1
0
mirror of https://github.com/raseels-repos/golang-saas-starter-kit.git synced 2025-06-06 23:46:29 +02:00

330 lines
9.9 KiB
Go

package auth
import (
"bytes"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"fmt"
"time"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/awserr"
"github.com/aws/aws-sdk-go/aws/session"
"github.com/aws/aws-sdk-go/service/secretsmanager"
"github.com/dgrijalva/jwt-go"
"github.com/pkg/errors"
)
// KeyFunc is used to map a JWT key id (kid) to the corresponding public key.
// It is a requirement for creating an Authenticator.
//
// * Private keys should be rotated. During the transition period, tokens
// signed with the old and new keys can coexist by looking up the correct
// public key by key id (kid).
//
// * Key-id-to-public-key resolution is usually accomplished via a public JWKS
// endpoint. See https://auth0.com/docs/jwks for more details.
type KeyFunc func(keyID string) (*rsa.PublicKey, error)
// NewKeyFunc is a multiple implementation of KeyFunc that
// supports a map of keys.
func NewKeyFunc(keys map[string]*rsa.PrivateKey) KeyFunc {
return func(kid string) (*rsa.PublicKey, error) {
key, ok := keys[kid]
if !ok {
return nil, fmt.Errorf("unrecognized kid %q", kid)
}
return key.Public().(*rsa.PublicKey), nil
}
}
// Authenticator is used to authenticate clients. It can generate a token for a
// set of user claims and recreate the claims by parsing the token.
type Authenticator struct {
privateKey *rsa.PrivateKey
keyID string
algorithm string
kf KeyFunc
parser *jwt.Parser
}
// NewAuthenticator creates an *Authenticator for use.
// key expiration is optional to filter out old keys
// It will error if:
// - The aws session is nil.
// - The aws secret id is blank.
// - The specified algorithm is unsupported.
func NewAuthenticator(awsSession *session.Session, awsSecretID string, now time.Time, keyExpiration time.Duration) (*Authenticator, error) {
if awsSession == nil {
return nil, errors.New("aws session cannot be nil")
}
if awsSecretID == "" {
return nil, errors.New("aws secret id cannot be empty")
}
if now.IsZero() {
now = time.Now().UTC()
}
// Time threshold to stop loading keys, any key with a created date
// before this value will not be loaded.
var disabledCreatedDate time.Time
// Time threshold to create a new key. If a current key exists and the
// created date of the key is before this value, a new key will be created.
var activeCreatedDate time.Time
// If an expiration duration is included, convert to past time from now.
if keyExpiration.Seconds() != 0 {
// Ensure the expiration is a time in the past for comparison below.
if keyExpiration.Seconds() > 0 {
keyExpiration = keyExpiration * -1
}
// Stop loading keys when the created date exceeds two times the key expiration
disabledCreatedDate = now.UTC().Add(keyExpiration * 2)
// Time used to determine when a new key should be created.
activeCreatedDate = now.UTC().Add(keyExpiration)
}
// Init new AWS Secret Manager using provided AWS session.
secretManager := secretsmanager.New(awsSession)
// A List of version ids for the stored secret. All keys will be stored under
// the same name in AWS secret manager. We still want to load old keys for a
// short period of time to ensure any requests in flight have the opportunity
// to be completed.
var versionIds []string
// Exec call to AWS secret manager to return a list of version ids for the
// provided secret ID.
listParams := &secretsmanager.ListSecretVersionIdsInput{
SecretId: aws.String(awsSecretID),
}
err := secretManager.ListSecretVersionIdsPages(listParams,
func(page *secretsmanager.ListSecretVersionIdsOutput, lastPage bool) bool {
for _, v := range page.Versions {
// When disabled CreatedDate is not empty, compare the created date
// for each key version to the disabled cut off time.
if !disabledCreatedDate.IsZero() && v.CreatedDate != nil && !v.CreatedDate.IsZero() {
// Skip any version ids that are less than the expiration time.
if v.CreatedDate.UTC().Unix() < disabledCreatedDate.UTC().Unix() {
continue
}
}
if v.VersionId != nil {
versionIds = append(versionIds, *v.VersionId)
}
}
return !lastPage
},
)
// Flag whether the secret exists and update needs to be used
// instead of create.
var awsSecretIDNotFound bool
if err != nil {
if aerr, ok := err.(awserr.Error); ok {
switch aerr.Code() {
case secretsmanager.ErrCodeResourceNotFoundException:
awsSecretIDNotFound = true
}
}
if !awsSecretIDNotFound {
return nil, errors.Wrapf(err, "aws list secret version ids for secret ID %s failed", awsSecretID)
}
}
// Map of keys stored by version id. version id is kid.
keyContents := make(map[string][]byte)
// The current key id if there is an active one.
var curKeyId string
// If the list of version ids is not empty, load the keys from secret manager.
if len(versionIds) > 0 {
// The max created data to determine the most recent key.
