1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/io/io.go
Dr. Carsten Leue 4d008e636a fix: next step in migration
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-03-04 21:59:09 +01:00

288 lines
7.6 KiB
Go

// Copyright (c) 2023 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package io
import (
"time"
F "github.com/IBM/fp-go/v2/function"
INTA "github.com/IBM/fp-go/v2/internal/apply"
INTC "github.com/IBM/fp-go/v2/internal/chain"
INTF "github.com/IBM/fp-go/v2/internal/functor"
INTL "github.com/IBM/fp-go/v2/internal/lazy"
M "github.com/IBM/fp-go/v2/monoid"
R "github.com/IBM/fp-go/v2/reader"
S "github.com/IBM/fp-go/v2/semigroup"
T "github.com/IBM/fp-go/v2/tuple"
)
const (
// useParallel is the feature flag to control if we use the parallel or the sequential implementation of ap
useParallel = true
)
var (
// undefined represents an undefined value
undefined = struct{}{}
)
type (
// IO represents a synchronous computation that cannot fail
// refer to [https://andywhite.xyz/posts/2021-01-27-rte-foundations/#ioltagt] for more details
IO[A any] = func() A
Mapper[A, B any] = R.Reader[IO[A], IO[B]]
Monoid[A any] = M.Monoid[IO[A]]
Semigroup[A any] = S.Semigroup[IO[A]]
)
func Of[A any](a A) IO[A] {
return F.Constant(a)
}
func FromIO[A any](a IO[A]) IO[A] {
return a
}
// FromImpure converts a side effect without a return value into a side effect that returns any
func FromImpure[ANY ~func()](f ANY) IO[any] {
return func() any {
f()
return undefined
}
}
func MonadOf[A any](a A) IO[A] {
return F.Constant(a)
}
func MonadMap[A, B any](fa IO[A], f func(A) B) IO[B] {
return func() B {
return f(fa())
}
}
func Map[A, B any](f func(A) B) Mapper[A, B] {
return F.Bind2nd(MonadMap[A, B], f)
}
func MonadMapTo[A, B any](fa IO[A], b B) IO[B] {
return MonadMap(fa, F.Constant1[A](b))
}
func MapTo[A, B any](b B) Mapper[A, B] {
return Map(F.Constant1[A](b))
}
// MonadChain composes computations in sequence, using the return value of one computation to determine the next computation.
func MonadChain[A, B any](fa IO[A], f func(A) IO[B]) IO[B] {
return func() B {
return f(fa())()
}
}
// Chain composes computations in sequence, using the return value of one computation to determine the next computation.
func Chain[A, B any](f func(A) IO[B]) Mapper[A, B] {
return F.Bind2nd(MonadChain[A, B], f)
}
// MonadApSeq implements the applicative on a single thread by first executing mab and the ma
func MonadApSeq[A, B any](mab IO[func(A) B], ma IO[A]) IO[B] {
return MonadChain(mab, F.Bind1st(MonadMap[A, B], ma))
}
// MonadApPar implements the applicative on two threads, the main thread executes mab and the actuall
// apply operation and the second thread computes ma. Communication between the threads happens via a channel
func MonadApPar[A, B any](mab IO[func(A) B], ma IO[A]) IO[B] {
return func() B {
c := make(chan A)
go func() {
c <- ma()
close(c)
}()
return mab()(<-c)
}
}
// MonadAp implements the `ap` operation. Depending on a feature flag this will be sequential or parallel, the preferred implementation
// is parallel
func MonadAp[A, B any](mab IO[func(A) B], ma IO[A]) IO[B] {
if useParallel {
return MonadApPar(mab, ma)
}
return MonadApSeq(mab, ma)
}
func Ap[B, A any](ma IO[A]) Mapper[func(A) B, B] {
return F.Bind2nd(MonadAp[A, B], ma)
}
func ApSeq[B, A any](ma IO[A]) Mapper[func(A) B, B] {
return Chain(F.Bind1st(MonadMap[A, B], ma))
}
func ApPar[B, A any](ma IO[A]) Mapper[func(A) B, B] {
return F.Bind2nd(MonadApPar[A, B], ma)
}
func Flatten[A any](mma IO[IO[A]]) IO[A] {
return MonadChain(mma, F.Identity)
}
// Memoize computes the value of the provided [IO] monad lazily but exactly once
func Memoize[A any](ma IO[A]) IO[A] {
return INTL.Memoize(ma)
}
// MonadChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and
// keeping only the result of the first.
