1
0
mirror of https://github.com/google/gops.git synced 2024-11-24 08:22:25 +02:00

vendor: include cobra

This commit is contained in:
Glib Smaga 2022-06-28 09:19:22 -07:00 committed by Tobias Klauser
parent 024cce5849
commit 3655f623db
79 changed files with 12827 additions and 0 deletions

13
vendor/github.com/inconshreveable/mousetrap/LICENSE generated vendored Normal file
View File

@ -0,0 +1,13 @@
Copyright 2014 Alan Shreve
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

23
vendor/github.com/inconshreveable/mousetrap/README.md generated vendored Normal file
View File

@ -0,0 +1,23 @@
# mousetrap
mousetrap is a tiny library that answers a single question.
On a Windows machine, was the process invoked by someone double clicking on
the executable file while browsing in explorer?
### Motivation
Windows developers unfamiliar with command line tools will often "double-click"
the executable for a tool. Because most CLI tools print the help and then exit
when invoked without arguments, this is often very frustrating for those users.
mousetrap provides a way to detect these invocations so that you can provide
more helpful behavior and instructions on how to run the CLI tool. To see what
this looks like, both from an organizational and a technical perspective, see
https://inconshreveable.com/09-09-2014/sweat-the-small-stuff/
### The interface
The library exposes a single interface:
func StartedByExplorer() (bool)

View File

@ -0,0 +1,15 @@
// +build !windows
package mousetrap
// StartedByExplorer returns true if the program was invoked by the user
// double-clicking on the executable from explorer.exe
//
// It is conservative and returns false if any of the internal calls fail.
// It does not guarantee that the program was run from a terminal. It only can tell you
// whether it was launched from explorer.exe
//
// On non-Windows platforms, it always returns false.
func StartedByExplorer() bool {
return false
}

View File

@ -0,0 +1,98 @@
// +build windows
// +build !go1.4
package mousetrap
import (
"fmt"
"os"
"syscall"
"unsafe"
)
const (
// defined by the Win32 API
th32cs_snapprocess uintptr = 0x2
)
var (
kernel = syscall.MustLoadDLL("kernel32.dll")
CreateToolhelp32Snapshot = kernel.MustFindProc("CreateToolhelp32Snapshot")
Process32First = kernel.MustFindProc("Process32FirstW")
Process32Next = kernel.MustFindProc("Process32NextW")
)
// ProcessEntry32 structure defined by the Win32 API
type processEntry32 struct {
dwSize uint32
cntUsage uint32
th32ProcessID uint32
th32DefaultHeapID int
th32ModuleID uint32
cntThreads uint32
th32ParentProcessID uint32
pcPriClassBase int32
dwFlags uint32
szExeFile [syscall.MAX_PATH]uint16
}
func getProcessEntry(pid int) (pe *processEntry32, err error) {
snapshot, _, e1 := CreateToolhelp32Snapshot.Call(th32cs_snapprocess, uintptr(0))
if snapshot == uintptr(syscall.InvalidHandle) {
err = fmt.Errorf("CreateToolhelp32Snapshot: %v", e1)
return
}
defer syscall.CloseHandle(syscall.Handle(snapshot))
var processEntry processEntry32
processEntry.dwSize = uint32(unsafe.Sizeof(processEntry))
ok, _, e1 := Process32First.Call(snapshot, uintptr(unsafe.Pointer(&processEntry)))
if ok == 0 {
err = fmt.Errorf("Process32First: %v", e1)
return
}
for {
if processEntry.th32ProcessID == uint32(pid) {
pe = &processEntry
return
}
ok, _, e1 = Process32Next.Call(snapshot, uintptr(unsafe.Pointer(&processEntry)))
if ok == 0 {
err = fmt.Errorf("Process32Next: %v", e1)
return
}
}
}
func getppid() (pid int, err error) {
pe, err := getProcessEntry(os.Getpid())
if err != nil {
return
}
pid = int(pe.th32ParentProcessID)
return
}
// StartedByExplorer returns true if the program was invoked by the user double-clicking
// on the executable from explorer.exe
//
// It is conservative and returns false if any of the internal calls fail.
// It does not guarantee that the program was run from a terminal. It only can tell you
// whether it was launched from explorer.exe
func StartedByExplorer() bool {
ppid, err := getppid()
if err != nil {
return false
}
pe, err := getProcessEntry(ppid)
if err != nil {
return false
}
name := syscall.UTF16ToString(pe.szExeFile[:])
return name == "explorer.exe"
}

View File

@ -0,0 +1,46 @@
// +build windows
// +build go1.4
package mousetrap
import (
"os"
"syscall"
"unsafe"
)
func getProcessEntry(pid int) (*syscall.ProcessEntry32, error) {
snapshot, err := syscall.CreateToolhelp32Snapshot(syscall.TH32CS_SNAPPROCESS, 0)
if err != nil {
return nil, err
}
defer syscall.CloseHandle(snapshot)
var procEntry syscall.ProcessEntry32
procEntry.Size = uint32(unsafe.Sizeof(procEntry))
if err = syscall.Process32First(snapshot, &procEntry); err != nil {
return nil, err
}
for {
if procEntry.ProcessID == uint32(pid) {
return &procEntry, nil
}
err = syscall.Process32Next(snapshot, &procEntry)
if err != nil {
return nil, err
}
}
}
// StartedByExplorer returns true if the program was invoked by the user double-clicking
// on the executable from explorer.exe
//
// It is conservative and returns false if any of the internal calls fail.
// It does not guarantee that the program was run from a terminal. It only can tell you
// whether it was launched from explorer.exe
func StartedByExplorer() bool {
pe, err := getProcessEntry(os.Getppid())
if err != nil {
return false
}
return "explorer.exe" == syscall.UTF16ToString(pe.ExeFile[:])
}

39
vendor/github.com/spf13/cobra/.gitignore generated vendored Normal file
View File

@ -0,0 +1,39 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
# Vim files https://github.com/github/gitignore/blob/master/Global/Vim.gitignore
# swap
[._]*.s[a-w][a-z]
[._]s[a-w][a-z]
# session
Session.vim
# temporary
.netrwhist
*~
# auto-generated tag files
tags
*.exe
cobra.test
bin
.idea/
*.iml

48
vendor/github.com/spf13/cobra/.golangci.yml generated vendored Normal file
View File

@ -0,0 +1,48 @@
run:
deadline: 5m
linters:
disable-all: true
enable:
#- bodyclose
- deadcode
#- depguard
#- dogsled
#- dupl
- errcheck
#- exhaustive
#- funlen
- gas
#- gochecknoinits
- goconst
#- gocritic
#- gocyclo
#- gofmt
- goimports
- golint
#- gomnd
#- goprintffuncname
#- gosec
#- gosimple
- govet
- ineffassign
- interfacer
#- lll
- maligned
- megacheck
#- misspell
#- nakedret
#- noctx
#- nolintlint
#- rowserrcheck
#- scopelint
#- staticcheck
- structcheck
#- stylecheck
#- typecheck
- unconvert
#- unparam
#- unused
- varcheck
#- whitespace
fast: false

3
vendor/github.com/spf13/cobra/.mailmap generated vendored Normal file
View File

@ -0,0 +1,3 @@
Steve Francia <steve.francia@gmail.com>
Bjørn Erik Pedersen <bjorn.erik.pedersen@gmail.com>
Fabiano Franz <ffranz@redhat.com> <contact@fabianofranz.com>

51
vendor/github.com/spf13/cobra/CHANGELOG.md generated vendored Normal file
View File

@ -0,0 +1,51 @@
# Cobra Changelog
## v1.1.3
* **Fix:** release-branch.cobra1.1 only: Revert "Deprecate Go < 1.14" to maintain backward compatibility
## v1.1.2
### Notable Changes
* Bump license year to 2021 in golden files (#1309) @Bowbaq
* Enhance PowerShell completion with custom comp (#1208) @Luap99
* Update gopkg.in/yaml.v2 to v2.4.0: The previous breaking change in yaml.v2 v2.3.0 has been reverted, see go-yaml/yaml#670
* Documentation readability improvements (#1228 etc.) @zaataylor etc.
* Use golangci-lint: Repair warnings and errors resulting from linting (#1044) @umarcor
## v1.1.1
* **Fix:** yaml.v2 2.3.0 contained a unintended breaking change. This release reverts to yaml.v2 v2.2.8 which has recent critical CVE fixes, but does not have the breaking changes. See https://github.com/spf13/cobra/pull/1259 for context.
* **Fix:** correct internal formatting for go-md2man v2 (which caused man page generation to be broken). See https://github.com/spf13/cobra/issues/1049 for context.
## v1.1.0
### Notable Changes
* Extend Go completions and revamp zsh comp (#1070)
* Fix man page doc generation - no auto generated tag when `cmd.DisableAutoGenTag = true` (#1104) @jpmcb
* Add completion for help command (#1136)
* Complete subcommands when TraverseChildren is set (#1171)
* Fix stderr printing functions (#894)
* fix: fish output redirection (#1247)
## v1.0.0
Announcing v1.0.0 of Cobra. 🎉
### Notable Changes
* Fish completion (including support for Go custom completion) @marckhouzam
* API (urgent): Rename BashCompDirectives to ShellCompDirectives @marckhouzam
* Remove/replace SetOutput on Command - deprecated @jpmcb
* add support for autolabel stale PR @xchapter7x
* Add Labeler Actions @xchapter7x
* Custom completions coded in Go (instead of Bash) @marckhouzam
* Partial Revert of #922 @jharshman
* Add Makefile to project @jharshman
* Correct documentation for InOrStdin @desponda
* Apply formatting to templates @jharshman
* Revert change so help is printed on stdout again @marckhouzam
* Update md2man to v2.0.0 @pdf
* update viper to v1.4.0 @umarcor
* Update cmd/root.go example in README.md @jharshman

37
vendor/github.com/spf13/cobra/CONDUCT.md generated vendored Normal file
View File

@ -0,0 +1,37 @@
## Cobra User Contract
### Versioning
Cobra will follow a steady release cadence. Non breaking changes will be released as minor versions quarterly. Patch bug releases are at the discretion of the maintainers. Users can expect security patch fixes to be released within relatively short order of a CVE becoming known. For more information on security patch fixes see the CVE section below. Releases will follow [Semantic Versioning](https://semver.org/). Users tracking the Master branch should expect unpredictable breaking changes as the project continues to move forward. For stability, it is highly recommended to use a release.
### Backward Compatibility
We will maintain two major releases in a moving window. The N-1 release will only receive bug fixes and security updates and will be dropped once N+1 is released.
### Deprecation
Deprecation of Go versions or dependent packages will only occur in major releases. To reduce the change of this taking users by surprise, any large deprecation will be preceded by an announcement in the [#cobra slack channel](https://gophers.slack.com/archives/CD3LP1199) and an Issue on Github.
### CVE
Maintainers will make every effort to release security patches in the case of a medium to high severity CVE directly impacting the library. The speed in which these patches reach a release is up to the discretion of the maintainers. A low severity CVE may be a lower priority than a high severity one.
### Communication
Cobra maintainers will use GitHub issues and the [#cobra slack channel](https://gophers.slack.com/archives/CD3LP1199) as the primary means of communication with the community. This is to foster open communication with all users and contributors.
### Breaking Changes
Breaking changes are generally allowed in the master branch, as this is the branch used to develop the next release of Cobra.
There may be times, however, when master is closed for breaking changes. This is likely to happen as we near the release of a new version.
Breaking changes are not allowed in release branches, as these represent minor versions that have already been released. These version have consumers who expect the APIs, behaviors, etc, to remain stable during the lifetime of the patch stream for the minor release.
Examples of breaking changes include:
- Removing or renaming exported constant, variable, type, or function.
- Updating the version of critical libraries such as `spf13/pflag`, `spf13/viper` etc...
- Some version updates may be acceptable for picking up bug fixes, but maintainers must exercise caution when reviewing.
There may, at times, need to be exceptions where breaking changes are allowed in release branches. These are at the discretion of the project's maintainers, and must be carefully considered before merging.
### CI Testing
Maintainers will ensure the Cobra test suite utilizes the current supported versions of Golang.
### Disclaimer
Changes to this document and the contents therein are at the discretion of the maintainers.
None of the contents of this document are legally binding in any way to the maintainers or the users.

50
vendor/github.com/spf13/cobra/CONTRIBUTING.md generated vendored Normal file
View File

@ -0,0 +1,50 @@
# Contributing to Cobra
Thank you so much for contributing to Cobra. We appreciate your time and help.
Here are some guidelines to help you get started.
## Code of Conduct
Be kind and respectful to the members of the community. Take time to educate
others who are seeking help. Harassment of any kind will not be tolerated.
## Questions
If you have questions regarding Cobra, feel free to ask it in the community
[#cobra Slack channel][cobra-slack]
## Filing a bug or feature
1. Before filing an issue, please check the existing issues to see if a
similar one was already opened. If there is one already opened, feel free
to comment on it.
1. If you believe you've found a bug, please provide detailed steps of
reproduction, the version of Cobra and anything else you believe will be
useful to help troubleshoot it (e.g. OS environment, environment variables,
etc...). Also state the current behavior vs. the expected behavior.
1. If you'd like to see a feature or an enhancement please open an issue with
a clear title and description of what the feature is and why it would be
beneficial to the project and its users.
## Submitting changes
1. CLA: Upon submitting a Pull Request (PR), contributors will be prompted to
sign a CLA. Please sign the CLA :slightly_smiling_face:
1. Tests: If you are submitting code, please ensure you have adequate tests
for the feature. Tests can be run via `go test ./...` or `make test`.
1. Since this is golang project, ensure the new code is properly formatted to
ensure code consistency. Run `make all`.
### Quick steps to contribute
1. Fork the project.
1. Download your fork to your PC (`git clone https://github.com/your_username/cobra && cd cobra`)
1. Create your feature branch (`git checkout -b my-new-feature`)
1. Make changes and run tests (`make test`)
1. Add them to staging (`git add .`)
1. Commit your changes (`git commit -m 'Add some feature'`)
1. Push to the branch (`git push origin my-new-feature`)
1. Create new pull request
<!-- Links -->
[cobra-slack]: https://gophers.slack.com/archives/CD3LP1199

174
vendor/github.com/spf13/cobra/LICENSE.txt generated vendored Normal file
View File

@ -0,0 +1,174 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

13
vendor/github.com/spf13/cobra/MAINTAINERS generated vendored Normal file
View File

@ -0,0 +1,13 @@
maintainers:
- spf13
- johnSchnake
- jpmcb
- marckhouzam
inactive:
- anthonyfok
- bep
- bogem
- broady
- eparis
- jharshman
- wfernandes

35
vendor/github.com/spf13/cobra/Makefile generated vendored Normal file
View File

@ -0,0 +1,35 @@
BIN="./bin"
SRC=$(shell find . -name "*.go")
ifeq (, $(shell which golangci-lint))
$(warning "could not find golangci-lint in $(PATH), run: curl -sfL https://install.goreleaser.com/github.com/golangci/golangci-lint.sh | sh")
endif
ifeq (, $(shell which richgo))
$(warning "could not find richgo in $(PATH), run: go get github.com/kyoh86/richgo")
endif
.PHONY: fmt lint test install_deps clean
default: all
all: fmt test
fmt:
$(info ******************** checking formatting ********************)
@test -z $(shell gofmt -l $(SRC)) || (gofmt -d $(SRC); exit 1)
lint:
$(info ******************** running lint tools ********************)
golangci-lint run -v
test: install_deps
$(info ******************** running tests ********************)
richgo test -v ./...
install_deps:
$(info ******************** downloading dependencies ********************)
go get -v ./...
clean:
rm -rf $(BIN)

111
vendor/github.com/spf13/cobra/README.md generated vendored Normal file
View File

@ -0,0 +1,111 @@
![cobra logo](https://cloud.githubusercontent.com/assets/173412/10886352/ad566232-814f-11e5-9cd0-aa101788c117.png)
Cobra is a library for creating powerful modern CLI applications.
Cobra is used in many Go projects such as [Kubernetes](http://kubernetes.io/),
[Hugo](https://gohugo.io), and [Github CLI](https://github.com/cli/cli) to
name a few. [This list](./projects_using_cobra.md) contains a more extensive list of projects using Cobra.
[![](https://img.shields.io/github/workflow/status/spf13/cobra/Test?longCache=tru&label=Test&logo=github%20actions&logoColor=fff)](https://github.com/spf13/cobra/actions?query=workflow%3ATest)
[![Go Reference](https://pkg.go.dev/badge/github.com/spf13/cobra.svg)](https://pkg.go.dev/github.com/spf13/cobra)
[![Go Report Card](https://goreportcard.com/badge/github.com/spf13/cobra)](https://goreportcard.com/report/github.com/spf13/cobra)
[![Slack](https://img.shields.io/badge/Slack-cobra-brightgreen)](https://gophers.slack.com/archives/CD3LP1199)
# Overview
Cobra is a library providing a simple interface to create powerful modern CLI
interfaces similar to git & go tools.
Cobra provides:
* Easy subcommand-based CLIs: `app server`, `app fetch`, etc.
* Fully POSIX-compliant flags (including short & long versions)
* Nested subcommands
* Global, local and cascading flags
* Intelligent suggestions (`app srver`... did you mean `app server`?)
* Automatic help generation for commands and flags
* Automatic help flag recognition of `-h`, `--help`, etc.
* Automatically generated shell autocomplete for your application (bash, zsh, fish, powershell)
* Automatically generated man pages for your application
* Command aliases so you can change things without breaking them
* The flexibility to define your own help, usage, etc.
* Optional seamless integration with [viper](http://github.com/spf13/viper) for 12-factor apps
# Concepts
Cobra is built on a structure of commands, arguments & flags.
**Commands** represent actions, **Args** are things and **Flags** are modifiers for those actions.
The best applications read like sentences when used, and as a result, users
intuitively know how to interact with them.
The pattern to follow is
`APPNAME VERB NOUN --ADJECTIVE.`
or
`APPNAME COMMAND ARG --FLAG`
A few good real world examples may better illustrate this point.
In the following example, 'server' is a command, and 'port' is a flag:
hugo server --port=1313
In this command we are telling Git to clone the url bare.
git clone URL --bare
## Commands
Command is the central point of the application. Each interaction that
the application supports will be contained in a Command. A command can
have children commands and optionally run an action.
In the example above, 'server' is the command.
[More about cobra.Command](https://pkg.go.dev/github.com/spf13/cobra#Command)
## Flags
A flag is a way to modify the behavior of a command. Cobra supports
fully POSIX-compliant flags as well as the Go [flag package](https://golang.org/pkg/flag/).
A Cobra command can define flags that persist through to children commands
and flags that are only available to that command.
In the example above, 'port' is the flag.
Flag functionality is provided by the [pflag
library](https://github.com/spf13/pflag), a fork of the flag standard library
which maintains the same interface while adding POSIX compliance.
# Installing
Using Cobra is easy. First, use `go get` to install the latest version
of the library.
```
go get -u github.com/spf13/cobra@latest
```
Next, include Cobra in your application:
```go
import "github.com/spf13/cobra"
```
# Usage
`cobra-cli` is a command line program to generate cobra applications and command files.
It will bootstrap your application scaffolding to rapidly
develop a Cobra-based application. It is the easiest way to incorporate Cobra into your application.
It can be installed by running:
```
go install github.com/spf13/cobra-cli@latest
```
For complete details on using the Cobra-CLI generator, please read [The Cobra Generator README](https://github.com/spf13/cobra-cli/blob/master/README.md)
For complete details on using the Cobra library, please read the [The Cobra User Guide](user_guide.md).
# License
Cobra is released under the Apache 2.0 license. See [LICENSE.txt](https://github.com/spf13/cobra/blob/master/LICENSE.txt)

121
vendor/github.com/spf13/cobra/args.go generated vendored Normal file
View File

@ -0,0 +1,121 @@
package cobra
import (
"fmt"
"strings"
)
type PositionalArgs func(cmd *Command, args []string) error
// Legacy arg validation has the following behaviour:
// - root commands with no subcommands can take arbitrary arguments
// - root commands with subcommands will do subcommand validity checking
// - subcommands will always accept arbitrary arguments
func legacyArgs(cmd *Command, args []string) error {
// no subcommand, always take args
if !cmd.HasSubCommands() {
return nil
}
// root command with subcommands, do subcommand checking.
if !cmd.HasParent() && len(args) > 0 {
return fmt.Errorf("unknown command %q for %q%s", args[0], cmd.CommandPath(), cmd.findSuggestions(args[0]))
}
return nil
}
// NoArgs returns an error if any args are included.
func NoArgs(cmd *Command, args []string) error {
if len(args) > 0 {
return fmt.Errorf("unknown command %q for %q", args[0], cmd.CommandPath())
}
return nil
}
// OnlyValidArgs returns an error if any args are not in the list of ValidArgs.
func OnlyValidArgs(cmd *Command, args []string) error {
if len(cmd.ValidArgs) > 0 {
// Remove any description that may be included in ValidArgs.
// A description is following a tab character.
var validArgs []string
for _, v := range cmd.ValidArgs {
validArgs = append(validArgs, strings.Split(v, "\t")[0])
}
for _, v := range args {
if !stringInSlice(v, validArgs) {
return fmt.Errorf("invalid argument %q for %q%s", v, cmd.CommandPath(), cmd.findSuggestions(args[0]))
}
}
}
return nil
}
// ArbitraryArgs never returns an error.
func ArbitraryArgs(cmd *Command, args []string) error {
return nil
}
// MinimumNArgs returns an error if there is not at least N args.
func MinimumNArgs(n int) PositionalArgs {
return func(cmd *Command, args []string) error {
if len(args) < n {
return fmt.Errorf("requires at least %d arg(s), only received %d", n, len(args))
}
return nil
}
}
// MaximumNArgs returns an error if there are more than N args.
func MaximumNArgs(n int) PositionalArgs {
return func(cmd *Command, args []string) error {
if len(args) > n {
return fmt.Errorf("accepts at most %d arg(s), received %d", n, len(args))
}
return nil
}
}
// ExactArgs returns an error if there are not exactly n args.
func ExactArgs(n int) PositionalArgs {
return func(cmd *Command, args []string) error {
if len(args) != n {
return fmt.Errorf("accepts %d arg(s), received %d", n, len(args))
}
return nil
}
}
// ExactValidArgs returns an error if
// there are not exactly N positional args OR
// there are any positional args that are not in the `ValidArgs` field of `Command`
func ExactValidArgs(n int) PositionalArgs {
return func(cmd *Command, args []string) error {
if err := ExactArgs(n)(cmd, args); err != nil {
return err
}
return OnlyValidArgs(cmd, args)
}
}
// RangeArgs returns an error if the number of args is not within the expected range.
func RangeArgs(min int, max int) PositionalArgs {
return func(cmd *Command, args []string) error {
if len(args) < min || len(args) > max {
return fmt.Errorf("accepts between %d and %d arg(s), received %d", min, max, len(args))
}
return nil
}
}
// MatchAll allows combining several PositionalArgs to work in concert.
func MatchAll(pargs ...PositionalArgs) PositionalArgs {
return func(cmd *Command, args []string) error {
for _, parg := range pargs {
if err := parg(cmd, args); err != nil {
return err
}
}
return nil
}
}

697
vendor/github.com/spf13/cobra/bash_completions.go generated vendored Normal file
View File

