1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/endomorphism/endomorphism_test.go
Dr. Carsten Leue af271e7d10 fix: better endo and lens
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-12 15:03:55 +01:00

724 lines
24 KiB
Go

// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package endomorphism
import (
"testing"
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
"github.com/stretchr/testify/assert"
)
// Test helper functions
func double(x int) int {
return x * 2
}
func increment(x int) int {
return x + 1
}
func square(x int) int {
return x * x
}
func negate(x int) int {
return -x
}
// TestCurry2 tests the Curry2 function
func TestCurry2(t *testing.T) {
add := func(x, y int) int {
return x + y
}
curriedAdd := Curry2(add)
addFive := curriedAdd(5)
result := addFive(10)
assert.Equal(t, 15, result, "Curry2 should curry binary function correctly")
// Test with different values
addTen := curriedAdd(10)
assert.Equal(t, 25, addTen(15), "Curry2 should work with different values")
}
// TestCurry3 tests the Curry3 function
func TestCurry3(t *testing.T) {
combine := func(x, y, z int) int {
return x + y + z
}
curriedCombine := Curry3(combine)
addTen := curriedCombine(5)(5)
result := addTen(20)
assert.Equal(t, 30, result, "Curry3 should curry ternary function correctly")
// Test with different values
addFifteen := curriedCombine(5)(10)
assert.Equal(t, 35, addFifteen(20), "Curry3 should work with different values")
}
// TestMonadAp tests the MonadAp function
func TestMonadAp(t *testing.T) {
// MonadAp composes two endomorphisms (RIGHT-TO-LEFT)
// MonadAp(double, increment) means: increment first, then double
composed := MonadAp(double, increment)
result := composed(5)
assert.Equal(t, 12, result, "MonadAp should compose right-to-left: (5 + 1) * 2 = 12")
// Test with different order
composed2 := MonadAp(increment, double)
result2 := composed2(5)
assert.Equal(t, 11, result2, "MonadAp should compose right-to-left: (5 * 2) + 1 = 11")
// Test with square
composed3 := MonadAp(square, increment)
result3 := composed3(5)
assert.Equal(t, 36, result3, "MonadAp should compose right-to-left: (5 + 1) ^ 2 = 36")
}
// TestAp tests the Ap function
func TestAp(t *testing.T) {
// Ap is the curried version of MonadAp
// Ap(increment) returns a function that composes with increment (RIGHT-TO-LEFT)
applyIncrement := Ap(increment)
composed := applyIncrement(double)
result := composed(5)
assert.Equal(t, 12, result, "Ap should compose right-to-left: (5 + 1) * 2 = 12")
// Test with different endomorphism
composed2 := applyIncrement(square)
result2 := composed2(5)
assert.Equal(t, 36, result2, "Ap should compose right-to-left: (5 + 1) ^ 2 = 36")
// Test with different base endomorphism
applyDouble := Ap(double)
composed3 := applyDouble(increment)
result3 := composed3(5)
assert.Equal(t, 11, result3, "Ap should compose right-to-left: (5 * 2) + 1 = 11")
}
// TestMonadCompose tests the MonadCompose function
func TestMonadCompose(t *testing.T) {
// Test basic composition: RIGHT-TO-LEFT execution
// MonadCompose(double, increment) means: increment first, then double
composed := MonadCompose(double, increment)
result := composed(5)
assert.Equal(t, 12, result, "MonadCompose should execute right-to-left: (5 + 1) * 2 = 12")
// Test composition order: RIGHT-TO-LEFT execution
// MonadCompose(increment, double) means: double first, then increment
composed2 := MonadCompose(increment, double)
result2 := composed2(5)
assert.Equal(t, 11, result2, "MonadCompose should execute right-to-left: (5 * 2) + 1 = 11")
// Test with three compositions: RIGHT-TO-LEFT execution
// MonadCompose(MonadCompose(double, increment), square) means: square, then increment, then double
complex := MonadCompose(MonadCompose(double, increment), square)
result3 := complex(5)
// 5 -> square -> 25 -> increment -> 26 -> double -> 52
assert.Equal(t, 52, result3, "MonadCompose should work with nested compositions: square(5)=25, +1=26, *2=52")
}
// TestMonadChain tests the MonadChain function
func TestMonadChain(t *testing.T) {
// MonadChain executes LEFT-TO-RIGHT (first arg first, second arg second)
chained := MonadChain(double, increment)
result := chained(5)