var lastCreatedDate time.Time
for _, id := range versionIds {
res, err := secretManager.GetSecretValue(&secretsmanager.GetSecretValueInput{
SecretId: aws.String(awsSecretID),
VersionId: aws.String(id),
})
if err != nil {
return nil, errors.Wrapf(err, "aws secret id %s, version id %s value failed", awsSecretID, id)
}
if len(res.SecretBinary) == 0 {
continue
}
keyContents[*res.VersionId] = res.SecretBinary
if lastCreatedDate.IsZero() || res.CreatedDate.UTC().Unix() > lastCreatedDate.UTC().Unix() {
curKeyId = *res.VersionId
lastCreatedDate = res.CreatedDate.UTC()
}
}
//
if !activeCreatedDate.IsZero() && lastCreatedDate.UTC().Unix() < activeCreatedDate.UTC().Unix() {
curKeyId = ""
}
}
// If there are no keys stored in secret manager, create a new one or
// if the current key needs to be rotated, generate a new key and update the secret.
// @TODO: When a new key is generated and there are multiple instances of the service running
// its possible based on the key expiration set that requests fail because keys are only
// refreshed on instance launch. Could store keys in a kv store and update that value
// when new keys are generated
if len(keyContents) == 0 || curKeyId == "" {
privateKey, err := Keygen()
if err != nil {
return nil, errors.Wrap(err, "failed to generate new private key")
}
if awsSecretIDNotFound {
res, err := secretManager.CreateSecret(&secretsmanager.CreateSecretInput{
Name: aws.String(awsSecretID),
SecretBinary: privateKey,
})
if err != nil {
return nil, errors.Wrap(err, "failed to create new secret with private key")
}
curKeyId = *res.VersionId
} else {
res, err := secretManager.UpdateSecret(&secretsmanager.UpdateSecretInput{
SecretId: aws.String(awsSecretID),
SecretBinary: privateKey,
})
if err != nil {
return nil, errors.Wrap(err, "failed to create new secret with private key")
}
curKeyId = *res.VersionId
}
keyContents[curKeyId] = privateKey
}
// Map of keys by kid (version id).
keys := make(map[string]*rsa.PrivateKey)
// The current active key to be used.
var curPrivateKey *rsa.PrivateKey
// Loop through all the key bytes and load the private key.
for kid, keyContent := range keyContents {
key, err := jwt.ParseRSAPrivateKeyFromPEM(keyContent)
if err != nil {
return nil, errors.Wrap(err, "parsing auth private key")
}
keys[kid] = key
if kid == curKeyId {
curPrivateKey = key
}
}
// Lookup function to be used by the middleware to validate the kid and
// Return the associated public key.
publicKeyLookup := NewKeyFunc(keys)
// Algorithm to be used to for the private key.
algorithm := "RS256"
if jwt.GetSigningMethod(algorithm) == nil {
return nil, errors.Errorf("unknown algorithm %v", algorithm)
}
// Create the token parser to use. The algorithm used to sign the JWT must be
// validated to avoid a critical vulnerability:
// https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
parser := jwt.Parser{
ValidMethods: []string{algorithm},
}
a := Authenticator{
privateKey: curPrivateKey,
keyID: curKeyId,
algorithm: algorithm,
kf: publicKeyLookup,
parser: &parser,
}
return &a, nil
}
// GenerateToken generates a signed JWT token string representing the user Claims.
func (a *Authenticator) GenerateToken(claims Claims) (string, error) {
method := jwt.GetSigningMethod(a.algorithm)
tkn := jwt.NewWithClaims(method, claims)
tkn.Header["kid"] = a.keyID
str, err := tkn.SignedString(a.privateKey)
if err != nil {
return "", errors.Wrap(err, "signing token")
}
return str, nil
}
// ParseClaims recreates the Claims that were used to generate a token. It
// verifies that the token was signed using our key.
func (a *Authenticator) ParseClaims(tknStr string) (Claims, error) {
// f is a function that returns the public key for validating a token. We use
// the parsed (but unverified) token to find the key id. That ID is passed to
// our KeyFunc to find the public key to use for verification.
f := func(t *jwt.Token) (interface{}, error) {
kid, ok := t.Header["kid"]
if !ok {
return nil, errors.New("Missing key id (kid) in token header")
}
kidStr, ok := kid.(string)
if !ok {
return nil, errors.New("Token key id (kid) must be string")
}
return a.kf(kidStr)
}
var claims Claims
tkn, err := a.parser.ParseWithClaims(tknStr, &claims, f)
if err != nil {
return Claims{}, errors.Wrap(err, "parsing token")
}
if !tkn.Valid {
return Claims{}, errors.New("Invalid token")
}
return claims, nil
}
// Keygen creates an x509 private key for signing auth tokens.
func Keygen() ([]byte, error) {
key, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
return []byte{}, errors.Wrap(err, "generating keys")
}
block := pem.Block{
Type: "RSA PRIVATE KEY",
Bytes: x509.MarshalPKCS1PrivateKey(key),
}
buf := new(bytes.Buffer)
if err := pem.Encode(buf, &block); err != nil {
return []byte{}, errors.Wrap(err, "encoding to private file")
}
return buf.Bytes(), nil
}