@ -0,0 +1,697 @@
package cobra
import (
"bytes"
"fmt"
"io"
"os"
"sort"
"strings"
"github.com/spf13/pflag"
)
// Annotations for Bash completion.
const (
BashCompFilenameExt = "cobra_annotation_bash_completion_filename_extensions"
BashCompCustom = "cobra_annotation_bash_completion_custom"
BashCompOneRequiredFlag = "cobra_annotation_bash_completion_one_required_flag"
BashCompSubdirsInDir = "cobra_annotation_bash_completion_subdirs_in_dir"
)
func writePreamble(buf io.StringWriter, name string) {
WriteStringAndCheck(buf, fmt.Sprintf("# bash completion for %-36s -*- shell-script -*-\n", name))
WriteStringAndCheck(buf, fmt.Sprintf(`
__%[1]s_debug()
{
if [[ -n ${BASH_COMP_DEBUG_FILE:-} ]]; then
echo "$*" >> "${BASH_COMP_DEBUG_FILE}"
fi
}
# Homebrew on Macs have version 1.3 of bash-completion which doesn't include
# _init_completion. This is a very minimal version of that function.
__%[1]s_init_completion()
{
COMPREPLY=()
_get_comp_words_by_ref "$@" cur prev words cword
}
__%[1]s_index_of_word()
{
local w word=$1
shift
index=0
for w in "$@"; do
[[ $w = "$word" ]] && return
index=$((index+1))
done
index=-1
}
__%[1]s_contains_word()
{
local w word=$1; shift
for w in "$@"; do
[[ $w = "$word" ]] && return
done
return 1
}
__%[1]s_handle_go_custom_completion()
{
__%[1]s_debug "${FUNCNAME[0]}: cur is ${cur}, words[*] is ${words[*]}, #words[@] is ${#words[@]}"
local shellCompDirectiveError=%[3]d
local shellCompDirectiveNoSpace=%[4]d
local shellCompDirectiveNoFileComp=%[5]d
local shellCompDirectiveFilterFileExt=%[6]d
local shellCompDirectiveFilterDirs=%[7]d
local out requestComp lastParam lastChar comp directive args
# Prepare the command to request completions for the program.
# Calling ${words[0]} instead of directly %[1]s allows to handle aliases
args=("${words[@]:1}")
requestComp="${words[0]} %[2]s ${args[*]}"
lastParam=${words[$((${#words[@]}-1))]}
lastChar=${lastParam:$((${#lastParam}-1)):1}
__%[1]s_debug "${FUNCNAME[0]}: lastParam ${lastParam}, lastChar ${lastChar}"
if [ -z "${cur}" ] && [ "${lastChar}" != "=" ]; then
# If the last parameter is complete (there is a space following it)
# We add an extra empty parameter so we can indicate this to the go method.
__%[1]s_debug "${FUNCNAME[0]}: Adding extra empty parameter"
requestComp="${requestComp} \"\""
fi
__%[1]s_debug "${FUNCNAME[0]}: calling ${requestComp}"
# Use eval to handle any environment variables and such
out=$(eval "${requestComp}" 2>/dev/null)
# Extract the directive integer at the very end of the output following a colon (:)
directive=${out##*:}
# Remove the directive
out=${out%%:*}
if [ "${directive}" = "${out}" ]; then
# There is not directive specified
directive=0
fi
__%[1]s_debug "${FUNCNAME[0]}: the completion directive is: ${directive}"
__%[1]s_debug "${FUNCNAME[0]}: the completions are: ${out[*]}"
if [ $((directive & shellCompDirectiveError)) -ne 0 ]; then
# Error code. No completion.
__%[1]s_debug "${FUNCNAME[0]}: received error from custom completion go code"
return
else
if [ $((directive & shellCompDirectiveNoSpace)) -ne 0 ]; then
if [[ $(type -t compopt) = "builtin" ]]; then
__%[1]s_debug "${FUNCNAME[0]}: activating no space"
compopt -o nospace
fi
fi
if [ $((directive & shellCompDirectiveNoFileComp)) -ne 0 ]; then
if [[ $(type -t compopt) = "builtin" ]]; then
__%[1]s_debug "${FUNCNAME[0]}: activating no file completion"
compopt +o default
fi
fi
fi
if [ $((directive & shellCompDirectiveFilterFileExt)) -ne 0 ]; then
# File extension filtering
local fullFilter filter filteringCmd
# Do not use quotes around the $out variable or else newline
# characters will be kept.
for filter in ${out[*]}; do
fullFilter+="$filter|"
done
filteringCmd="_filedir $fullFilter"
__%[1]s_debug "File filtering command: $filteringCmd"
$filteringCmd
elif [ $((directive & shellCompDirectiveFilterDirs)) -ne 0 ]; then
# File completion for directories only
local subdir
# Use printf to strip any trailing newline
subdir=$(printf "%%s" "${out[0]}")
if [ -n "$subdir" ]; then
__%[1]s_debug "Listing directories in $subdir"
__%[1]s_handle_subdirs_in_dir_flag "$subdir"
else
__%[1]s_debug "Listing directories in ."
_filedir -d
fi
else
while IFS='' read -r comp; do
COMPREPLY+=("$comp")
done < <(compgen -W "${out[*]}" -- "$cur")
fi
}
__%[1]s_handle_reply()
{
__%[1]s_debug "${FUNCNAME[0]}"
local comp
case $cur in
-*)
if [[ $(type -t compopt) = "builtin" ]]; then
compopt -o nospace
fi
local allflags
if [ ${#must_have_one_flag[@]} -ne 0 ]; then
allflags=("${must_have_one_flag[@]}")
else
allflags=("${flags[*]} ${two_word_flags[*]}")
fi
while IFS='' read -r comp; do
COMPREPLY+=("$comp")
done < <(compgen -W "${allflags[*]}" -- "$cur")
if [[ $(type -t compopt) = "builtin" ]]; then
[[ "${COMPREPLY[0]}" == *= ]] || compopt +o nospace
fi
# complete after --flag=abc
if [[ $cur == *=* ]]; then
if [[ $(type -t compopt) = "builtin" ]]; then
compopt +o nospace
fi
local index flag
flag="${cur%%=*}"
__%[1]s_index_of_word "${flag}" "${flags_with_completion[@]}"
COMPREPLY=()
if [[ ${index} -ge 0 ]]; then
PREFIX=""
cur="${cur#*=}"
${flags_completion[${index}]}
if [ -n "${ZSH_VERSION:-}" ]; then
# zsh completion needs --flag= prefix
eval "COMPREPLY=( \"\${COMPREPLY[@]/#/${flag}=}\" )"
fi
fi
fi
if [[ -z "${flag_parsing_disabled}" ]]; then
# If flag parsing is enabled, we have completed the flags and can return.
# If flag parsing is disabled, we may not know all (or any) of the flags, so we fallthrough
# to possibly call handle_go_custom_completion.
return 0;
fi
;;
esac
# check if we are handling a flag with special work handling
local index
__%[1]s_index_of_word "${prev}" "${flags_with_completion[@]}"
if [[ ${index} -ge 0 ]]; then
${flags_completion[${index}]}
return
fi
# we are parsing a flag and don't have a special handler, no completion
if [[ ${cur} != "${words[cword]}" ]]; then
return
fi
local completions
completions=("${commands[@]}")
if [[ ${#must_have_one_noun[@]} -ne 0 ]]; then
completions+=("${must_have_one_noun[@]}")
elif [[ -n "${has_completion_function}" ]]; then
# if a go completion function is provided, defer to that function
__%[1]s_handle_go_custom_completion
fi
if [[ ${#must_have_one_flag[@]} -ne 0 ]]; then
completions+=("${must_have_one_flag[@]}")
fi
while IFS='' read -r comp; do
COMPREPLY+=("$comp")
done < <(compgen -W "${completions[*]}" -- "$cur")
if [[ ${#COMPREPLY[@]} -eq 0 && ${#noun_aliases[@]} -gt 0 && ${#must_have_one_noun[@]} -ne 0 ]]; then
while IFS='' read -r comp; do
COMPREPLY+=("$comp")
done < <(compgen -W "${noun_aliases[*]}" -- "$cur")
fi
if [[ ${#COMPREPLY[@]} -eq 0 ]]; then
if declare -F __%[1]s_custom_func >/dev/null; then
# try command name qualified custom func
__%[1]s_custom_func
else
# otherwise fall back to unqualified for compatibility
declare -F __custom_func >/dev/null && __custom_func
fi
fi
# available in bash-completion >= 2, not always present on macOS
if declare -F __ltrim_colon_completions >/dev/null; then
__ltrim_colon_completions "$cur"
fi
# If there is only 1 completion and it is a flag with an = it will be completed
# but we don't want a space after the =
if [[ "${#COMPREPLY[@]}" -eq "1" ]] && [[ $(type -t compopt) = "builtin" ]] && [[ "${COMPREPLY[0]}" == --*= ]]; then
compopt -o nospace
fi
}
# The arguments should be in the form "ext1|ext2|extn"
__%[1]s_handle_filename_extension_flag()
{
local ext="$1"
_filedir "@(${ext})"
}
__%[1]s_handle_subdirs_in_dir_flag()
{
local dir="$1"
pushd "${dir}" >/dev/null 2>&1 && _filedir -d && popd >/dev/null 2>&1 || return
}
__%[1]s_handle_flag()
{
__%[1]s_debug "${FUNCNAME[0]}: c is $c words[c] is ${words[c]}"
# if a command required a flag, and we found it, unset must_have_one_flag()
local flagname=${words[c]}
local flagvalue=""
# if the word contained an =
if [[ ${words[c]} == *"="* ]]; then
flagvalue=${flagname#*=} # take in as flagvalue after the =
flagname=${flagname%%=*} # strip everything after the =
flagname="${flagname}=" # but put the = back
fi
__%[1]s_debug "${FUNCNAME[0]}: looking for ${flagname}"
if __%[1]s_contains_word "${flagname}" "${must_have_one_flag[@]}"; then
must_have_one_flag=()
fi
# if you set a flag which only applies to this command, don't show subcommands
if __%[1]s_contains_word "${flagname}" "${local_nonpersistent_flags[@]}"; then
commands=()
fi
# keep flag value with flagname as flaghash
# flaghash variable is an associative array which is only supported in bash > 3.
if [[ -z "${BASH_VERSION:-}" || "${BASH_VERSINFO[0]:-}" -gt 3 ]]; then
if [ -n "${flagvalue}" ] ; then
flaghash[${flagname}]=${flagvalue}
elif [ -n "${words[ $((c+1)) ]}" ] ; then
flaghash[${flagname}]=${words[ $((c+1)) ]}
else
flaghash[${flagname}]="true" # pad "true" for bool flag
fi
fi
# skip the argument to a two word flag
if [[ ${words[c]} != *"="* ]] && __%[1]s_contains_word "${words[c]}" "${two_word_flags[@]}"; then
__%[1]s_debug "${FUNCNAME[0]}: found a flag ${words[c]}, skip the next argument"
c=$((c+1))
# if we are looking for a flags value, don't show commands
if [[ $c -eq $cword ]]; then
commands=()
fi
fi
c=$((c+1))
}
__%[1]s_handle_noun()
{
__%[1]s_debug "${FUNCNAME[0]}: c is $c words[c] is ${words[c]}"
if __%[1]s_contains_word "${words[c]}" "${must_have_one_noun[@]}"; then
must_have_one_noun=()
elif __%[1]s_contains_word "${words[c]}" "${noun_aliases[@]}"; then
must_have_one_noun=()
fi
nouns+=("${words[c]}")
c=$((c+1))
}
__%[1]s_handle_command()
{
__%[1]s_debug "${FUNCNAME[0]}: c is $c words[c] is ${words[c]}"
local next_command
if [[ -n ${last_command} ]]; then
next_command="_${last_command}_${words[c]//:/__}"
else
if [[ $c -eq 0 ]]; then
next_command="_%[1]s_root_command"
else
next_command="_${words[c]//:/__}"
fi
fi
c=$((c+1))
__%[1]s_debug "${FUNCNAME[0]}: looking for ${next_command}"
declare -F "$next_command" >/dev/null && $next_command
}
__%[1]s_handle_word()
{
if [[ $c -ge $cword ]]; then
__%[1]s_handle_reply
return
fi
__%[1]s_debug "${FUNCNAME[0]}: c is $c words[c] is ${words[c]}"
if [[ "${words[c]}" == -* ]]; then
__%[1]s_handle_flag
elif __%[1]s_contains_word "${words[c]}" "${commands[@]}"; then
__%[1]s_handle_command
elif [[ $c -eq 0 ]]; then
__%[1]s_handle_command
elif __%[1]s_contains_word "${words[c]}" "${command_aliases[@]}"; then
# aliashash variable is an associative array which is only supported in bash > 3.
if [[ -z "${BASH_VERSION:-}" || "${BASH_VERSINFO[0]:-}" -gt 3 ]]; then
words[c]=${aliashash[${words[c]}]}
__%[1]s_handle_command
else
__%[1]s_handle_noun
fi
else
__%[1]s_handle_noun
fi
__%[1]s_handle_word
}
`, name, ShellCompNoDescRequestCmd,
ShellCompDirectiveError, ShellCompDirectiveNoSpace, ShellCompDirectiveNoFileComp,
ShellCompDirectiveFilterFileExt, ShellCompDirectiveFilterDirs))
}
func writePostscript(buf io.StringWriter, name string) {
name = strings.Replace(name, ":", "__", -1)
WriteStringAndCheck(buf, fmt.Sprintf("__start_%s()\n", name))
WriteStringAndCheck(buf, fmt.Sprintf(`{
local cur prev words cword split
declare -A flaghash 2>/dev/null || :
declare -A aliashash 2>/dev/null || :
if declare -F _init_completion >/dev/null 2>&1; then
_init_completion -s || return
else
__%[1]s_init_completion -n "=" || return
fi
local c=0
local flag_parsing_disabled=
local flags=()
local two_word_flags=()
local local_nonpersistent_flags=()
local flags_with_completion=()
local flags_completion=()
local commands=("%[1]s")
local command_aliases=()
local must_have_one_flag=()
local must_have_one_noun=()
local has_completion_function=""
local last_command=""
local nouns=()
local noun_aliases=()
__%[1]s_handle_word
}
`, name))
WriteStringAndCheck(buf, fmt.Sprintf(`if [[ $(type -t compopt) = "builtin" ]]; then
complete -o default -F __start_%s %s
else
complete -o default -o nospace -F __start_%s %s
fi
`, name, name, name, name))
WriteStringAndCheck(buf, "# ex: ts=4 sw=4 et filetype=sh\n")
}
func writeCommands(buf io.StringWriter, cmd *Command) {
WriteStringAndCheck(buf, " commands=()\n")
for _, c := range cmd.Commands() {
if !c.IsAvailableCommand() && c != cmd.helpCommand {
continue
}
WriteStringAndCheck(buf, fmt.Sprintf(" commands+=(%q)\n", c.Name()))
writeCmdAliases(buf, c)
}
WriteStringAndCheck(buf, "\n")
}
func writeFlagHandler(buf io.StringWriter, name string, annotations map[string][]string, cmd *Command) {
for key, value := range annotations {
switch key {
case BashCompFilenameExt:
WriteStringAndCheck(buf, fmt.Sprintf(" flags_with_completion+=(%q)\n", name))
var ext string
if len(value) > 0 {
ext = fmt.Sprintf("__%s_handle_filename_extension_flag ", cmd.Root().Name()) + strings.Join(value, "|")
} else {
ext = "_filedir"
}
WriteStringAndCheck(buf, fmt.Sprintf(" flags_completion+=(%q)\n", ext))
case BashCompCustom:
WriteStringAndCheck(buf, fmt.Sprintf(" flags_with_completion+=(%q)\n", name))
if len(value) > 0 {
handlers := strings.Join(value, "; ")
WriteStringAndCheck(buf, fmt.Sprintf(" flags_completion+=(%q)\n", handlers))
} else {
WriteStringAndCheck(buf, " flags_completion+=(:)\n")
}
case BashCompSubdirsInDir:
WriteStringAndCheck(buf, fmt.Sprintf(" flags_with_completion+=(%q)\n", name))
var ext string
if len(value) == 1 {
ext = fmt.Sprintf("__%s_handle_subdirs_in_dir_flag ", cmd.Root().Name()) + value[0]
} else {
ext = "_filedir -d"
}
WriteStringAndCheck(buf, fmt.Sprintf(" flags_completion+=(%q)\n", ext))
}
}
}
const cbn = "\")\n"
func writeShortFlag(buf io.StringWriter, flag *pflag.Flag, cmd *Command) {
name := flag.Shorthand
format := " "
if len(flag.NoOptDefVal) == 0 {
format += "two_word_"
}
format += "flags+=(\"-%s" + cbn
WriteStringAndCheck(buf, fmt.Sprintf(format, name))
writeFlagHandler(buf, "-"+name, flag.Annotations, cmd)
}
func writeFlag(buf io.StringWriter, flag *pflag.Flag, cmd *Command) {
name := flag.Name
format := " flags+=(\"--%s"
if len(flag.NoOptDefVal) == 0 {
format += "="
}
format += cbn
WriteStringAndCheck(buf, fmt.Sprintf(format, name))
if len(flag.NoOptDefVal) == 0 {
format = " two_word_flags+=(\"--%s" + cbn
WriteStringAndCheck(buf, fmt.Sprintf(format, name))
}
writeFlagHandler(buf, "--"+name, flag.Annotations, cmd)
}
func writeLocalNonPersistentFlag(buf io.StringWriter, flag *pflag.Flag) {
name := flag.Name
format := " local_nonpersistent_flags+=(\"--%[1]s" + cbn
if len(flag.NoOptDefVal) == 0 {
format += " local_nonpersistent_flags+=(\"--%[1]s=" + cbn
}
WriteStringAndCheck(buf, fmt.Sprintf(format, name))
if len(flag.Shorthand) > 0 {
WriteStringAndCheck(buf, fmt.Sprintf(" local_nonpersistent_flags+=(\"-%s\")\n", flag.Shorthand))
}
}
// Setup annotations for go completions for registered flags
func prepareCustomAnnotationsForFlags(cmd *Command) {
flagCompletionMutex.RLock()
defer flagCompletionMutex.RUnlock()
for flag := range flagCompletionFunctions {
// Make sure the completion script calls the __*_go_custom_completion function for
// every registered flag. We need to do this here (and not when the flag was registered
// for completion) so that we can know the root command name for the prefix
// of __<prefix>_go_custom_completion
if flag.Annotations == nil {
flag.Annotations = map[string][]string{}
}
flag.Annotations[BashCompCustom] = []string{fmt.Sprintf("__%[1]s_handle_go_custom_completion", cmd.Root().Name())}
}
}
func writeFlags(buf io.StringWriter, cmd *Command) {
prepareCustomAnnotationsForFlags(cmd)
WriteStringAndCheck(buf, ` flags=()
two_word_flags=()
local_nonpersistent_flags=()
flags_with_completion=()
flags_completion=()
`)
if cmd.DisableFlagParsing {
WriteStringAndCheck(buf, " flag_parsing_disabled=1\n")
}
localNonPersistentFlags := cmd.LocalNonPersistentFlags()
cmd.NonInheritedFlags().VisitAll(func(flag *pflag.Flag) {
if nonCompletableFlag(flag) {
return
}
writeFlag(buf, flag, cmd)
if len(flag.Shorthand) > 0 {
writeShortFlag(buf, flag, cmd)
}
// localNonPersistentFlags are used to stop the completion of subcommands when one is set
// if TraverseChildren is true we should allow to complete subcommands
if localNonPersistentFlags.Lookup(flag.Name) != nil && !cmd.Root().TraverseChildren {
writeLocalNonPersistentFlag(buf, flag)
}
})
cmd.InheritedFlags().VisitAll(func(flag *pflag.Flag) {
if nonCompletableFlag(flag) {
return
}
writeFlag(buf, flag, cmd)
if len(flag.Shorthand) > 0 {
writeShortFlag(buf, flag, cmd)
}
})
WriteStringAndCheck(buf, "\n")
}
func writeRequiredFlag(buf io.StringWriter, cmd *Command) {
WriteStringAndCheck(buf, " must_have_one_flag=()\n")
flags := cmd.NonInheritedFlags()
flags.VisitAll(func(flag *pflag.Flag) {
if nonCompletableFlag(flag) {
return
}
for key := range flag.Annotations {
switch key {
case BashCompOneRequiredFlag:
format := " must_have_one_flag+=(\"--%s"
if flag.Value.Type() != "bool" {
format += "="
}
format += cbn
WriteStringAndCheck(buf, fmt.Sprintf(format, flag.Name))
if len(flag.Shorthand) > 0 {
WriteStringAndCheck(buf, fmt.Sprintf(" must_have_one_flag+=(\"-%s"+cbn, flag.Shorthand))
}
}
}
})
}
func writeRequiredNouns(buf io.StringWriter, cmd *Command) {
WriteStringAndCheck(buf, " must_have_one_noun=()\n")
sort.Strings(cmd.ValidArgs)
for _, value := range cmd.ValidArgs {
// Remove any description that may be included following a tab character.
// Descriptions are not supported by bash completion.
value = strings.Split(value, "\t")[0]
WriteStringAndCheck(buf, fmt.Sprintf(" must_have_one_noun+=(%q)\n", value))
}
if cmd.ValidArgsFunction != nil {
WriteStringAndCheck(buf, " has_completion_function=1\n")
}
}
func writeCmdAliases(buf io.StringWriter, cmd *Command) {
if len(cmd.Aliases) == 0 {
return
}
sort.Strings(cmd.Aliases)
WriteStringAndCheck(buf, fmt.Sprint(` if [[ -z "${BASH_VERSION:-}" || "${BASH_VERSINFO[0]:-}" -gt 3 ]]; then`, "\n"))
for _, value := range cmd.Aliases {
WriteStringAndCheck(buf, fmt.Sprintf(" command_aliases+=(%q)\n", value))
WriteStringAndCheck(buf, fmt.Sprintf(" aliashash[%q]=%q\n", value, cmd.Name()))
}
WriteStringAndCheck(buf, ` fi`)
WriteStringAndCheck(buf, "\n")
}
func writeArgAliases(buf io.StringWriter, cmd *Command) {
WriteStringAndCheck(buf, " noun_aliases=()\n")
sort.Strings(cmd.ArgAliases)
for _, value := range cmd.ArgAliases {
WriteStringAndCheck(buf, fmt.Sprintf(" noun_aliases+=(%q)\n", value))
}
}
func gen(buf io.StringWriter, cmd *Command) {
for _, c := range cmd.Commands() {
if !c.IsAvailableCommand() && c != cmd.helpCommand {
continue
}
gen(buf, c)
}
commandName := cmd.CommandPath()
commandName = strings.Replace(commandName, " ", "_", -1)
commandName = strings.Replace(commandName, ":", "__", -1)
if cmd.Root() == cmd {
WriteStringAndCheck(buf, fmt.Sprintf("_%s_root_command()\n{\n", commandName))
} else {
WriteStringAndCheck(buf, fmt.Sprintf("_%s()\n{\n", commandName))
}
WriteStringAndCheck(buf, fmt.Sprintf(" last_command=%q\n", commandName))
WriteStringAndCheck(buf, "\n")
WriteStringAndCheck(buf, " command_aliases=()\n")
WriteStringAndCheck(buf, "\n")
writeCommands(buf, cmd)
writeFlags(buf, cmd)
writeRequiredFlag(buf, cmd)
writeRequiredNouns(buf, cmd)
writeArgAliases(buf, cmd)
WriteStringAndCheck(buf, "}\n\n")
}
// GenBashCompletion generates bash completion file and writes to the passed writer.
func (c *Command) GenBashCompletion(w io.Writer) error {
buf := new(bytes.Buffer)
writePreamble(buf, c.Name())
if len(c.BashCompletionFunction) > 0 {
buf.WriteString(c.BashCompletionFunction + "\n")
}
gen(buf, c)
writePostscript(buf, c.Name())
_, err := buf.WriteTo(w)
return err
}
func nonCompletableFlag(flag *pflag.Flag) bool {
return flag.Hidden || len(flag.Deprecated) > 0
}
// GenBashCompletionFile generates bash completion file.
func (c *Command) GenBashCompletionFile(filename string) error {
outFile, err := os.Create(filename)
if err != nil {
return err
}
defer outFile.Close()
return c.GenBashCompletion(outFile)
}

93
vendor/github.com/spf13/cobra/bash_completions.md generated vendored Normal file
View File

@ -0,0 +1,93 @@
# Generating Bash Completions For Your cobra.Command
Please refer to [Shell Completions](shell_completions.md) for details.
## Bash legacy dynamic completions
For backward compatibility, Cobra still supports its legacy dynamic completion solution (described below). Unlike the `ValidArgsFunction` solution, the legacy solution will only work for Bash shell-completion and not for other shells. This legacy solution can be used along-side `ValidArgsFunction` and `RegisterFlagCompletionFunc()`, as long as both solutions are not used for the same command. This provides a path to gradually migrate from the legacy solution to the new solution.
**Note**: Cobra's default `completion` command uses bash completion V2. If you are currently using Cobra's legacy dynamic completion solution, you should not use the default `completion` command but continue using your own.
The legacy solution allows you to inject bash functions into the bash completion script. Those bash functions are responsible for providing the completion choices for your own completions.
Some code that works in kubernetes:
```bash
const (
bash_completion_func = `__kubectl_parse_get()
{
local kubectl_output out
if kubectl_output=$(kubectl get --no-headers "$1" 2>/dev/null); then
out=($(echo "${kubectl_output}" | awk '{print $1}'))
COMPREPLY=( $( compgen -W "${out[*]}" -- "$cur" ) )
fi
}
__kubectl_get_resource()
{
if [[ ${#nouns[@]} -eq 0 ]]; then
return 1
fi
__kubectl_parse_get ${nouns[${#nouns[@]} -1]}
if [[ $? -eq 0 ]]; then
return 0
fi
}
__kubectl_custom_func() {
case ${last_command} in
kubectl_get | kubectl_describe | kubectl_delete | kubectl_stop)
__kubectl_get_resource
return
;;
*)
;;
esac
}
`)
```
And then I set that in my command definition:
```go
cmds := &cobra.Command{
Use: "kubectl",
Short: "kubectl controls the Kubernetes cluster manager",
Long: `kubectl controls the Kubernetes cluster manager.
Find more information at https://github.com/GoogleCloudPlatform/kubernetes.`,
Run: runHelp,
BashCompletionFunction: bash_completion_func,
}
```
The `BashCompletionFunction` option is really only valid/useful on the root command. Doing the above will cause `__kubectl_custom_func()` (`__<command-use>_custom_func()`) to be called when the built in processor was unable to find a solution. In the case of kubernetes a valid command might look something like `kubectl get pod [mypod]`. If you type `kubectl get pod [tab][tab]` the `__kubectl_customc_func()` will run because the cobra.Command only understood "kubectl" and "get." `__kubectl_custom_func()` will see that the cobra.Command is "kubectl_get" and will thus call another helper `__kubectl_get_resource()`. `__kubectl_get_resource` will look at the 'nouns' collected. In our example the only noun will be `pod`. So it will call `__kubectl_parse_get pod`. `__kubectl_parse_get` will actually call out to kubernetes and get any pods. It will then set `COMPREPLY` to valid pods!
Similarly, for flags:
```go
annotation := make(map[string][]string)
annotation[cobra.BashCompCustom] = []string{"__kubectl_get_namespaces"}
flag := &pflag.Flag{
Name: "namespace",
Usage: usage,
Annotations: annotation,
}
cmd.Flags().AddFlag(flag)
```
In addition add the `__kubectl_get_namespaces` implementation in the `BashCompletionFunction`
value, e.g.:
```bash
__kubectl_get_namespaces()
{
local template
template="{{ range .items }}{{ .metadata.name }} {{ end }}"
local kubectl_out
if kubectl_out=$(kubectl get -o template --template="${template}" namespace 2>/dev/null); then
COMPREPLY=( $( compgen -W "${kubectl_out}[*]" -- "$cur" ) )
fi
}
```

331
vendor/github.com/spf13/cobra/bash_completionsV2.go generated vendored Normal file
View File

@ -0,0 +1,331 @@
package cobra
import (
"bytes"
"fmt"
"io"
"os"
)
func (c *Command) genBashCompletion(w io.Writer, includeDesc bool) error {
buf := new(bytes.Buffer)
genBashComp(buf, c.Name(), includeDesc)
_, err := buf.WriteTo(w)
return err
}
func genBashComp(buf io.StringWriter, name string, includeDesc bool) {
compCmd := ShellCompRequestCmd
if !includeDesc {
compCmd = ShellCompNoDescRequestCmd
}
WriteStringAndCheck(buf, fmt.Sprintf(`# bash completion V2 for %-36[1]s -*- shell-script -*-
__%[1]s_debug()
{
if [[ -n ${BASH_COMP_DEBUG_FILE:-} ]]; then
echo "$*" >> "${BASH_COMP_DEBUG_FILE}"
fi
}
# Macs have bash3 for which the bash-completion package doesn't include
# _init_completion. This is a minimal version of that function.
__%[1]s_init_completion()
{
COMPREPLY=()
_get_comp_words_by_ref "$@" cur prev words cword
}
# This function calls the %[1]s program to obtain the completion
# results and the directive. It fills the 'out' and 'directive' vars.
__%[1]s_get_completion_results() {
local requestComp lastParam lastChar args
# Prepare the command to request completions for the program.
# Calling ${words[0]} instead of directly %[1]s allows to handle aliases
args=("${words[@]:1}")
requestComp="${words[0]} %[2]s ${args[*]}"
lastParam=${words[$((${#words[@]}-1))]}
lastChar=${lastParam:$((${#lastParam}-1)):1}
__%[1]s_debug "lastParam ${lastParam}, lastChar ${lastChar}"
if [ -z "${cur}" ] && [ "${lastChar}" != "=" ]; then
# If the last parameter is complete (there is a space following it)
# We add an extra empty parameter so we can indicate this to the go method.
__%[1]s_debug "Adding extra empty parameter"
requestComp="${requestComp} ''"
fi
# When completing a flag with an = (e.g., %[1]s -n=<TAB>)
# bash focuses on the part after the =, so we need to remove
# the flag part from $cur
if [[ "${cur}" == -*=* ]]; then
cur="${cur#*=}"
fi
__%[1]s_debug "Calling ${requestComp}"
# Use eval to handle any environment variables and such
out=$(eval "${requestComp}" 2>/dev/null)
# Extract the directive integer at the very end of the output following a colon (:)
directive=${out##*:}
# Remove the directive
out=${out%%:*}
if [ "${directive}" = "${out}" ]; then
# There is not directive specified
directive=0
fi
__%[1]s_debug "The completion directive is: ${directive}"
__%[1]s_debug "The completions are: ${out[*]}"
}
__%[1]s_process_completion_results() {
local shellCompDirectiveError=%[3]d
local shellCompDirectiveNoSpace=%[4]d
local shellCompDirectiveNoFileComp=%[5]d
local shellCompDirectiveFilterFileExt=%[6]d
local shellCompDirectiveFilterDirs=%[7]d
if [ $((directive & shellCompDirectiveError)) -ne 0 ]; then
# Error code. No completion.
__%[1]s_debug "Received error from custom completion go code"
return
else
if [ $((directive & shellCompDirectiveNoSpace)) -ne 0 ]; then
if [[ $(type -t compopt) = "builtin" ]]; then
__%[1]s_debug "Activating no space"
compopt -o nospace
else
__%[1]s_debug "No space directive not supported in this version of bash"
fi
fi
if [ $((directive & shellCompDirectiveNoFileComp)) -ne 0 ]; then
if [[ $(type -t compopt) = "builtin" ]]; then
__%[1]s_debug "Activating no file completion"
compopt +o default
else
__%[1]s_debug "No file completion directive not supported in this version of bash"
fi
fi
fi
if [ $((directive & shellCompDirectiveFilterFileExt)) -ne 0 ]; then
# File extension filtering
local fullFilter filter filteringCmd
# Do not use quotes around the $out variable or else newline
# characters will be kept.
for filter in ${out[*]}; do
fullFilter+="$filter|"
done
filteringCmd="_filedir $fullFilter"
__%[1]s_debug "File filtering command: $filteringCmd"
$filteringCmd
elif [ $((directive & shellCompDirectiveFilterDirs)) -ne 0 ]; then
# File completion for directories only
# Use printf to strip any trailing newline
local subdir
subdir=$(printf "%%s" "${out[0]}")
if [ -n "$subdir" ]; then
__%[1]s_debug "Listing directories in $subdir"
pushd "$subdir" >/dev/null 2>&1 && _filedir -d && popd >/dev/null 2>&1 || return
else
__%[1]s_debug "Listing directories in ."
_filedir -d
fi
else
__%[1]s_handle_completion_types
fi
__%[1]s_handle_special_char "$cur" :
__%[1]s_handle_special_char "$cur" =
}
__%[1]s_handle_completion_types() {
__%[1]s_debug "__%[1]s_handle_completion_types: COMP_TYPE is $COMP_TYPE"
case $COMP_TYPE in
37|42)
# Type: menu-complete/menu-complete-backward and insert-completions
# If the user requested inserting one completion at a time, or all
# completions at once on the command-line we must remove the descriptions.
# https://github.com/spf13/cobra/issues/1508
local tab comp
tab=$(printf '\t')
while IFS='' read -r comp; do
# Strip any description
comp=${comp%%%%$tab*}
# Only consider the completions that match
comp=$(compgen -W "$comp" -- "$cur")
if [ -n "$comp" ]; then
COMPREPLY+=("$comp")
fi
done < <(printf "%%s\n" "${out[@]}")
;;
*)
# Type: complete (normal completion)
__%[1]s_handle_standard_completion_case
;;
esac
}
__%[1]s_handle_standard_completion_case() {
local tab comp
tab=$(printf '\t')
local longest=0
# Look for the longest completion so that we can format things nicely
while IFS='' read -r comp; do
# Strip any description before checking the length
comp=${comp%%%%$tab*}
# Only consider the completions that match
comp=$(compgen -W "$comp" -- "$cur")
if ((${#comp}>longest)); then
longest=${#comp}
fi
done < <(printf "%%s\n" "${out[@]}")
local completions=()
while IFS='' read -r comp; do
if [ -z "$comp" ]; then
continue
fi
__%[1]s_debug "Original comp: $comp"
comp="$(__%[1]s_format_comp_descriptions "$comp" "$longest")"
__%[1]s_debug "Final comp: $comp"
completions+=("$comp")
done < <(printf "%%s\n" "${out[@]}")
while IFS='' read -r comp; do
COMPREPLY+=("$comp")
done < <(compgen -W "${completions[*]}" -- "$cur")
# If there is a single completion left, remove the description text
if [ ${#COMPREPLY[*]} -eq 1 ]; then
__%[1]s_debug "COMPREPLY[0]: ${COMPREPLY[0]}"
comp="${COMPREPLY[0]%%%% *}"
__%[1]s_debug "Removed description from single completion, which is now: ${comp}"
COMPREPLY=()
COMPREPLY+=("$comp")
fi
}
__%[1]s_handle_special_char()
{
local comp="$1"
local char=$2
if [[ "$comp" == *${char}* && "$COMP_WORDBREAKS" == *${char}* ]]; then
local word=${comp%%"${comp##*${char}}"}
local idx=${#COMPREPLY[*]}
while [[ $((--idx)) -ge 0 ]]; do
COMPREPLY[$idx]=${COMPREPLY[$idx]#"$word"}
done
fi
}
__%[1]s_format_comp_descriptions()
{
local tab
tab=$(printf '\t')
local comp="$1"
local longest=$2
# Properly format the description string which follows a tab character if there is one
if [[ "$comp" == *$tab* ]]; then
desc=${comp#*$tab}
comp=${comp%%%%$tab*}
# $COLUMNS stores the current shell width.
# Remove an extra 4 because we add 2 spaces and 2 parentheses.
maxdesclength=$(( COLUMNS - longest - 4 ))
# Make sure we can fit a description of at least 8 characters
# if we are to align the descriptions.
if [[ $maxdesclength -gt 8 ]]; then
# Add the proper number of spaces to align the descriptions
for ((i = ${#comp} ; i < longest ; i++)); do
comp+=" "
done
else
# Don't pad the descriptions so we can fit more text after the completion
maxdesclength=$(( COLUMNS - ${#comp} - 4 ))
fi
# If there is enough space for any description text,
# truncate the descriptions that are too long for the shell width
if [ $maxdesclength -gt 0 ]; then
if [ ${#desc} -gt $maxdesclength ]; then
desc=${desc:0:$(( maxdesclength - 1 ))}
desc+="…"
fi
comp+=" ($desc)"
fi
fi
# Must use printf to escape all special characters
printf "%%q" "${comp}"
}
__start_%[1]s()
{
local cur prev words cword split
COMPREPLY=()
# Call _init_completion from the bash-completion package
# to prepare the arguments properly
if declare -F _init_completion >/dev/null 2>&1; then
_init_completion -n "=:" || return
else
__%[1]s_init_completion -n "=:" || return
fi
__%[1]s_debug
__%[1]s_debug "========= starting completion logic =========="
__%[1]s_debug "cur is ${cur}, words[*] is ${words[*]}, #words[@] is ${#words[@]}, cword is $cword"
# The user could have moved the cursor backwards on the command-line.
# We need to trigger completion from the $cword location, so we need
# to truncate the command-line ($words) up to the $cword location.
words=("${words[@]:0:$cword+1}")
__%[1]s_debug "Truncated words[*]: ${words[*]},"
local out directive
__%[1]s_get_completion_results
__%[1]s_process_completion_results
}
if [[ $(type -t compopt) = "builtin" ]]; then
complete -o default -F __start_%[1]s %[1]s
else
complete -o default -o nospace -F __start_%[1]s %[1]s
fi
# ex: ts=4 sw=4 et filetype=sh
`, name, compCmd,
ShellCompDirectiveError, ShellCompDirectiveNoSpace, ShellCompDirectiveNoFileComp,
ShellCompDirectiveFilterFileExt, ShellCompDirectiveFilterDirs))
}
// GenBashCompletionFileV2 generates Bash completion version 2.
func (c *Command) GenBashCompletionFileV2(filename string, includeDesc bool) error {
outFile, err := os.Create(filename)
if err != nil {
return err
}
defer outFile.Close()
return c.GenBashCompletionV2(outFile, includeDesc)
}
// GenBashCompletionV2 generates Bash completion file version 2
// and writes it to the passed writer.
func (c *Command) GenBashCompletionV2(w io.Writer, includeDesc bool) error {
return c.genBashCompletion(w, includeDesc)
}

222
vendor/github.com/spf13/cobra/cobra.go generated vendored Normal file
View File

@ -0,0 +1,222 @@
// Copyright © 2013 Steve Francia <spf@spf13.com>.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Commands similar to git, go tools and other modern CLI tools
// inspired by go, go-Commander, gh and subcommand
package cobra
import (
"fmt"
"io"
"os"
"reflect"
"strconv"
"strings"
"text/template"
"time"
"unicode"
)
var templateFuncs = template.FuncMap{
"trim": strings.TrimSpace,
"trimRightSpace": trimRightSpace,
"trimTrailingWhitespaces": trimRightSpace,
"appendIfNotPresent": appendIfNotPresent,
"rpad": rpad,
"gt": Gt,
"eq": Eq,
}
var initializers []func()
// EnablePrefixMatching allows to set automatic prefix matching. Automatic prefix matching can be a dangerous thing
// to automatically enable in CLI tools.
// Set this to true to enable it.
var EnablePrefixMatching = false
// EnableCommandSorting controls sorting of the slice of commands, which is turned on by default.
// To disable sorting, set it to false.
var EnableCommandSorting = true
// MousetrapHelpText enables an information splash screen on Windows
// if the CLI is started from explorer.exe.
// To disable the mousetrap, just set this variable to blank string ("").
// Works only on Microsoft Windows.
var MousetrapHelpText = `This is a command line tool.
You need to open cmd.exe and run it from there.
`
// MousetrapDisplayDuration controls how long the MousetrapHelpText message is displayed on Windows
// if the CLI is started from explorer.exe. Set to 0 to wait for the return key to be pressed.
// To disable the mousetrap, just set MousetrapHelpText to blank string ("").
// Works only on Microsoft Windows.
var MousetrapDisplayDuration = 5 * time.Second
// AddTemplateFunc adds a template function that's available to Usage and Help
// template generation.
func AddTemplateFunc(name string, tmplFunc interface{}) {
templateFuncs[name] = tmplFunc
}
// AddTemplateFuncs adds multiple template functions that are available to Usage and
// Help template generation.
func AddTemplateFuncs(tmplFuncs template.FuncMap) {
for k, v := range tmplFuncs {
templateFuncs[k] = v
}
}
// OnInitialize sets the passed functions to be run when each command's
// Execute method is called.
func OnInitialize(y ...func()) {
initializers = append(initializers, y...)
}
// FIXME Gt is unused by cobra and should be removed in a version 2. It exists only for compatibility with users of cobra.
// Gt takes two types and checks whether the first type is greater than the second. In case of types Arrays, Chans,
// Maps and Slices, Gt will compare their lengths. Ints are compared directly while strings are first parsed as
// ints and then compared.
func Gt(a interface{}, b interface{}) bool {
var left, right int64
av := reflect.ValueOf(a)
switch av.Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
left = int64(av.Len())
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
left = av.Int()
case reflect.String:
left, _ = strconv.ParseInt(av.String(), 10, 64)
}
bv := reflect.ValueOf(b)
switch bv.Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
right = int64(bv.Len())
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
right = bv.Int()
case reflect.String:
right, _ = strconv.ParseInt(bv.String(), 10, 64)
}
return left > right
}
// FIXME Eq is unused by cobra and should be removed in a version 2. It exists only for compatibility with users of cobra.
// Eq takes two types and checks whether they are equal. Supported types are int and string. Unsupported types will panic.
func Eq(a interface{}, b interface{}) bool {
av := reflect.ValueOf(a)
bv := reflect.ValueOf(b)
switch av.Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
panic("Eq called on unsupported type")
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return av.Int() == bv.Int()
case reflect.String:
return av.String() == bv.String()
}
return false
}
func trimRightSpace(s string) string {
return strings.TrimRightFunc(s, unicode.IsSpace)
}
// FIXME appendIfNotPresent is unused by cobra and should be removed in a version 2. It exists only for compatibility with users of cobra.
// appendIfNotPresent will append stringToAppend to the end of s, but only if it's not yet present in s.
func appendIfNotPresent(s, stringToAppend string) string {
if strings.Contains(s, stringToAppend) {
return s
}
return s + " " + stringToAppend
}
// rpad adds padding to the right of a string.
func rpad(s string, padding int) string {
template := fmt.Sprintf("%%-%ds", padding)
return fmt.Sprintf(template, s)
}
// tmpl executes the given template text on data, writing the result to w.
func tmpl(w io.Writer, text string, data interface{}) error {
t := template.New("top")
t.Funcs(templateFuncs)
template.Must(t.Parse(text))
return t.Execute(w, data)
}
// ld compares two strings and returns the levenshtein distance between them.
func ld(s, t string, ignoreCase bool) int {
if ignoreCase {
s = strings.ToLower(s)
t = strings.ToLower(t)
}
d := make([][]int, len(s)+1)
for i := range d {
d[i] = make([]int, len(t)+1)
}
for i := range d {
d[i][0] = i
}
for j := range d[0] {
d[0][j] = j
}
for j := 1; j <= len(t); j++ {
for i := 1; i <= len(s); i++ {
if s[i-1] == t[j-1] {
d[i][j] = d[i-1][j-1]
} else {
min := d[i-1][j]
if d[i][j-1] < min {
min = d[i][j-1]
}
if d[i-1][j-1] < min {
min = d[i-1][j-1]
}
d[i][j] = min + 1
}
}
}
return d[len(s)][len(t)]
}
func stringInSlice(a string, list []string) bool {
for _, b := range list {
if b == a {
return true
}
}
return false
}
// CheckErr prints the msg with the prefix 'Error:' and exits with error code 1. If the msg is nil, it does nothing.
func CheckErr(msg interface{}) {
if msg != nil {
fmt.Fprintln(os.Stderr, "Error:", msg)
os.Exit(1)
}
}
// WriteStringAndCheck writes a string into a buffer, and checks if the error is not nil.
func WriteStringAndCheck(b io.StringWriter, s string) {
_, err := b.WriteString(s)
CheckErr(err)
}