assert.Equal(t, 11, result, "MonadChain should execute left-to-right: (5 * 2) + 1 = 11")
chained2 := MonadChain(increment, double)
result2 := chained2(5)
assert.Equal(t, 12, result2, "MonadChain should execute left-to-right: (5 + 1) * 2 = 12")
// Test with negative values
chained3 := MonadChain(negate, increment)
result3 := chained3(5)
assert.Equal(t, -4, result3, "MonadChain should execute left-to-right: -(5) + 1 = -4")
}
// TestChain tests the Chain function
func TestChain(t *testing.T) {
// Chain(f) returns a function that applies its argument first, then f
chainWithIncrement := Chain(increment)
// chainWithIncrement(double) means: double first, then increment
chained := chainWithIncrement(double)
result := chained(5)
assert.Equal(t, 11, result, "Chain should execute left-to-right: (5 * 2) + 1 = 11")
chainWithDouble := Chain(double)
// chainWithDouble(increment) means: increment first, then double
chained2 := chainWithDouble(increment)
result2 := chained2(5)
assert.Equal(t, 12, result2, "Chain should execute left-to-right: (5 + 1) * 2 = 12")
// Test chaining with square
chainWithSquare := Chain(square)
// chainWithSquare(double) means: double first, then square
chained3 := chainWithSquare(double)
result3 := chained3(3)
assert.Equal(t, 36, result3, "Chain should execute left-to-right: (3 * 2) ^ 2 = 36")
}
// TestCompose tests the curried Compose function
func TestCompose(t *testing.T) {
// Compose(g) returns a function that applies g first, then its argument
composeWithIncrement := Compose(increment)
// composeWithIncrement(double) means: increment first, then double
composed := composeWithIncrement(double)
result := composed(5)
assert.Equal(t, 12, result, "Compose should execute right-to-left: (5 + 1) * 2 = 12")
composeWithDouble := Compose(double)
// composeWithDouble(increment) means: double first, then increment
composed2 := composeWithDouble(increment)
result2 := composed2(5)
assert.Equal(t, 11, result2, "Compose should execute right-to-left: (5 * 2) + 1 = 11")
// Test composing with square
composeWithSquare := Compose(square)
// composeWithSquare(double) means: square first, then double
composed3 := composeWithSquare(double)
result3 := composed3(3)
assert.Equal(t, 18, result3, "Compose should execute right-to-left: (3 ^ 2) * 2 = 18")
}
// TestMonadComposeVsCompose demonstrates the relationship between MonadCompose and Compose
func TestMonadComposeVsCompose(t *testing.T) {
double := func(x int) int { return x * 2 }
increment := func(x int) int { return x + 1 }
// MonadCompose takes both functions at once
monadComposed := MonadCompose(double, increment)
result1 := monadComposed(5) // (5 + 1) * 2 = 12
// Compose is the curried version - takes one function, returns a function
curriedCompose := Compose(increment)
composed := curriedCompose(double)
result2 := composed(5) // (5 + 1) * 2 = 12
assert.Equal(t, result1, result2, "MonadCompose and Compose should produce the same result")
assert.Equal(t, 12, result1, "Both should execute right-to-left: (5 + 1) * 2 = 12")
// Demonstrate that Compose(g)(f) is equivalent to MonadCompose(f, g)
assert.Equal(t, MonadCompose(double, increment)(5), Compose(increment)(double)(5),
"Compose(g)(f) should equal MonadCompose(f, g)")
}
// TestOf tests the Of function
func TestOf(t *testing.T) {
endo := Of(double)
result := endo(5)
assert.Equal(t, 10, result, "Of should convert function to endomorphism")
endo2 := Of(increment)
result2 := endo2(10)
assert.Equal(t, 11, result2, "Of should work with different functions")
}
// TestWrap tests the Wrap function (deprecated)
func TestWrap(t *testing.T) {
endo := Wrap(double)
result := endo(5)
assert.Equal(t, 10, result, "Wrap should convert function to endomorphism")
}
// TestUnwrap tests the Unwrap function (deprecated)
func TestUnwrap(t *testing.T) {
endo := Of(double)
unwrapped := Unwrap[func(int) int](endo)
result := unwrapped(5)
assert.Equal(t, 10, result, "Unwrap should convert endomorphism to function")
}
// TestIdentity tests the Identity function
func TestIdentity(t *testing.T) {
id := Identity[int]()
// Identity should return input unchanged
assert.Equal(t, 42, id(42), "Identity should return input unchanged")
assert.Equal(t, 0, id(0), "Identity should work with zero")
