(double)
assert.Equal(t, 10, result, "Ap should apply value to endomorphism")
result2 := applyFive(increment)
assert.Equal(t, 6, result2, "Ap should work with different endomorphisms")
applyTen := Ap(10)
result3 := applyTen(square)
assert.Equal(t, 100, result3, "Ap should work with different values")
}
// TestCompose tests the Compose function
func TestCompose(t *testing.T) {
// Test basic composition: (5 * 2) + 1 = 11
doubleAndIncrement := Compose(double, increment)
result := doubleAndIncrement(5)
assert.Equal(t, 11, result, "Compose should compose endomorphisms correctly")
// Test composition order: (5 + 1) * 2 = 12
incrementAndDouble := Compose(increment, double)
result2 := incrementAndDouble(5)
assert.Equal(t, 12, result2, "Compose should respect order of composition")
// Test with three compositions: ((5 * 2) + 1) * ((5 * 2) + 1) = 121
complex := Compose(Compose(double, increment), square)
result3 := complex(5)
assert.Equal(t, 121, result3, "Compose should work with nested compositions")
}
// TestMonadChain tests the MonadChain function
func TestMonadChain(t *testing.T) {
// MonadChain should behave like Compose
chained := MonadChain(double, increment)
result := chained(5)
assert.Equal(t, 11, result, "MonadChain should chain endomorphisms correctly")
chained2 := MonadChain(increment, double)
result2 := chained2(5)
assert.Equal(t, 12, result2, "MonadChain should respect order")
// Test with negative values
chained3 := MonadChain(negate, increment)
result3 := chained3(5)
assert.Equal(t, -4, result3, "MonadChain should work with negative values")
}
// TestChain tests the Chain function
func TestChain(t *testing.T) {
chainWithIncrement := Chain(increment)
chained := chainWithIncrement(double)
result := chained(5)
assert.Equal(t, 11, result, "Chain should create chaining function correctly")
chainWithDouble := Chain(double)
chained2 := chainWithDouble(increment)
result2 := chained2(5)
assert.Equal(t, 12, result2, "Chain should work with different endomorphisms")
// Test chaining with square
chainWithSquare := Chain(square)
chained3 := chainWithSquare(double)
result3 := chained3(3)
assert.Equal(t, 36, result3, "Chain should work with square function")
}
// TestOf tests the Of function
func TestOf(t *testing.T) {
endo := Of(double)
result := endo(5)
assert.Equal(t, 10, result, "Of should convert function to endomorphism")
endo2 := Of(increment)
result2 := endo2(10)
assert.Equal(t, 11, result2, "Of should work with different functions")
}
// TestWrap tests the Wrap function (deprecated)
func TestWrap(t *testing.T) {
endo := Wrap(double)
result := endo(5)
assert.Equal(t, 10, result, "Wrap should convert function to endomorphism")
}
// TestUnwrap tests the Unwrap function (deprecated)
func TestUnwrap(t *testing.T) {
endo := Of(double)
unwrapped := Unwrap[func(int) int](endo)
result := unwrapped(5)
assert.Equal(t, 10, result, "Unwrap should convert endomorphism to function")
}
// TestIdentity tests the Identity function
func TestIdentity(t *testing.T) {
id := Identity[int]()
// Identity should return input unchanged
assert.Equal(t, 42, id(42), "Identity should return input unchanged")
assert.Equal(t, 0, id(0), "Identity should work with zero")
assert.Equal(t, -10, id(-10), "Identity should work with negative values")
// Identity should be neutral for composition
composed1 := Compose(id, double)
assert.Equal(t, 10, composed1(5), "Identity should be right neutral for composition")
composed2 := Compose(double, id)
assert.Equal(t, 10, composed2(5), "Identity should be left neutral for composition")
// Test with strings
idStr := Identity[string]()
assert.Equal(t, "hello", idStr("hello"), "Identity should work with strings")
}
// TestSemigroup tests the Semigroup function
func TestSemigroup(t *testing.T) {
sg := Semigroup[int]()
// Test basic concat
combined := sg.Concat(double, increment)
result := combined(5)
assert.Equal(t, 11, result, "Semigroup concat should compose endomorphisms")
// Test associativity: (f . g) . h = f . (g . h)
f := double
g := increment
h := square
left := sg.Concat(sg.Concat(f, g), h)
right := sg.Concat(f, sg.Concat(g, h))
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "Semigroup should be associative")
// Test with ConcatAll from semigroup package
combined2 := S.ConcatAll(sg)(double)([]Endomorphism[int]{increment, square})
result2 := combined2(5)
assert.Equal(t, 121, result2, "Semigroup should work with ConcatAll")
}
// TestMonoid tests the Monoid function
func TestMonoid(t *testing.T) {
monoid := Monoid[int]()
// Test that empty is identity
empty := monoid.Empty()
assert.Equal(t, 42, empty(42), "Monoid empty should be identity")