1680
vendor/github.com/spf13/cobra/command.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

6
vendor/github.com/spf13/cobra/command_notwin.go generated vendored Normal file
View File

@ -0,0 +1,6 @@
//go:build !windows
// +build !windows
package cobra
var preExecHookFn func(*Command)

27
vendor/github.com/spf13/cobra/command_win.go generated vendored Normal file
View File

@ -0,0 +1,27 @@
//go:build windows
// +build windows
package cobra
import (
"fmt"
"os"
"time"
"github.com/inconshreveable/mousetrap"
)
var preExecHookFn = preExecHook
func preExecHook(c *Command) {
if MousetrapHelpText != "" && mousetrap.StartedByExplorer() {
c.Print(MousetrapHelpText)
if MousetrapDisplayDuration > 0 {
time.Sleep(MousetrapDisplayDuration)
} else {
c.Println("Press return to continue...")
fmt.Scanln()
}
os.Exit(1)
}
}

811
vendor/github.com/spf13/cobra/completions.go generated vendored Normal file
View File

@ -0,0 +1,811 @@
package cobra
import (
"fmt"
"os"
"strings"
"sync"
"github.com/spf13/pflag"
)
const (
// ShellCompRequestCmd is the name of the hidden command that is used to request
// completion results from the program. It is used by the shell completion scripts.
ShellCompRequestCmd = "__complete"
// ShellCompNoDescRequestCmd is the name of the hidden command that is used to request
// completion results without their description. It is used by the shell completion scripts.
ShellCompNoDescRequestCmd = "__completeNoDesc"
)
// Global map of flag completion functions. Make sure to use flagCompletionMutex before you try to read and write from it.
var flagCompletionFunctions = map[*pflag.Flag]func(cmd *Command, args []string, toComplete string) ([]string, ShellCompDirective){}
// lock for reading and writing from flagCompletionFunctions
var flagCompletionMutex = &sync.RWMutex{}
// ShellCompDirective is a bit map representing the different behaviors the shell
// can be instructed to have once completions have been provided.
type ShellCompDirective int
type flagCompError struct {
subCommand string
flagName string
}
func (e *flagCompError) Error() string {
return "Subcommand '" + e.subCommand + "' does not support flag '" + e.flagName + "'"
}
const (
// ShellCompDirectiveError indicates an error occurred and completions should be ignored.
ShellCompDirectiveError ShellCompDirective = 1 << iota
// ShellCompDirectiveNoSpace indicates that the shell should not add a space
// after the completion even if there is a single completion provided.
ShellCompDirectiveNoSpace
// ShellCompDirectiveNoFileComp indicates that the shell should not provide
// file completion even when no completion is provided.
ShellCompDirectiveNoFileComp
// ShellCompDirectiveFilterFileExt indicates that the provided completions
// should be used as file extension filters.
// For flags, using Command.MarkFlagFilename() and Command.MarkPersistentFlagFilename()
// is a shortcut to using this directive explicitly. The BashCompFilenameExt
// annotation can also be used to obtain the same behavior for flags.
ShellCompDirectiveFilterFileExt
// ShellCompDirectiveFilterDirs indicates that only directory names should
// be provided in file completion. To request directory names within another
// directory, the returned completions should specify the directory within
// which to search. The BashCompSubdirsInDir annotation can be used to
// obtain the same behavior but only for flags.
ShellCompDirectiveFilterDirs
// ===========================================================================
// All directives using iota should be above this one.
// For internal use.
shellCompDirectiveMaxValue
// ShellCompDirectiveDefault indicates to let the shell perform its default
// behavior after completions have been provided.
// This one must be last to avoid messing up the iota count.
ShellCompDirectiveDefault ShellCompDirective = 0
)
const (
// Constants for the completion command
compCmdName = "completion"
compCmdNoDescFlagName = "no-descriptions"
compCmdNoDescFlagDesc = "disable completion descriptions"
compCmdNoDescFlagDefault = false
)
// CompletionOptions are the options to control shell completion
type CompletionOptions struct {
// DisableDefaultCmd prevents Cobra from creating a default 'completion' command
DisableDefaultCmd bool
// DisableNoDescFlag prevents Cobra from creating the '--no-descriptions' flag
// for shells that support completion descriptions
DisableNoDescFlag bool
// DisableDescriptions turns off all completion descriptions for shells
// that support them
DisableDescriptions bool
// HiddenDefaultCmd makes the default 'completion' command hidden
HiddenDefaultCmd bool
}
// NoFileCompletions can be used to disable file completion for commands that should
// not trigger file completions.
func NoFileCompletions(cmd *Command, args []string, toComplete string) ([]string, ShellCompDirective) {
return nil, ShellCompDirectiveNoFileComp
}
// RegisterFlagCompletionFunc should be called to register a function to provide completion for a flag.
func (c *Command) RegisterFlagCompletionFunc(flagName string, f func(cmd *Command, args []string, toComplete string) ([]string, ShellCompDirective)) error {
flag := c.Flag(flagName)
if flag == nil {
return fmt.Errorf("RegisterFlagCompletionFunc: flag '%s' does not exist", flagName)
}
flagCompletionMutex.Lock()
defer flagCompletionMutex.Unlock()
if _, exists := flagCompletionFunctions[flag]; exists {
return fmt.Errorf("RegisterFlagCompletionFunc: flag '%s' already registered", flagName)
}
flagCompletionFunctions[flag] = f
return nil
}
// Returns a string listing the different directive enabled in the specified parameter
func (d ShellCompDirective) string() string {
var directives []string
if d&ShellCompDirectiveError != 0 {
directives = append(directives, "ShellCompDirectiveError")
}
if d&ShellCompDirectiveNoSpace != 0 {
directives = append(directives, "ShellCompDirectiveNoSpace")
}
if d&ShellCompDirectiveNoFileComp != 0 {
directives = append(directives, "ShellCompDirectiveNoFileComp")
}
if d&ShellCompDirectiveFilterFileExt != 0 {
directives = append(directives, "ShellCompDirectiveFilterFileExt")
}
if d&ShellCompDirectiveFilterDirs != 0 {
directives = append(directives, "ShellCompDirectiveFilterDirs")
}
if len(directives) == 0 {
directives = append(directives, "ShellCompDirectiveDefault")
}
if d >= shellCompDirectiveMaxValue {
return fmt.Sprintf("ERROR: unexpected ShellCompDirective value: %d", d)
}
return strings.Join(directives, ", ")
}
// Adds a special hidden command that can be used to request custom completions.
func (c *Command) initCompleteCmd(args []string) {
completeCmd := &Command{
Use: fmt.Sprintf("%s [command-line]", ShellCompRequestCmd),
Aliases: []string{ShellCompNoDescRequestCmd},
DisableFlagsInUseLine: true,
Hidden: true,
DisableFlagParsing: true,
Args: MinimumNArgs(1),
Short: "Request shell completion choices for the specified command-line",
Long: fmt.Sprintf("%[2]s is a special command that is used by the shell completion logic\n%[1]s",
"to request completion choices for the specified command-line.", ShellCompRequestCmd),
Run: func(cmd *Command, args []string) {
finalCmd, completions, directive, err := cmd.getCompletions(args)
if err != nil {
CompErrorln(err.Error())
// Keep going for multiple reasons:
// 1- There could be some valid completions even though there was an error
// 2- Even without completions, we need to print the directive
}
noDescriptions := (cmd.CalledAs() == ShellCompNoDescRequestCmd)
for _, comp := range completions {
if noDescriptions {
// Remove any description that may be included following a tab character.
comp = strings.Split(comp, "\t")[0]
}
// Make sure we only write the first line to the output.
// This is needed if a description contains a linebreak.
// Otherwise the shell scripts will interpret the other lines as new flags
// and could therefore provide a wrong completion.
comp = strings.Split(comp, "\n")[0]
// Finally trim the completion. This is especially important to get rid
// of a trailing tab when there are no description following it.
// For example, a sub-command without a description should not be completed
// with a tab at the end (or else zsh will show a -- following it
// although there is no description).
comp = strings.TrimSpace(comp)
// Print each possible completion to stdout for the completion script to consume.
fmt.Fprintln(finalCmd.OutOrStdout(), comp)
}
// As the last printout, print the completion directive for the completion script to parse.
// The directive integer must be that last character following a single colon (:).
// The completion script expects :<directive>
fmt.Fprintf(finalCmd.OutOrStdout(), ":%d\n", directive)
// Print some helpful info to stderr for the user to understand.
// Output from stderr must be ignored by the completion script.
fmt.Fprintf(finalCmd.ErrOrStderr(), "Completion ended with directive: %s\n", directive.string())
},
}
c.AddCommand(completeCmd)
subCmd, _, err := c.Find(args)
if err != nil || subCmd.Name() != ShellCompRequestCmd {
// Only create this special command if it is actually being called.
// This reduces possible side-effects of creating such a command;
// for example, having this command would cause problems to a
// cobra program that only consists of the root command, since this
// command would cause the root command to suddenly have a subcommand.
c.RemoveCommand(completeCmd)
}
}
func (c *Command) getCompletions(args []string) (*Command, []string, ShellCompDirective, error) {
// The last argument, which is not completely typed by the user,
// should not be part of the list of arguments
toComplete := args[len(args)-1]
trimmedArgs := args[:len(args)-1]
var finalCmd *Command
var finalArgs []string
var err error
// Find the real command for which completion must be performed
// check if we need to traverse here to parse local flags on parent commands
if c.Root().TraverseChildren {
finalCmd, finalArgs, err = c.Root().Traverse(trimmedArgs)
} else {
// For Root commands that don't specify any value for their Args fields, when we call
// Find(), if those Root commands don't have any sub-commands, they will accept arguments.
// However, because we have added the __complete sub-command in the current code path, the
// call to Find() -> legacyArgs() will return an error if there are any arguments.
// To avoid this, we first remove the __complete command to get back to having no sub-commands.
rootCmd := c.Root()
if len(rootCmd.Commands()) == 1 {
rootCmd.RemoveCommand(c)
}
finalCmd, finalArgs, err = rootCmd.Find(trimmedArgs)
}
if err != nil {
// Unable to find the real command. E.g., <program> someInvalidCmd <TAB>
return c, []string{}, ShellCompDirectiveDefault, fmt.Errorf("Unable to find a command for arguments: %v", trimmedArgs)
}
finalCmd.ctx = c.ctx
// Check if we are doing flag value completion before parsing the flags.
// This is important because if we are completing a flag value, we need to also
// remove the flag name argument from the list of finalArgs or else the parsing
// could fail due to an invalid value (incomplete) for the flag.
flag, finalArgs, toComplete, flagErr := checkIfFlagCompletion(finalCmd, finalArgs, toComplete)
// Check if interspersed is false or -- was set on a previous arg.
// This works by counting the arguments. Normally -- is not counted as arg but
// if -- was already set or interspersed is false and there is already one arg then
// the extra added -- is counted as arg.
flagCompletion := true
_ = finalCmd.ParseFlags(append(finalArgs, "--"))
newArgCount := finalCmd.Flags().NArg()
// Parse the flags early so we can check if required flags are set
if err = finalCmd.ParseFlags(finalArgs); err != nil {
return finalCmd, []string{}, ShellCompDirectiveDefault, fmt.Errorf("Error while parsing flags from args %v: %s", finalArgs, err.Error())
}
realArgCount := finalCmd.Flags().NArg()
if newArgCount > realArgCount {
// don't do flag completion (see above)
flagCompletion = false
}
// Error while attempting to parse flags
if flagErr != nil {
// If error type is flagCompError and we don't want flagCompletion we should ignore the error
if _, ok := flagErr.(*flagCompError); !(ok && !flagCompletion) {
return finalCmd, []string{}, ShellCompDirectiveDefault, flagErr
}
}
// We only remove the flags from the arguments if DisableFlagParsing is not set.
// This is important for commands which have requested to do their own flag completion.
if !finalCmd.DisableFlagParsing {
finalArgs = finalCmd.Flags().Args()
}
if flag != nil && flagCompletion {
// Check if we are completing a flag value subject to annotations
if validExts, present := flag.Annotations[BashCompFilenameExt]; present {
if len(validExts) != 0 {
// File completion filtered by extensions
return finalCmd, validExts, ShellCompDirectiveFilterFileExt, nil
}
// The annotation requests simple file completion. There is no reason to do
// that since it is the default behavior anyway. Let's ignore this annotation
// in case the program also registered a completion function for this flag.
// Even though it is a mistake on the program's side, let's be nice when we can.
}
if subDir, present := flag.Annotations[BashCompSubdirsInDir]; present {
if len(subDir) == 1 {
// Directory completion from within a directory
return finalCmd, subDir, ShellCompDirectiveFilterDirs, nil
}
// Directory completion
return finalCmd, []string{}, ShellCompDirectiveFilterDirs, nil
}
}
var completions []string
var directive ShellCompDirective
// Note that we want to perform flagname completion even if finalCmd.DisableFlagParsing==true;
// doing this allows for completion of persistant flag names even for commands that disable flag parsing.
//
// When doing completion of a flag name, as soon as an argument starts with
// a '-' we know it is a flag. We cannot use isFlagArg() here as it requires
// the flag name to be complete
if flag == nil && len(toComplete) > 0 && toComplete[0] == '-' && !strings.Contains(toComplete, "=") && flagCompletion {
// First check for required flags
completions = completeRequireFlags(finalCmd, toComplete)
// If we have not found any required flags, only then can we show regular flags
if len(completions) == 0 {
doCompleteFlags := func(flag *pflag.Flag) {
if !flag.Changed ||
strings.Contains(flag.Value.Type(), "Slice") ||
strings.Contains(flag.Value.Type(), "Array") {
// If the flag is not already present, or if it can be specified multiple times (Array or Slice)
// we suggest it as a completion
completions = append(completions, getFlagNameCompletions(flag, toComplete)...)
}
}
// We cannot use finalCmd.Flags() because we may not have called ParsedFlags() for commands
// that have set DisableFlagParsing; it is ParseFlags() that merges the inherited and
// non-inherited flags.
finalCmd.InheritedFlags().VisitAll(func(flag *pflag.Flag) {
doCompleteFlags(flag)
})
finalCmd.NonInheritedFlags().VisitAll(func(flag *pflag.Flag) {
doCompleteFlags(flag)
})
}
directive = ShellCompDirectiveNoFileComp
if len(completions) == 1 && strings.HasSuffix(completions[0], "=") {
// If there is a single completion, the shell usually adds a space
// after the completion. We don't want that if the flag ends with an =
directive = ShellCompDirectiveNoSpace
}
if !finalCmd.DisableFlagParsing {
// If DisableFlagParsing==false, we have completed the flags as known by Cobra;
// we can return what we found.
// If DisableFlagParsing==true, Cobra may not be aware of all flags, so we
// let the logic continue to see if ValidArgsFunction needs to be called.
return finalCmd, completions, directive, nil
}
} else {
directive = ShellCompDirectiveDefault
if flag == nil {
foundLocalNonPersistentFlag := false
// If TraverseChildren is true on the root command we don't check for
// local flags because we can use a local flag on a parent command
if !finalCmd.Root().TraverseChildren {
// Check if there are any local, non-persistent flags on the command-line
localNonPersistentFlags := finalCmd.LocalNonPersistentFlags()
finalCmd.NonInheritedFlags().VisitAll(func(flag *pflag.Flag) {
if localNonPersistentFlags.Lookup(flag.Name) != nil && flag.Changed {
foundLocalNonPersistentFlag = true
}
})
}
// Complete subcommand names, including the help command
if len(finalArgs) == 0 && !foundLocalNonPersistentFlag {
// We only complete sub-commands if:
// - there are no arguments on the command-line and
// - there are no local, non-persistent flags on the command-line or TraverseChildren is true
for _, subCmd := range finalCmd.Commands() {
if subCmd.IsAvailableCommand() || subCmd == finalCmd.helpCommand {
if strings.HasPrefix(subCmd.Name(), toComplete) {
completions = append(completions, fmt.Sprintf("%s\t%s", subCmd.Name(), subCmd.Short))
}
directive = ShellCompDirectiveNoFileComp
}
}
}
// Complete required flags even without the '-' prefix
completions = append(completions, completeRequireFlags(finalCmd, toComplete)...)
// Always complete ValidArgs, even if we are completing a subcommand name.
// This is for commands that have both subcommands and ValidArgs.
if len(finalCmd.ValidArgs) > 0 {
if len(finalArgs) == 0 {
// ValidArgs are only for the first argument
for _, validArg := range finalCmd.ValidArgs {
if strings.HasPrefix(validArg, toComplete) {
completions = append(completions, validArg)
}
}
directive = ShellCompDirectiveNoFileComp
// If no completions were found within commands or ValidArgs,
// see if there are any ArgAliases that should be completed.
if len(completions) == 0 {
for _, argAlias := range finalCmd.ArgAliases {
if strings.HasPrefix(argAlias, toComplete) {
completions = append(completions, argAlias)
}
}
}
}
// If there are ValidArgs specified (even if they don't match), we stop completion.
// Only one of ValidArgs or ValidArgsFunction can be used for a single command.
return finalCmd, completions, directive, nil
}
// Let the logic continue so as to add any ValidArgsFunction completions,
// even if we already found sub-commands.
// This is for commands that have subcommands but also specify a ValidArgsFunction.
}
}
// Find the completion function for the flag or command
var completionFn func(cmd *Command, args []string, toComplete string) ([]string, ShellCompDirective)
if flag != nil && flagCompletion {
flagCompletionMutex.RLock()
completionFn = flagCompletionFunctions[flag]
flagCompletionMutex.RUnlock()
} else {
completionFn = finalCmd.ValidArgsFunction
}
if completionFn != nil {
// Go custom completion defined for this flag or command.
// Call the registered completion function to get the completions.
var comps []string
comps, directive = completionFn(finalCmd, finalArgs, toComplete)
completions = append(completions, comps...)
}
return finalCmd, completions, directive, nil
}
func getFlagNameCompletions(flag *pflag.Flag, toComplete string) []string {
if nonCompletableFlag(flag) {
return []string{}
}
var completions []string
flagName := "--" + flag.Name
if strings.HasPrefix(flagName, toComplete) {
// Flag without the =
completions = append(completions, fmt.Sprintf("%s\t%s", flagName, flag.Usage))
// Why suggest both long forms: --flag and --flag= ?
// This forces the user to *always* have to type either an = or a space after the flag name.
// Let's be nice and avoid making users have to do that.
// Since boolean flags and shortname flags don't show the = form, let's go that route and never show it.
// The = form will still work, we just won't suggest it.
// This also makes the list of suggested flags shorter as we avoid all the = forms.
//
// if len(flag.NoOptDefVal) == 0 {
// // Flag requires a value, so it can be suffixed with =
// flagName += "="
// completions = append(completions, fmt.Sprintf("%s\t%s", flagName, flag.Usage))
// }
}
flagName = "-" + flag.Shorthand
if len(flag.Shorthand) > 0 && strings.HasPrefix(flagName, toComplete) {
completions = append(completions, fmt.Sprintf("%s\t%s", flagName, flag.Usage))
}
return completions
}
func completeRequireFlags(finalCmd *Command, toComplete string) []string {
var completions []string
doCompleteRequiredFlags := func(flag *pflag.Flag) {
if _, present := flag.Annotations[BashCompOneRequiredFlag]; present {
if !flag.Changed {
// If the flag is not already present, we suggest it as a completion
completions = append(completions, getFlagNameCompletions(flag, toComplete)...)
}
}
}
// We cannot use finalCmd.Flags() because we may not have called ParsedFlags() for commands
// that have set DisableFlagParsing; it is ParseFlags() that merges the inherited and
// non-inherited flags.
finalCmd.InheritedFlags().VisitAll(func(flag *pflag.Flag) {
doCompleteRequiredFlags(flag)
})
finalCmd.NonInheritedFlags().VisitAll(func(flag *pflag.Flag) {
doCompleteRequiredFlags(flag)
})
return completions
}
func checkIfFlagCompletion(finalCmd *Command, args []string, lastArg string) (*pflag.Flag, []string, string, error) {
if finalCmd.DisableFlagParsing {
// We only do flag completion if we are allowed to parse flags
// This is important for commands which have requested to do their own flag completion.
return nil, args, lastArg, nil
}
var flagName string
trimmedArgs := args
flagWithEqual := false
orgLastArg := lastArg
// When doing completion of a flag name, as soon as an argument starts with
// a '-' we know it is a flag. We cannot use isFlagArg() here as that function
// requires the flag name to be complete
if len(lastArg) > 0 && lastArg[0] == '-' {
if index := strings.Index(lastArg, "="); index >= 0 {
// Flag with an =
if strings.HasPrefix(lastArg[:index], "--") {
// Flag has full name
flagName = lastArg[2:index]
} else {
// Flag is shorthand
// We have to get the last shorthand flag name
// e.g. `-asd` => d to provide the correct completion
// https://github.com/spf13/cobra/issues/1257
flagName = lastArg[index-1 : index]
}
lastArg = lastArg[index+1:]
flagWithEqual = true
} else {
// Normal flag completion
return nil, args, lastArg, nil
}
}
if len(flagName) == 0 {
if len(args) > 0 {
prevArg := args[len(args)-1]
if isFlagArg(prevArg) {
// Only consider the case where the flag does not contain an =.
// If the flag contains an = it means it has already been fully processed,
// so we don't need to deal with it here.
if index := strings.Index(prevArg, "="); index < 0 {
if strings.HasPrefix(prevArg, "--") {
// Flag has full name
flagName = prevArg[2:]
} else {
// Flag is shorthand
// We have to get the last shorthand flag name
// e.g. `-asd` => d to provide the correct completion
// https://github.com/spf13/cobra/issues/1257
flagName = prevArg[len(prevArg)-1:]
}
// Remove the uncompleted flag or else there could be an error created
// for an invalid value for that flag
trimmedArgs = args[:len(args)-1]
}
}
}
}
if len(flagName) == 0 {
// Not doing flag completion
return nil, trimmedArgs, lastArg, nil
}
flag := findFlag(finalCmd, flagName)
if flag == nil {
// Flag not supported by this command, the interspersed option might be set so return the original args
return nil, args, orgLastArg, &flagCompError{subCommand: finalCmd.Name(), flagName: flagName}
}
if !flagWithEqual {
if len(flag.NoOptDefVal) != 0 {
// We had assumed dealing with a two-word flag but the flag is a boolean flag.
// In that case, there is no value following it, so we are not really doing flag completion.
// Reset everything to do noun completion.
trimmedArgs = args
flag = nil
}
}
return flag, trimmedArgs, lastArg, nil
}
// initDefaultCompletionCmd adds a default 'completion' command to c.
// This function will do nothing if any of the following is true:
// 1- the feature has been explicitly disabled by the program,
// 2- c has no subcommands (to avoid creating one),
// 3- c already has a 'completion' command provided by the program.
func (c *Command) initDefaultCompletionCmd() {
if c.CompletionOptions.DisableDefaultCmd || !c.HasSubCommands() {
return
}
for _, cmd := range c.commands {
if cmd.Name() == compCmdName || cmd.HasAlias(compCmdName) {
// A completion command is already available
return
}
}
haveNoDescFlag := !c.CompletionOptions.DisableNoDescFlag && !c.CompletionOptions.DisableDescriptions
completionCmd := &Command{
Use: compCmdName,
Short: "Generate the autocompletion script for the specified shell",
Long: fmt.Sprintf(`Generate the autocompletion script for %[1]s for the specified shell.
See each sub-command's help for details on how to use the generated script.
`, c.Root().Name()),
Args: NoArgs,
ValidArgsFunction: NoFileCompletions,
Hidden: c.CompletionOptions.HiddenDefaultCmd,
}
c.AddCommand(completionCmd)
out := c.OutOrStdout()
noDesc := c.CompletionOptions.DisableDescriptions
shortDesc := "Generate the autocompletion script for %s"
bash := &Command{
Use: "bash",
Short: fmt.Sprintf(shortDesc, "bash"),
Long: fmt.Sprintf(`Generate the autocompletion script for the bash shell.
This script depends on the 'bash-completion' package.
If it is not installed already, you can install it via your OS's package manager.
To load completions in your current shell session:
source <(%[1]s completion bash)
To load completions for every new session, execute once:
#### Linux:
%[1]s completion bash > /etc/bash_completion.d/%[1]s
#### macOS:
%[1]s completion bash > /usr/local/etc/bash_completion.d/%[1]s
You will need to start a new shell for this setup to take effect.
`, c.Root().Name()),
Args: NoArgs,
DisableFlagsInUseLine: true,
ValidArgsFunction: NoFileCompletions,
RunE: func(cmd *Command, args []string) error {
return cmd.Root().GenBashCompletionV2(out, !noDesc)
},
}
if haveNoDescFlag {
bash.Flags().BoolVar(&noDesc, compCmdNoDescFlagName, compCmdNoDescFlagDefault, compCmdNoDescFlagDesc)
}
zsh := &Command{
Use: "zsh",
Short: fmt.Sprintf(shortDesc, "zsh"),
Long: fmt.Sprintf(`Generate the autocompletion script for the zsh shell.
If shell completion is not already enabled in your environment you will need
to enable it. You can execute the following once:
echo "autoload -U compinit; compinit" >> ~/.zshrc
To load completions for every new session, execute once:
#### Linux:
%[1]s completion zsh > "${fpath[1]}/_%[1]s"
#### macOS:
%[1]s completion zsh > /usr/local/share/zsh/site-functions/_%[1]s
You will need to start a new shell for this setup to take effect.
`, c.Root().Name()),
Args: NoArgs,
ValidArgsFunction: NoFileCompletions,
RunE: func(cmd *Command, args []string) error {
if noDesc {
return cmd.Root().GenZshCompletionNoDesc(out)
}
return cmd.Root().GenZshCompletion(out)
},
}
if haveNoDescFlag {
zsh.Flags().BoolVar(&noDesc, compCmdNoDescFlagName, compCmdNoDescFlagDefault, compCmdNoDescFlagDesc)
}
fish := &Command{
Use: "fish",
Short: fmt.Sprintf(shortDesc, "fish"),
Long: fmt.Sprintf(`Generate the autocompletion script for the fish shell.
To load completions in your current shell session:
%[1]s completion fish | source
To load completions for every new session, execute once:
%[1]s completion fish > ~/.config/fish/completions/%[1]s.fish
You will need to start a new shell for this setup to take effect.
`, c.Root().Name()),
Args: NoArgs,
ValidArgsFunction: NoFileCompletions,
RunE: func(cmd *Command, args []string) error {
return cmd.Root().GenFishCompletion(out, !noDesc)
},
}
if haveNoDescFlag {
fish.Flags().BoolVar(&noDesc, compCmdNoDescFlagName, compCmdNoDescFlagDefault, compCmdNoDescFlagDesc)
}
powershell := &Command{
Use: "powershell",
Short: fmt.Sprintf(shortDesc, "powershell"),
Long: fmt.Sprintf(`Generate the autocompletion script for powershell.
To load completions in your current shell session:
%[1]s completion powershell | Out-String | Invoke-Expression
To load completions for every new session, add the output of the above command
to your powershell profile.
`, c.Root().Name()),
Args: NoArgs,
ValidArgsFunction: NoFileCompletions,
RunE: func(cmd *Command, args []string) error {
if noDesc {
return cmd.Root().GenPowerShellCompletion(out)
}
return cmd.Root().GenPowerShellCompletionWithDesc(out)
},
}
if haveNoDescFlag {
powershell.Flags().BoolVar(&noDesc, compCmdNoDescFlagName, compCmdNoDescFlagDefault, compCmdNoDescFlagDesc)
}
completionCmd.AddCommand(bash, zsh, fish, powershell)
}
func findFlag(cmd *Command, name string) *pflag.Flag {
flagSet := cmd.Flags()
if len(name) == 1 {
// First convert the short flag into a long flag
// as the cmd.Flag() search only accepts long flags
if short := flagSet.ShorthandLookup(name); short != nil {
name = short.Name
} else {
set := cmd.InheritedFlags()
if short = set.ShorthandLookup(name); short != nil {
name = short.Name
} else {
return nil
}
}
}
return cmd.Flag(name)
}
// CompDebug prints the specified string to the same file as where the
// completion script prints its logs.
// Note that completion printouts should never be on stdout as they would
// be wrongly interpreted as actual completion choices by the completion script.
func CompDebug(msg string, printToStdErr bool) {
msg = fmt.Sprintf("[Debug] %s", msg)
// Such logs are only printed when the user has set the environment
// variable BASH_COMP_DEBUG_FILE to the path of some file to be used.
if path := os.Getenv("BASH_COMP_DEBUG_FILE"); path != "" {
f, err := os.OpenFile(path,
os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)
if err == nil {
defer f.Close()
WriteStringAndCheck(f, msg)
}
}
if printToStdErr {
// Must print to stderr for this not to be read by the completion script.
fmt.Fprint(os.Stderr, msg)
}
}
// CompDebugln prints the specified string with a newline at the end
// to the same file as where the completion script prints its logs.
// Such logs are only printed when the user has set the environment
// variable BASH_COMP_DEBUG_FILE to the path of some file to be used.
func CompDebugln(msg string, printToStdErr bool) {
CompDebug(fmt.Sprintf("%s\n", msg), printToStdErr)
}
// CompError prints the specified completion message to stderr.
func CompError(msg string) {
msg = fmt.Sprintf("[Error] %s", msg)
CompDebug(msg, true)
}
// CompErrorln prints the specified completion message to stderr with a newline at the end.
func CompErrorln(msg string) {
CompError(fmt.Sprintf("%s\n", msg))
}

219
vendor/github.com/spf13/cobra/fish_completions.go generated vendored Normal file
View File

@ -0,0 +1,219 @@
package cobra
import (
"bytes"
"fmt"
"io"
"os"
"strings"
)
func genFishComp(buf io.StringWriter, name string, includeDesc bool) {
// Variables should not contain a '-' or ':' character
nameForVar := name
nameForVar = strings.Replace(nameForVar, "-", "_", -1)
nameForVar = strings.Replace(nameForVar, ":", "_", -1)
compCmd := ShellCompRequestCmd
if !includeDesc {
compCmd = ShellCompNoDescRequestCmd
}
WriteStringAndCheck(buf, fmt.Sprintf("# fish completion for %-36s -*- shell-script -*-\n", name))
WriteStringAndCheck(buf, fmt.Sprintf(`
function __%[1]s_debug
set -l file "$BASH_COMP_DEBUG_FILE"
if test -n "$file"
echo "$argv" >> $file
end
end
function __%[1]s_perform_completion
__%[1]s_debug "Starting __%[1]s_perform_completion"
# Extract all args except the last one
set -l args (commandline -opc)
# Extract the last arg and escape it in case it is a space
set -l lastArg (string escape -- (commandline -ct))
__%[1]s_debug "args: $args"
__%[1]s_debug "last arg: $lastArg"
set -l requestComp "$args[1] %[3]s $args[2..-1] $lastArg"
__%[1]s_debug "Calling $requestComp"
set -l results (eval $requestComp 2> /dev/null)
# Some programs may output extra empty lines after the directive.
# Let's ignore them or else it will break completion.
# Ref: https://github.com/spf13/cobra/issues/1279
for line in $results[-1..1]
if test (string trim -- $line) = ""
# Found an empty line, remove it
set results $results[1..-2]
else
# Found non-empty line, we have our proper output
break
end
end
set -l comps $results[1..-2]
set -l directiveLine $results[-1]
# For Fish, when completing a flag with an = (e.g., <program> -n=<TAB>)
# completions must be prefixed with the flag
set -l flagPrefix (string match -r -- '-.*=' "$lastArg")
__%[1]s_debug "Comps: $comps"
__%[1]s_debug "DirectiveLine: $directiveLine"
__%[1]s_debug "flagPrefix: $flagPrefix"
for comp in $comps
printf "%%s%%s\n" "$flagPrefix" "$comp"
end
printf "%%s\n" "$directiveLine"
end
# This function does two things:
# - Obtain the completions and store them in the global __%[1]s_comp_results
# - Return false if file completion should be performed
function __%[1]s_prepare_completions
__%[1]s_debug ""
__%[1]s_debug "========= starting completion logic =========="
# Start fresh
set --erase __%[1]s_comp_results
set -l results (__%[1]s_perform_completion)
__%[1]s_debug "Completion results: $results"
if test -z "$results"
__%[1]s_debug "No completion, probably due to a failure"
# Might as well do file completion, in case it helps
return 1
end
set -l directive (string sub --start 2 $results[-1])
set --global __%[1]s_comp_results $results[1..-2]
__%[1]s_debug "Completions are: $__%[1]s_comp_results"
__%[1]s_debug "Directive is: $directive"
set -l shellCompDirectiveError %[4]d
set -l shellCompDirectiveNoSpace %[5]d
set -l shellCompDirectiveNoFileComp %[6]d
set -l shellCompDirectiveFilterFileExt %[7]d
set -l shellCompDirectiveFilterDirs %[8]d
if test -z "$directive"
set directive 0
end
set -l compErr (math (math --scale 0 $directive / $shellCompDirectiveError) %% 2)
if test $compErr -eq 1
__%[1]s_debug "Received error directive: aborting."
# Might as well do file completion, in case it helps
return 1
end
set -l filefilter (math (math --scale 0 $directive / $shellCompDirectiveFilterFileExt) %% 2)
set -l dirfilter (math (math --scale 0 $directive / $shellCompDirectiveFilterDirs) %% 2)
if test $filefilter -eq 1; or test $dirfilter -eq 1
__%[1]s_debug "File extension filtering or directory filtering not supported"
# Do full file completion instead
return 1
end
set -l nospace (math (math --scale 0 $directive / $shellCompDirectiveNoSpace) %% 2)
set -l nofiles (math (math --scale 0 $directive / $shellCompDirectiveNoFileComp) %% 2)
__%[1]s_debug "nospace: $nospace, nofiles: $nofiles"
# If we want to prevent a space, or if file completion is NOT disabled,
# we need to count the number of valid completions.
# To do so, we will filter on prefix as the completions we have received
# may not already be filtered so as to allow fish to match on different
# criteria than the prefix.
if test $nospace -ne 0; or test $nofiles -eq 0
set -l prefix (commandline -t | string escape --style=regex)
__%[1]s_debug "prefix: $prefix"
set -l completions (string match -r -- "^$prefix.*" $__%[1]s_comp_results)
set --global __%[1]s_comp_results $completions
__%[1]s_debug "Filtered completions are: $__%[1]s_comp_results"
# Important not to quote the variable for count to work
set -l numComps (count $__%[1]s_comp_results)
__%[1]s_debug "numComps: $numComps"
if test $numComps -eq 1; and test $nospace -ne 0
# We must first split on \t to get rid of the descriptions to be
# able to check what the actual completion will be.
# We don't need descriptions anyway since there is only a single
# real completion which the shell will expand immediately.
set -l split (string split --max 1 \t $__%[1]s_comp_results[1])
# Fish won't add a space if the completion ends with any
# of the following characters: @=/:.,
set -l lastChar (string sub -s -1 -- $split)
if not string match -r -q "[@=/:.,]" -- "$lastChar"
# In other cases, to support the "nospace" directive we trick the shell
# by outputting an extra, longer completion.
__%[1]s_debug "Adding second completion to perform nospace directive"
set --global __%[1]s_comp_results $split[1] $split[1].
__%[1]s_debug "Completions are now: $__%[1]s_comp_results"
end
end
if test $numComps -eq 0; and test $nofiles -eq 0
# To be consistent with bash and zsh, we only trigger file
# completion when there are no other completions
__%[1]s_debug "Requesting file completion"
return 1
end
end
return 0
end
# Since Fish completions are only loaded once the user triggers them, we trigger them ourselves
# so we can properly delete any completions provided by another script.
# Only do this if the program can be found, or else fish may print some errors; besides,
# the existing completions will only be loaded if the program can be found.
if type -q "%[2]s"
# The space after the program name is essential to trigger completion for the program
# and not completion of the program name itself.
# Also, we use '> /dev/null 2>&1' since '&>' is not supported in older versions of fish.
complete --do-complete "%[2]s " > /dev/null 2>&1
end
# Remove any pre-existing completions for the program since we will be handling all of them.
complete -c %[2]s -e
# The call to __%[1]s_prepare_completions will setup __%[1]s_comp_results
# which provides the program's completion choices.
complete -c %[2]s -n '__%[1]s_prepare_completions' -f -a '$__%[1]s_comp_results'
`, nameForVar, name, compCmd,
ShellCompDirectiveError, ShellCompDirectiveNoSpace, ShellCompDirectiveNoFileComp,
ShellCompDirectiveFilterFileExt, ShellCompDirectiveFilterDirs))
}
// GenFishCompletion generates fish completion file and writes to the passed writer.
func (c *Command) GenFishCompletion(w io.Writer, includeDesc bool) error {
buf := new(bytes.Buffer)
genFishComp(buf, c.Name(), includeDesc)
_, err := buf.WriteTo(w)
return err
}
// GenFishCompletionFile generates fish completion file.
func (c *Command) GenFishCompletionFile(filename string, includeDesc bool) error {
outFile, err := os.Create(filename)
if err != nil {
return err
}
defer outFile.Close()
return c.GenFishCompletion(outFile, includeDesc)
}

4
vendor/github.com/spf13/cobra/fish_completions.md generated vendored Normal file
View File

@ -0,0 +1,4 @@
## Generating Fish Completions For Your cobra.Command
Please refer to [Shell Completions](shell_completions.md) for details.