assert.Equal(t, -10, id(-10), "Identity should work with negative values")
// Identity should be neutral for composition (RIGHT-TO-LEFT)
// Compose(id, double) means: double first, then id
composed1 := MonadCompose(id, double)
assert.Equal(t, 10, composed1(5), "Identity should be left neutral: double(5) = 10")
// Compose(double, id) means: id first, then double
composed2 := MonadCompose(double, id)
assert.Equal(t, 10, composed2(5), "Identity should be right neutral: id(5) then double = 10")
// Test with strings
idStr := Identity[string]()
assert.Equal(t, "hello", idStr("hello"), "Identity should work with strings")
}
// TestSemigroup tests the Semigroup function
func TestSemigroup(t *testing.T) {
sg := Semigroup[int]()
// Test basic concat (RIGHT-TO-LEFT execution via Compose)
// Concat(double, increment) means: increment first, then double
combined := sg.Concat(double, increment)
result := combined(5)
assert.Equal(t, 12, result, "Semigroup concat should execute right-to-left: (5 + 1) * 2 = 12")
// Test associativity: (f . g) . h = f . (g . h)
f := double
g := increment
h := square
left := sg.Concat(sg.Concat(f, g), h)
right := sg.Concat(f, sg.Concat(g, h))
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "Semigroup should be associative")
// Test with ConcatAll from semigroup package (RIGHT-TO-LEFT)
// ConcatAll(double)(increment, square) means: square, then increment, then double
combined2 := S.ConcatAll(sg)(double)([]Endomorphism[int]{increment, square})
result2 := combined2(5)
// 5 -> square -> 25 -> increment -> 26 -> double -> 52
assert.Equal(t, 52, result2, "Semigroup ConcatAll should execute right-to-left: square(5)=25, +1=26, *2=52")
}
// TestMonoid tests the Monoid function
func TestMonoid(t *testing.T) {
monoid := Monoid[int]()
// Test that empty is identity
empty := monoid.Empty()
assert.Equal(t, 42, empty(42), "Monoid empty should be identity")
// Test right identity: x . empty = x (RIGHT-TO-LEFT: empty first, then x)
// Concat(double, empty) means: empty first, then double
rightIdentity := monoid.Concat(double, empty)
assert.Equal(t, 10, rightIdentity(5), "Monoid should satisfy right identity: empty(5) then double = 10")
// Test left identity: empty . x = x (RIGHT-TO-LEFT: x first, then empty)
// Concat(empty, double) means: double first, then empty
leftIdentity := monoid.Concat(empty, double)
assert.Equal(t, 10, leftIdentity(5), "Monoid should satisfy left identity: double(5) then empty = 10")
// Test ConcatAll with multiple endomorphisms (RIGHT-TO-LEFT execution)
combined := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square})
result := combined(5)
// RIGHT-TO-LEFT: square(5) = 25, increment(25) = 26, double(26) = 52
assert.Equal(t, 52, result, "Monoid ConcatAll should execute right-to-left: square(5)=25, +1=26, *2=52")
// Test ConcatAll with empty list should return identity
emptyResult := M.ConcatAll(monoid)([]Endomorphism[int]{})
assert.Equal(t, 42, emptyResult(42), "ConcatAll with no args should return identity")
}
// TestMonoidLaws tests that the Monoid satisfies monoid laws
func TestMonoidLaws(t *testing.T) {
monoid := Monoid[int]()
empty := monoid.Empty()
testCases := []struct {
name string
f Endomorphism[int]
g Endomorphism[int]
h Endomorphism[int]
}{
{"basic", double, increment, square},
{"with negate", negate, double, increment},
{"with identity", Identity[int](), double, increment},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
testValue := 5
// Right identity: x . empty = x
rightId := monoid.Concat(tc.f, empty)
assert.Equal(t, tc.f(testValue), rightId(testValue), "Right identity law")
// Left identity: empty . x = x
leftId := monoid.Concat(empty, tc.f)
assert.Equal(t, tc.f(testValue), leftId(testValue), "Left identity law")
// Associativity: (f . g) . h = f . (g . h)
left := monoid.Concat(monoid.Concat(tc.f, tc.g), tc.h)
right := monoid.Concat(tc.f, monoid.Concat(tc.g, tc.h))
assert.Equal(t, left(testValue), right(testValue), "Associativity law")
})
}
}
// TestEndomorphismWithDifferentTypes tests endomorphisms with different types
func TestEndomorphismWithDifferentTypes(t *testing.T) {
// Test with strings (RIGHT-TO-LEFT execution)
addExclamation := func(s string) string {
return s + "!"
