1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-12-01 22:41:43 +02:00
Files
fp-go/v2/iterator/stateless/bind.go
Dr. Carsten Leue 4f8a557072 fix: simplify type hints
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-11 15:24:45 +01:00

141 lines
4.2 KiB
Go

// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stateless
import (
G "github.com/IBM/fp-go/v2/iterator/stateless/generic"
)
// Do creates an empty context of type [S] to be used with the [Bind] operation.
// This is the starting point for do-notation style composition.
//
// Example:
//
// type State struct {
// X int
// Y int
// }
// result := stateless.Do(State{})
func Do[S any](
empty S,
) Iterator[S] {
return G.Do[Iterator[S]](empty)
}
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
// This enables sequential composition where each step can depend on the results of previous steps.
// For iterators, this produces the cartesian product of all values.
//
// The setter function takes the result of the computation and returns a function that
// updates the context from S1 to S2.
//
// Example:
//
// type State struct {
// X int
// Y int
// }
//
// result := F.Pipe2(
// stateless.Do(State{}),
// stateless.Bind(
// func(x int) func(State) State {
// return func(s State) State { s.X = x; return s }
// },
// func(s State) stateless.Iterator[int] {
// return stateless.Of(1, 2, 3)
// },
// ),
// stateless.Bind(
// func(y int) func(State) State {
// return func(s State) State { s.Y = y; return s }
// },
// func(s State) stateless.Iterator[int] {
// // This can access s.X from the previous step
// return stateless.Of(s.X * 10, s.X * 20)
// },
// ),
// ) // Produces: {1,10}, {1,20}, {2,20}, {2,40}, {3,30}, {3,60}
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Kleisli[Iterator[S1], S2] {
return G.Bind[Iterator[S1], Iterator[S2]](setter, f)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Kleisli[Iterator[S1], S2] {
return G.Let[Iterator[S1], Iterator[S2]](setter, f)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Kleisli[Iterator[S1], S2] {
return G.LetTo[Iterator[S1], Iterator[S2]](setter, b)
}
// BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any](
setter func(T) S1,
) Kleisli[Iterator[T], S1] {
return G.BindTo[Iterator[S1], Iterator[T]](setter)
}
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
// the context and the value concurrently (using Applicative rather than Monad).
// This allows independent computations to be combined without one depending on the result of the other.
//
// Unlike Bind, which sequences operations, ApS can be used when operations are independent
// and can conceptually run in parallel.
//
// Example:
//
// type State struct {
// X int
// Y int
// }
//
// // These operations are independent and can be combined with ApS
// xValues := stateless.Of(1, 2, 3)
// yValues := stateless.Of(10, 20)
//
// result := F.Pipe2(
// stateless.Do(State{}),
// stateless.ApS(
// func(x int) func(State) State {
// return func(s State) State { s.X = x; return s }
// },
// xValues,
// ),
// stateless.ApS(
// func(y int) func(State) State {
// return func(s State) State { s.Y = y; return s }
// },
// yValues,
// ),
// ) // Produces all combinations: {1,10}, {1,20}, {2,10}, {2,20}, {3,10}, {3,20}
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Iterator[T],
) Kleisli[Iterator[S1], S2] {
return G.ApS[Iterator[func(T) S2], Iterator[S1], Iterator[S2]](setter, fa)
}