10
vendor/github.com/spf13/cobra/go.mod generated vendored Normal file
View File

@ -0,0 +1,10 @@
module github.com/spf13/cobra
go 1.15
require (
github.com/cpuguy83/go-md2man/v2 v2.0.1
github.com/inconshreveable/mousetrap v1.0.0
github.com/spf13/pflag v1.0.5
gopkg.in/yaml.v2 v2.4.0
)

18
vendor/github.com/spf13/cobra/go.sum generated vendored Normal file
View File

@ -0,0 +1,18 @@
github.com/cpuguy83/go-md2man/v2 v2.0.1 h1:r/myEWzV9lfsM1tFLgDyu0atFtJ1fXn261LKYj/3DxU=
github.com/cpuguy83/go-md2man/v2 v2.0.1/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/inconshreveable/mousetrap v1.0.0 h1:Z8tu5sraLXCXIcARxBp/8cbvlwVa7Z1NHg9XEKhtSvM=
github.com/inconshreveable/mousetrap v1.0.0/go.mod h1:PxqpIevigyE2G7u3NXJIT2ANytuPF1OarO4DADm73n8=
github.com/kr/pretty v0.2.0 h1:s5hAObm+yFO5uHYt5dYjxi2rXrsnmRpJx4OYvIWUaQs=
github.com/kr/pretty v0.2.0/go.mod h1:ipq/a2n7PKx3OHsz4KJII5eveXtPO4qwEXGdVfWzfnI=
github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/text v0.1.0 h1:45sCR5RtlFHMR4UwH9sdQ5TC8v0qDQCHnXt+kaKSTVE=
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/spf13/pflag v1.0.5 h1:iy+VFUOCP1a+8yFto/drg2CJ5u0yRoB7fZw3DKv/JXA=
github.com/spf13/pflag v1.0.5/go.mod h1:McXfInJRrz4CZXVZOBLb0bTZqETkiAhM9Iw0y3An2Bg=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20190902080502-41f04d3bba15 h1:YR8cESwS4TdDjEe65xsg0ogRM/Nc3DYOhEAlW+xobZo=
gopkg.in/check.v1 v1.0.0-20190902080502-41f04d3bba15/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v2 v2.4.0 h1:D8xgwECY7CYvx+Y2n4sBz93Jn9JRvxdiyyo8CTfuKaY=
gopkg.in/yaml.v2 v2.4.0/go.mod h1:RDklbk79AGWmwhnvt/jBztapEOGDOx6ZbXqjP6csGnQ=

285
vendor/github.com/spf13/cobra/powershell_completions.go generated vendored Normal file
View File

@ -0,0 +1,285 @@
// The generated scripts require PowerShell v5.0+ (which comes Windows 10, but
// can be downloaded separately for windows 7 or 8.1).
package cobra
import (
"bytes"
"fmt"
"io"
"os"
)
func genPowerShellComp(buf io.StringWriter, name string, includeDesc bool) {
compCmd := ShellCompRequestCmd
if !includeDesc {
compCmd = ShellCompNoDescRequestCmd
}
WriteStringAndCheck(buf, fmt.Sprintf(`# powershell completion for %-36[1]s -*- shell-script -*-
function __%[1]s_debug {
if ($env:BASH_COMP_DEBUG_FILE) {
"$args" | Out-File -Append -FilePath "$env:BASH_COMP_DEBUG_FILE"
}
}
filter __%[1]s_escapeStringWithSpecialChars {
`+" $_ -replace '\\s|#|@|\\$|;|,|''|\\{|\\}|\\(|\\)|\"|`|\\||<|>|&','`$&'"+`
}
Register-ArgumentCompleter -CommandName '%[1]s' -ScriptBlock {
param(
$WordToComplete,
$CommandAst,
$CursorPosition
)
# Get the current command line and convert into a string
$Command = $CommandAst.CommandElements
$Command = "$Command"
__%[1]s_debug ""
__%[1]s_debug "========= starting completion logic =========="
__%[1]s_debug "WordToComplete: $WordToComplete Command: $Command CursorPosition: $CursorPosition"
# The user could have moved the cursor backwards on the command-line.
# We need to trigger completion from the $CursorPosition location, so we need
# to truncate the command-line ($Command) up to the $CursorPosition location.
# Make sure the $Command is longer then the $CursorPosition before we truncate.
# This happens because the $Command does not include the last space.
if ($Command.Length -gt $CursorPosition) {
$Command=$Command.Substring(0,$CursorPosition)
}
__%[1]s_debug "Truncated command: $Command"
$ShellCompDirectiveError=%[3]d
$ShellCompDirectiveNoSpace=%[4]d
$ShellCompDirectiveNoFileComp=%[5]d
$ShellCompDirectiveFilterFileExt=%[6]d
$ShellCompDirectiveFilterDirs=%[7]d
# Prepare the command to request completions for the program.
# Split the command at the first space to separate the program and arguments.
$Program,$Arguments = $Command.Split(" ",2)
$RequestComp="$Program %[2]s $Arguments"
__%[1]s_debug "RequestComp: $RequestComp"
# we cannot use $WordToComplete because it
# has the wrong values if the cursor was moved
# so use the last argument
if ($WordToComplete -ne "" ) {
$WordToComplete = $Arguments.Split(" ")[-1]
}
__%[1]s_debug "New WordToComplete: $WordToComplete"
# Check for flag with equal sign
$IsEqualFlag = ($WordToComplete -Like "--*=*" )
if ( $IsEqualFlag ) {
__%[1]s_debug "Completing equal sign flag"
# Remove the flag part
$Flag,$WordToComplete = $WordToComplete.Split("=",2)
}
if ( $WordToComplete -eq "" -And ( -Not $IsEqualFlag )) {
# If the last parameter is complete (there is a space following it)
# We add an extra empty parameter so we can indicate this to the go method.
__%[1]s_debug "Adding extra empty parameter"
`+" # We need to use `\"`\" to pass an empty argument a \"\" or '' does not work!!!"+`
`+" $RequestComp=\"$RequestComp\" + ' `\"`\"'"+`
}
__%[1]s_debug "Calling $RequestComp"
#call the command store the output in $out and redirect stderr and stdout to null
# $Out is an array contains each line per element
Invoke-Expression -OutVariable out "$RequestComp" 2>&1 | Out-Null
# get directive from last line
[int]$Directive = $Out[-1].TrimStart(':')
if ($Directive -eq "") {
# There is no directive specified
$Directive = 0
}
__%[1]s_debug "The completion directive is: $Directive"
# remove directive (last element) from out
$Out = $Out | Where-Object { $_ -ne $Out[-1] }
__%[1]s_debug "The completions are: $Out"
if (($Directive -band $ShellCompDirectiveError) -ne 0 ) {
# Error code. No completion.
__%[1]s_debug "Received error from custom completion go code"
return
}
$Longest = 0
$Values = $Out | ForEach-Object {
#Split the output in name and description
`+" $Name, $Description = $_.Split(\"`t\",2)"+`
__%[1]s_debug "Name: $Name Description: $Description"
# Look for the longest completion so that we can format things nicely
if ($Longest -lt $Name.Length) {
$Longest = $Name.Length
}
# Set the description to a one space string if there is none set.
# This is needed because the CompletionResult does not accept an empty string as argument
if (-Not $Description) {
$Description = " "
}
@{Name="$Name";Description="$Description"}
}
$Space = " "
if (($Directive -band $ShellCompDirectiveNoSpace) -ne 0 ) {
# remove the space here
__%[1]s_debug "ShellCompDirectiveNoSpace is called"
$Space = ""
}
if ((($Directive -band $ShellCompDirectiveFilterFileExt) -ne 0 ) -or
(($Directive -band $ShellCompDirectiveFilterDirs) -ne 0 )) {
__%[1]s_debug "ShellCompDirectiveFilterFileExt ShellCompDirectiveFilterDirs are not supported"
# return here to prevent the completion of the extensions
return
}
$Values = $Values | Where-Object {
# filter the result
$_.Name -like "$WordToComplete*"
# Join the flag back if we have an equal sign flag
if ( $IsEqualFlag ) {
__%[1]s_debug "Join the equal sign flag back to the completion value"
$_.Name = $Flag + "=" + $_.Name
}
}
if (($Directive -band $ShellCompDirectiveNoFileComp) -ne 0 ) {
__%[1]s_debug "ShellCompDirectiveNoFileComp is called"
if ($Values.Length -eq 0) {
# Just print an empty string here so the
# shell does not start to complete paths.
# We cannot use CompletionResult here because
# it does not accept an empty string as argument.
""
return
}
}
# Get the current mode
$Mode = (Get-PSReadLineKeyHandler | Where-Object {$_.Key -eq "Tab" }).Function
__%[1]s_debug "Mode: $Mode"
$Values | ForEach-Object {
# store temporary because switch will overwrite $_
$comp = $_
# PowerShell supports three different completion modes
# - TabCompleteNext (default windows style - on each key press the next option is displayed)
# - Complete (works like bash)
# - MenuComplete (works like zsh)
# You set the mode with Set-PSReadLineKeyHandler -Key Tab -Function <mode>
# CompletionResult Arguments:
# 1) CompletionText text to be used as the auto completion result
# 2) ListItemText text to be displayed in the suggestion list
# 3) ResultType type of completion result
# 4) ToolTip text for the tooltip with details about the object
switch ($Mode) {
# bash like
"Complete" {
if ($Values.Length -eq 1) {
__%[1]s_debug "Only one completion left"
# insert space after value
[System.Management.Automation.CompletionResult]::new($($comp.Name | __%[1]s_escapeStringWithSpecialChars) + $Space, "$($comp.Name)", 'ParameterValue', "$($comp.Description)")
} else {
# Add the proper number of spaces to align the descriptions
while($comp.Name.Length -lt $Longest) {
$comp.Name = $comp.Name + " "
}
# Check for empty description and only add parentheses if needed
if ($($comp.Description) -eq " " ) {
$Description = ""
} else {
$Description = " ($($comp.Description))"
}
[System.Management.Automation.CompletionResult]::new("$($comp.Name)$Description", "$($comp.Name)$Description", 'ParameterValue', "$($comp.Description)")
}
}
# zsh like
"MenuComplete" {
# insert space after value
# MenuComplete will automatically show the ToolTip of
# the highlighted value at the bottom of the suggestions.
[System.Management.Automation.CompletionResult]::new($($comp.Name | __%[1]s_escapeStringWithSpecialChars) + $Space, "$($comp.Name)", 'ParameterValue', "$($comp.Description)")
}
# TabCompleteNext and in case we get something unknown
Default {
# Like MenuComplete but we don't want to add a space here because
# the user need to press space anyway to get the completion.
# Description will not be shown because that's not possible with TabCompleteNext
[System.Management.Automation.CompletionResult]::new($($comp.Name | __%[1]s_escapeStringWithSpecialChars), "$($comp.Name)", 'ParameterValue', "$($comp.Description)")
}
}
}
}
`, name, compCmd,
ShellCompDirectiveError, ShellCompDirectiveNoSpace, ShellCompDirectiveNoFileComp,
ShellCompDirectiveFilterFileExt, ShellCompDirectiveFilterDirs))
}
func (c *Command) genPowerShellCompletion(w io.Writer, includeDesc bool) error {
buf := new(bytes.Buffer)
genPowerShellComp(buf, c.Name(), includeDesc)
_, err := buf.WriteTo(w)
return err
}
func (c *Command) genPowerShellCompletionFile(filename string, includeDesc bool) error {
outFile, err := os.Create(filename)
if err != nil {
return err
}
defer outFile.Close()
return c.genPowerShellCompletion(outFile, includeDesc)
}
// GenPowerShellCompletionFile generates powershell completion file without descriptions.
func (c *Command) GenPowerShellCompletionFile(filename string) error {
return c.genPowerShellCompletionFile(filename, false)
}
// GenPowerShellCompletion generates powershell completion file without descriptions
// and writes it to the passed writer.
func (c *Command) GenPowerShellCompletion(w io.Writer) error {
return c.genPowerShellCompletion(w, false)
}
// GenPowerShellCompletionFileWithDesc generates powershell completion file with descriptions.
func (c *Command) GenPowerShellCompletionFileWithDesc(filename string) error {
return c.genPowerShellCompletionFile(filename, true)
}
// GenPowerShellCompletionWithDesc generates powershell completion file with descriptions
// and writes it to the passed writer.
func (c *Command) GenPowerShellCompletionWithDesc(w io.Writer) error {
return c.genPowerShellCompletion(w, true)
}

View File

@ -0,0 +1,3 @@
# Generating PowerShell Completions For Your Own cobra.Command
Please refer to [Shell Completions](shell_completions.md#powershell-completions) for details.

51
vendor/github.com/spf13/cobra/projects_using_cobra.md generated vendored Normal file
View File

@ -0,0 +1,51 @@
## Projects using Cobra
- [Arduino CLI](https://github.com/arduino/arduino-cli)
- [Bleve](http://www.blevesearch.com/)
- [CockroachDB](http://www.cockroachlabs.com/)
- [Cosmos SDK](https://github.com/cosmos/cosmos-sdk)
- [Datree](https://github.com/datreeio/datree)
- [Delve](https://github.com/derekparker/delve)
- [Docker (distribution)](https://github.com/docker/distribution)
- [Etcd](https://etcd.io/)
- [Gardener](https://github.com/gardener/gardenctl)
- [Giant Swarm's gsctl](https://github.com/giantswarm/gsctl)
- [Git Bump](https://github.com/erdaltsksn/git-bump)
- [Github CLI](https://github.com/cli/cli)
- [GitHub Labeler](https://github.com/erdaltsksn/gh-label)
- [Golangci-lint](https://golangci-lint.run)
- [GopherJS](http://www.gopherjs.org/)
- [GoReleaser](https://goreleaser.com)
- [Helm](https://helm.sh)
- [Hugo](https://gohugo.io)
- [Infracost](https://github.com/infracost/infracost)
- [Istio](https://istio.io)
- [Kool](https://github.com/kool-dev/kool)
- [Kubernetes](http://kubernetes.io/)
- [Linkerd](https://linkerd.io/)
- [Mattermost-server](https://github.com/mattermost/mattermost-server)
- [Mercure](https://mercure.rocks/)
- [Meroxa CLI](https://github.com/meroxa/cli)
- [Metal Stack CLI](https://github.com/metal-stack/metalctl)
- [Moby (former Docker)](https://github.com/moby/moby)
- [Moldy](https://github.com/Moldy-Community/moldy)
- [Multi-gitter](https://github.com/lindell/multi-gitter)
- [Nanobox](https://github.com/nanobox-io/nanobox)/[Nanopack](https://github.com/nanopack)
- [nFPM](https://nfpm.goreleaser.com)
- [OpenShift](https://www.openshift.com/)
- [Ory Hydra](https://github.com/ory/hydra)
- [Ory Kratos](https://github.com/ory/kratos)
- [Pixie](https://github.com/pixie-io/pixie)
- [Pouch](https://github.com/alibaba/pouch)
- [ProjectAtomic (enterprise)](http://www.projectatomic.io/)
- [Prototool](https://github.com/uber/prototool)
- [QRcp](https://github.com/claudiodangelis/qrcp)
- [Random](https://github.com/erdaltsksn/random)
- [Rclone](https://rclone.org/)
- [Scaleway CLI](https://github.com/scaleway/scaleway-cli)
- [Skaffold](https://skaffold.dev/)
- [Tendermint](https://github.com/tendermint/tendermint)
- [Twitch CLI](https://github.com/twitchdev/twitch-cli)
- [UpCloud CLI (`upctl`)](https://github.com/UpCloudLtd/upcloud-cli)
- VMware's [Tanzu Community Edition](https://github.com/vmware-tanzu/community-edition) & [Tanzu Framework](https://github.com/vmware-tanzu/tanzu-framework)
- [Werf](https://werf.io/)

84
vendor/github.com/spf13/cobra/shell_completions.go generated vendored Normal file
View File

@ -0,0 +1,84 @@
package cobra
import (
"github.com/spf13/pflag"
)
// MarkFlagRequired instructs the various shell completion implementations to
// prioritize the named flag when performing completion,
// and causes your command to report an error if invoked without the flag.
func (c *Command) MarkFlagRequired(name string) error {
return MarkFlagRequired(c.Flags(), name)
}
// MarkPersistentFlagRequired instructs the various shell completion implementations to
// prioritize the named persistent flag when performing completion,
// and causes your command to report an error if invoked without the flag.
func (c *Command) MarkPersistentFlagRequired(name string) error {
return MarkFlagRequired(c.PersistentFlags(), name)
}
// MarkFlagRequired instructs the various shell completion implementations to
// prioritize the named flag when performing completion,
// and causes your command to report an error if invoked without the flag.
func MarkFlagRequired(flags *pflag.FlagSet, name string) error {
return flags.SetAnnotation(name, BashCompOneRequiredFlag, []string{"true"})
}
// MarkFlagFilename instructs the various shell completion implementations to
// limit completions for the named flag to the specified file extensions.
func (c *Command) MarkFlagFilename(name string, extensions ...string) error {
return MarkFlagFilename(c.Flags(), name, extensions...)
}
// MarkFlagCustom adds the BashCompCustom annotation to the named flag, if it exists.
// The bash completion script will call the bash function f for the flag.
//
// This will only work for bash completion.
// It is recommended to instead use c.RegisterFlagCompletionFunc(...) which allows
// to register a Go function which will work across all shells.
func (c *Command) MarkFlagCustom(name string, f string) error {
return MarkFlagCustom(c.Flags(), name, f)
}
// MarkPersistentFlagFilename instructs the various shell completion
// implementations to limit completions for the named persistent flag to the
// specified file extensions.
func (c *Command) MarkPersistentFlagFilename(name string, extensions ...string) error {
return MarkFlagFilename(c.PersistentFlags(), name, extensions...)
}
// MarkFlagFilename instructs the various shell completion implementations to
// limit completions for the named flag to the specified file extensions.
func MarkFlagFilename(flags *pflag.FlagSet, name string, extensions ...string) error {
return flags.SetAnnotation(name, BashCompFilenameExt, extensions)
}
// MarkFlagCustom adds the BashCompCustom annotation to the named flag, if it exists.
// The bash completion script will call the bash function f for the flag.
//
// This will only work for bash completion.
// It is recommended to instead use c.RegisterFlagCompletionFunc(...) which allows
// to register a Go function which will work across all shells.
func MarkFlagCustom(flags *pflag.FlagSet, name string, f string) error {
return flags.SetAnnotation(name, BashCompCustom, []string{f})
}
// MarkFlagDirname instructs the various shell completion implementations to
// limit completions for the named flag to directory names.
func (c *Command) MarkFlagDirname(name string) error {
return MarkFlagDirname(c.Flags(), name)
}
// MarkPersistentFlagDirname instructs the various shell completion
// implementations to limit completions for the named persistent flag to
// directory names.
func (c *Command) MarkPersistentFlagDirname(name string) error {
return MarkFlagDirname(c.PersistentFlags(), name)
}
// MarkFlagDirname instructs the various shell completion implementations to
// limit completions for the named flag to directory names.
func MarkFlagDirname(flags *pflag.FlagSet, name string) error {
return flags.SetAnnotation(name, BashCompSubdirsInDir, []string{})
}

548
vendor/github.com/spf13/cobra/shell_completions.md generated vendored Normal file
View File

