1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/option/bind.go
Dr. Carsten Leue 600521b220 fix: refactor
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 11:01:49 +01:00

304 lines
8.3 KiB
Go

// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package option
import (
"github.com/IBM/fp-go/v2/function"
A "github.com/IBM/fp-go/v2/internal/apply"
C "github.com/IBM/fp-go/v2/internal/chain"
F "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
)
// Do creates an empty context of type S to be used with the Bind operation.
// This is the starting point for building up a context using do-notation style.
//
// Example:
//
// type Result struct {
// x int
// y string
// }
// result := Do(Result{})
func Do[S any](
empty S,
) Option[S] {
return Of(empty)
}
// Bind attaches the result of a computation to a context S1 to produce a context S2.
// This is used in do-notation style to sequentially build up a context.
//
// Example:
//
// type State struct { x int; y int }
// result := F.Pipe2(
// Do(State{}),
// Bind(func(x int) func(State) State {
// return func(s State) State { s.x = x; return s }
// }, func(s State) Option[int] { return Some(42) }),
// )
func Bind[S1, S2, A any](
setter func(A) func(S1) S2,
f Kleisli[S1, A],
) Kleisli[Option[S1], S2] {
return C.Bind(
Chain[S1, S2],
Map[A, S2],
setter,
f,
)
}
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
// Unlike Bind, the computation function returns a plain value, not an Option.
//
// Example:
//
// type State struct { x int; computed int }
// result := F.Pipe2(
// Do(State{x: 5}),
// Let(func(c int) func(State) State {
// return func(s State) State { s.computed = c; return s }
// }, func(s State) int { return s.x * 2 }),
// )
func Let[S1, S2, B any](
key func(B) func(S1) S2,
f func(S1) B,
) Kleisli[Option[S1], S2] {
return F.Let(
Map[S1, S2],
key,
f,
)
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
//
// Example:
//
// type State struct { x int; name string }
// result := F.Pipe2(
// Do(State{x: 5}),
// LetTo(func(n string) func(State) State {
// return func(s State) State { s.name = n; return s }
// }, "example"),
// )
func LetTo[S1, S2, B any](
key func(B) func(S1) S2,
b B,
) Kleisli[Option[S1], S2] {
return F.LetTo(
Map[S1, S2],
key,
b,
)
}
// BindTo initializes a new state S1 from a value T.
// This is typically used as the first operation after creating an Option value.
//
// Example:
//
// type State struct { value int }
// result := F.Pipe1(
// Some(42),
// BindTo(func(x int) State { return State{value: x} }),
// )
func BindTo[S1, T any](
setter func(T) S1,
) Kleisli[Option[T], S1] {
return C.BindTo(
Map[T, S1],
setter,
)
}
// ApS attaches a value to a context S1 to produce a context S2 by considering the context and the value concurrently.
// This uses the applicative functor pattern, allowing parallel composition.
//
// Example:
//
// type State struct { x int; y int }
// result := F.Pipe2(
// Do(State{}),
// ApS(func(x int) func(State) State {
// return func(s State) State { s.x = x; return s }
// }, Some(42)),
// )
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Option[T],
) Kleisli[Option[S1], S2] {
return A.ApS(
Ap[S2, T],
Map[S1, func(T) S2],
setter,
fa,
)
}
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type Address struct {
// Street string
// City string
// }
//
// type Person struct {
// Name string
// Address Address
// }
//
// // Create a lens for the Address field
// addressLens := lens.MakeLens(
// func(p Person) Address { return p.Address },
// func(p Person, a Address) Person { p.Address = a; return p },
// )
//
// // Use ApSL to update the address
// result := F.Pipe2(
// option.Some(Person{Name: "Alice"}),
// option.ApSL(
// addressLens,
// option.Some(Address{Street: "Main St", City: "NYC"}),
// ),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa Option[T],
) Kleisli[Option[S], S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// an Option that produces the new value.
//
// Unlike ApSL, BindL uses monadic sequencing, meaning the computation f can depend on
// the current value of the focused field.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter, but return None if it would exceed 100
// increment := func(v int) option.Option[int] {
// if v >= 100 {
// return option.None[int]()
// }
// return option.Some(v + 1)
// }
//
// result := F.Pipe1(
// option.Some(Counter{Value: 42}),
// option.BindL(valueLens, increment),
// ) // Some(Counter{Value: 43})
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[Option[S], S] {
return Bind[S, S, T](lens.Set, function.Flow2(lens.Get, f))
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in Option).
//
// This is useful for pure transformations that cannot fail, such as mathematical operations,
// string manipulations, or other deterministic updates.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// option.Some(Counter{Value: 21}),
// option.LetL(valueLens, double),
// ) // Some(Counter{Value: 42})
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[Option[S], S] {
return Let[S, S, T](lens.Set, function.Flow2(lens.Get, f))
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// This is useful for resetting fields, initializing values, or setting fields to
// predetermined constants.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// option.Some(Config{Debug: true, Timeout: 30}),
// option.LetToL(debugLens, false),
// ) // Some(Config{Debug: false, Timeout: 30})
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[Option[S], S] {
return LetTo[S, S, T](lens.Set, b)
}