1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/io/generic/io.go
Carsten Leue 8150ae2a68 fix: refactor either type (#102)
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2024-02-07 11:03:20 +01:00

208 lines
6.1 KiB
Go

// Copyright (c) 2023 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package generic
import (
"time"
F "github.com/IBM/fp-go/function"
C "github.com/IBM/fp-go/internal/chain"
FC "github.com/IBM/fp-go/internal/functor"
L "github.com/IBM/fp-go/internal/lazy"
T "github.com/IBM/fp-go/tuple"
)
var (
// undefined represents an undefined value
undefined = struct{}{}
)
// type IO[A any] = func() A
func MakeIO[GA ~func() A, A any](f func() A) GA {
return f
}
func Of[GA ~func() A, A any](a A) GA {
return MakeIO[GA](F.Constant(a))
}
func FromIO[GA ~func() A, A any](a GA) GA {
return a
}
// FromImpure converts a side effect without a return value into a side effect that returns any
func FromImpure[GA ~func() any, IMP ~func()](f IMP) GA {
return MakeIO[GA](func() any {
f()
return undefined
})
}
func MonadOf[GA ~func() A, A any](a A) GA {
return MakeIO[GA](F.Constant(a))
}
func MonadMap[GA ~func() A, GB ~func() B, A, B any](fa GA, f func(A) B) GB {
return MakeIO[GB](func() B {
return f(fa())
})
}
func Map[GA ~func() A, GB ~func() B, A, B any](f func(A) B) func(GA) GB {
return F.Bind2nd(MonadMap[GA, GB, A, B], f)
}
func MonadMapTo[GA ~func() A, GB ~func() B, A, B any](fa GA, b B) GB {
return MonadMap[GA, GB](fa, F.Constant1[A](b))
}
func MapTo[GA ~func() A, GB ~func() B, A, B any](b B) func(GA) GB {
return Map[GA, GB](F.Constant1[A](b))
}
// MonadChain composes computations in sequence, using the return value of one computation to determine the next computation.
func MonadChain[GA ~func() A, GB ~func() B, A, B any](fa GA, f func(A) GB) GB {
return MakeIO[GB](func() B {
return f(fa())()
})
}
// Chain composes computations in sequence, using the return value of one computation to determine the next computation.
func Chain[GA ~func() A, GB ~func() B, A, B any](f func(A) GB) func(GA) GB {
return F.Bind2nd(MonadChain[GA, GB, A, B], f)
}
// MonadChainTo composes computations in sequence, ignoring the return value of the first computation
func MonadChainTo[GA ~func() A, GB ~func() B, A, B any](fa GA, fb GB) GB {
return MonadChain(fa, F.Constant1[A](fb))
}
// ChainTo composes computations in sequence, ignoring the return value of the first computation
func ChainTo[GA ~func() A, GB ~func() B, A, B any](fb GB) func(GA) GB {
return Chain[GA, GB](F.Constant1[A](fb))
}
// MonadChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and
// keeping only the result of the first.
func MonadChainFirst[GA ~func() A, GB ~func() B, A, B any](fa GA, f func(A) GB) GA {
return C.MonadChainFirst(MonadChain[GA, GA, A, A], MonadMap[GB, GA, B, A], fa, f)
}
// ChainFirst composes computations in sequence, using the return value of one computation to determine the next computation and
// keeping only the result of the first.
func ChainFirst[GA ~func() A, GB ~func() B, A, B any](f func(A) GB) func(GA) GA {
return C.ChainFirst(
Chain[GA, GA, A, A],
Map[GB, GA, B, A],
f,
)
}
func ApSeq[GB ~func() B, GAB ~func() func(A) B, GA ~func() A, B, A any](ma GA) func(GAB) GB {
return F.Bind2nd(MonadApSeq[GA, GB, GAB, A, B], ma)
}
func ApPar[GB ~func() B, GAB ~func() func(A) B, GA ~func() A, B, A any](ma GA) func(GAB) GB {
return F.Bind2nd(MonadApPar[GA, GB, GAB, A, B], ma)
}
func Ap[GB ~func() B, GAB ~func() func(A) B, GA ~func() A, B, A any](ma GA) func(GAB) GB {
return F.Bind2nd(MonadAp[GA, GB, GAB, A, B], ma)
}
func Flatten[GA ~func() A, GAA ~func() GA, A any](mma GAA) GA {
return mma()
}
// Memoize computes the value of the provided IO monad lazily but exactly once
func Memoize[GA ~func() A, A any](ma GA) GA {
return L.Memoize[GA, A](ma)
}
// Delay creates an operation that passes in the value after some delay
func Delay[GA ~func() A, A any](delay time.Duration) func(GA) GA {
return func(ga GA) GA {
return MakeIO[GA](func() A {
time.Sleep(delay)
return ga()
})
}
}
func after(timestamp time.Time) func() {
return func() {
// check if we need to wait
current := time.Now()
if current.Before(timestamp) {
time.Sleep(timestamp.Sub(current))
}
}
}
// After creates an operation that passes after the given timestamp
func After[GA ~func() A, A any](timestamp time.Time) func(GA) GA {
aft := after(timestamp)
return func(ga GA) GA {
return MakeIO[GA](func() A {
// wait as long as necessary
aft()
// execute after wait
return ga()
})
}
}
// Now returns the current timestamp
func Now[GA ~func() time.Time]() GA {
return MakeIO[GA](time.Now)
}
// Defer creates an IO by creating a brand new IO via a generator function, each time
func Defer[GA ~func() A, A any](gen func() GA) GA {
return MakeIO[GA](func() A {
return gen()()
})
}
func MonadFlap[FAB ~func(A) B, GFAB ~func() FAB, GB ~func() B, A, B any](fab GFAB, a A) GB {
return FC.MonadFlap(MonadMap[GFAB, GB, FAB, B], fab, a)
}
func Flap[FAB ~func(A) B, GFAB ~func() FAB, GB ~func() B, A, B any](a A) func(GFAB) GB {
return FC.Flap(Map[GFAB, GB, FAB, B], a)
}
// WithTime returns an operation that measures the start and end timestamp of the operation
func WithTime[GTA ~func() T.Tuple3[A, time.Time, time.Time], GA ~func() A, A any](a GA) GTA {
return MakeIO[GTA](func() T.Tuple3[A, time.Time, time.Time] {
t0 := time.Now()
res := a()
t1 := time.Now()
return T.MakeTuple3(res, t0, t1)
})
}
// WithDuration returns an operation that measures the duration of the operation
func WithDuration[GTA ~func() T.Tuple2[A, time.Duration], GA ~func() A, A any](a GA) GTA {
return MakeIO[GTA](func() T.Tuple2[A, time.Duration] {
t0 := time.Now()
res := a()
t1 := time.Now()
return T.MakeTuple2(res, t1.Sub(t0))
})
}