func MonadChainFirst[A, B any](fa IO[A], f func(A) IO[B]) IO[A] {
return INTC.MonadChainFirst(MonadChain[A, A], MonadMap[B, A], fa, f)
}
// ChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and
// keeping only the result of the first.
func ChainFirst[A, B any](f func(A) IO[B]) Mapper[A, A] {
return INTC.ChainFirst(
Chain[A, A],
Map[B, A],
f,
)
}
// MonadApFirst combines two effectful actions, keeping only the result of the first.
func MonadApFirst[A, B any](first IO[A], second IO[B]) IO[A] {
return INTA.MonadApFirst(
MonadAp[B, A],
MonadMap[A, func(B) A],
first,
second,
)
}
// ApFirst combines two effectful actions, keeping only the result of the first.
func ApFirst[A, B any](second IO[B]) Mapper[A, A] {
return INTA.ApFirst(
MonadAp[B, A],
MonadMap[A, func(B) A],
second,
)
}
// MonadApSecond combines two effectful actions, keeping only the result of the second.
func MonadApSecond[A, B any](first IO[A], second IO[B]) IO[B] {
return INTA.MonadApSecond(
MonadAp[B, B],
MonadMap[A, func(B) B],
first,
second,
)
}
// ApSecond combines two effectful actions, keeping only the result of the second.
func ApSecond[A, B any](second IO[B]) Mapper[A, B] {
return INTA.ApSecond(
MonadAp[B, B],
MonadMap[A, func(B) B],
second,
)
}
// MonadChainTo composes computations in sequence, ignoring the return value of the first computation
func MonadChainTo[A, B any](fa IO[A], fb IO[B]) IO[B] {
return MonadChain(fa, F.Constant1[A](fb))
}
// ChainTo composes computations in sequence, ignoring the return value of the first computation
func ChainTo[A, B any](fb IO[B]) Mapper[A, B] {
return Chain(F.Constant1[A](fb))
}
// Now returns the current timestamp
var Now IO[time.Time] = time.Now
// Defer creates an IO by creating a brand new IO via a generator function, each time
func Defer[A any](gen func() IO[A]) IO[A] {
return func() A {
return gen()()
}
}
func MonadFlap[B, A any](fab IO[func(A) B], a A) IO[B] {
return INTF.MonadFlap(MonadMap[func(A) B, B], fab, a)
}
func Flap[B, A any](a A) Mapper[func(A) B, B] {
return INTF.Flap(Map[func(A) B, B], a)
}
// Delay creates an operation that passes in the value after some delay
func Delay[A any](delay time.Duration) Mapper[A, A] {
return func(ga IO[A]) IO[A] {
return func() A {
time.Sleep(delay)
return ga()
}
}
}
func after(timestamp time.Time) func() {
return func() {
// check if we need to wait
current := time.Now()
if current.Before(timestamp) {
time.Sleep(timestamp.Sub(current))
}
}
}
// After creates an operation that passes after the given timestamp
func After[A any](timestamp time.Time) Mapper[A, A] {
aft := after(timestamp)
return func(ga IO[A]) IO[A] {
return func() A {
// wait as long as necessary
aft()
// execute after wait
return ga()
}
}
}
// WithTime returns an operation that measures the start and end [time.Time] of the operation
func WithTime[A any](a IO[A]) IO[T.Tuple3[A, time.Time, time.Time]] {
return func() T.Tuple3[A, time.Time, time.Time] {
t0 := time.Now()
res := a()
t1 := time.Now()
return T.MakeTuple3(res, t0, t1)
}
}
// WithDuration returns an operation that measures the [time.Duration]
func WithDuration[A any](a IO[A]) IO[T.Tuple2[A, time.Duration]] {
return func() T.Tuple2[A, time.Duration] {
t0 := time.Now()
res := a()
t1 := time.Now()
return T.MakeTuple2(res, t1.Sub(t0))
}
}