}
addPrefix := func(s string) string {
return "Hello, " + s
}
// Compose(addExclamation, addPrefix) means: addPrefix first, then addExclamation
strComposed := MonadCompose(addExclamation, addPrefix)
result := strComposed("World")
assert.Equal(t, "Hello, World!", result, "Compose should execute right-to-left with strings")
// Test with float64 (RIGHT-TO-LEFT execution)
doubleFloat := func(x float64) float64 {
return x * 2.0
}
addOne := func(x float64) float64 {
return x + 1.0
}
// Compose(doubleFloat, addOne) means: addOne first, then doubleFloat
floatComposed := MonadCompose(doubleFloat, addOne)
resultFloat := floatComposed(5.5)
// 5.5 + 1.0 = 6.5, 6.5 * 2.0 = 13.0
assert.Equal(t, 13.0, resultFloat, "Compose should execute right-to-left: (5.5 + 1.0) * 2.0 = 13.0")
}
// TestComplexCompositions tests more complex composition scenarios
func TestComplexCompositions(t *testing.T) {
// Create a pipeline of transformations (RIGHT-TO-LEFT execution)
// Innermost Compose is evaluated first in the composition chain
pipeline := MonadCompose(
MonadCompose(
MonadCompose(double, increment),
square,
),
negate,
)
// RIGHT-TO-LEFT: negate(5) = -5, square(-5) = 25, increment(25) = 26, double(26) = 52
result := pipeline(5)
assert.Equal(t, 52, result, "Complex composition should execute right-to-left")
// Test using monoid to build the same pipeline (RIGHT-TO-LEFT)
monoid := Monoid[int]()
pipelineMonoid := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square, negate})
resultMonoid := pipelineMonoid(5)
// RIGHT-TO-LEFT: negate(5) = -5, square(-5) = 25, increment(25) = 26, double(26) = 52
assert.Equal(t, 52, resultMonoid, "Monoid-based pipeline should match composition (right-to-left)")
}
// TestOperatorType tests the Operator type
func TestOperatorType(t *testing.T) {
// Create an operator that transforms int endomorphisms
// This operator takes an endomorphism and returns a new one that applies it twice
applyTwice := func(f Endomorphism[int]) Endomorphism[int] {
return func(x int) int {
return f(f(x))
}
}
// Use the operator
var op Operator[int] = applyTwice
doubleDouble := op(double)
result := doubleDouble(5) // double(double(5)) = double(10) = 20
assert.Equal(t, 20, result, "Operator should transform endomorphisms correctly")
// Test with increment
incrementTwice := op(increment)
result2 := incrementTwice(5) // increment(increment(5)) = increment(6) = 7
assert.Equal(t, 7, result2, "Operator should work with different endomorphisms")
}
// BenchmarkCompose benchmarks the Compose function
func BenchmarkCompose(b *testing.B) {
composed := MonadCompose(double, increment)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = composed(5)
}
}
// BenchmarkMonoidConcatAll benchmarks ConcatAll with monoid
// TestComposeVsChain demonstrates the key difference between Compose and Chain
func TestComposeVsChain(t *testing.T) {
double := func(x int) int { return x * 2 }
increment := func(x int) int { return x + 1 }
// Compose executes RIGHT-TO-LEFT
// Compose(double, increment) means: increment first, then double
composed := MonadCompose(double, increment)
composedResult := composed(5) // (5 + 1) * 2 = 12
// MonadChain executes LEFT-TO-RIGHT
// MonadChain(double, increment) means: double first, then increment
chained := MonadChain(double, increment)
chainedResult := chained(5) // (5 * 2) + 1 = 11
assert.Equal(t, 12, composedResult, "Compose should execute right-to-left")
assert.Equal(t, 11, chainedResult, "MonadChain should execute left-to-right")