@ -0,0 +1,548 @@
# Generating shell completions
Cobra can generate shell completions for multiple shells.
The currently supported shells are:
- Bash
- Zsh
- fish
- PowerShell
Cobra will automatically provide your program with a fully functional `completion` command,
similarly to how it provides the `help` command.
## Creating your own completion command
If you do not wish to use the default `completion` command, you can choose to
provide your own, which will take precedence over the default one. (This also provides
backwards-compatibility with programs that already have their own `completion` command.)
If you are using the `cobra-cli` generator,
which can be found at [spf13/cobra-cli](https://github.com/spf13/cobra-cli),
you can create a completion command by running
```bash
cobra-cli add completion
```
and then modifying the generated `cmd/completion.go` file to look something like this
(writing the shell script to stdout allows the most flexible use):
```go
var completionCmd = &cobra.Command{
Use: "completion [bash|zsh|fish|powershell]",
Short: "Generate completion script",
Long: fmt.Sprintf(`To load completions:
Bash:
$ source <(%[1]s completion bash)
# To load completions for each session, execute once:
# Linux:
$ %[1]s completion bash > /etc/bash_completion.d/%[1]s
# macOS:
$ %[1]s completion bash > /usr/local/etc/bash_completion.d/%[1]s
Zsh:
# If shell completion is not already enabled in your environment,
# you will need to enable it. You can execute the following once:
$ echo "autoload -U compinit; compinit" >> ~/.zshrc
# To load completions for each session, execute once:
$ %[1]s completion zsh > "${fpath[1]}/_%[1]s"
# You will need to start a new shell for this setup to take effect.
fish:
$ %[1]s completion fish | source
# To load completions for each session, execute once:
$ %[1]s completion fish > ~/.config/fish/completions/%[1]s.fish
PowerShell:
PS> %[1]s completion powershell | Out-String | Invoke-Expression
# To load completions for every new session, run:
PS> %[1]s completion powershell > %[1]s.ps1
# and source this file from your PowerShell profile.
`,cmd.Root().Name()),
DisableFlagsInUseLine: true,
ValidArgs: []string{"bash", "zsh", "fish", "powershell"},
Args: cobra.ExactValidArgs(1),
Run: func(cmd *cobra.Command, args []string) {
switch args[0] {
case "bash":
cmd.Root().GenBashCompletion(os.Stdout)
case "zsh":
cmd.Root().GenZshCompletion(os.Stdout)
case "fish":
cmd.Root().GenFishCompletion(os.Stdout, true)
case "powershell":
cmd.Root().GenPowerShellCompletionWithDesc(os.Stdout)
}
},
}
```
**Note:** The cobra generator may include messages printed to stdout, for example, if the config file is loaded; this will break the auto-completion script so must be removed.
## Adapting the default completion command
Cobra provides a few options for the default `completion` command. To configure such options you must set
the `CompletionOptions` field on the *root* command.
To tell Cobra *not* to provide the default `completion` command:
```
rootCmd.CompletionOptions.DisableDefaultCmd = true
```
To tell Cobra *not* to provide the user with the `--no-descriptions` flag to the completion sub-commands:
```
rootCmd.CompletionOptions.DisableNoDescFlag = true
```
To tell Cobra to completely disable descriptions for completions:
```
rootCmd.CompletionOptions.DisableDescriptions = true
```
# Customizing completions
The generated completion scripts will automatically handle completing commands and flags. However, you can make your completions much more powerful by providing information to complete your program's nouns and flag values.
## Completion of nouns
### Static completion of nouns
Cobra allows you to provide a pre-defined list of completion choices for your nouns using the `ValidArgs` field.
For example, if you want `kubectl get [tab][tab]` to show a list of valid "nouns" you have to set them.
Some simplified code from `kubectl get` looks like:
```go
validArgs []string = { "pod", "node", "service", "replicationcontroller" }
cmd := &cobra.Command{
Use: "get [(-o|--output=)json|yaml|template|...] (RESOURCE [NAME] | RESOURCE/NAME ...)",
Short: "Display one or many resources",
Long: get_long,
Example: get_example,
Run: func(cmd *cobra.Command, args []string) {
cobra.CheckErr(RunGet(f, out, cmd, args))
},
ValidArgs: validArgs,
}
```
Notice we put the `ValidArgs` field on the `get` sub-command. Doing so will give results like:
```bash
$ kubectl get [tab][tab]
node pod replicationcontroller service
```
#### Aliases for nouns
If your nouns have aliases, you can define them alongside `ValidArgs` using `ArgAliases`:
```go
argAliases []string = { "pods", "nodes", "services", "svc", "replicationcontrollers", "rc" }
cmd := &cobra.Command{
...
ValidArgs: validArgs,
ArgAliases: argAliases
}
```
The aliases are not shown to the user on tab completion, but they are accepted as valid nouns by
the completion algorithm if entered manually, e.g. in:
```bash
$ kubectl get rc [tab][tab]
backend frontend database
```
Note that without declaring `rc` as an alias, the completion algorithm would not know to show the list of
replication controllers following `rc`.
### Dynamic completion of nouns
In some cases it is not possible to provide a list of completions in advance. Instead, the list of completions must be determined at execution-time. In a similar fashion as for static completions, you can use the `ValidArgsFunction` field to provide a Go function that Cobra will execute when it needs the list of completion choices for the nouns of a command. Note that either `ValidArgs` or `ValidArgsFunction` can be used for a single cobra command, but not both.
Simplified code from `helm status` looks like:
```go
cmd := &cobra.Command{
Use: "status RELEASE_NAME",
Short: "Display the status of the named release",
Long: status_long,
RunE: func(cmd *cobra.Command, args []string) {
RunGet(args[0])
},
ValidArgsFunction: func(cmd *cobra.Command, args []string, toComplete string) ([]string, cobra.ShellCompDirective) {
if len(args) != 0 {
return nil, cobra.ShellCompDirectiveNoFileComp
}
return getReleasesFromCluster(toComplete), cobra.ShellCompDirectiveNoFileComp
},
}
```
Where `getReleasesFromCluster()` is a Go function that obtains the list of current Helm releases running on the Kubernetes cluster.
Notice we put the `ValidArgsFunction` on the `status` sub-command. Let's assume the Helm releases on the cluster are: `harbor`, `notary`, `rook` and `thanos` then this dynamic completion will give results like:
```bash
$ helm status [tab][tab]
harbor notary rook thanos
```
You may have noticed the use of `cobra.ShellCompDirective`. These directives are bit fields allowing to control some shell completion behaviors for your particular completion. You can combine them with the bit-or operator such as `cobra.ShellCompDirectiveNoSpace | cobra.ShellCompDirectiveNoFileComp`
```go
// Indicates that the shell will perform its default behavior after completions
// have been provided (this implies none of the other directives).
ShellCompDirectiveDefault
// Indicates an error occurred and completions should be ignored.
ShellCompDirectiveError
// Indicates that the shell should not add a space after the completion,
// even if there is a single completion provided.
ShellCompDirectiveNoSpace
// Indicates that the shell should not provide file completion even when
// no completion is provided.
ShellCompDirectiveNoFileComp
// Indicates that the returned completions should be used as file extension filters.
// For example, to complete only files of the form *.json or *.yaml:
// return []string{"yaml", "json"}, ShellCompDirectiveFilterFileExt
// For flags, using MarkFlagFilename() and MarkPersistentFlagFilename()
// is a shortcut to using this directive explicitly.
//
ShellCompDirectiveFilterFileExt
// Indicates that only directory names should be provided in file completion.
// For example:
// return nil, ShellCompDirectiveFilterDirs
// For flags, using MarkFlagDirname() is a shortcut to using this directive explicitly.
//
// To request directory names within another directory, the returned completions
// should specify a single directory name within which to search. For example,
// to complete directories within "themes/":
// return []string{"themes"}, ShellCompDirectiveFilterDirs
//
ShellCompDirectiveFilterDirs
```
***Note***: When using the `ValidArgsFunction`, Cobra will call your registered function after having parsed all flags and arguments provided in the command-line. You therefore don't need to do this parsing yourself. For example, when a user calls `helm status --namespace my-rook-ns [tab][tab]`, Cobra will call your registered `ValidArgsFunction` after having parsed the `--namespace` flag, as it would have done when calling the `RunE` function.
#### Debugging
Cobra achieves dynamic completion through the use of a hidden command called by the completion script. To debug your Go completion code, you can call this hidden command directly:
```bash
$ helm __complete status har<ENTER>
harbor
:4
Completion ended with directive: ShellCompDirectiveNoFileComp # This is on stderr
```
***Important:*** If the noun to complete is empty (when the user has not yet typed any letters of that noun), you must pass an empty parameter to the `__complete` command:
```bash
$ helm __complete status ""<ENTER>
harbor
notary
rook
thanos
:4
Completion ended with directive: ShellCompDirectiveNoFileComp # This is on stderr
```
Calling the `__complete` command directly allows you to run the Go debugger to troubleshoot your code. You can also add printouts to your code; Cobra provides the following functions to use for printouts in Go completion code:
```go
// Prints to the completion script debug file (if BASH_COMP_DEBUG_FILE
// is set to a file path) and optionally prints to stderr.
cobra.CompDebug(msg string, printToStdErr bool) {
cobra.CompDebugln(msg string, printToStdErr bool)
// Prints to the completion script debug file (if BASH_COMP_DEBUG_FILE
// is set to a file path) and to stderr.
cobra.CompError(msg string)
cobra.CompErrorln(msg string)
```
***Important:*** You should **not** leave traces that print directly to stdout in your completion code as they will be interpreted as completion choices by the completion script. Instead, use the cobra-provided debugging traces functions mentioned above.
## Completions for flags
### Mark flags as required
Most of the time completions will only show sub-commands. But if a flag is required to make a sub-command work, you probably want it to show up when the user types [tab][tab]. You can mark a flag as 'Required' like so:
```go
cmd.MarkFlagRequired("pod")
cmd.MarkFlagRequired("container")
```
and you'll get something like
```bash
$ kubectl exec [tab][tab]
-c --container= -p --pod=
```
### Specify dynamic flag completion
As for nouns, Cobra provides a way of defining dynamic completion of flags. To provide a Go function that Cobra will execute when it needs the list of completion choices for a flag, you must register the function using the `command.RegisterFlagCompletionFunc()` function.
```go
flagName := "output"
cmd.RegisterFlagCompletionFunc(flagName, func(cmd *cobra.Command, args []string, toComplete string) ([]string, cobra.ShellCompDirective) {
return []string{"json", "table", "yaml"}, cobra.ShellCompDirectiveDefault
})
```
Notice that calling `RegisterFlagCompletionFunc()` is done through the `command` with which the flag is associated. In our example this dynamic completion will give results like so:
```bash
$ helm status --output [tab][tab]
json table yaml
```
#### Debugging
You can also easily debug your Go completion code for flags:
```bash
$ helm __complete status --output ""
json
table
yaml
:4
Completion ended with directive: ShellCompDirectiveNoFileComp # This is on stderr
```
***Important:*** You should **not** leave traces that print to stdout in your completion code as they will be interpreted as completion choices by the completion script. Instead, use the cobra-provided debugging traces functions mentioned further above.
### Specify valid filename extensions for flags that take a filename
To limit completions of flag values to file names with certain extensions you can either use the different `MarkFlagFilename()` functions or a combination of `RegisterFlagCompletionFunc()` and `ShellCompDirectiveFilterFileExt`, like so:
```go
flagName := "output"
cmd.MarkFlagFilename(flagName, "yaml", "json")
```
or
```go
flagName := "output"
cmd.RegisterFlagCompletionFunc(flagName, func(cmd *cobra.Command, args []string, toComplete string) ([]string, cobra.ShellCompDirective) {
return []string{"yaml", "json"}, ShellCompDirectiveFilterFileExt})
```
### Limit flag completions to directory names
To limit completions of flag values to directory names you can either use the `MarkFlagDirname()` functions or a combination of `RegisterFlagCompletionFunc()` and `ShellCompDirectiveFilterDirs`, like so:
```go
flagName := "output"
cmd.MarkFlagDirname(flagName)
```
or
```go
flagName := "output"
cmd.RegisterFlagCompletionFunc(flagName, func(cmd *cobra.Command, args []string, toComplete string) ([]string, cobra.ShellCompDirective) {
return nil, cobra.ShellCompDirectiveFilterDirs
})
```
To limit completions of flag values to directory names *within another directory* you can use a combination of `RegisterFlagCompletionFunc()` and `ShellCompDirectiveFilterDirs` like so:
```go
flagName := "output"
cmd.RegisterFlagCompletionFunc(flagName, func(cmd *cobra.Command, args []string, toComplete string) ([]string, cobra.ShellCompDirective) {
return []string{"themes"}, cobra.ShellCompDirectiveFilterDirs
})
```
### Descriptions for completions
Cobra provides support for completion descriptions. Such descriptions are supported for each shell
(however, for bash, it is only available in the [completion V2 version](#bash-completion-v2)).
For commands and flags, Cobra will provide the descriptions automatically, based on usage information.
For example, using zsh:
```
$ helm s[tab]
search -- search for a keyword in charts
show -- show information of a chart
status -- displays the status of the named release
```
while using fish:
```
$ helm s[tab]
search (search for a keyword in charts) show (show information of a chart) status (displays the status of the named release)
```
Cobra allows you to add descriptions to your own completions. Simply add the description text after each completion, following a `\t` separator. This technique applies to completions returned by `ValidArgs`, `ValidArgsFunction` and `RegisterFlagCompletionFunc()`. For example:
```go
ValidArgsFunction: func(cmd *cobra.Command, args []string, toComplete string) ([]string, cobra.ShellCompDirective) {
return []string{"harbor\tAn image registry", "thanos\tLong-term metrics"}, cobra.ShellCompDirectiveNoFileComp
}}
```
or
```go
ValidArgs: []string{"bash\tCompletions for bash", "zsh\tCompletions for zsh"}
```
## Bash completions
### Dependencies
The bash completion script generated by Cobra requires the `bash_completion` package. You should update the help text of your completion command to show how to install the `bash_completion` package ([Kubectl docs](https://kubernetes.io/docs/tasks/tools/install-kubectl/#enabling-shell-autocompletion))
### Aliases
You can also configure `bash` aliases for your program and they will also support completions.
```bash
alias aliasname=origcommand
complete -o default -F __start_origcommand aliasname
# and now when you run `aliasname` completion will make
# suggestions as it did for `origcommand`.
$ aliasname <tab><tab>
completion firstcommand secondcommand
```
### Bash legacy dynamic completions
For backward compatibility, Cobra still supports its bash legacy dynamic completion solution.
Please refer to [Bash Completions](bash_completions.md) for details.
### Bash completion V2
Cobra provides two versions for bash completion. The original bash completion (which started it all!) can be used by calling
`GenBashCompletion()` or `GenBashCompletionFile()`.
A new V2 bash completion version is also available. This version can be used by calling `GenBashCompletionV2()` or
`GenBashCompletionFileV2()`. The V2 version does **not** support the legacy dynamic completion
(see [Bash Completions](bash_completions.md)) but instead works only with the Go dynamic completion
solution described in this document.
Unless your program already uses the legacy dynamic completion solution, it is recommended that you use the bash
completion V2 solution which provides the following extra features:
- Supports completion descriptions (like the other shells)
- Small completion script of less than 300 lines (v1 generates scripts of thousands of lines; `kubectl` for example has a bash v1 completion script of over 13K lines)
- Streamlined user experience thanks to a completion behavior aligned with the other shells
`Bash` completion V2 supports descriptions for completions. When calling `GenBashCompletionV2()` or `GenBashCompletionFileV2()`
you must provide these functions with a parameter indicating if the completions should be annotated with a description; Cobra
will provide the description automatically based on usage information. You can choose to make this option configurable by
your users.
```
# With descriptions
$ helm s[tab][tab]
search (search for a keyword in charts) status (display the status of the named release)
show (show information of a chart)
# Without descriptions
$ helm s[tab][tab]
search show status
```
**Note**: Cobra's default `completion` command uses bash completion V2. If for some reason you need to use bash completion V1, you will need to implement your own `completion` command.
## Zsh completions
Cobra supports native zsh completion generated from the root `cobra.Command`.
The generated completion script should be put somewhere in your `$fpath` and be named
`_<yourProgram>`. You will need to start a new shell for the completions to become available.
Zsh supports descriptions for completions. Cobra will provide the description automatically,
based on usage information. Cobra provides a way to completely disable such descriptions by
using `GenZshCompletionNoDesc()` or `GenZshCompletionFileNoDesc()`. You can choose to make
this a configurable option to your users.
```
# With descriptions
$ helm s[tab]
search -- search for a keyword in charts
show -- show information of a chart
status -- displays the status of the named release
# Without descriptions
$ helm s[tab]
search show status
```
*Note*: Because of backward-compatibility requirements, we were forced to have a different API to disable completion descriptions between `zsh` and `fish`.
### Limitations
* Custom completions implemented in Bash scripting (legacy) are not supported and will be ignored for `zsh` (including the use of the `BashCompCustom` flag annotation).
* You should instead use `ValidArgsFunction` and `RegisterFlagCompletionFunc()` which are portable to the different shells (`bash`, `zsh`, `fish`, `powershell`).
* The function `MarkFlagCustom()` is not supported and will be ignored for `zsh`.
* You should instead use `RegisterFlagCompletionFunc()`.
### Zsh completions standardization
Cobra 1.1 standardized its zsh completion support to align it with its other shell completions. Although the API was kept backward-compatible, some small changes in behavior were introduced.
Please refer to [Zsh Completions](zsh_completions.md) for details.
## fish completions
Cobra supports native fish completions generated from the root `cobra.Command`. You can use the `command.GenFishCompletion()` or `command.GenFishCompletionFile()` functions. You must provide these functions with a parameter indicating if the completions should be annotated with a description; Cobra will provide the description automatically based on usage information. You can choose to make this option configurable by your users.
```
# With descriptions
$ helm s[tab]
search (search for a keyword in charts) show (show information of a chart) status (displays the status of the named release)
# Without descriptions
$ helm s[tab]
search show status
```
*Note*: Because of backward-compatibility requirements, we were forced to have a different API to disable completion descriptions between `zsh` and `fish`.
### Limitations
* Custom completions implemented in bash scripting (legacy) are not supported and will be ignored for `fish` (including the use of the `BashCompCustom` flag annotation).
* You should instead use `ValidArgsFunction` and `RegisterFlagCompletionFunc()` which are portable to the different shells (`bash`, `zsh`, `fish`, `powershell`).
* The function `MarkFlagCustom()` is not supported and will be ignored for `fish`.
* You should instead use `RegisterFlagCompletionFunc()`.
* The following flag completion annotations are not supported and will be ignored for `fish`:
* `BashCompFilenameExt` (filtering by file extension)
* `BashCompSubdirsInDir` (filtering by directory)
* The functions corresponding to the above annotations are consequently not supported and will be ignored for `fish`:
* `MarkFlagFilename()` and `MarkPersistentFlagFilename()` (filtering by file extension)
* `MarkFlagDirname()` and `MarkPersistentFlagDirname()` (filtering by directory)
* Similarly, the following completion directives are not supported and will be ignored for `fish`:
* `ShellCompDirectiveFilterFileExt` (filtering by file extension)
* `ShellCompDirectiveFilterDirs` (filtering by directory)
## PowerShell completions
Cobra supports native PowerShell completions generated from the root `cobra.Command`. You can use the `command.GenPowerShellCompletion()` or `command.GenPowerShellCompletionFile()` functions. To include descriptions use `command.GenPowerShellCompletionWithDesc()` and `command.GenPowerShellCompletionFileWithDesc()`. Cobra will provide the description automatically based on usage information. You can choose to make this option configurable by your users.
The script is designed to support all three PowerShell completion modes:
* TabCompleteNext (default windows style - on each key press the next option is displayed)
* Complete (works like bash)
* MenuComplete (works like zsh)
You set the mode with `Set-PSReadLineKeyHandler -Key Tab -Function <mode>`. Descriptions are only displayed when using the `Complete` or `MenuComplete` mode.
Users need PowerShell version 5.0 or above, which comes with Windows 10 and can be downloaded separately for Windows 7 or 8.1. They can then write the completions to a file and source this file from their PowerShell profile, which is referenced by the `$Profile` environment variable. See `Get-Help about_Profiles` for more info about PowerShell profiles.
```
# With descriptions and Mode 'Complete'
$ helm s[tab]
search (search for a keyword in charts) show (show information of a chart) status (displays the status of the named release)
# With descriptions and Mode 'MenuComplete' The description of the current selected value will be displayed below the suggestions.
$ helm s[tab]
search show status
search for a keyword in charts
# Without descriptions
$ helm s[tab]
search show status
```
### Limitations
* Custom completions implemented in bash scripting (legacy) are not supported and will be ignored for `powershell` (including the use of the `BashCompCustom` flag annotation).
* You should instead use `ValidArgsFunction` and `RegisterFlagCompletionFunc()` which are portable to the different shells (`bash`, `zsh`, `fish`, `powershell`).
* The function `MarkFlagCustom()` is not supported and will be ignored for `powershell`.
* You should instead use `RegisterFlagCompletionFunc()`.
* The following flag completion annotations are not supported and will be ignored for `powershell`:
* `BashCompFilenameExt` (filtering by file extension)
* `BashCompSubdirsInDir` (filtering by directory)
* The functions corresponding to the above annotations are consequently not supported and will be ignored for `powershell`:
* `MarkFlagFilename()` and `MarkPersistentFlagFilename()` (filtering by file extension)
* `MarkFlagDirname()` and `MarkPersistentFlagDirname()` (filtering by directory)
* Similarly, the following completion directives are not supported and will be ignored for `powershell`:
* `ShellCompDirectiveFilterFileExt` (filtering by file extension)
* `ShellCompDirectiveFilterDirs` (filtering by directory)

638
vendor/github.com/spf13/cobra/user_guide.md generated vendored Normal file
View File

@ -0,0 +1,638 @@
# User Guide
While you are welcome to provide your own organization, typically a Cobra-based
application will follow the following organizational structure:
```
▾ appName/
▾ cmd/
add.go
your.go
commands.go
here.go
main.go
```
In a Cobra app, typically the main.go file is very bare. It serves one purpose: initializing Cobra.
```go
package main
import (
"{pathToYourApp}/cmd"
)
func main() {
cmd.Execute()
}
```
## Using the Cobra Generator
Cobra-CLI is its own program that will create your application and add any
commands you want. It's the easiest way to incorporate Cobra into your application.
For complete details on using the Cobra generator, please refer to [The Cobra-CLI Generator README](https://github.com/spf13/cobra-cli/blob/master/README.md)
## Using the Cobra Library
To manually implement Cobra you need to create a bare main.go file and a rootCmd file.
You will optionally provide additional commands as you see fit.
### Create rootCmd
Cobra doesn't require any special constructors. Simply create your commands.
Ideally you place this in app/cmd/root.go:
```go
var rootCmd = &cobra.Command{
Use: "hugo",
Short: "Hugo is a very fast static site generator",
Long: `A Fast and Flexible Static Site Generator built with
love by spf13 and friends in Go.
Complete documentation is available at http://hugo.spf13.com`,
Run: func(cmd *cobra.Command, args []string) {
// Do Stuff Here
},
}
func Execute() {
if err := rootCmd.Execute(); err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
}
```
You will additionally define flags and handle configuration in your init() function.
For example cmd/root.go:
```go
package cmd
import (
"fmt"
"os"
"github.com/spf13/cobra"
"github.com/spf13/viper"
)
var (
// Used for flags.
cfgFile string
userLicense string
rootCmd = &cobra.Command{
Use: "cobra-cli",
Short: "A generator for Cobra based Applications",
Long: `Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.`,
}
)
// Execute executes the root command.
func Execute() error {
return rootCmd.Execute()
}
func init() {
cobra.OnInitialize(initConfig)
rootCmd.PersistentFlags().StringVar(&cfgFile, "config", "", "config file (default is $HOME/.cobra.yaml)")
rootCmd.PersistentFlags().StringP("author", "a", "YOUR NAME", "author name for copyright attribution")
rootCmd.PersistentFlags().StringVarP(&userLicense, "license", "l", "", "name of license for the project")
rootCmd.PersistentFlags().Bool("viper", true, "use Viper for configuration")
viper.BindPFlag("author", rootCmd.PersistentFlags().Lookup("author"))
viper.BindPFlag("useViper", rootCmd.PersistentFlags().Lookup("viper"))
viper.SetDefault("author", "NAME HERE <EMAIL ADDRESS>")
viper.SetDefault("license", "apache")
rootCmd.AddCommand(addCmd)
rootCmd.AddCommand(initCmd)
}
func initConfig() {
if cfgFile != "" {
// Use config file from the flag.
viper.SetConfigFile(cfgFile)
} else {
// Find home directory.
home, err := os.UserHomeDir()
cobra.CheckErr(err)
// Search config in home directory with name ".cobra" (without extension).
viper.AddConfigPath(home)
viper.SetConfigType("yaml")
viper.SetConfigName(".cobra")
}
viper.AutomaticEnv()
if err := viper.ReadInConfig(); err == nil {
fmt.Println("Using config file:", viper.ConfigFileUsed())
}
}
```
### Create your main.go
With the root command you need to have your main function execute it.
Execute should be run on the root for clarity, though it can be called on any command.
In a Cobra app, typically the main.go file is very bare. It serves one purpose: to initialize Cobra.
```go
package main
import (
"{pathToYourApp}/cmd"
)
func main() {
cmd.Execute()
}
```
### Create additional commands
Additional commands can be defined and typically are each given their own file
inside of the cmd/ directory.
If you wanted to create a version command you would create cmd/version.go and
populate it with the following:
```go
package cmd
import (
"fmt"
"github.com/spf13/cobra"
)
func init() {
rootCmd.AddCommand(versionCmd)
}
var versionCmd = &cobra.Command{
Use: "version",
Short: "Print the version number of Hugo",
Long: `All software has versions. This is Hugo's`,
Run: func(cmd *cobra.Command, args []string) {
fmt.Println("Hugo Static Site Generator v0.9 -- HEAD")
},
}
```
### Returning and handling errors
If you wish to return an error to the caller of a command, `RunE` can be used.
```go
package cmd
import (
"fmt"
"github.com/spf13/cobra"
)
func init() {
rootCmd.AddCommand(tryCmd)
}
var tryCmd = &cobra.Command{
Use: "try",
Short: "Try and possibly fail at something",
RunE: func(cmd *cobra.Command, args []string) error {
if err := someFunc(); err != nil {
return err
}
return nil
},
}
```
The error can then be caught at the execute function call.
## Working with Flags
Flags provide modifiers to control how the action command operates.
### Assign flags to a command
Since the flags are defined and used in different locations, we need to
define a variable outside with the correct scope to assign the flag to
work with.
```go
var Verbose bool
var Source string
```
There are two different approaches to assign a flag.
### Persistent Flags
A flag can be 'persistent', meaning that this flag will be available to the
command it's assigned to as well as every command under that command. For
global flags, assign a flag as a persistent flag on the root.
```go
rootCmd.PersistentFlags().BoolVarP(&Verbose, "verbose", "v", false, "verbose output")
```
### Local Flags
A flag can also be assigned locally, which will only apply to that specific command.
```go
localCmd.Flags().StringVarP(&Source, "source", "s", "", "Source directory to read from")
```
### Local Flag on Parent Commands
By default, Cobra only parses local flags on the target command, and any local flags on
parent commands are ignored. By enabling `Command.TraverseChildren`, Cobra will
parse local flags on each command before executing the target command.
```go
command := cobra.Command{
Use: "print [OPTIONS] [COMMANDS]",
TraverseChildren: true,
}
```
### Bind Flags with Config
You can also bind your flags with [viper](https://github.com/spf13/viper):
```go
var author string
func init() {
rootCmd.PersistentFlags().StringVar(&author, "author", "YOUR NAME", "Author name for copyright attribution")
viper.BindPFlag("author", rootCmd.PersistentFlags().Lookup("author"))
}
```
In this example, the persistent flag `author` is bound with `viper`.
**Note**: the variable `author` will not be set to the value from config,
when the `--author` flag is provided by user.
More in [viper documentation](https://github.com/spf13/viper#working-with-flags).
### Required flags
Flags are optional by default. If instead you wish your command to report an error
when a flag has not been set, mark it as required:
```go
rootCmd.Flags().StringVarP(&Region, "region", "r", "", "AWS region (required)")
rootCmd.MarkFlagRequired("region")
```
Or, for persistent flags:
```go
rootCmd.PersistentFlags().StringVarP(&Region, "region", "r", "", "AWS region (required)")
rootCmd.MarkPersistentFlagRequired("region")
```
## Positional and Custom Arguments
Validation of positional arguments can be specified using the `Args` field
of `Command`.
The following validators are built in:
- `NoArgs` - the command will report an error if there are any positional args.
- `ArbitraryArgs` - the command will accept any args.
- `OnlyValidArgs` - the command will report an error if there are any positional args that are not in the `ValidArgs` field of `Command`.
- `MinimumNArgs(int)` - the command will report an error if there are not at least N positional args.
- `MaximumNArgs(int)` - the command will report an error if there are more than N positional args.
- `ExactArgs(int)` - the command will report an error if there are not exactly N positional args.
- `ExactValidArgs(int)` - the command will report an error if there are not exactly N positional args OR if there are any positional args that are not in the `ValidArgs` field of `Command`
- `RangeArgs(min, max)` - the command will report an error if the number of args is not between the minimum and maximum number of expected args.
- `MatchAll(pargs ...PositionalArgs)` - enables combining existing checks with arbitrary other checks (e.g. you want to check the ExactArgs length along with other qualities).
An example of setting the custom validator:
```go
var cmd = &cobra.Command{
Short: "hello",
Args: func(cmd *cobra.Command, args []string) error {
if len(args) < 1 {
return errors.New("requires a color argument")
}
if myapp.IsValidColor(args[0]) {
return nil
}
return fmt.Errorf("invalid color specified: %s", args[0])
},
Run: func(cmd *cobra.Command, args []string) {
fmt.Println("Hello, World!")
},
}
```
## Example
In the example below, we have defined three commands. Two are at the top level
and one (cmdTimes) is a child of one of the top commands. In this case the root
is not executable, meaning that a subcommand is required. This is accomplished
by not providing a 'Run' for the 'rootCmd'.
We have only defined one flag for a single command.
More documentation about flags is available at https://github.com/spf13/pflag
```go
package main
import (
"fmt"
"strings"
"github.com/spf13/cobra"
)
func main() {
var echoTimes int
var cmdPrint = &cobra.Command{
Use: "print [string to print]",
Short: "Print anything to the screen",
Long: `print is for printing anything back to the screen.
For many years people have printed back to the screen.`,
Args: cobra.MinimumNArgs(1),
Run: func(cmd *cobra.Command, args []string) {
fmt.Println("Print: " + strings.Join(args, " "))
},
}
var cmdEcho = &cobra.Command{
Use: "echo [string to echo]",
Short: "Echo anything to the screen",
Long: `echo is for echoing anything back.
Echo works a lot like print, except it has a child command.`,
Args: cobra.MinimumNArgs(1),
Run: func(cmd *cobra.Command, args []string) {
fmt.Println("Echo: " + strings.Join(args, " "))
},
}
var cmdTimes = &cobra.Command{
Use: "times [string to echo]",
Short: "Echo anything to the screen more times",
Long: `echo things multiple times back to the user by providing
a count and a string.`,
Args: cobra.MinimumNArgs(1),
Run: func(cmd *cobra.Command, args []string) {
for i := 0; i < echoTimes; i++ {
fmt.Println("Echo: " + strings.Join(args, " "))
}
},
}
cmdTimes.Flags().IntVarP(&echoTimes, "times", "t", 1, "times to echo the input")
var rootCmd = &cobra.Command{Use: "app"}
rootCmd.AddCommand(cmdPrint, cmdEcho)
cmdEcho.AddCommand(cmdTimes)
rootCmd.Execute()
}
```
For a more complete example of a larger application, please checkout [Hugo](http://gohugo.io/).
## Help Command
Cobra automatically adds a help command to your application when you have subcommands.
This will be called when a user runs 'app help'. Additionally, help will also
support all other commands as input. Say, for instance, you have a command called
'create' without any additional configuration; Cobra will work when 'app help
create' is called. Every command will automatically have the '--help' flag added.
### Example
The following output is automatically generated by Cobra. Nothing beyond the
command and flag definitions are needed.
$ cobra help
Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.
Usage:
cobra [command]
Available Commands:
add Add a command to a Cobra Application
help Help about any command
init Initialize a Cobra Application
Flags:
-a, --author string author name for copyright attribution (default "YOUR NAME")
--config string config file (default is $HOME/.cobra.yaml)
-h, --help help for cobra
-l, --license string name of license for the project
--viper use Viper for configuration (default true)
Use "cobra [command] --help" for more information about a command.
Help is just a command like any other. There is no special logic or behavior
around it. In fact, you can provide your own if you want.
### Defining your own help
You can provide your own Help command or your own template for the default command to use
with following functions:
```go
cmd.SetHelpCommand(cmd *Command)
cmd.SetHelpFunc(f func(*Command, []string))
cmd.SetHelpTemplate(s string)
```
The latter two will also apply to any children commands.
## Usage Message
When the user provides an invalid flag or invalid command, Cobra responds by
showing the user the 'usage'.
### Example
You may recognize this from the help above. That's because the default help
embeds the usage as part of its output.
$ cobra --invalid
Error: unknown flag: --invalid
Usage:
cobra [command]
Available Commands:
add Add a command to a Cobra Application
help Help about any command
init Initialize a Cobra Application
Flags:
-a, --author string author name for copyright attribution (default "YOUR NAME")
--config string config file (default is $HOME/.cobra.yaml)
-h, --help help for cobra
-l, --license string name of license for the project
--viper use Viper for configuration (default true)
Use "cobra [command] --help" for more information about a command.
### Defining your own usage
You can provide your own usage function or template for Cobra to use.
Like help, the function and template are overridable through public methods:
```go
cmd.SetUsageFunc(f func(*Command) error)
cmd.SetUsageTemplate(s string)
```
## Version Flag
Cobra adds a top-level '--version' flag if the Version field is set on the root command.
Running an application with the '--version' flag will print the version to stdout using
the version template. The template can be customized using the
`cmd.SetVersionTemplate(s string)` function.
## PreRun and PostRun Hooks
It is possible to run functions before or after the main `Run` function of your command. The `PersistentPreRun` and `PreRun` functions will be executed before `Run`. `PersistentPostRun` and `PostRun` will be executed after `Run`. The `Persistent*Run` functions will be inherited by children if they do not declare their own. These functions are run in the following order:
- `PersistentPreRun`
- `PreRun`
- `Run`
- `PostRun`
- `PersistentPostRun`
An example of two commands which use all of these features is below. When the subcommand is executed, it will run the root command's `PersistentPreRun` but not the root command's `PersistentPostRun`:
```go
package main
import (
"fmt"
"github.com/spf13/cobra"
)
func main() {
var rootCmd = &cobra.Command{
Use: "root [sub]",
Short: "My root command",
PersistentPreRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd PersistentPreRun with args: %v\n", args)
},
PreRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd PreRun with args: %v\n", args)
},
Run: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd Run with args: %v\n", args)
},
PostRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd PostRun with args: %v\n", args)
},
PersistentPostRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside rootCmd PersistentPostRun with args: %v\n", args)
},
}
var subCmd = &cobra.Command{
Use: "sub [no options!]",
Short: "My subcommand",
PreRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside subCmd PreRun with args: %v\n", args)
},
Run: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside subCmd Run with args: %v\n", args)
},
PostRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside subCmd PostRun with args: %v\n", args)
},
PersistentPostRun: func(cmd *cobra.Command, args []string) {
fmt.Printf("Inside subCmd PersistentPostRun with args: %v\n", args)
},
}
rootCmd.AddCommand(subCmd)
rootCmd.SetArgs([]string{""})
rootCmd.Execute()
fmt.Println()
rootCmd.SetArgs([]string{"sub", "arg1", "arg2"})
rootCmd.Execute()
}
```
Output:
```
Inside rootCmd PersistentPreRun with args: []
Inside rootCmd PreRun with args: []
Inside rootCmd Run with args: []
Inside rootCmd PostRun with args: []
Inside rootCmd PersistentPostRun with args: []
Inside rootCmd PersistentPreRun with args: [arg1 arg2]
Inside subCmd PreRun with args: [arg1 arg2]
Inside subCmd Run with args: [arg1 arg2]
Inside subCmd PostRun with args: [arg1 arg2]
Inside subCmd PersistentPostRun with args: [arg1 arg2]
```
## Suggestions when "unknown command" happens
Cobra will print automatic suggestions when "unknown command" errors happen. This allows Cobra to behave similarly to the `git` command when a typo happens. For example:
```
$ hugo srever
Error: unknown command "srever" for "hugo"
Did you mean this?
server
Run 'hugo --help' for usage.
```
Suggestions are automatic based on every subcommand registered and use an implementation of [Levenshtein distance](http://en.wikipedia.org/wiki/Levenshtein_distance). Every registered command that matches a minimum distance of 2 (ignoring case) will be displayed as a suggestion.
If you need to disable suggestions or tweak the string distance in your command, use:
```go
command.DisableSuggestions = true
```
or
```go
command.SuggestionsMinimumDistance = 1
```
You can also explicitly set names for which a given command will be suggested using the `SuggestFor` attribute. This allows suggestions for strings that are not close in terms of string distance, but makes sense in your set of commands and for some which you don't want aliases. Example:
```
$ kubectl remove
Error: unknown command "remove" for "kubectl"
Did you mean this?
delete
Run 'kubectl help' for usage.
```
## Generating documentation for your command
Cobra can generate documentation based on subcommands, flags, etc. Read more about it in the [docs generation documentation](doc/README.md).
## Generating shell completions
Cobra can generate a shell-completion file for the following shells: bash, zsh, fish, PowerShell. If you add more information to your commands, these completions can be amazingly powerful and flexible. Read more about it in [Shell Completions](shell_completions.md).

