1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00
Files
fp-go/v2/lazy/bind.go
Dr. Carsten Leue aa5e908810 fix: introduce Kleisli type
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2025-11-07 14:35:46 +01:00

279 lines
7.7 KiB
Go

// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lazy
import (
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/io"
)
// Do creates an empty context of type [S] to be used with the [Bind] operation.
// This is the starting point for do-notation style composition.
//
// Example:
//
// type State struct {
// Config Config
// Data Data
// }
// result := lazy.Do(State{})
func Do[S any](
empty S,
) Lazy[S] {
return io.Do(empty)
}
// Bind attaches the result of a computation to a context [S1] to produce a context [S2].
// This enables sequential composition where each step can depend on the results of previous steps.
//
// The setter function takes the result of the computation and returns a function that
// updates the context from S1 to S2.
//
// Example:
//
// type State struct {
// Config Config
// Data Data
// }
//
// result := F.Pipe2(
// lazy.Do(State{}),
// lazy.Bind(
// func(cfg Config) func(State) State {
// return func(s State) State { s.Config = cfg; return s }
// },
// func(s State) lazy.Lazy[Config] {
// return lazy.MakeLazy(func() Config { return loadConfig() })
// },
// ),
// lazy.Bind(
// func(data Data) func(State) State {
// return func(s State) State { s.Data = data; return s }
// },
// func(s State) lazy.Lazy[Data] {
// // This can access s.Config from the previous step
// return lazy.MakeLazy(func() Data { return loadData(s.Config) })
// },
// ),
// )
func Bind[S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[S1, T],
) Kleisli[Lazy[S1], S2] {
return io.Bind(setter, f)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
func Let[S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Kleisli[Lazy[S1], S2] {
return io.Let(setter, f)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
func LetTo[S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Kleisli[Lazy[S1], S2] {
return io.LetTo(setter, b)
}
// BindTo initializes a new state [S1] from a value [T]
func BindTo[S1, T any](
setter func(T) S1,
) Kleisli[Lazy[T], S1] {
return io.BindTo(setter)
}
// ApS attaches a value to a context [S1] to produce a context [S2] by considering
// the context and the value concurrently (using Applicative rather than Monad).
// This allows independent computations to be combined without one depending on the result of the other.
//
// Unlike Bind, which sequences operations, ApS can be used when operations are independent
// and can conceptually run in parallel.
//
// Example:
//
// type State struct {
// Config Config
// Data Data
// }
//
// // These operations are independent and can be combined with ApS
// getConfig := lazy.MakeLazy(func() Config { return loadConfig() })
// getData := lazy.MakeLazy(func() Data { return loadData() })
//
// result := F.Pipe2(
// lazy.Do(State{}),
// lazy.ApS(
// func(cfg Config) func(State) State {
// return func(s State) State { s.Config = cfg; return s }
// },
// getConfig,
// ),
// lazy.ApS(
// func(data Data) func(State) State {
// return func(s State) State { s.Data = data; return s }
// },
// getData,
// ),
// )
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Lazy[T],
) Kleisli[Lazy[S1], S2] {
return io.ApS(setter, fa)
}
// ApSL is a variant of ApS that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. This allows you to work with nested fields without manually managing
// the update logic.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
// type State struct {
// Config Config
// Data string
// }
//
// configLens := L.Prop[State, Config]("Config")
// getConfig := lazy.MakeLazy(func() Config { return Config{Host: "localhost", Port: 8080} })
//
// result := F.Pipe2(
// lazy.Do(State{}),
// lazy.ApSL(configLens, getConfig),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa Lazy[T],
) Kleisli[Lazy[S], S] {
return io.ApSL(lens, fa)
}
// BindL is a variant of Bind that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new computation that produces an updated value.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
// type State struct {
// Config Config
// Data string
// }
//
// configLens := L.Prop[State, Config]("Config")
//
// result := F.Pipe2(
// lazy.Do(State{Config: Config{Host: "localhost"}}),
// lazy.BindL(configLens, func(cfg Config) lazy.Lazy[Config] {
// return lazy.MakeLazy(func() Config {
// cfg.Port = 8080
// return cfg
// })
// }),
// )
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Kleisli[Lazy[S], S] {
return io.BindL(lens, f)
}
// LetL is a variant of Let that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The function f receives the current value of the focused field and
// returns a new value (without wrapping in a monad).
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
// type State struct {
// Config Config
// Data string
// }
//
// configLens := L.Prop[State, Config]("Config")
//
// result := F.Pipe2(
// lazy.Do(State{Config: Config{Host: "localhost"}}),
// lazy.LetL(configLens, func(cfg Config) Config {
// cfg.Port = 8080
// return cfg
// }),
// )
func LetL[S, T any](
lens L.Lens[S, T],
f func(T) T,
) Kleisli[Lazy[S], S] {
return io.LetL(lens, f)
}
// LetToL is a variant of LetTo that uses a lens to focus on a specific part of the context.
// This provides a more ergonomic API when working with nested structures, eliminating
// the need to manually write setter functions.
//
// The lens parameter provides both a getter and setter for a field of type T within
// the context S. The value b is set directly to the focused field.
//
// Example:
//
// type Config struct {
// Host string
// Port int
// }
// type State struct {
// Config Config
// Data string
// }
//
// configLens := L.Prop[State, Config]("Config")
// newConfig := Config{Host: "localhost", Port: 8080}
//
// result := F.Pipe2(
// lazy.Do(State{}),
// lazy.LetToL(configLens, newConfig),
// )
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Kleisli[Lazy[S], S] {
return io.LetToL(lens, b)
}