assert.NotEqual(t, composedResult, chainedResult, "Compose and Chain should produce different results with non-commutative operations")
// To get the same result with Compose, we need to reverse the order
composedReversed := MonadCompose(increment, double)
assert.Equal(t, chainedResult, composedReversed(5), "Compose with reversed args should match Chain")
// Demonstrate with a more complex example
square := func(x int) int { return x * x }
// Compose: RIGHT-TO-LEFT
composed3 := MonadCompose(MonadCompose(square, increment), double)
// double(5) = 10, increment(10) = 11, square(11) = 121
result1 := composed3(5)
// MonadChain: LEFT-TO-RIGHT
chained3 := MonadChain(MonadChain(double, increment), square)
// double(5) = 10, increment(10) = 11, square(11) = 121
result2 := chained3(5)
assert.Equal(t, 121, result1, "Compose should execute right-to-left")
assert.Equal(t, 121, result2, "MonadChain should execute left-to-right")
assert.Equal(t, result1, result2, "Both should produce same result when operations are in correct order")
}
func BenchmarkMonoidConcatAll(b *testing.B) {
monoid := Monoid[int]()
combined := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square})
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = combined(5)
}
}
// BenchmarkChain benchmarks the Chain function
func BenchmarkChain(b *testing.B) {
chainWithIncrement := Chain(increment)
chained := chainWithIncrement(double)
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = chained(5)
}
}
// TestFunctorLaws tests that endomorphisms satisfy the functor laws
func TestFunctorLaws(t *testing.T) {
// Functor Law 1: Identity
// map(id) = id
t.Run("Identity", func(t *testing.T) {
id := Identity[int]()
endo := double
// map(id)(endo) should equal endo
mapped := MonadMap(id, endo)
testValue := 5
assert.Equal(t, endo(testValue), mapped(testValue), "map(id) should equal id")
})
// Functor Law 2: Composition
// map(f . g) = map(f) . map(g)
t.Run("Composition", func(t *testing.T) {
f := double
g := increment
endo := square
// Left side: map(f . g)(endo)
composed := MonadCompose(f, g)
left := MonadMap(composed, endo)
// Right side: map(f)(map(g)(endo))
mappedG := MonadMap(g, endo)
right := MonadMap(f, mappedG)
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "map(f . g) should equal map(f) . map(g)")
})
}
// TestApplicativeLaws tests that endomorphisms satisfy the applicative functor laws
func TestApplicativeLaws(t *testing.T) {
// Applicative Law 1: Identity
// ap(id, v) = v
t.Run("Identity", func(t *testing.T) {
id := Identity[int]()
v := double
applied := MonadAp(id, v)
testValue := 5
assert.Equal(t, v(testValue), applied(testValue), "ap(id, v) should equal v")
})
// Applicative Law 2: Composition
// ap(ap(ap(compose, u), v), w) = ap(u, ap(v, w))
t.Run("Composition", func(t *testing.T) {
u := double
v := increment
w := square
// For endomorphisms, ap is just composition
// Left side: ap(ap(ap(compose, u), v), w) = compose(compose(u, v), w)
left := MonadCompose(MonadCompose(u, v), w)
// Right side: ap(u, ap(v, w)) = compose(u, compose(v, w))
right := MonadCompose(u, MonadCompose(v, w))
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "Applicative composition law")
})
// Applicative Law 3: Homomorphism
// ap(pure(f), pure(x)) = pure(f(x))
t.Run("Homomorphism", func(t *testing.T) {
// For endomorphisms, "pure" is just the identity function that returns a constant
// This law is trivially satisfied for endomorphisms
f := double
x := 5
// ap(f, id) applied to x should equal f(x)
id := Identity[int]()
applied := MonadAp(f, id)