258
vendor/github.com/spf13/cobra/zsh_completions.go generated vendored Normal file
View File

@ -0,0 +1,258 @@
package cobra
import (
"bytes"
"fmt"
"io"
"os"
)
// GenZshCompletionFile generates zsh completion file including descriptions.
func (c *Command) GenZshCompletionFile(filename string) error {
return c.genZshCompletionFile(filename, true)
}
// GenZshCompletion generates zsh completion file including descriptions
// and writes it to the passed writer.
func (c *Command) GenZshCompletion(w io.Writer) error {
return c.genZshCompletion(w, true)
}
// GenZshCompletionFileNoDesc generates zsh completion file without descriptions.
func (c *Command) GenZshCompletionFileNoDesc(filename string) error {
return c.genZshCompletionFile(filename, false)
}
// GenZshCompletionNoDesc generates zsh completion file without descriptions
// and writes it to the passed writer.
func (c *Command) GenZshCompletionNoDesc(w io.Writer) error {
return c.genZshCompletion(w, false)
}
// MarkZshCompPositionalArgumentFile only worked for zsh and its behavior was
// not consistent with Bash completion. It has therefore been disabled.
// Instead, when no other completion is specified, file completion is done by
// default for every argument. One can disable file completion on a per-argument
// basis by using ValidArgsFunction and ShellCompDirectiveNoFileComp.
// To achieve file extension filtering, one can use ValidArgsFunction and
// ShellCompDirectiveFilterFileExt.
//
// Deprecated
func (c *Command) MarkZshCompPositionalArgumentFile(argPosition int, patterns ...string) error {
return nil
}
// MarkZshCompPositionalArgumentWords only worked for zsh. It has therefore
// been disabled.
// To achieve the same behavior across all shells, one can use
// ValidArgs (for the first argument only) or ValidArgsFunction for
// any argument (can include the first one also).
//
// Deprecated
func (c *Command) MarkZshCompPositionalArgumentWords(argPosition int, words ...string) error {
return nil
}
func (c *Command) genZshCompletionFile(filename string, includeDesc bool) error {
outFile, err := os.Create(filename)
if err != nil {
return err
}
defer outFile.Close()
return c.genZshCompletion(outFile, includeDesc)
}
func (c *Command) genZshCompletion(w io.Writer, includeDesc bool) error {
buf := new(bytes.Buffer)
genZshComp(buf, c.Name(), includeDesc)
_, err := buf.WriteTo(w)
return err
}
func genZshComp(buf io.StringWriter, name string, includeDesc bool) {
compCmd := ShellCompRequestCmd
if !includeDesc {
compCmd = ShellCompNoDescRequestCmd
}
WriteStringAndCheck(buf, fmt.Sprintf(`#compdef _%[1]s %[1]s
# zsh completion for %-36[1]s -*- shell-script -*-
__%[1]s_debug()
{
local file="$BASH_COMP_DEBUG_FILE"
if [[ -n ${file} ]]; then
echo "$*" >> "${file}"
fi
}
_%[1]s()
{
local shellCompDirectiveError=%[3]d
local shellCompDirectiveNoSpace=%[4]d
local shellCompDirectiveNoFileComp=%[5]d
local shellCompDirectiveFilterFileExt=%[6]d
local shellCompDirectiveFilterDirs=%[7]d
local lastParam lastChar flagPrefix requestComp out directive comp lastComp noSpace
local -a completions
__%[1]s_debug "\n========= starting completion logic =========="
__%[1]s_debug "CURRENT: ${CURRENT}, words[*]: ${words[*]}"
# The user could have moved the cursor backwards on the command-line.
# We need to trigger completion from the $CURRENT location, so we need
# to truncate the command-line ($words) up to the $CURRENT location.
# (We cannot use $CURSOR as its value does not work when a command is an alias.)
words=("${=words[1,CURRENT]}")
__%[1]s_debug "Truncated words[*]: ${words[*]},"
lastParam=${words[-1]}
lastChar=${lastParam[-1]}
__%[1]s_debug "lastParam: ${lastParam}, lastChar: ${lastChar}"
# For zsh, when completing a flag with an = (e.g., %[1]s -n=<TAB>)
# completions must be prefixed with the flag
setopt local_options BASH_REMATCH
if [[ "${lastParam}" =~ '-.*=' ]]; then
# We are dealing with a flag with an =
flagPrefix="-P ${BASH_REMATCH}"
fi
# Prepare the command to obtain completions
requestComp="${words[1]} %[2]s ${words[2,-1]}"
if [ "${lastChar}" = "" ]; then
# If the last parameter is complete (there is a space following it)
# We add an extra empty parameter so we can indicate this to the go completion code.
__%[1]s_debug "Adding extra empty parameter"
requestComp="${requestComp} \"\""
fi
__%[1]s_debug "About to call: eval ${requestComp}"
# Use eval to handle any environment variables and such
out=$(eval ${requestComp} 2>/dev/null)
__%[1]s_debug "completion output: ${out}"
# Extract the directive integer following a : from the last line
local lastLine
while IFS='\n' read -r line; do
lastLine=${line}
done < <(printf "%%s\n" "${out[@]}")
__%[1]s_debug "last line: ${lastLine}"
if [ "${lastLine[1]}" = : ]; then
directive=${lastLine[2,-1]}
# Remove the directive including the : and the newline
local suffix
(( suffix=${#lastLine}+2))
out=${out[1,-$suffix]}
else
# There is no directive specified. Leave $out as is.
__%[1]s_debug "No directive found. Setting do default"
directive=0
fi
__%[1]s_debug "directive: ${directive}"
__%[1]s_debug "completions: ${out}"
__%[1]s_debug "flagPrefix: ${flagPrefix}"
if [ $((directive & shellCompDirectiveError)) -ne 0 ]; then
__%[1]s_debug "Completion received error. Ignoring completions."
return
fi
while IFS='\n' read -r comp; do
if [ -n "$comp" ]; then
# If requested, completions are returned with a description.
# The description is preceded by a TAB character.
# For zsh's _describe, we need to use a : instead of a TAB.
# We first need to escape any : as part of the completion itself.
comp=${comp//:/\\:}
local tab=$(printf '\t')
comp=${comp//$tab/:}
__%[1]s_debug "Adding completion: ${comp}"
completions+=${comp}
lastComp=$comp
fi
done < <(printf "%%s\n" "${out[@]}")
if [ $((directive & shellCompDirectiveNoSpace)) -ne 0 ]; then
__%[1]s_debug "Activating nospace."
noSpace="-S ''"
fi
if [ $((directive & shellCompDirectiveFilterFileExt)) -ne 0 ]; then
# File extension filtering
local filteringCmd
filteringCmd='_files'
for filter in ${completions[@]}; do
if [ ${filter[1]} != '*' ]; then
# zsh requires a glob pattern to do file filtering
filter="\*.$filter"
fi
filteringCmd+=" -g $filter"
done
filteringCmd+=" ${flagPrefix}"
__%[1]s_debug "File filtering command: $filteringCmd"
_arguments '*:filename:'"$filteringCmd"
elif [ $((directive & shellCompDirectiveFilterDirs)) -ne 0 ]; then
# File completion for directories only
local subdir
subdir="${completions[1]}"
if [ -n "$subdir" ]; then
__%[1]s_debug "Listing directories in $subdir"
pushd "${subdir}" >/dev/null 2>&1
else
__%[1]s_debug "Listing directories in ."
fi
local result
_arguments '*:dirname:_files -/'" ${flagPrefix}"
result=$?
if [ -n "$subdir" ]; then
popd >/dev/null 2>&1
fi
return $result
else
__%[1]s_debug "Calling _describe"
if eval _describe "completions" completions $flagPrefix $noSpace; then
__%[1]s_debug "_describe found some completions"
# Return the success of having called _describe
return 0
else
__%[1]s_debug "_describe did not find completions."
__%[1]s_debug "Checking if we should do file completion."
if [ $((directive & shellCompDirectiveNoFileComp)) -ne 0 ]; then
__%[1]s_debug "deactivating file completion"
# We must return an error code here to let zsh know that there were no
# completions found by _describe; this is what will trigger other
# matching algorithms to attempt to find completions.
# For example zsh can match letters in the middle of words.
return 1
else
# Perform file completion
__%[1]s_debug "Activating file completion"
# We must return the result of this command, so it must be the
# last command, or else we must store its result to return it.
_arguments '*:filename:_files'" ${flagPrefix}"
fi
fi
fi
}
# don't run the completion function when being source-ed or eval-ed
if [ "$funcstack[1]" = "_%[1]s" ]; then
_%[1]s
fi
`, name, compCmd,
ShellCompDirectiveError, ShellCompDirectiveNoSpace, ShellCompDirectiveNoFileComp,
ShellCompDirectiveFilterFileExt, ShellCompDirectiveFilterDirs))
}

48
vendor/github.com/spf13/cobra/zsh_completions.md generated vendored Normal file
View File

@ -0,0 +1,48 @@
## Generating Zsh Completion For Your cobra.Command
Please refer to [Shell Completions](shell_completions.md) for details.
## Zsh completions standardization
Cobra 1.1 standardized its zsh completion support to align it with its other shell completions. Although the API was kept backwards-compatible, some small changes in behavior were introduced.
### Deprecation summary
See further below for more details on these deprecations.
* `cmd.MarkZshCompPositionalArgumentFile(pos, []string{})` is no longer needed. It is therefore **deprecated** and silently ignored.
* `cmd.MarkZshCompPositionalArgumentFile(pos, glob[])` is **deprecated** and silently ignored.
* Instead use `ValidArgsFunction` with `ShellCompDirectiveFilterFileExt`.
* `cmd.MarkZshCompPositionalArgumentWords()` is **deprecated** and silently ignored.
* Instead use `ValidArgsFunction`.
### Behavioral changes
**Noun completion**
|Old behavior|New behavior|
|---|---|
|No file completion by default (opposite of bash)|File completion by default; use `ValidArgsFunction` with `ShellCompDirectiveNoFileComp` to turn off file completion on a per-argument basis|
|Completion of flag names without the `-` prefix having been typed|Flag names are only completed if the user has typed the first `-`|
`cmd.MarkZshCompPositionalArgumentFile(pos, []string{})` used to turn on file completion on a per-argument position basis|File completion for all arguments by default; `cmd.MarkZshCompPositionalArgumentFile()` is **deprecated** and silently ignored|
|`cmd.MarkZshCompPositionalArgumentFile(pos, glob[])` used to turn on file completion **with glob filtering** on a per-argument position basis (zsh-specific)|`cmd.MarkZshCompPositionalArgumentFile()` is **deprecated** and silently ignored; use `ValidArgsFunction` with `ShellCompDirectiveFilterFileExt` for file **extension** filtering (not full glob filtering)|
|`cmd.MarkZshCompPositionalArgumentWords(pos, words[])` used to provide completion choices on a per-argument position basis (zsh-specific)|`cmd.MarkZshCompPositionalArgumentWords()` is **deprecated** and silently ignored; use `ValidArgsFunction` to achieve the same behavior|
**Flag-value completion**
|Old behavior|New behavior|
|---|---|
|No file completion by default (opposite of bash)|File completion by default; use `RegisterFlagCompletionFunc()` with `ShellCompDirectiveNoFileComp` to turn off file completion|
|`cmd.MarkFlagFilename(flag, []string{})` and similar used to turn on file completion|File completion by default; `cmd.MarkFlagFilename(flag, []string{})` no longer needed in this context and silently ignored|
|`cmd.MarkFlagFilename(flag, glob[])` used to turn on file completion **with glob filtering** (syntax of `[]string{"*.yaml", "*.yml"}` incompatible with bash)|Will continue to work, however, support for bash syntax is added and should be used instead so as to work for all shells (`[]string{"yaml", "yml"}`)|
|`cmd.MarkFlagDirname(flag)` only completes directories (zsh-specific)|Has been added for all shells|
|Completion of a flag name does not repeat, unless flag is of type `*Array` or `*Slice` (not supported by bash)|Retained for `zsh` and added to `fish`|
|Completion of a flag name does not provide the `=` form (unlike bash)|Retained for `zsh` and added to `fish`|
**Improvements**
* Custom completion support (`ValidArgsFunction` and `RegisterFlagCompletionFunc()`)
* File completion by default if no other completions found
* Handling of required flags
* File extension filtering no longer mutually exclusive with bash usage
* Completion of directory names *within* another directory
* Support for `=` form of flags

2
vendor/github.com/spf13/pflag/.gitignore generated vendored Normal file
View File

@ -0,0 +1,2 @@
.idea/*

22
vendor/github.com/spf13/pflag/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,22 @@
sudo: false
language: go
go:
- 1.9.x
- 1.10.x
- 1.11.x
- tip
matrix:
allow_failures:
- go: tip
install:
- go get golang.org/x/lint/golint
- export PATH=$GOPATH/bin:$PATH
- go install ./...
script:
- verify/all.sh -v
- go test ./...

28
vendor/github.com/spf13/pflag/LICENSE generated vendored Normal file
View File

@ -0,0 +1,28 @@
Copyright (c) 2012 Alex Ogier. All rights reserved.
Copyright (c) 2012 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

296
vendor/github.com/spf13/pflag/README.md generated vendored Normal file
View File

@ -0,0 +1,296 @@
[![Build Status](https://travis-ci.org/spf13/pflag.svg?branch=master)](https://travis-ci.org/spf13/pflag)
[![Go Report Card](https://goreportcard.com/badge/github.com/spf13/pflag)](https://goreportcard.com/report/github.com/spf13/pflag)
[![GoDoc](https://godoc.org/github.com/spf13/pflag?status.svg)](https://godoc.org/github.com/spf13/pflag)
## Description
pflag is a drop-in replacement for Go's flag package, implementing
POSIX/GNU-style --flags.
pflag is compatible with the [GNU extensions to the POSIX recommendations
for command-line options][1]. For a more precise description, see the
"Command-line flag syntax" section below.
[1]: http://www.gnu.org/software/libc/manual/html_node/Argument-Syntax.html
pflag is available under the same style of BSD license as the Go language,
which can be found in the LICENSE file.
## Installation
pflag is available using the standard `go get` command.
Install by running:
go get github.com/spf13/pflag
Run tests by running:
go test github.com/spf13/pflag
## Usage
pflag is a drop-in replacement of Go's native flag package. If you import
pflag under the name "flag" then all code should continue to function
with no changes.
``` go
import flag "github.com/spf13/pflag"
```
There is one exception to this: if you directly instantiate the Flag struct
there is one more field "Shorthand" that you will need to set.
Most code never instantiates this struct directly, and instead uses
functions such as String(), BoolVar(), and Var(), and is therefore
unaffected.
Define flags using flag.String(), Bool(), Int(), etc.
This declares an integer flag, -flagname, stored in the pointer ip, with type *int.
``` go
var ip *int = flag.Int("flagname", 1234, "help message for flagname")
```
If you like, you can bind the flag to a variable using the Var() functions.
``` go
var flagvar int
func init() {
flag.IntVar(&flagvar, "flagname", 1234, "help message for flagname")
}
```
Or you can create custom flags that satisfy the Value interface (with
pointer receivers) and couple them to flag parsing by
``` go
flag.Var(&flagVal, "name", "help message for flagname")
```
For such flags, the default value is just the initial value of the variable.
After all flags are defined, call
``` go
flag.Parse()
```
to parse the command line into the defined flags.
Flags may then be used directly. If you're using the flags themselves,
they are all pointers; if you bind to variables, they're values.
``` go
fmt.Println("ip has value ", *ip)
fmt.Println("flagvar has value ", flagvar)
```
There are helper functions available to get the value stored in a Flag if you have a FlagSet but find
it difficult to keep up with all of the pointers in your code.
If you have a pflag.FlagSet with a flag called 'flagname' of type int you
can use GetInt() to get the int value. But notice that 'flagname' must exist
and it must be an int. GetString("flagname") will fail.
``` go
i, err := flagset.GetInt("flagname")
```
After parsing, the arguments after the flag are available as the
slice flag.Args() or individually as flag.Arg(i).
The arguments are indexed from 0 through flag.NArg()-1.
The pflag package also defines some new functions that are not in flag,
that give one-letter shorthands for flags. You can use these by appending
'P' to the name of any function that defines a flag.
``` go
var ip = flag.IntP("flagname", "f", 1234, "help message")
var flagvar bool
func init() {
flag.BoolVarP(&flagvar, "boolname", "b", true, "help message")
}
flag.VarP(&flagVal, "varname", "v", "help message")
```
Shorthand letters can be used with single dashes on the command line.
Boolean shorthand flags can be combined with other shorthand flags.
The default set of command-line flags is controlled by
top-level functions. The FlagSet type allows one to define
independent sets of flags, such as to implement subcommands
in a command-line interface. The methods of FlagSet are
analogous to the top-level functions for the command-line
flag set.
## Setting no option default values for flags
After you create a flag it is possible to set the pflag.NoOptDefVal for
the given flag. Doing this changes the meaning of the flag slightly. If
a flag has a NoOptDefVal and the flag is set on the command line without
an option the flag will be set to the NoOptDefVal. For example given:
``` go
var ip = flag.IntP("flagname", "f", 1234, "help message")
flag.Lookup("flagname").NoOptDefVal = "4321"
```
Would result in something like
| Parsed Arguments | Resulting Value |
| ------------- | ------------- |
| --flagname=1357 | ip=1357 |
| --flagname | ip=4321 |
| [nothing] | ip=1234 |
## Command line flag syntax
```
--flag // boolean flags, or flags with no option default values
--flag x // only on flags without a default value
--flag=x
```
Unlike the flag package, a single dash before an option means something
different than a double dash. Single dashes signify a series of shorthand
letters for flags. All but the last shorthand letter must be boolean flags
or a flag with a default value
```
// boolean or flags where the 'no option default value' is set
-f
-f=true
-abc
but
-b true is INVALID
// non-boolean and flags without a 'no option default value'
-n 1234
-n=1234
-n1234
// mixed
-abcs "hello"
-absd="hello"
-abcs1234
```
Flag parsing stops after the terminator "--". Unlike the flag package,
flags can be interspersed with arguments anywhere on the command line
before this terminator.
Integer flags accept 1234, 0664, 0x1234 and may be negative.
Boolean flags (in their long form) accept 1, 0, t, f, true, false,
TRUE, FALSE, True, False.
Duration flags accept any input valid for time.ParseDuration.
## Mutating or "Normalizing" Flag names
It is possible to set a custom flag name 'normalization function.' It allows flag names to be mutated both when created in the code and when used on the command line to some 'normalized' form. The 'normalized' form is used for comparison. Two examples of using the custom normalization func follow.
**Example #1**: You want -, _, and . in flags to compare the same. aka --my-flag == --my_flag == --my.flag
``` go
func wordSepNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
from := []string{"-", "_"}
to := "."
for _, sep := range from {
name = strings.Replace(name, sep, to, -1)
}
return pflag.NormalizedName(name)
}
myFlagSet.SetNormalizeFunc(wordSepNormalizeFunc)
```
**Example #2**: You want to alias two flags. aka --old-flag-name == --new-flag-name
``` go
func aliasNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
switch name {
case "old-flag-name":
name = "new-flag-name"
break
}
return pflag.NormalizedName(name)
}
myFlagSet.SetNormalizeFunc(aliasNormalizeFunc)
```
## Deprecating a flag or its shorthand
It is possible to deprecate a flag, or just its shorthand. Deprecating a flag/shorthand hides it from help text and prints a usage message when the deprecated flag/shorthand is used.
**Example #1**: You want to deprecate a flag named "badflag" as well as inform the users what flag they should use instead.
```go
// deprecate a flag by specifying its name and a usage message
flags.MarkDeprecated("badflag", "please use --good-flag instead")
```
This hides "badflag" from help text, and prints `Flag --badflag has been deprecated, please use --good-flag instead` when "badflag" is used.
**Example #2**: You want to keep a flag name "noshorthandflag" but deprecate its shortname "n".
```go
// deprecate a flag shorthand by specifying its flag name and a usage message
flags.MarkShorthandDeprecated("noshorthandflag", "please use --noshorthandflag only")
```
This hides the shortname "n" from help text, and prints `Flag shorthand -n has been deprecated, please use --noshorthandflag only` when the shorthand "n" is used.
Note that usage message is essential here, and it should not be empty.
## Hidden flags
It is possible to mark a flag as hidden, meaning it will still function as normal, however will not show up in usage/help text.
**Example**: You have a flag named "secretFlag" that you need for internal use only and don't want it showing up in help text, or for its usage text to be available.
```go
// hide a flag by specifying its name
flags.MarkHidden("secretFlag")
```
## Disable sorting of flags
`pflag` allows you to disable sorting of flags for help and usage message.
**Example**:
```go
flags.BoolP("verbose", "v", false, "verbose output")
flags.String("coolflag", "yeaah", "it's really cool flag")
flags.Int("usefulflag", 777, "sometimes it's very useful")
flags.SortFlags = false
flags.PrintDefaults()
```
**Output**:
```
-v, --verbose verbose output
--coolflag string it's really cool flag (default "yeaah")
--usefulflag int sometimes it's very useful (default 777)
```
## Supporting Go flags when using pflag
In order to support flags defined using Go's `flag` package, they must be added to the `pflag` flagset. This is usually necessary
to support flags defined by third-party dependencies (e.g. `golang/glog`).
**Example**: You want to add the Go flags to the `CommandLine` flagset
```go
import (
goflag "flag"
flag "github.com/spf13/pflag"
)
var ip *int = flag.Int("flagname", 1234, "help message for flagname")
func main() {
flag.CommandLine.AddGoFlagSet(goflag.CommandLine)
flag.Parse()
}
```
## More info
You can see the full reference documentation of the pflag package
[at godoc.org][3], or through go's standard documentation system by
running `godoc -http=:6060` and browsing to
[http://localhost:6060/pkg/github.com/spf13/pflag][2] after
installation.
[2]: http://localhost:6060/pkg/github.com/spf13/pflag
[3]: http://godoc.org/github.com/spf13/pflag

94
vendor/github.com/spf13/pflag/bool.go generated vendored Normal file
View File

@ -0,0 +1,94 @@
package pflag
import "strconv"
// optional interface to indicate boolean flags that can be
// supplied without "=value" text
type boolFlag interface {
Value
IsBoolFlag() bool
}
// -- bool Value
type boolValue bool
func newBoolValue(val bool, p *bool) *boolValue {
*p = val
return (*boolValue)(p)
}
func (b *boolValue) Set(s string) error {
v, err := strconv.ParseBool(s)
*b = boolValue(v)
return err
}
func (b *boolValue) Type() string {
return "bool"
}
func (b *boolValue) String() string { return strconv.FormatBool(bool(*b)) }
func (b *boolValue) IsBoolFlag() bool { return true }
func boolConv(sval string) (interface{}, error) {
return strconv.ParseBool(sval)
}
// GetBool return the bool value of a flag with the given name
func (f *FlagSet) GetBool(name string) (bool, error) {
val, err := f.getFlagType(name, "bool", boolConv)
if err != nil {
return false, err
}
return val.(bool), nil
}
// BoolVar defines a bool flag with specified name, default value, and usage string.
// The argument p points to a bool variable in which to store the value of the flag.
func (f *FlagSet) BoolVar(p *bool, name string, value bool, usage string) {
f.BoolVarP(p, name, "", value, usage)
}
// BoolVarP is like BoolVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolVarP(p *bool, name, shorthand string, value bool, usage string) {
flag := f.VarPF(newBoolValue(value, p), name, shorthand, usage)
flag.NoOptDefVal = "true"
}
// BoolVar defines a bool flag with specified name, default value, and usage string.
// The argument p points to a bool variable in which to store the value of the flag.
func BoolVar(p *bool, name string, value bool, usage string) {
BoolVarP(p, name, "", value, usage)
}
// BoolVarP is like BoolVar, but accepts a shorthand letter that can be used after a single dash.
func BoolVarP(p *bool, name, shorthand string, value bool, usage string) {
flag := CommandLine.VarPF(newBoolValue(value, p), name, shorthand, usage)
flag.NoOptDefVal = "true"
}
// Bool defines a bool flag with specified name, default value, and usage string.
// The return value is the address of a bool variable that stores the value of the flag.
func (f *FlagSet) Bool(name string, value bool, usage string) *bool {
return f.BoolP(name, "", value, usage)
}
// BoolP is like Bool, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolP(name, shorthand string, value bool, usage string) *bool {
p := new(bool)
f.BoolVarP(p, name, shorthand, value, usage)
return p
}
// Bool defines a bool flag with specified name, default value, and usage string.
// The return value is the address of a bool variable that stores the value of the flag.
func Bool(name string, value bool, usage string) *bool {
return BoolP(name, "", value, usage)
}
// BoolP is like Bool, but accepts a shorthand letter that can be used after a single dash.
func BoolP(name, shorthand string, value bool, usage string) *bool {
b := CommandLine.BoolP(name, shorthand, value, usage)
return b
}

185
vendor/github.com/spf13/pflag/bool_slice.go generated vendored Normal file
View File

@ -0,0 +1,185 @@
package pflag
import (
"io"
"strconv"
"strings"
)
// -- boolSlice Value
type boolSliceValue struct {
value *[]bool
changed bool
}
func newBoolSliceValue(val []bool, p *[]bool) *boolSliceValue {
bsv := new(boolSliceValue)
bsv.value = p
*bsv.value = val
return bsv
}
// Set converts, and assigns, the comma-separated boolean argument string representation as the []bool value of this flag.
// If Set is called on a flag that already has a []bool assigned, the newly converted values will be appended.
func (s *boolSliceValue) Set(val string) error {
// remove all quote characters
rmQuote := strings.NewReplacer(`"`, "", `'`, "", "`", "")
// read flag arguments with CSV parser
boolStrSlice, err := readAsCSV(rmQuote.Replace(val))
if err != nil && err != io.EOF {
return err
}
// parse boolean values into slice
out := make([]bool, 0, len(boolStrSlice))
for _, boolStr := range boolStrSlice {
b, err := strconv.ParseBool(strings.TrimSpace(boolStr))
if err != nil {
return err
}
out = append(out, b)
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
// Type returns a string that uniquely represents this flag's type.
func (s *boolSliceValue) Type() string {
return "boolSlice"
}
// String defines a "native" format for this boolean slice flag value.
func (s *boolSliceValue) String() string {
boolStrSlice := make([]string, len(*s.value))
for i, b := range *s.value {
boolStrSlice[i] = strconv.FormatBool(b)
}
out, _ := writeAsCSV(boolStrSlice)
return "[" + out + "]"
}
func (s *boolSliceValue) fromString(val string) (bool, error) {
return strconv.ParseBool(val)
}
func (s *boolSliceValue) toString(val bool) string {
return strconv.FormatBool(val)
}
func (s *boolSliceValue) Append(val string) error {
i, err := s.fromString(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *boolSliceValue) Replace(val []string) error {
out := make([]bool, len(val))
for i, d := range val {
var err error
out[i], err = s.fromString(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *boolSliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = s.toString(d)
}
return out
}
func boolSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []bool{}, nil
}
ss := strings.Split(val, ",")
out := make([]bool, len(ss))
for i, t := range ss {
var err error
out[i], err = strconv.ParseBool(t)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetBoolSlice returns the []bool value of a flag with the given name.
func (f *FlagSet) GetBoolSlice(name string) ([]bool, error) {
val, err := f.getFlagType(name, "boolSlice", boolSliceConv)
if err != nil {
return []bool{}, err
}
return val.([]bool), nil
}
// BoolSliceVar defines a boolSlice flag with specified name, default value, and usage string.
// The argument p points to a []bool variable in which to store the value of the flag.
func (f *FlagSet) BoolSliceVar(p *[]bool, name string, value []bool, usage string) {
f.VarP(newBoolSliceValue(value, p), name, "", usage)
}
// BoolSliceVarP is like BoolSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolSliceVarP(p *[]bool, name, shorthand string, value []bool, usage string) {
f.VarP(newBoolSliceValue(value, p), name, shorthand, usage)
}
// BoolSliceVar defines a []bool flag with specified name, default value, and usage string.
// The argument p points to a []bool variable in which to store the value of the flag.
func BoolSliceVar(p *[]bool, name string, value []bool, usage string) {
CommandLine.VarP(newBoolSliceValue(value, p), name, "", usage)
}
// BoolSliceVarP is like BoolSliceVar, but accepts a shorthand letter that can be used after a single dash.
func BoolSliceVarP(p *[]bool, name, shorthand string, value []bool, usage string) {
CommandLine.VarP(newBoolSliceValue(value, p), name, shorthand, usage)
}
// BoolSlice defines a []bool flag with specified name, default value, and usage string.
// The return value is the address of a []bool variable that stores the value of the flag.
func (f *FlagSet) BoolSlice(name string, value []bool, usage string) *[]bool {
p := []bool{}
f.BoolSliceVarP(&p, name, "", value, usage)
return &p
}
// BoolSliceP is like BoolSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolSliceP(name, shorthand string, value []bool, usage string) *[]bool {
p := []bool{}
f.BoolSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// BoolSlice defines a []bool flag with specified name, default value, and usage string.
// The return value is the address of a []bool variable that stores the value of the flag.
func BoolSlice(name string, value []bool, usage string) *[]bool {
return CommandLine.BoolSliceP(name, "", value, usage)
}
// BoolSliceP is like BoolSlice, but accepts a shorthand letter that can be used after a single dash.
func BoolSliceP(name, shorthand string, value []bool, usage string) *[]bool {
return CommandLine.BoolSliceP(name, shorthand, value, usage)
}

209
vendor/github.com/spf13/pflag/bytes.go generated vendored Normal file
View File

@ -0,0 +1,209 @@
package pflag
import (
"encoding/base64"
"encoding/hex"
"fmt"
"strings"
)
// BytesHex adapts []byte for use as a flag. Value of flag is HEX encoded
type bytesHexValue []byte
// String implements pflag.Value.String.
func (bytesHex bytesHexValue) String() string {
return fmt.Sprintf("%X", []byte(bytesHex))
}
// Set implements pflag.Value.Set.
func (bytesHex *bytesHexValue) Set(value string) error {
bin, err := hex.DecodeString(strings.TrimSpace(value))
if err != nil {
return err
}
*bytesHex = bin
return nil
}
// Type implements pflag.Value.Type.
func (*bytesHexValue) Type() string {
return "bytesHex"
}
func newBytesHexValue(val []byte, p *[]byte) *bytesHexValue {
*p = val
return (*bytesHexValue)(p)
}
func bytesHexConv(sval string) (interface{}, error) {
bin, err := hex.DecodeString(sval)
if err == nil {
return bin, nil
}
return nil, fmt.Errorf("invalid string being converted to Bytes: %s %s", sval, err)
}
// GetBytesHex return the []byte value of a flag with the given name
func (f *FlagSet) GetBytesHex(name string) ([]byte, error) {
val, err := f.getFlagType(name, "bytesHex", bytesHexConv)
if err != nil {
return []byte{}, err
}
return val.([]byte), nil
}
// BytesHexVar defines an []byte flag with specified name, default value, and usage string.
// The argument p points to an []byte variable in which to store the value of the flag.
func (f *FlagSet) BytesHexVar(p *[]byte, name string, value []byte, usage string) {
f.VarP(newBytesHexValue(value, p), name, "", usage)
}
// BytesHexVarP is like BytesHexVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BytesHexVarP(p *[]byte, name, shorthand string, value []byte, usage string) {
f.VarP(newBytesHexValue(value, p), name, shorthand, usage)
}
// BytesHexVar defines an []byte flag with specified name, default value, and usage string.
// The argument p points to an []byte variable in which to store the value of the flag.
func BytesHexVar(p *[]byte, name string, value []byte, usage string) {
CommandLine.VarP(newBytesHexValue(value, p), name, "", usage)
}
// BytesHexVarP is like BytesHexVar, but accepts a shorthand letter that can be used after a single dash.
func BytesHexVarP(p *[]byte, name, shorthand string, value []byte, usage string) {
CommandLine.VarP(newBytesHexValue(value, p), name, shorthand, usage)
}
// BytesHex defines an []byte flag with specified name, default value, and usage string.
// The return value is the address of an []byte variable that stores the value of the flag.
func (f *FlagSet) BytesHex(name string, value []byte, usage string) *[]byte {
p := new([]byte)
f.BytesHexVarP(p, name, "", value, usage)
return p
}
// BytesHexP is like BytesHex, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BytesHexP(name, shorthand string, value []byte, usage string) *[]byte {
p := new([]byte)
f.BytesHexVarP(p, name, shorthand, value, usage)
return p
}
// BytesHex defines an []byte flag with specified name, default value, and usage string.
// The return value is the address of an []byte variable that stores the value of the flag.
func BytesHex(name string, value []byte, usage string) *[]byte {
return CommandLine.BytesHexP(name, "", value, usage)
}
// BytesHexP is like BytesHex, but accepts a shorthand letter that can be used after a single dash.
func BytesHexP(name, shorthand string, value []byte, usage string) *[]byte {
return CommandLine.BytesHexP(name, shorthand, value, usage)
}
// BytesBase64 adapts []byte for use as a flag. Value of flag is Base64 encoded
type bytesBase64Value []byte
// String implements pflag.Value.String.
func (bytesBase64 bytesBase64Value) String() string {
return base64.StdEncoding.EncodeToString([]byte(bytesBase64))
}
// Set implements pflag.Value.Set.
func (bytesBase64 *bytesBase64Value) Set(value string) error {
bin, err := base64.StdEncoding.DecodeString(strings.TrimSpace(value))
if err != nil {
return err
}
*bytesBase64 = bin
return nil
}
// Type implements pflag.Value.Type.
func (*bytesBase64Value) Type() string {
return "bytesBase64"
}
func newBytesBase64Value(val []byte, p *[]byte) *bytesBase64Value {
*p = val
return (*bytesBase64Value)(p)
}
func bytesBase64ValueConv(sval string) (interface{}, error) {
bin, err := base64.StdEncoding.DecodeString(sval)
if err == nil {
return bin, nil
}
return nil, fmt.Errorf("invalid string being converted to Bytes: %s %s", sval, err)
}
// GetBytesBase64 return the []byte value of a flag with the given name
func (f *FlagSet) GetBytesBase64(name string) ([]byte, error) {
val, err := f.getFlagType(name, "bytesBase64", bytesBase64ValueConv)
if err != nil {
return []byte{}, err
}
return val.([]byte), nil
}
// BytesBase64Var defines an []byte flag with specified name, default value, and usage string.
// The argument p points to an []byte variable in which to store the value of the flag.
func (f *FlagSet) BytesBase64Var(p *[]byte, name string, value []byte, usage string) {
f.VarP(newBytesBase64Value(value, p), name, "", usage)
}
// BytesBase64VarP is like BytesBase64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BytesBase64VarP(p *[]byte, name, shorthand string, value []byte, usage string) {
f.VarP(newBytesBase64Value(value, p), name, shorthand, usage)
}
// BytesBase64Var defines an []byte flag with specified name, default value, and usage string.
// The argument p points to an []byte variable in which to store the value of the flag.
func BytesBase64Var(p *[]byte, name string, value []byte, usage string) {
CommandLine.VarP(newBytesBase64Value(value, p), name, "", usage)
}
// BytesBase64VarP is like BytesBase64Var, but accepts a shorthand letter that can be used after a single dash.
func BytesBase64VarP(p *[]byte, name, shorthand string, value []byte, usage string) {
CommandLine.VarP(newBytesBase64Value(value, p), name, shorthand, usage)
}
// BytesBase64 defines an []byte flag with specified name, default value, and usage string.
// The return value is the address of an []byte variable that stores the value of the flag.
func (f *FlagSet) BytesBase64(name string, value []byte, usage string) *[]byte {
p := new([]byte)
f.BytesBase64VarP(p, name, "", value, usage)
return p
}
// BytesBase64P is like BytesBase64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BytesBase64P(name, shorthand string, value []byte, usage string) *[]byte {
p := new([]byte)
f.BytesBase64VarP(p, name, shorthand, value, usage)
return p
}
// BytesBase64 defines an []byte flag with specified name, default value, and usage string.
// The return value is the address of an []byte variable that stores the value of the flag.
func BytesBase64(name string, value []byte, usage string) *[]byte {
return CommandLine.BytesBase64P(name, "", value, usage)
}
// BytesBase64P is like BytesBase64, but accepts a shorthand letter that can be used after a single dash.
func BytesBase64P(name, shorthand string, value []byte, usage string) *[]byte {
return CommandLine.BytesBase64P(name, shorthand, value, usage)
}

96
vendor/github.com/spf13/pflag/count.go generated vendored Normal file
View File

@ -0,0 +1,96 @@
package pflag
import "strconv"
// -- count Value
type countValue int
func newCountValue(val int, p *int) *countValue {
*p = val
return (*countValue)(p)
}
func (i *countValue) Set(s string) error {
// "+1" means that no specific value was passed, so increment
if s == "+1" {
*i = countValue(*i + 1)
return nil
}
v, err := strconv.ParseInt(s, 0, 0)
*i = countValue(v)
return err
}
func (i *countValue) Type() string {
return "count"
}
func (i *countValue) String() string { return strconv.Itoa(int(*i)) }
func countConv(sval string) (interface{}, error) {
i, err := strconv.Atoi(sval)
if err != nil {
return nil, err
}
return i, nil
}
// GetCount return the int value of a flag with the given name
func (f *FlagSet) GetCount(name string) (int, error) {
val, err := f.getFlagType(name, "count", countConv)
if err != nil {
return 0, err
}
return val.(int), nil
}
// CountVar defines a count flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
// A count flag will add 1 to its value every time it is found on the command line
func (f *FlagSet) CountVar(p *int, name string, usage string) {
f.CountVarP(p, name, "", usage)
}
// CountVarP is like CountVar only take a shorthand for the flag name.
func (f *FlagSet) CountVarP(p *int, name, shorthand string, usage string) {
flag := f.VarPF(newCountValue(0, p), name, shorthand, usage)
flag.NoOptDefVal = "+1"
}
// CountVar like CountVar only the flag is placed on the CommandLine instead of a given flag set
func CountVar(p *int, name string, usage string) {
CommandLine.CountVar(p, name, usage)
}
// CountVarP is like CountVar only take a shorthand for the flag name.
func CountVarP(p *int, name, shorthand string, usage string) {
CommandLine.CountVarP(p, name, shorthand, usage)
}
// Count defines a count flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
// A count flag will add 1 to its value every time it is found on the command line
func (f *FlagSet) Count(name string, usage string) *int {
p := new(int)
f.CountVarP(p, name, "", usage)
return p
}
// CountP is like Count only takes a shorthand for the flag name.
func (f *FlagSet) CountP(name, shorthand string, usage string) *int {
p := new(int)
f.CountVarP(p, name, shorthand, usage)
return p
}
// Count defines a count flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
// A count flag will add 1 to its value evey time it is found on the command line
func Count(name string, usage string) *int {
return CommandLine.CountP(name, "", usage)
}
// CountP is like Count only takes a shorthand for the flag name.
func CountP(name, shorthand string, usage string) *int {
return CommandLine.CountP(name, shorthand, usage)
}

