1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/option/apply.go
Carsten Leue 3385c705dc Implement v2 using type aliases (#141)
* fix: initial checkin of v2

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: slowly migrate IO

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: migrate MonadTraverseArray and TraverseArray

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: migrate traversal

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: complete migration of IO

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: migrate ioeither

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: refactorY

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: next step in migration

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: adjust IO generation code

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: get rid of more IO methods

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: get rid of more IO

* fix: convert iooption

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: convert reader

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: convert a bit of reader

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: new build script

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: cleanup

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: reformat

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: simplify

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: some cleanup

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: adjust Pair to Haskell semantic

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: documentation and testcases

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: some performance optimizations

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: remove coverage

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

* fix: better doc

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

---------

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-06 09:27:00 +01:00

48 lines
1.8 KiB
Go

// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package option
import (
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// ApplySemigroup lifts a Semigroup over a type A to a Semigroup over Option[A].
// The resulting semigroup combines two Options using the applicative functor pattern.
//
// Example:
//
// intSemigroup := semigroup.MakeSemigroup(func(a, b int) int { return a + b })
// optSemigroup := ApplySemigroup(intSemigroup)
// result := optSemigroup.Concat(Some(2), Some(3)) // Some(5)
// result := optSemigroup.Concat(Some(2), None[int]()) // None
func ApplySemigroup[A any](s S.Semigroup[A]) S.Semigroup[Option[A]] {
return S.ApplySemigroup(MonadMap[A, func(A) A], MonadAp[A, A], s)
}
// ApplicativeMonoid returns a Monoid that concatenates Option instances via their applicative functor.
// This combines the monoid structure of the underlying type with the Option structure.
//
// Example:
//
// intMonoid := monoid.MakeMonoid(func(a, b int) int { return a + b }, 0)
// optMonoid := ApplicativeMonoid(intMonoid)
// result := optMonoid.Concat(Some(2), Some(3)) // Some(5)
// result := optMonoid.Empty() // Some(0)
func ApplicativeMonoid[A any](m M.Monoid[A]) M.Monoid[Option[A]] {
return M.ApplicativeMonoid(Of[A], MonadMap[A, func(A) A], MonadAp[A, A], m)
}