// Test right identity: x . empty = x
rightIdentity := monoid.Concat(double, empty)
assert.Equal(t, 10, rightIdentity(5), "Monoid should satisfy right identity")
// Test left identity: empty . x = x
leftIdentity := monoid.Concat(empty, double)
assert.Equal(t, 10, leftIdentity(5), "Monoid should satisfy left identity")
// Test ConcatAll with multiple endomorphisms
combined := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square})
result := combined(5)
// (5 * 2) = 10, (10 + 1) = 11, (11 * 11) = 121
assert.Equal(t, 121, result, "Monoid should work with ConcatAll")
// Test ConcatAll with empty list should return identity
emptyResult := M.ConcatAll(monoid)([]Endomorphism[int]{})
assert.Equal(t, 42, emptyResult(42), "ConcatAll with no args should return identity")
}
// TestMonoidLaws tests that the Monoid satisfies monoid laws
func TestMonoidLaws(t *testing.T) {
monoid := Monoid[int]()
empty := monoid.Empty()
testCases := []struct {
name string
f Endomorphism[int]
g Endomorphism[int]
h Endomorphism[int]
}{
{"basic", double, increment, square},
{"with negate", negate, double, increment},
{"with identity", Identity[int](), double, increment},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
testValue := 5
// Right identity: x . empty = x
rightId := monoid.Concat(tc.f, empty)
assert.Equal(t, tc.f(testValue), rightId(testValue), "Right identity law")
// Left identity: empty . x = x
leftId := monoid.Concat(empty, tc.f)
assert.Equal(t, tc.f(testValue), leftId(testValue), "Left identity law")
// Associativity: (f . g) . h = f . (g . h)
left := monoid.Concat(monoid.Concat(tc.f, tc.g), tc.h)
right := monoid.Concat(tc.f, monoid.Concat(tc.g, tc.h))
assert.Equal(t, left(testValue), right(testValue), "Associativity law")
})
}
}
// TestEndomorphismWithDifferentTypes tests endomorphisms with different types
func TestEndomorphismWithDifferentTypes(t *testing.T) {
// Test with strings
toUpper := func(s string) string {
return s + "!"
}
addPrefix := func(s string) string {
return "Hello, " + s
}
strComposed := Compose(toUpper, addPrefix)
result := strComposed("World")
assert.Equal(t, "Hello, World!", result, "Endomorphism should work with strings")
// Test with float64
doubleFloat := func(x float64) float64 {
return x * 2.0
}
addOne := func(x float64) float64 {
return x + 1.0
}
floatComposed := Compose(doubleFloat, addOne)
resultFloat := floatComposed(5.5)
assert.Equal(t, 12.0, resultFloat, "Endomorphism should work with float64")
}
// TestComplexCompositions tests more complex composition scenarios
func TestComplexCompositions(t *testing.T) {
// Create a pipeline of transformations
pipeline := Compose(
Compose(
Compose(double, increment),
square,
),
negate,
)
// (5 * 2) = 10, (10 + 1) = 11, (11 * 11) = 121, -(121) = -121
result := pipeline(5)
assert.Equal(t, -121, result, "Complex composition should work correctly")
// Test using monoid to build the same pipeline
monoid := Monoid[int]()
pipelineMonoid := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square, negate})
resultMonoid := pipelineMonoid(5)
assert.Equal(t, -121, resultMonoid, "Monoid-based pipeline should match composition")
}
// TestOperatorType tests the Operator type
func TestOperatorType(t *testing.T) {
// Create an operator that lifts an int endomorphism to work on the length of strings
lengthOperator := func(f Endomorphism[int]) Endomorphism[string] {
return func(s string) string {
newLen := f(len(s))
if newLen > len(s) {
// Pad with spaces
for i := len(s); i < newLen; i++ {
s += " "
}
} else if newLen < len(s) {
// Truncate
s = s[:newLen]
}
return s
}
}
// Use the operator
var op Operator[int, string] = lengthOperator
doubleLength := op(double)
result := doubleLength("hello") // len("hello") = 5, 5 * 2 = 10
assert.Equal(t, 10, len(result), "Operator should transform endomorphisms correctly")
assert.Equal(t, "hello ", result, "Operator should pad string correctly")
}
// BenchmarkCompose benchmarks the Compose function
func BenchmarkCompose(b *testing.B) {
composed := Compose(double, increment)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = composed(5)
}
}
// BenchmarkMonoidConcatAll benchmarks ConcatAll with monoid
func BenchmarkMonoidConcatAll(b *testing.B) {
monoid := Monoid[int]()
combined := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square})
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = combined(5)
}
}
// BenchmarkChain benchmarks the Chain function
func BenchmarkChain(b *testing.B) {
chainWithIncrement := Chain(increment)
chained := chainWithIncrement(double)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = chained(5)
}
}