86
vendor/github.com/spf13/pflag/duration.go generated vendored Normal file
View File

@ -0,0 +1,86 @@
package pflag
import (
"time"
)
// -- time.Duration Value
type durationValue time.Duration
func newDurationValue(val time.Duration, p *time.Duration) *durationValue {
*p = val
return (*durationValue)(p)
}
func (d *durationValue) Set(s string) error {
v, err := time.ParseDuration(s)
*d = durationValue(v)
return err
}
func (d *durationValue) Type() string {
return "duration"
}
func (d *durationValue) String() string { return (*time.Duration)(d).String() }
func durationConv(sval string) (interface{}, error) {
return time.ParseDuration(sval)
}
// GetDuration return the duration value of a flag with the given name
func (f *FlagSet) GetDuration(name string) (time.Duration, error) {
val, err := f.getFlagType(name, "duration", durationConv)
if err != nil {
return 0, err
}
return val.(time.Duration), nil
}
// DurationVar defines a time.Duration flag with specified name, default value, and usage string.
// The argument p points to a time.Duration variable in which to store the value of the flag.
func (f *FlagSet) DurationVar(p *time.Duration, name string, value time.Duration, usage string) {
f.VarP(newDurationValue(value, p), name, "", usage)
}
// DurationVarP is like DurationVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationVarP(p *time.Duration, name, shorthand string, value time.Duration, usage string) {
f.VarP(newDurationValue(value, p), name, shorthand, usage)
}
// DurationVar defines a time.Duration flag with specified name, default value, and usage string.
// The argument p points to a time.Duration variable in which to store the value of the flag.
func DurationVar(p *time.Duration, name string, value time.Duration, usage string) {
CommandLine.VarP(newDurationValue(value, p), name, "", usage)
}
// DurationVarP is like DurationVar, but accepts a shorthand letter that can be used after a single dash.
func DurationVarP(p *time.Duration, name, shorthand string, value time.Duration, usage string) {
CommandLine.VarP(newDurationValue(value, p), name, shorthand, usage)
}
// Duration defines a time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a time.Duration variable that stores the value of the flag.
func (f *FlagSet) Duration(name string, value time.Duration, usage string) *time.Duration {
p := new(time.Duration)
f.DurationVarP(p, name, "", value, usage)
return p
}
// DurationP is like Duration, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationP(name, shorthand string, value time.Duration, usage string) *time.Duration {
p := new(time.Duration)
f.DurationVarP(p, name, shorthand, value, usage)
return p
}
// Duration defines a time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a time.Duration variable that stores the value of the flag.
func Duration(name string, value time.Duration, usage string) *time.Duration {
return CommandLine.DurationP(name, "", value, usage)
}
// DurationP is like Duration, but accepts a shorthand letter that can be used after a single dash.
func DurationP(name, shorthand string, value time.Duration, usage string) *time.Duration {
return CommandLine.DurationP(name, shorthand, value, usage)
}

166
vendor/github.com/spf13/pflag/duration_slice.go generated vendored Normal file
View File

@ -0,0 +1,166 @@
package pflag
import (
"fmt"
"strings"
"time"
)
// -- durationSlice Value
type durationSliceValue struct {
value *[]time.Duration
changed bool
}
func newDurationSliceValue(val []time.Duration, p *[]time.Duration) *durationSliceValue {
dsv := new(durationSliceValue)
dsv.value = p
*dsv.value = val
return dsv
}
func (s *durationSliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]time.Duration, len(ss))
for i, d := range ss {
var err error
out[i], err = time.ParseDuration(d)
if err != nil {
return err
}
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *durationSliceValue) Type() string {
return "durationSlice"
}
func (s *durationSliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%s", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func (s *durationSliceValue) fromString(val string) (time.Duration, error) {
return time.ParseDuration(val)
}
func (s *durationSliceValue) toString(val time.Duration) string {
return fmt.Sprintf("%s", val)
}
func (s *durationSliceValue) Append(val string) error {
i, err := s.fromString(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *durationSliceValue) Replace(val []string) error {
out := make([]time.Duration, len(val))
for i, d := range val {
var err error
out[i], err = s.fromString(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *durationSliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = s.toString(d)
}
return out
}
func durationSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []time.Duration{}, nil
}
ss := strings.Split(val, ",")
out := make([]time.Duration, len(ss))
for i, d := range ss {
var err error
out[i], err = time.ParseDuration(d)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetDurationSlice returns the []time.Duration value of a flag with the given name
func (f *FlagSet) GetDurationSlice(name string) ([]time.Duration, error) {
val, err := f.getFlagType(name, "durationSlice", durationSliceConv)
if err != nil {
return []time.Duration{}, err
}
return val.([]time.Duration), nil
}
// DurationSliceVar defines a durationSlice flag with specified name, default value, and usage string.
// The argument p points to a []time.Duration variable in which to store the value of the flag.
func (f *FlagSet) DurationSliceVar(p *[]time.Duration, name string, value []time.Duration, usage string) {
f.VarP(newDurationSliceValue(value, p), name, "", usage)
}
// DurationSliceVarP is like DurationSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationSliceVarP(p *[]time.Duration, name, shorthand string, value []time.Duration, usage string) {
f.VarP(newDurationSliceValue(value, p), name, shorthand, usage)
}
// DurationSliceVar defines a duration[] flag with specified name, default value, and usage string.
// The argument p points to a duration[] variable in which to store the value of the flag.
func DurationSliceVar(p *[]time.Duration, name string, value []time.Duration, usage string) {
CommandLine.VarP(newDurationSliceValue(value, p), name, "", usage)
}
// DurationSliceVarP is like DurationSliceVar, but accepts a shorthand letter that can be used after a single dash.
func DurationSliceVarP(p *[]time.Duration, name, shorthand string, value []time.Duration, usage string) {
CommandLine.VarP(newDurationSliceValue(value, p), name, shorthand, usage)
}
// DurationSlice defines a []time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a []time.Duration variable that stores the value of the flag.
func (f *FlagSet) DurationSlice(name string, value []time.Duration, usage string) *[]time.Duration {
p := []time.Duration{}
f.DurationSliceVarP(&p, name, "", value, usage)
return &p
}
// DurationSliceP is like DurationSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationSliceP(name, shorthand string, value []time.Duration, usage string) *[]time.Duration {
p := []time.Duration{}
f.DurationSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// DurationSlice defines a []time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a []time.Duration variable that stores the value of the flag.
func DurationSlice(name string, value []time.Duration, usage string) *[]time.Duration {
return CommandLine.DurationSliceP(name, "", value, usage)
}
// DurationSliceP is like DurationSlice, but accepts a shorthand letter that can be used after a single dash.
func DurationSliceP(name, shorthand string, value []time.Duration, usage string) *[]time.Duration {
return CommandLine.DurationSliceP(name, shorthand, value, usage)
}

1239
vendor/github.com/spf13/pflag/flag.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

88
vendor/github.com/spf13/pflag/float32.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- float32 Value
type float32Value float32
func newFloat32Value(val float32, p *float32) *float32Value {
*p = val
return (*float32Value)(p)
}
func (f *float32Value) Set(s string) error {
v, err := strconv.ParseFloat(s, 32)
*f = float32Value(v)
return err
}
func (f *float32Value) Type() string {
return "float32"
}
func (f *float32Value) String() string { return strconv.FormatFloat(float64(*f), 'g', -1, 32) }
func float32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseFloat(sval, 32)
if err != nil {
return 0, err
}
return float32(v), nil
}
// GetFloat32 return the float32 value of a flag with the given name
func (f *FlagSet) GetFloat32(name string) (float32, error) {
val, err := f.getFlagType(name, "float32", float32Conv)
if err != nil {
return 0, err
}
return val.(float32), nil
}
// Float32Var defines a float32 flag with specified name, default value, and usage string.
// The argument p points to a float32 variable in which to store the value of the flag.
func (f *FlagSet) Float32Var(p *float32, name string, value float32, usage string) {
f.VarP(newFloat32Value(value, p), name, "", usage)
}
// Float32VarP is like Float32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32VarP(p *float32, name, shorthand string, value float32, usage string) {
f.VarP(newFloat32Value(value, p), name, shorthand, usage)
}
// Float32Var defines a float32 flag with specified name, default value, and usage string.
// The argument p points to a float32 variable in which to store the value of the flag.
func Float32Var(p *float32, name string, value float32, usage string) {
CommandLine.VarP(newFloat32Value(value, p), name, "", usage)
}
// Float32VarP is like Float32Var, but accepts a shorthand letter that can be used after a single dash.
func Float32VarP(p *float32, name, shorthand string, value float32, usage string) {
CommandLine.VarP(newFloat32Value(value, p), name, shorthand, usage)
}
// Float32 defines a float32 flag with specified name, default value, and usage string.
// The return value is the address of a float32 variable that stores the value of the flag.
func (f *FlagSet) Float32(name string, value float32, usage string) *float32 {
p := new(float32)
f.Float32VarP(p, name, "", value, usage)
return p
}
// Float32P is like Float32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32P(name, shorthand string, value float32, usage string) *float32 {
p := new(float32)
f.Float32VarP(p, name, shorthand, value, usage)
return p
}
// Float32 defines a float32 flag with specified name, default value, and usage string.
// The return value is the address of a float32 variable that stores the value of the flag.
func Float32(name string, value float32, usage string) *float32 {
return CommandLine.Float32P(name, "", value, usage)
}
// Float32P is like Float32, but accepts a shorthand letter that can be used after a single dash.
func Float32P(name, shorthand string, value float32, usage string) *float32 {
return CommandLine.Float32P(name, shorthand, value, usage)
}

174
vendor/github.com/spf13/pflag/float32_slice.go generated vendored Normal file
View File

@ -0,0 +1,174 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- float32Slice Value
type float32SliceValue struct {
value *[]float32
changed bool
}
func newFloat32SliceValue(val []float32, p *[]float32) *float32SliceValue {
isv := new(float32SliceValue)
isv.value = p
*isv.value = val
return isv
}
func (s *float32SliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]float32, len(ss))
for i, d := range ss {
var err error
var temp64 float64
temp64, err = strconv.ParseFloat(d, 32)
if err != nil {
return err
}
out[i] = float32(temp64)
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *float32SliceValue) Type() string {
return "float32Slice"
}
func (s *float32SliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%f", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func (s *float32SliceValue) fromString(val string) (float32, error) {
t64, err := strconv.ParseFloat(val, 32)
if err != nil {
return 0, err
}
return float32(t64), nil
}
func (s *float32SliceValue) toString(val float32) string {
return fmt.Sprintf("%f", val)
}
func (s *float32SliceValue) Append(val string) error {
i, err := s.fromString(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *float32SliceValue) Replace(val []string) error {
out := make([]float32, len(val))
for i, d := range val {
var err error
out[i], err = s.fromString(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *float32SliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = s.toString(d)
}
return out
}
func float32SliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []float32{}, nil
}
ss := strings.Split(val, ",")
out := make([]float32, len(ss))
for i, d := range ss {
var err error
var temp64 float64
temp64, err = strconv.ParseFloat(d, 32)
if err != nil {
return nil, err
}
out[i] = float32(temp64)
}
return out, nil
}
// GetFloat32Slice return the []float32 value of a flag with the given name
func (f *FlagSet) GetFloat32Slice(name string) ([]float32, error) {
val, err := f.getFlagType(name, "float32Slice", float32SliceConv)
if err != nil {
return []float32{}, err
}
return val.([]float32), nil
}
// Float32SliceVar defines a float32Slice flag with specified name, default value, and usage string.
// The argument p points to a []float32 variable in which to store the value of the flag.
func (f *FlagSet) Float32SliceVar(p *[]float32, name string, value []float32, usage string) {
f.VarP(newFloat32SliceValue(value, p), name, "", usage)
}
// Float32SliceVarP is like Float32SliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32SliceVarP(p *[]float32, name, shorthand string, value []float32, usage string) {
f.VarP(newFloat32SliceValue(value, p), name, shorthand, usage)
}
// Float32SliceVar defines a float32[] flag with specified name, default value, and usage string.
// The argument p points to a float32[] variable in which to store the value of the flag.
func Float32SliceVar(p *[]float32, name string, value []float32, usage string) {
CommandLine.VarP(newFloat32SliceValue(value, p), name, "", usage)
}
// Float32SliceVarP is like Float32SliceVar, but accepts a shorthand letter that can be used after a single dash.
func Float32SliceVarP(p *[]float32, name, shorthand string, value []float32, usage string) {
CommandLine.VarP(newFloat32SliceValue(value, p), name, shorthand, usage)
}
// Float32Slice defines a []float32 flag with specified name, default value, and usage string.
// The return value is the address of a []float32 variable that stores the value of the flag.
func (f *FlagSet) Float32Slice(name string, value []float32, usage string) *[]float32 {
p := []float32{}
f.Float32SliceVarP(&p, name, "", value, usage)
return &p
}
// Float32SliceP is like Float32Slice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32SliceP(name, shorthand string, value []float32, usage string) *[]float32 {
p := []float32{}
f.Float32SliceVarP(&p, name, shorthand, value, usage)
return &p
}
// Float32Slice defines a []float32 flag with specified name, default value, and usage string.
// The return value is the address of a []float32 variable that stores the value of the flag.
func Float32Slice(name string, value []float32, usage string) *[]float32 {
return CommandLine.Float32SliceP(name, "", value, usage)
}
// Float32SliceP is like Float32Slice, but accepts a shorthand letter that can be used after a single dash.
func Float32SliceP(name, shorthand string, value []float32, usage string) *[]float32 {
return CommandLine.Float32SliceP(name, shorthand, value, usage)
}

84
vendor/github.com/spf13/pflag/float64.go generated vendored Normal file
View File

@ -0,0 +1,84 @@
package pflag
import "strconv"
// -- float64 Value
type float64Value float64
func newFloat64Value(val float64, p *float64) *float64Value {
*p = val
return (*float64Value)(p)
}
func (f *float64Value) Set(s string) error {
v, err := strconv.ParseFloat(s, 64)
*f = float64Value(v)
return err
}
func (f *float64Value) Type() string {
return "float64"
}
func (f *float64Value) String() string { return strconv.FormatFloat(float64(*f), 'g', -1, 64) }
func float64Conv(sval string) (interface{}, error) {
return strconv.ParseFloat(sval, 64)
}
// GetFloat64 return the float64 value of a flag with the given name
func (f *FlagSet) GetFloat64(name string) (float64, error) {
val, err := f.getFlagType(name, "float64", float64Conv)
if err != nil {
return 0, err
}
return val.(float64), nil
}
// Float64Var defines a float64 flag with specified name, default value, and usage string.
// The argument p points to a float64 variable in which to store the value of the flag.
func (f *FlagSet) Float64Var(p *float64, name string, value float64, usage string) {
f.VarP(newFloat64Value(value, p), name, "", usage)
}
// Float64VarP is like Float64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64VarP(p *float64, name, shorthand string, value float64, usage string) {
f.VarP(newFloat64Value(value, p), name, shorthand, usage)
}
// Float64Var defines a float64 flag with specified name, default value, and usage string.
// The argument p points to a float64 variable in which to store the value of the flag.
func Float64Var(p *float64, name string, value float64, usage string) {
CommandLine.VarP(newFloat64Value(value, p), name, "", usage)
}
// Float64VarP is like Float64Var, but accepts a shorthand letter that can be used after a single dash.
func Float64VarP(p *float64, name, shorthand string, value float64, usage string) {
CommandLine.VarP(newFloat64Value(value, p), name, shorthand, usage)
}
// Float64 defines a float64 flag with specified name, default value, and usage string.
// The return value is the address of a float64 variable that stores the value of the flag.
func (f *FlagSet) Float64(name string, value float64, usage string) *float64 {
p := new(float64)
f.Float64VarP(p, name, "", value, usage)
return p
}
// Float64P is like Float64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64P(name, shorthand string, value float64, usage string) *float64 {
p := new(float64)
f.Float64VarP(p, name, shorthand, value, usage)
return p
}
// Float64 defines a float64 flag with specified name, default value, and usage string.
// The return value is the address of a float64 variable that stores the value of the flag.
func Float64(name string, value float64, usage string) *float64 {
return CommandLine.Float64P(name, "", value, usage)
}
// Float64P is like Float64, but accepts a shorthand letter that can be used after a single dash.
func Float64P(name, shorthand string, value float64, usage string) *float64 {
return CommandLine.Float64P(name, shorthand, value, usage)
}

166
vendor/github.com/spf13/pflag/float64_slice.go generated vendored Normal file
View File

@ -0,0 +1,166 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- float64Slice Value
type float64SliceValue struct {
value *[]float64
changed bool
}
func newFloat64SliceValue(val []float64, p *[]float64) *float64SliceValue {
isv := new(float64SliceValue)
isv.value = p
*isv.value = val
return isv
}
func (s *float64SliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]float64, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.ParseFloat(d, 64)
if err != nil {
return err
}
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *float64SliceValue) Type() string {
return "float64Slice"
}
func (s *float64SliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%f", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func (s *float64SliceValue) fromString(val string) (float64, error) {
return strconv.ParseFloat(val, 64)
}
func (s *float64SliceValue) toString(val float64) string {
return fmt.Sprintf("%f", val)
}
func (s *float64SliceValue) Append(val string) error {
i, err := s.fromString(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *float64SliceValue) Replace(val []string) error {
out := make([]float64, len(val))
for i, d := range val {
var err error
out[i], err = s.fromString(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *float64SliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = s.toString(d)
}
return out
}
func float64SliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []float64{}, nil
}
ss := strings.Split(val, ",")
out := make([]float64, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.ParseFloat(d, 64)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetFloat64Slice return the []float64 value of a flag with the given name
func (f *FlagSet) GetFloat64Slice(name string) ([]float64, error) {
val, err := f.getFlagType(name, "float64Slice", float64SliceConv)
if err != nil {
return []float64{}, err
}
return val.([]float64), nil
}
// Float64SliceVar defines a float64Slice flag with specified name, default value, and usage string.
// The argument p points to a []float64 variable in which to store the value of the flag.
func (f *FlagSet) Float64SliceVar(p *[]float64, name string, value []float64, usage string) {
f.VarP(newFloat64SliceValue(value, p), name, "", usage)
}
// Float64SliceVarP is like Float64SliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64SliceVarP(p *[]float64, name, shorthand string, value []float64, usage string) {
f.VarP(newFloat64SliceValue(value, p), name, shorthand, usage)
}
// Float64SliceVar defines a float64[] flag with specified name, default value, and usage string.
// The argument p points to a float64[] variable in which to store the value of the flag.
func Float64SliceVar(p *[]float64, name string, value []float64, usage string) {
CommandLine.VarP(newFloat64SliceValue(value, p), name, "", usage)
}
// Float64SliceVarP is like Float64SliceVar, but accepts a shorthand letter that can be used after a single dash.
func Float64SliceVarP(p *[]float64, name, shorthand string, value []float64, usage string) {
CommandLine.VarP(newFloat64SliceValue(value, p), name, shorthand, usage)
}
// Float64Slice defines a []float64 flag with specified name, default value, and usage string.
// The return value is the address of a []float64 variable that stores the value of the flag.
func (f *FlagSet) Float64Slice(name string, value []float64, usage string) *[]float64 {
p := []float64{}
f.Float64SliceVarP(&p, name, "", value, usage)
return &p
}
// Float64SliceP is like Float64Slice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64SliceP(name, shorthand string, value []float64, usage string) *[]float64 {
p := []float64{}
f.Float64SliceVarP(&p, name, shorthand, value, usage)
return &p
}
// Float64Slice defines a []float64 flag with specified name, default value, and usage string.
// The return value is the address of a []float64 variable that stores the value of the flag.
func Float64Slice(name string, value []float64, usage string) *[]float64 {
return CommandLine.Float64SliceP(name, "", value, usage)
}
// Float64SliceP is like Float64Slice, but accepts a shorthand letter that can be used after a single dash.
func Float64SliceP(name, shorthand string, value []float64, usage string) *[]float64 {
return CommandLine.Float64SliceP(name, shorthand, value, usage)
}

3
vendor/github.com/spf13/pflag/go.mod generated vendored Normal file
View File

@ -0,0 +1,3 @@
module github.com/spf13/pflag
go 1.12

0
vendor/github.com/spf13/pflag/go.sum generated vendored Normal file
View File

105
vendor/github.com/spf13/pflag/golangflag.go generated vendored Normal file
View File

@ -0,0 +1,105 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pflag
import (
goflag "flag"
"reflect"
"strings"
)
// flagValueWrapper implements pflag.Value around a flag.Value. The main
// difference here is the addition of the Type method that returns a string
// name of the type. As this is generally unknown, we approximate that with
// reflection.
type flagValueWrapper struct {
inner goflag.Value
flagType string
}
// We are just copying the boolFlag interface out of goflag as that is what
// they use to decide if a flag should get "true" when no arg is given.
type goBoolFlag interface {
goflag.Value
IsBoolFlag() bool
}
func wrapFlagValue(v goflag.Value) Value {
// If the flag.Value happens to also be a pflag.Value, just use it directly.
if pv, ok := v.(Value); ok {
return pv
}
pv := &flagValueWrapper{
inner: v,
}
t := reflect.TypeOf(v)
if t.Kind() == reflect.Interface || t.Kind() == reflect.Ptr {
t = t.Elem()
}
pv.flagType = strings.TrimSuffix(t.Name(), "Value")
return pv
}
func (v *flagValueWrapper) String() string {
return v.inner.String()
}
func (v *flagValueWrapper) Set(s string) error {
return v.inner.Set(s)
}
func (v *flagValueWrapper) Type() string {
return v.flagType
}
// PFlagFromGoFlag will return a *pflag.Flag given a *flag.Flag
// If the *flag.Flag.Name was a single character (ex: `v`) it will be accessiblei
// with both `-v` and `--v` in flags. If the golang flag was more than a single
// character (ex: `verbose`) it will only be accessible via `--verbose`
func PFlagFromGoFlag(goflag *goflag.Flag) *Flag {
// Remember the default value as a string; it won't change.
flag := &Flag{
Name: goflag.Name,
Usage: goflag.Usage,
Value: wrapFlagValue(goflag.Value),
// Looks like golang flags don't set DefValue correctly :-(
//DefValue: goflag.DefValue,
DefValue: goflag.Value.String(),
}
// Ex: if the golang flag was -v, allow both -v and --v to work
if len(flag.Name) == 1 {
flag.Shorthand = flag.Name
}
if fv, ok := goflag.Value.(goBoolFlag); ok && fv.IsBoolFlag() {
flag.NoOptDefVal = "true"
}
return flag
}
// AddGoFlag will add the given *flag.Flag to the pflag.FlagSet
func (f *FlagSet) AddGoFlag(goflag *goflag.Flag) {
if f.Lookup(goflag.Name) != nil {
return
}
newflag := PFlagFromGoFlag(goflag)
f.AddFlag(newflag)
}
// AddGoFlagSet will add the given *flag.FlagSet to the pflag.FlagSet
func (f *FlagSet) AddGoFlagSet(newSet *goflag.FlagSet) {
if newSet == nil {
return
}
newSet.VisitAll(func(goflag *goflag.Flag) {
f.AddGoFlag(goflag)
})
if f.addedGoFlagSets == nil {
f.addedGoFlagSets = make([]*goflag.FlagSet, 0)
}
f.addedGoFlagSets = append(f.addedGoFlagSets, newSet)
}

84
vendor/github.com/spf13/pflag/int.go generated vendored Normal file
View File

@ -0,0 +1,84 @@
package pflag
import "strconv"
// -- int Value
type intValue int
func newIntValue(val int, p *int) *intValue {
*p = val
return (*intValue)(p)
}
func (i *intValue) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
*i = intValue(v)
return err
}
func (i *intValue) Type() string {
return "int"
}
func (i *intValue) String() string { return strconv.Itoa(int(*i)) }
func intConv(sval string) (interface{}, error) {
return strconv.Atoi(sval)
}
// GetInt return the int value of a flag with the given name
func (f *FlagSet) GetInt(name string) (int, error) {
val, err := f.getFlagType(name, "int", intConv)
if err != nil {
return 0, err
}
return val.(int), nil
}
// IntVar defines an int flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
func (f *FlagSet) IntVar(p *int, name string, value int, usage string) {
f.VarP(newIntValue(value, p), name, "", usage)
}
// IntVarP is like IntVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntVarP(p *int, name, shorthand string, value int, usage string) {
f.VarP(newIntValue(value, p), name, shorthand, usage)
}
// IntVar defines an int flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
func IntVar(p *int, name string, value int, usage string) {
CommandLine.VarP(newIntValue(value, p), name, "", usage)
}
// IntVarP is like IntVar, but accepts a shorthand letter that can be used after a single dash.
func IntVarP(p *int, name, shorthand string, value int, usage string) {
CommandLine.VarP(newIntValue(value, p), name, shorthand, usage)
}
// Int defines an int flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
func (f *FlagSet) Int(name string, value int, usage string) *int {
p := new(int)
f.IntVarP(p, name, "", value, usage)
return p
}
// IntP is like Int, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntP(name, shorthand string, value int, usage string) *int {
p := new(int)
f.IntVarP(p, name, shorthand, value, usage)
return p
}
// Int defines an int flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
func Int(name string, value int, usage string) *int {
return CommandLine.IntP(name, "", value, usage)
}
// IntP is like Int, but accepts a shorthand letter that can be used after a single dash.
func IntP(name, shorthand string, value int, usage string) *int {
return CommandLine.IntP(name, shorthand, value, usage)
}

88
vendor/github.com/spf13/pflag/int16.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- int16 Value
type int16Value int16
func newInt16Value(val int16, p *int16) *int16Value {
*p = val
return (*int16Value)(p)
}
func (i *int16Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 16)
*i = int16Value(v)
return err
}
func (i *int16Value) Type() string {
return "int16"
}
func (i *int16Value) String() string { return strconv.FormatInt(int64(*i), 10) }
func int16Conv(sval string) (interface{}, error) {
v, err := strconv.ParseInt(sval, 0, 16)
if err != nil {
return 0, err
}
return int16(v), nil
}
// GetInt16 returns the int16 value of a flag with the given name
func (f *FlagSet) GetInt16(name string) (int16, error) {
val, err := f.getFlagType(name, "int16", int16Conv)
if err != nil {
return 0, err
}
return val.(int16), nil
}
// Int16Var defines an int16 flag with specified name, default value, and usage string.
// The argument p points to an int16 variable in which to store the value of the flag.
func (f *FlagSet) Int16Var(p *int16, name string, value int16, usage string) {
f.VarP(newInt16Value(value, p), name, "", usage)
}
// Int16VarP is like Int16Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int16VarP(p *int16, name, shorthand string, value int16, usage string) {
f.VarP(newInt16Value(value, p), name, shorthand, usage)
}
// Int16Var defines an int16 flag with specified name, default value, and usage string.
// The argument p points to an int16 variable in which to store the value of the flag.
func Int16Var(p *int16, name string, value int16, usage string) {
CommandLine.VarP(newInt16Value(value, p), name, "", usage)
}
// Int16VarP is like Int16Var, but accepts a shorthand letter that can be used after a single dash.
func Int16VarP(p *int16, name, shorthand string, value int16, usage string) {
CommandLine.VarP(newInt16Value(value, p), name, shorthand, usage)
}
// Int16 defines an int16 flag with specified name, default value, and usage string.
// The return value is the address of an int16 variable that stores the value of the flag.
func (f *FlagSet) Int16(name string, value int16, usage string) *int16 {
p := new(int16)
f.Int16VarP(p, name, "", value, usage)
return p
}
// Int16P is like Int16, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int16P(name, shorthand string, value int16, usage string) *int16 {
p := new(int16)
f.Int16VarP(p, name, shorthand, value, usage)
return p
}
// Int16 defines an int16 flag with specified name, default value, and usage string.
// The return value is the address of an int16 variable that stores the value of the flag.
func Int16(name string, value int16, usage string) *int16 {
return CommandLine.Int16P(name, "", value, usage)
}
// Int16P is like Int16, but accepts a shorthand letter that can be used after a single dash.
func Int16P(name, shorthand string, value int16, usage string) *int16 {
return CommandLine.Int16P(name, shorthand, value, usage)
}

88
vendor/github.com/spf13/pflag/int32.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- int32 Value
type int32Value int32
func newInt32Value(val int32, p *int32) *int32Value {
*p = val
return (*int32Value)(p)
}
func (i *int32Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 32)
*i = int32Value(v)
return err
}
func (i *int32Value) Type() string {
return "int32"
}
func (i *int32Value) String() string { return strconv.FormatInt(int64(*i), 10) }
func int32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseInt(sval, 0, 32)
if err != nil {
return 0, err
}
return int32(v), nil
}
// GetInt32 return the int32 value of a flag with the given name
func (f *FlagSet) GetInt32(name string) (int32, error) {
val, err := f.getFlagType(name, "int32", int32Conv)
if err != nil {
return 0, err
}
return val.(int32), nil
}
// Int32Var defines an int32 flag with specified name, default value, and usage string.
// The argument p points to an int32 variable in which to store the value of the flag.
func (f *FlagSet) Int32Var(p *int32, name string, value int32, usage string) {
f.VarP(newInt32Value(value, p), name, "", usage)
}
// Int32VarP is like Int32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32VarP(p *int32, name, shorthand string, value int32, usage string) {
f.VarP(newInt32Value(value, p), name, shorthand, usage)
}
// Int32Var defines an int32 flag with specified name, default value, and usage string.
// The argument p points to an int32 variable in which to store the value of the flag.
func Int32Var(p *int32, name string, value int32, usage string) {
CommandLine.VarP(newInt32Value(value, p), name, "", usage)
}
// Int32VarP is like Int32Var, but accepts a shorthand letter that can be used after a single dash.
func Int32VarP(p *int32, name, shorthand string, value int32, usage string) {
CommandLine.VarP(newInt32Value(value, p), name, shorthand, usage)
}
// Int32 defines an int32 flag with specified name, default value, and usage string.
// The return value is the address of an int32 variable that stores the value of the flag.
func (f *FlagSet) Int32(name string, value int32, usage string) *int32 {
p := new(int32)
f.Int32VarP(p, name, "", value, usage)
return p
}
// Int32P is like Int32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32P(name, shorthand string, value int32, usage string) *int32 {
p := new(int32)
f.Int32VarP(p, name, shorthand, value, usage)
return p
}
// Int32 defines an int32 flag with specified name, default value, and usage string.
// The return value is the address of an int32 variable that stores the value of the flag.
func Int32(name string, value int32, usage string) *int32 {
return CommandLine.Int32P(name, "", value, usage)
}
// Int32P is like Int32, but accepts a shorthand letter that can be used after a single dash.
func Int32P(name, shorthand string, value int32, usage string) *int32 {
return CommandLine.Int32P(name, shorthand, value, usage)
}

174
vendor/github.com/spf13/pflag/int32_slice.go generated vendored Normal file
View File