assert.Equal(t, f(x), applied(x), "Homomorphism law")
})
}
// TestMonadLaws tests that endomorphisms satisfy the monad laws
func TestMonadLaws(t *testing.T) {
// Monad Law 1: Left Identity
// chain(pure(a), f) = f(a)
t.Run("LeftIdentity", func(t *testing.T) {
// For endomorphisms, "pure" is the identity function
// chain(id, f) = f
id := Identity[int]()
f := double
chained := MonadChain(id, f)
testValue := 5
assert.Equal(t, f(testValue), chained(testValue), "chain(id, f) should equal f")
})
// Monad Law 2: Right Identity
// chain(m, pure) = m
t.Run("RightIdentity", func(t *testing.T) {
m := double
id := Identity[int]()
chained := MonadChain(m, id)
testValue := 5
assert.Equal(t, m(testValue), chained(testValue), "chain(m, id) should equal m")
})
// Monad Law 3: Associativity
// chain(chain(m, f), g) = chain(m, x => chain(f(x), g))
t.Run("Associativity", func(t *testing.T) {
m := square
f := double
g := increment
// Left side: chain(chain(m, f), g)
left := MonadChain(MonadChain(m, f), g)
// Right side: chain(m, chain(f, g))
// For simple endomorphisms (not Kleisli arrows), this simplifies to:
right := MonadChain(m, MonadChain(f, g))
testValue := 3
assert.Equal(t, left(testValue), right(testValue), "Monad associativity law")
})
}
// TestMonadComposeVsMonadChain verifies the relationship between Compose and Chain
func TestMonadComposeVsMonadChain(t *testing.T) {
f := double
g := increment
// MonadCompose(f, g) should equal MonadChain(g, f)
// Because Compose is right-to-left and Chain is left-to-right
composed := MonadCompose(f, g)
chained := MonadChain(g, f)
testValue := 5
assert.Equal(t, composed(testValue), chained(testValue),
"MonadCompose(f, g) should equal MonadChain(g, f)")
}
// TestMapEqualsCompose verifies that Map is equivalent to Compose for endomorphisms
func TestMapEqualsCompose(t *testing.T) {
f := double
g := increment
// MonadMap(f, g) should equal MonadCompose(f, g)
mapped := MonadMap(f, g)
composed := MonadCompose(f, g)
testValue := 5
assert.Equal(t, composed(testValue), mapped(testValue),
"MonadMap should equal MonadCompose for endomorphisms")
// Curried versions
mapF := Map(f)
composeF := Compose(f)
mappedG := mapF(g)
composedG := composeF(g)
assert.Equal(t, composedG(testValue), mappedG(testValue),
"Map should equal Compose for endomorphisms (curried)")
}
// TestApEqualsCompose verifies that Ap is equivalent to Compose for endomorphisms
func TestApEqualsCompose(t *testing.T) {
f := double
g := increment
// MonadAp(f, g) should equal MonadCompose(f, g)
applied := MonadAp(f, g)
composed := MonadCompose(f, g)
testValue := 5
assert.Equal(t, composed(testValue), applied(testValue),
"MonadAp should equal MonadCompose for endomorphisms")
// Curried versions
apG := Ap(g)
composeG := Compose(g)
appliedF := apG(f)
composedF := composeG(f)
assert.Equal(t, composedF(testValue), appliedF(testValue),
"Ap should equal Compose for endomorphisms (curried)")
}
// TestChainFirst tests the ChainFirst operation
func TestChainFirst(t *testing.T) {
double := func(x int) int { return x * 2 }
// Track side effect
var sideEffect int
logEffect := func(x int) int {
sideEffect = x
return x + 100 // This result should be discarded
}
chained := MonadChainFirst(double, logEffect)
result := chained(5)
// Should return double's result (10), not logEffect's result
assert.Equal(t, 10, result, "ChainFirst should return first result")
// But side effect should have been executed with double's result
assert.Equal(t, 10, sideEffect, "ChainFirst should execute second function for effect")
}