@ -0,0 +1,174 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- int32Slice Value
type int32SliceValue struct {
value *[]int32
changed bool
}
func newInt32SliceValue(val []int32, p *[]int32) *int32SliceValue {
isv := new(int32SliceValue)
isv.value = p
*isv.value = val
return isv
}
func (s *int32SliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]int32, len(ss))
for i, d := range ss {
var err error
var temp64 int64
temp64, err = strconv.ParseInt(d, 0, 32)
if err != nil {
return err
}
out[i] = int32(temp64)
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *int32SliceValue) Type() string {
return "int32Slice"
}
func (s *int32SliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%d", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func (s *int32SliceValue) fromString(val string) (int32, error) {
t64, err := strconv.ParseInt(val, 0, 32)
if err != nil {
return 0, err
}
return int32(t64), nil
}
func (s *int32SliceValue) toString(val int32) string {
return fmt.Sprintf("%d", val)
}
func (s *int32SliceValue) Append(val string) error {
i, err := s.fromString(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *int32SliceValue) Replace(val []string) error {
out := make([]int32, len(val))
for i, d := range val {
var err error
out[i], err = s.fromString(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *int32SliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = s.toString(d)
}
return out
}
func int32SliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []int32{}, nil
}
ss := strings.Split(val, ",")
out := make([]int32, len(ss))
for i, d := range ss {
var err error
var temp64 int64
temp64, err = strconv.ParseInt(d, 0, 32)
if err != nil {
return nil, err
}
out[i] = int32(temp64)
}
return out, nil
}
// GetInt32Slice return the []int32 value of a flag with the given name
func (f *FlagSet) GetInt32Slice(name string) ([]int32, error) {
val, err := f.getFlagType(name, "int32Slice", int32SliceConv)
if err != nil {
return []int32{}, err
}
return val.([]int32), nil
}
// Int32SliceVar defines a int32Slice flag with specified name, default value, and usage string.
// The argument p points to a []int32 variable in which to store the value of the flag.
func (f *FlagSet) Int32SliceVar(p *[]int32, name string, value []int32, usage string) {
f.VarP(newInt32SliceValue(value, p), name, "", usage)
}
// Int32SliceVarP is like Int32SliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32SliceVarP(p *[]int32, name, shorthand string, value []int32, usage string) {
f.VarP(newInt32SliceValue(value, p), name, shorthand, usage)
}
// Int32SliceVar defines a int32[] flag with specified name, default value, and usage string.
// The argument p points to a int32[] variable in which to store the value of the flag.
func Int32SliceVar(p *[]int32, name string, value []int32, usage string) {
CommandLine.VarP(newInt32SliceValue(value, p), name, "", usage)
}
// Int32SliceVarP is like Int32SliceVar, but accepts a shorthand letter that can be used after a single dash.
func Int32SliceVarP(p *[]int32, name, shorthand string, value []int32, usage string) {
CommandLine.VarP(newInt32SliceValue(value, p), name, shorthand, usage)
}
// Int32Slice defines a []int32 flag with specified name, default value, and usage string.
// The return value is the address of a []int32 variable that stores the value of the flag.
func (f *FlagSet) Int32Slice(name string, value []int32, usage string) *[]int32 {
p := []int32{}
f.Int32SliceVarP(&p, name, "", value, usage)
return &p
}
// Int32SliceP is like Int32Slice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32SliceP(name, shorthand string, value []int32, usage string) *[]int32 {
p := []int32{}
f.Int32SliceVarP(&p, name, shorthand, value, usage)
return &p
}
// Int32Slice defines a []int32 flag with specified name, default value, and usage string.
// The return value is the address of a []int32 variable that stores the value of the flag.
func Int32Slice(name string, value []int32, usage string) *[]int32 {
return CommandLine.Int32SliceP(name, "", value, usage)
}
// Int32SliceP is like Int32Slice, but accepts a shorthand letter that can be used after a single dash.
func Int32SliceP(name, shorthand string, value []int32, usage string) *[]int32 {
return CommandLine.Int32SliceP(name, shorthand, value, usage)
}

84
vendor/github.com/spf13/pflag/int64.go generated vendored Normal file
View File

@ -0,0 +1,84 @@
package pflag
import "strconv"
// -- int64 Value
type int64Value int64
func newInt64Value(val int64, p *int64) *int64Value {
*p = val
return (*int64Value)(p)
}
func (i *int64Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
*i = int64Value(v)
return err
}
func (i *int64Value) Type() string {
return "int64"
}
func (i *int64Value) String() string { return strconv.FormatInt(int64(*i), 10) }
func int64Conv(sval string) (interface{}, error) {
return strconv.ParseInt(sval, 0, 64)
}
// GetInt64 return the int64 value of a flag with the given name
func (f *FlagSet) GetInt64(name string) (int64, error) {
val, err := f.getFlagType(name, "int64", int64Conv)
if err != nil {
return 0, err
}
return val.(int64), nil
}
// Int64Var defines an int64 flag with specified name, default value, and usage string.
// The argument p points to an int64 variable in which to store the value of the flag.
func (f *FlagSet) Int64Var(p *int64, name string, value int64, usage string) {
f.VarP(newInt64Value(value, p), name, "", usage)
}
// Int64VarP is like Int64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64VarP(p *int64, name, shorthand string, value int64, usage string) {
f.VarP(newInt64Value(value, p), name, shorthand, usage)
}
// Int64Var defines an int64 flag with specified name, default value, and usage string.
// The argument p points to an int64 variable in which to store the value of the flag.
func Int64Var(p *int64, name string, value int64, usage string) {
CommandLine.VarP(newInt64Value(value, p), name, "", usage)
}
// Int64VarP is like Int64Var, but accepts a shorthand letter that can be used after a single dash.
func Int64VarP(p *int64, name, shorthand string, value int64, usage string) {
CommandLine.VarP(newInt64Value(value, p), name, shorthand, usage)
}
// Int64 defines an int64 flag with specified name, default value, and usage string.
// The return value is the address of an int64 variable that stores the value of the flag.
func (f *FlagSet) Int64(name string, value int64, usage string) *int64 {
p := new(int64)
f.Int64VarP(p, name, "", value, usage)
return p
}
// Int64P is like Int64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64P(name, shorthand string, value int64, usage string) *int64 {
p := new(int64)
f.Int64VarP(p, name, shorthand, value, usage)
return p
}
// Int64 defines an int64 flag with specified name, default value, and usage string.
// The return value is the address of an int64 variable that stores the value of the flag.
func Int64(name string, value int64, usage string) *int64 {
return CommandLine.Int64P(name, "", value, usage)
}
// Int64P is like Int64, but accepts a shorthand letter that can be used after a single dash.
func Int64P(name, shorthand string, value int64, usage string) *int64 {
return CommandLine.Int64P(name, shorthand, value, usage)
}

166
vendor/github.com/spf13/pflag/int64_slice.go generated vendored Normal file
View File

@ -0,0 +1,166 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- int64Slice Value
type int64SliceValue struct {
value *[]int64
changed bool
}
func newInt64SliceValue(val []int64, p *[]int64) *int64SliceValue {
isv := new(int64SliceValue)
isv.value = p
*isv.value = val
return isv
}
func (s *int64SliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]int64, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.ParseInt(d, 0, 64)
if err != nil {
return err
}
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *int64SliceValue) Type() string {
return "int64Slice"
}
func (s *int64SliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%d", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func (s *int64SliceValue) fromString(val string) (int64, error) {
return strconv.ParseInt(val, 0, 64)
}
func (s *int64SliceValue) toString(val int64) string {
return fmt.Sprintf("%d", val)
}
func (s *int64SliceValue) Append(val string) error {
i, err := s.fromString(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *int64SliceValue) Replace(val []string) error {
out := make([]int64, len(val))
for i, d := range val {
var err error
out[i], err = s.fromString(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *int64SliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = s.toString(d)
}
return out
}
func int64SliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []int64{}, nil
}
ss := strings.Split(val, ",")
out := make([]int64, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.ParseInt(d, 0, 64)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetInt64Slice return the []int64 value of a flag with the given name
func (f *FlagSet) GetInt64Slice(name string) ([]int64, error) {
val, err := f.getFlagType(name, "int64Slice", int64SliceConv)
if err != nil {
return []int64{}, err
}
return val.([]int64), nil
}
// Int64SliceVar defines a int64Slice flag with specified name, default value, and usage string.
// The argument p points to a []int64 variable in which to store the value of the flag.
func (f *FlagSet) Int64SliceVar(p *[]int64, name string, value []int64, usage string) {
f.VarP(newInt64SliceValue(value, p), name, "", usage)
}
// Int64SliceVarP is like Int64SliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64SliceVarP(p *[]int64, name, shorthand string, value []int64, usage string) {
f.VarP(newInt64SliceValue(value, p), name, shorthand, usage)
}
// Int64SliceVar defines a int64[] flag with specified name, default value, and usage string.
// The argument p points to a int64[] variable in which to store the value of the flag.
func Int64SliceVar(p *[]int64, name string, value []int64, usage string) {
CommandLine.VarP(newInt64SliceValue(value, p), name, "", usage)
}
// Int64SliceVarP is like Int64SliceVar, but accepts a shorthand letter that can be used after a single dash.
func Int64SliceVarP(p *[]int64, name, shorthand string, value []int64, usage string) {
CommandLine.VarP(newInt64SliceValue(value, p), name, shorthand, usage)
}
// Int64Slice defines a []int64 flag with specified name, default value, and usage string.
// The return value is the address of a []int64 variable that stores the value of the flag.
func (f *FlagSet) Int64Slice(name string, value []int64, usage string) *[]int64 {
p := []int64{}
f.Int64SliceVarP(&p, name, "", value, usage)
return &p
}
// Int64SliceP is like Int64Slice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64SliceP(name, shorthand string, value []int64, usage string) *[]int64 {
p := []int64{}
f.Int64SliceVarP(&p, name, shorthand, value, usage)
return &p
}
// Int64Slice defines a []int64 flag with specified name, default value, and usage string.
// The return value is the address of a []int64 variable that stores the value of the flag.
func Int64Slice(name string, value []int64, usage string) *[]int64 {
return CommandLine.Int64SliceP(name, "", value, usage)
}
// Int64SliceP is like Int64Slice, but accepts a shorthand letter that can be used after a single dash.
func Int64SliceP(name, shorthand string, value []int64, usage string) *[]int64 {
return CommandLine.Int64SliceP(name, shorthand, value, usage)
}

88
vendor/github.com/spf13/pflag/int8.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- int8 Value
type int8Value int8
func newInt8Value(val int8, p *int8) *int8Value {
*p = val
return (*int8Value)(p)
}
func (i *int8Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 8)
*i = int8Value(v)
return err
}
func (i *int8Value) Type() string {
return "int8"
}
func (i *int8Value) String() string { return strconv.FormatInt(int64(*i), 10) }
func int8Conv(sval string) (interface{}, error) {
v, err := strconv.ParseInt(sval, 0, 8)
if err != nil {
return 0, err
}
return int8(v), nil
}
// GetInt8 return the int8 value of a flag with the given name
func (f *FlagSet) GetInt8(name string) (int8, error) {
val, err := f.getFlagType(name, "int8", int8Conv)
if err != nil {
return 0, err
}
return val.(int8), nil
}
// Int8Var defines an int8 flag with specified name, default value, and usage string.
// The argument p points to an int8 variable in which to store the value of the flag.
func (f *FlagSet) Int8Var(p *int8, name string, value int8, usage string) {
f.VarP(newInt8Value(value, p), name, "", usage)
}
// Int8VarP is like Int8Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int8VarP(p *int8, name, shorthand string, value int8, usage string) {
f.VarP(newInt8Value(value, p), name, shorthand, usage)
}
// Int8Var defines an int8 flag with specified name, default value, and usage string.
// The argument p points to an int8 variable in which to store the value of the flag.
func Int8Var(p *int8, name string, value int8, usage string) {
CommandLine.VarP(newInt8Value(value, p), name, "", usage)
}
// Int8VarP is like Int8Var, but accepts a shorthand letter that can be used after a single dash.
func Int8VarP(p *int8, name, shorthand string, value int8, usage string) {
CommandLine.VarP(newInt8Value(value, p), name, shorthand, usage)
}
// Int8 defines an int8 flag with specified name, default value, and usage string.
// The return value is the address of an int8 variable that stores the value of the flag.
func (f *FlagSet) Int8(name string, value int8, usage string) *int8 {
p := new(int8)
f.Int8VarP(p, name, "", value, usage)
return p
}
// Int8P is like Int8, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int8P(name, shorthand string, value int8, usage string) *int8 {
p := new(int8)
f.Int8VarP(p, name, shorthand, value, usage)
return p
}
// Int8 defines an int8 flag with specified name, default value, and usage string.
// The return value is the address of an int8 variable that stores the value of the flag.
func Int8(name string, value int8, usage string) *int8 {
return CommandLine.Int8P(name, "", value, usage)
}
// Int8P is like Int8, but accepts a shorthand letter that can be used after a single dash.
func Int8P(name, shorthand string, value int8, usage string) *int8 {
return CommandLine.Int8P(name, shorthand, value, usage)
}

158
vendor/github.com/spf13/pflag/int_slice.go generated vendored Normal file
View File

@ -0,0 +1,158 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- intSlice Value
type intSliceValue struct {
value *[]int
changed bool
}
func newIntSliceValue(val []int, p *[]int) *intSliceValue {
isv := new(intSliceValue)
isv.value = p
*isv.value = val
return isv
}
func (s *intSliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]int, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.Atoi(d)
if err != nil {
return err
}
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *intSliceValue) Type() string {
return "intSlice"
}
func (s *intSliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%d", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func (s *intSliceValue) Append(val string) error {
i, err := strconv.Atoi(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *intSliceValue) Replace(val []string) error {
out := make([]int, len(val))
for i, d := range val {
var err error
out[i], err = strconv.Atoi(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *intSliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = strconv.Itoa(d)
}
return out
}
func intSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []int{}, nil
}
ss := strings.Split(val, ",")
out := make([]int, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.Atoi(d)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetIntSlice return the []int value of a flag with the given name
func (f *FlagSet) GetIntSlice(name string) ([]int, error) {
val, err := f.getFlagType(name, "intSlice", intSliceConv)
if err != nil {
return []int{}, err
}
return val.([]int), nil
}
// IntSliceVar defines a intSlice flag with specified name, default value, and usage string.
// The argument p points to a []int variable in which to store the value of the flag.
func (f *FlagSet) IntSliceVar(p *[]int, name string, value []int, usage string) {
f.VarP(newIntSliceValue(value, p), name, "", usage)
}
// IntSliceVarP is like IntSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntSliceVarP(p *[]int, name, shorthand string, value []int, usage string) {
f.VarP(newIntSliceValue(value, p), name, shorthand, usage)
}
// IntSliceVar defines a int[] flag with specified name, default value, and usage string.
// The argument p points to a int[] variable in which to store the value of the flag.
func IntSliceVar(p *[]int, name string, value []int, usage string) {
CommandLine.VarP(newIntSliceValue(value, p), name, "", usage)
}
// IntSliceVarP is like IntSliceVar, but accepts a shorthand letter that can be used after a single dash.
func IntSliceVarP(p *[]int, name, shorthand string, value []int, usage string) {
CommandLine.VarP(newIntSliceValue(value, p), name, shorthand, usage)
}
// IntSlice defines a []int flag with specified name, default value, and usage string.
// The return value is the address of a []int variable that stores the value of the flag.
func (f *FlagSet) IntSlice(name string, value []int, usage string) *[]int {
p := []int{}
f.IntSliceVarP(&p, name, "", value, usage)
return &p
}
// IntSliceP is like IntSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntSliceP(name, shorthand string, value []int, usage string) *[]int {
p := []int{}
f.IntSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// IntSlice defines a []int flag with specified name, default value, and usage string.
// The return value is the address of a []int variable that stores the value of the flag.
func IntSlice(name string, value []int, usage string) *[]int {
return CommandLine.IntSliceP(name, "", value, usage)
}
// IntSliceP is like IntSlice, but accepts a shorthand letter that can be used after a single dash.
func IntSliceP(name, shorthand string, value []int, usage string) *[]int {
return CommandLine.IntSliceP(name, shorthand, value, usage)
}

94
vendor/github.com/spf13/pflag/ip.go generated vendored Normal file
View File

@ -0,0 +1,94 @@
package pflag
import (
"fmt"
"net"
"strings"
)
// -- net.IP value
type ipValue net.IP
func newIPValue(val net.IP, p *net.IP) *ipValue {
*p = val
return (*ipValue)(p)
}
func (i *ipValue) String() string { return net.IP(*i).String() }
func (i *ipValue) Set(s string) error {
ip := net.ParseIP(strings.TrimSpace(s))
if ip == nil {
return fmt.Errorf("failed to parse IP: %q", s)
}
*i = ipValue(ip)
return nil
}
func (i *ipValue) Type() string {
return "ip"
}
func ipConv(sval string) (interface{}, error) {
ip := net.ParseIP(sval)
if ip != nil {
return ip, nil
}
return nil, fmt.Errorf("invalid string being converted to IP address: %s", sval)
}
// GetIP return the net.IP value of a flag with the given name
func (f *FlagSet) GetIP(name string) (net.IP, error) {
val, err := f.getFlagType(name, "ip", ipConv)
if err != nil {
return nil, err
}
return val.(net.IP), nil
}
// IPVar defines an net.IP flag with specified name, default value, and usage string.
// The argument p points to an net.IP variable in which to store the value of the flag.
func (f *FlagSet) IPVar(p *net.IP, name string, value net.IP, usage string) {
f.VarP(newIPValue(value, p), name, "", usage)
}
// IPVarP is like IPVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPVarP(p *net.IP, name, shorthand string, value net.IP, usage string) {
f.VarP(newIPValue(value, p), name, shorthand, usage)
}
// IPVar defines an net.IP flag with specified name, default value, and usage string.
// The argument p points to an net.IP variable in which to store the value of the flag.
func IPVar(p *net.IP, name string, value net.IP, usage string) {
CommandLine.VarP(newIPValue(value, p), name, "", usage)
}
// IPVarP is like IPVar, but accepts a shorthand letter that can be used after a single dash.
func IPVarP(p *net.IP, name, shorthand string, value net.IP, usage string) {
CommandLine.VarP(newIPValue(value, p), name, shorthand, usage)
}
// IP defines an net.IP flag with specified name, default value, and usage string.
// The return value is the address of an net.IP variable that stores the value of the flag.
func (f *FlagSet) IP(name string, value net.IP, usage string) *net.IP {
p := new(net.IP)
f.IPVarP(p, name, "", value, usage)
return p
}
// IPP is like IP, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPP(name, shorthand string, value net.IP, usage string) *net.IP {
p := new(net.IP)
f.IPVarP(p, name, shorthand, value, usage)
return p
}
// IP defines an net.IP flag with specified name, default value, and usage string.
// The return value is the address of an net.IP variable that stores the value of the flag.
func IP(name string, value net.IP, usage string) *net.IP {
return CommandLine.IPP(name, "", value, usage)
}
// IPP is like IP, but accepts a shorthand letter that can be used after a single dash.
func IPP(name, shorthand string, value net.IP, usage string) *net.IP {
return CommandLine.IPP(name, shorthand, value, usage)
}

186
vendor/github.com/spf13/pflag/ip_slice.go generated vendored Normal file
View File

@ -0,0 +1,186 @@
package pflag
import (
"fmt"
"io"
"net"
"strings"
)
// -- ipSlice Value
type ipSliceValue struct {
value *[]net.IP
changed bool
}
func newIPSliceValue(val []net.IP, p *[]net.IP) *ipSliceValue {
ipsv := new(ipSliceValue)
ipsv.value = p
*ipsv.value = val
return ipsv
}
// Set converts, and assigns, the comma-separated IP argument string representation as the []net.IP value of this flag.
// If Set is called on a flag that already has a []net.IP assigned, the newly converted values will be appended.
func (s *ipSliceValue) Set(val string) error {
// remove all quote characters
rmQuote := strings.NewReplacer(`"`, "", `'`, "", "`", "")
// read flag arguments with CSV parser
ipStrSlice, err := readAsCSV(rmQuote.Replace(val))
if err != nil && err != io.EOF {
return err
}
// parse ip values into slice
out := make([]net.IP, 0, len(ipStrSlice))
for _, ipStr := range ipStrSlice {
ip := net.ParseIP(strings.TrimSpace(ipStr))
if ip == nil {
return fmt.Errorf("invalid string being converted to IP address: %s", ipStr)
}
out = append(out, ip)
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
// Type returns a string that uniquely represents this flag's type.
func (s *ipSliceValue) Type() string {
return "ipSlice"
}
// String defines a "native" format for this net.IP slice flag value.
func (s *ipSliceValue) String() string {
ipStrSlice := make([]string, len(*s.value))
for i, ip := range *s.value {
ipStrSlice[i] = ip.String()
}
out, _ := writeAsCSV(ipStrSlice)
return "[" + out + "]"
}
func (s *ipSliceValue) fromString(val string) (net.IP, error) {
return net.ParseIP(strings.TrimSpace(val)), nil
}
func (s *ipSliceValue) toString(val net.IP) string {
return val.String()
}
func (s *ipSliceValue) Append(val string) error {
i, err := s.fromString(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *ipSliceValue) Replace(val []string) error {
out := make([]net.IP, len(val))
for i, d := range val {
var err error
out[i], err = s.fromString(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *ipSliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = s.toString(d)
}
return out
}
func ipSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []net.IP{}, nil
}
ss := strings.Split(val, ",")
out := make([]net.IP, len(ss))
for i, sval := range ss {
ip := net.ParseIP(strings.TrimSpace(sval))
if ip == nil {
return nil, fmt.Errorf("invalid string being converted to IP address: %s", sval)
}
out[i] = ip
}
return out, nil
}
// GetIPSlice returns the []net.IP value of a flag with the given name
func (f *FlagSet) GetIPSlice(name string) ([]net.IP, error) {
val, err := f.getFlagType(name, "ipSlice", ipSliceConv)
if err != nil {
return []net.IP{}, err
}
return val.([]net.IP), nil
}
// IPSliceVar defines a ipSlice flag with specified name, default value, and usage string.
// The argument p points to a []net.IP variable in which to store the value of the flag.
func (f *FlagSet) IPSliceVar(p *[]net.IP, name string, value []net.IP, usage string) {
f.VarP(newIPSliceValue(value, p), name, "", usage)
}
// IPSliceVarP is like IPSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPSliceVarP(p *[]net.IP, name, shorthand string, value []net.IP, usage string) {
f.VarP(newIPSliceValue(value, p), name, shorthand, usage)
}
// IPSliceVar defines a []net.IP flag with specified name, default value, and usage string.
// The argument p points to a []net.IP variable in which to store the value of the flag.
func IPSliceVar(p *[]net.IP, name string, value []net.IP, usage string) {
CommandLine.VarP(newIPSliceValue(value, p), name, "", usage)
}
// IPSliceVarP is like IPSliceVar, but accepts a shorthand letter that can be used after a single dash.
func IPSliceVarP(p *[]net.IP, name, shorthand string, value []net.IP, usage string) {
CommandLine.VarP(newIPSliceValue(value, p), name, shorthand, usage)
}
// IPSlice defines a []net.IP flag with specified name, default value, and usage string.
// The return value is the address of a []net.IP variable that stores the value of that flag.
func (f *FlagSet) IPSlice(name string, value []net.IP, usage string) *[]net.IP {
p := []net.IP{}
f.IPSliceVarP(&p, name, "", value, usage)
return &p
}
// IPSliceP is like IPSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPSliceP(name, shorthand string, value []net.IP, usage string) *[]net.IP {
p := []net.IP{}
f.IPSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// IPSlice defines a []net.IP flag with specified name, default value, and usage string.
// The return value is the address of a []net.IP variable that stores the value of the flag.
func IPSlice(name string, value []net.IP, usage string) *[]net.IP {
return CommandLine.IPSliceP(name, "", value, usage)
}
// IPSliceP is like IPSlice, but accepts a shorthand letter that can be used after a single dash.
func IPSliceP(name, shorthand string, value []net.IP, usage string) *[]net.IP {
return CommandLine.IPSliceP(name, shorthand, value, usage)
}

122
vendor/github.com/spf13/pflag/ipmask.go generated vendored Normal file
View File

@ -0,0 +1,122 @@
package pflag
import (
"fmt"
"net"
"strconv"
)
// -- net.IPMask value
type ipMaskValue net.IPMask
func newIPMaskValue(val net.IPMask, p *net.IPMask) *ipMaskValue {
*p = val
return (*ipMaskValue)(p)
}
func (i *ipMaskValue) String() string { return net.IPMask(*i).String() }
func (i *ipMaskValue) Set(s string) error {
ip := ParseIPv4Mask(s)
if ip == nil {
return fmt.Errorf("failed to parse IP mask: %q", s)
}
*i = ipMaskValue(ip)
return nil
}
func (i *ipMaskValue) Type() string {
return "ipMask"
}
// ParseIPv4Mask written in IP form (e.g. 255.255.255.0).
// This function should really belong to the net package.
func ParseIPv4Mask(s string) net.IPMask {
mask := net.ParseIP(s)
if mask == nil {
if len(s) != 8 {
return nil
}
// net.IPMask.String() actually outputs things like ffffff00
// so write a horrible parser for that as well :-(
m := []int{}
for i := 0; i < 4; i++ {
b := "0x" + s[2*i:2*i+2]
d, err := strconv.ParseInt(b, 0, 0)
if err != nil {
return nil
}
m = append(m, int(d))
}
s := fmt.Sprintf("%d.%d.%d.%d", m[0], m[1], m[2], m[3])
mask = net.ParseIP(s)
if mask == nil {
return nil
}
}
return net.IPv4Mask(mask[12], mask[13], mask[14], mask[15])
}
func parseIPv4Mask(sval string) (interface{}, error) {
mask := ParseIPv4Mask(sval)
if mask == nil {
return nil, fmt.Errorf("unable to parse %s as net.IPMask", sval)
}
return mask, nil
}
// GetIPv4Mask return the net.IPv4Mask value of a flag with the given name
func (f *FlagSet) GetIPv4Mask(name string) (net.IPMask, error) {
val, err := f.getFlagType(name, "ipMask", parseIPv4Mask)
if err != nil {
return nil, err
}
return val.(net.IPMask), nil
}
// IPMaskVar defines an net.IPMask flag with specified name, default value, and usage string.
// The argument p points to an net.IPMask variable in which to store the value of the flag.
func (f *FlagSet) IPMaskVar(p *net.IPMask, name string, value net.IPMask, usage string) {
f.VarP(newIPMaskValue(value, p), name, "", usage)
}
// IPMaskVarP is like IPMaskVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPMaskVarP(p *net.IPMask, name, shorthand string, value net.IPMask, usage string) {
f.VarP(newIPMaskValue(value, p), name, shorthand, usage)
}
// IPMaskVar defines an net.IPMask flag with specified name, default value, and usage string.
// The argument p points to an net.IPMask variable in which to store the value of the flag.
func IPMaskVar(p *net.IPMask, name string, value net.IPMask, usage string) {
CommandLine.VarP(newIPMaskValue(value, p), name, "", usage)
}
// IPMaskVarP is like IPMaskVar, but accepts a shorthand letter that can be used after a single dash.
func IPMaskVarP(p *net.IPMask, name, shorthand string, value net.IPMask, usage string) {
CommandLine.VarP(newIPMaskValue(value, p), name, shorthand, usage)
}
// IPMask defines an net.IPMask flag with specified name, default value, and usage string.
// The return value is the address of an net.IPMask variable that stores the value of the flag.
func (f *FlagSet) IPMask(name string, value net.IPMask, usage string) *net.IPMask {
p := new(net.IPMask)
f.IPMaskVarP(p, name, "", value, usage)
return p
}
// IPMaskP is like IPMask, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPMaskP(name, shorthand string, value net.IPMask, usage string) *net.IPMask {
p := new(net.IPMask)
f.IPMaskVarP(p, name, shorthand, value, usage)
return p
}
// IPMask defines an net.IPMask flag with specified name, default value, and usage string.
// The return value is the address of an net.IPMask variable that stores the value of the flag.
func IPMask(name string, value net.IPMask, usage string) *net.IPMask {
return CommandLine.IPMaskP(name, "", value, usage)
}
// IPMaskP is like IP, but accepts a shorthand letter that can be used after a single dash.
func IPMaskP(name, shorthand string, value net.IPMask, usage string) *net.IPMask {
return CommandLine.IPMaskP(name, shorthand, value, usage)
}

98
vendor/github.com/spf13/pflag/ipnet.go generated vendored Normal file
View File

@ -0,0 +1,98 @@
package pflag
import (
"fmt"
"net"
"strings"
)
// IPNet adapts net.IPNet for use as a flag.
type ipNetValue net.IPNet
func (ipnet ipNetValue) String() string {
n := net.IPNet(ipnet)
return n.String()
}
func (ipnet *ipNetValue) Set(value string) error {
_, n, err := net.ParseCIDR(strings.TrimSpace(value))
if err != nil {
return err
}
*ipnet = ipNetValue(*n)
return nil
}
func (*ipNetValue) Type() string {
return "ipNet"
}
func newIPNetValue(val net.IPNet, p *net.IPNet) *ipNetValue {
*p = val
return (*ipNetValue)(p)
}
func ipNetConv(sval string) (interface{}, error) {
_, n, err := net.ParseCIDR(strings.TrimSpace(sval))
if err == nil {
return *n, nil
}
return nil, fmt.Errorf("invalid string being converted to IPNet: %s", sval)
}
// GetIPNet return the net.IPNet value of a flag with the given name
func (f *FlagSet) GetIPNet(name string) (net.IPNet, error) {
val, err := f.getFlagType(name, "ipNet", ipNetConv)
if err != nil {
return net.IPNet{}, err
}
return val.(net.IPNet), nil
}
// IPNetVar defines an net.IPNet flag with specified name, default value, and usage string.
// The argument p points to an net.IPNet variable in which to store the value of the flag.
func (f *FlagSet) IPNetVar(p *net.IPNet, name string, value net.IPNet, usage string) {
f.VarP(newIPNetValue(value, p), name, "", usage)
}
// IPNetVarP is like IPNetVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPNetVarP(p *net.IPNet, name, shorthand string, value net.IPNet, usage string) {
f.VarP(newIPNetValue(value, p), name, shorthand, usage)
}
// IPNetVar defines an net.IPNet flag with specified name, default value, and usage string.
// The argument p points to an net.IPNet variable in which to store the value of the flag.
func IPNetVar(p *net.IPNet, name string, value net.IPNet, usage string) {
CommandLine.VarP(newIPNetValue(value, p), name, "", usage)
}
// IPNetVarP is like IPNetVar, but accepts a shorthand letter that can be used after a single dash.
func IPNetVarP(p *net.IPNet, name, shorthand string, value net.IPNet, usage string) {
CommandLine.VarP(newIPNetValue(value, p), name, shorthand, usage)
}
// IPNet defines an net.IPNet flag with specified name, default value, and usage string.
// The return value is the address of an net.IPNet variable that stores the value of the flag.
func (f *FlagSet) IPNet(name string, value net.IPNet, usage string) *net.IPNet {
p := new(net.IPNet)
f.IPNetVarP(p, name, "", value, usage)
return p
}
// IPNetP is like IPNet, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPNetP(name, shorthand string, value net.IPNet, usage string) *net.IPNet {
p := new(net.IPNet)
f.IPNetVarP(p, name, shorthand, value, usage)
return p
}
// IPNet defines an net.IPNet flag with specified name, default value, and usage string.
// The return value is the address of an net.IPNet variable that stores the value of the flag.
func IPNet(name string, value net.IPNet, usage string) *net.IPNet {
return CommandLine.IPNetP(name, "", value, usage)
}
// IPNetP is like IPNet, but accepts a shorthand letter that can be used after a single dash.
func IPNetP(name, shorthand string, value net.IPNet, usage string) *net.IPNet {
return CommandLine.IPNetP(name, shorthand, value, usage)
}

80
vendor/github.com/spf13/pflag/string.go generated vendored Normal file
View File

@ -0,0 +1,80 @@
package pflag
// -- string Value
type stringValue string
func newStringValue(val string, p *string) *stringValue {
*p = val
return (*stringValue)(p)
}
func (s *stringValue) Set(val string) error {
*s = stringValue(val)
return nil
}
func (s *stringValue) Type() string {
return "string"
}
func (s *stringValue) String() string { return string(*s) }
func stringConv(sval string) (interface{}, error) {
return sval, nil
}
// GetString return the string value of a flag with the given name
func (f *FlagSet) GetString(name string) (string, error) {
val, err := f.getFlagType(name, "string", stringConv)
if err != nil {
return "", err
}
return val.(string), nil
}
// StringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a string variable in which to store the value of the flag.
func (f *FlagSet) StringVar(p *string, name string, value string, usage string) {
f.VarP(newStringValue(value, p), name, "", usage)
}
// StringVarP is like StringVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringVarP(p *string, name, shorthand string, value string, usage string) {
f.VarP(newStringValue(value, p), name, shorthand, usage)
}
// StringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a string variable in which to store the value of the flag.
func StringVar(p *string, name string, value string, usage string) {
CommandLine.VarP(newStringValue(value, p), name, "", usage)
}
// StringVarP is like StringVar, but accepts a shorthand letter that can be used after a single dash.
func StringVarP(p *string, name, shorthand string, value string, usage string) {
CommandLine.VarP(newStringValue(value, p), name, shorthand, usage)
}
// String defines a string flag with specified name, default value, and usage string.
// The return value is the address of a string variable that stores the value of the flag.
func (f *FlagSet) String(name string, value string, usage string) *string {
p := new(string)
f.StringVarP(p, name, "", value, usage)
return p
}
// StringP is like String, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringP(name, shorthand string, value string, usage string) *string {
p := new(string)
f.StringVarP(p, name, shorthand, value, usage)
return p
}
// String defines a string flag with specified name, default value, and usage string.
// The return value is the address of a string variable that stores the value of the flag.
func String(name string, value string, usage string) *string {
return CommandLine.StringP(name, "", value, usage)
}
// StringP is like String, but accepts a shorthand letter that can be used after a single dash.
func StringP(name, shorthand string, value string, usage string) *string {
return CommandLine.StringP(name, shorthand, value, usage)
}

129
vendor/github.com/spf13/pflag/string_array.go generated vendored Normal file
View File

@ -0,0 +1,129 @@
package pflag
// -- stringArray Value
type stringArrayValue struct {
value *[]string
changed bool
}
func newStringArrayValue(val []string, p *[]string) *stringArrayValue {
ssv := new(stringArrayValue)
ssv.value = p
*ssv.value = val
return ssv
}
func (s *stringArrayValue) Set(val string) error {
if !s.changed {
*s.value = []string{val}
s.changed = true
} else {
*s.value = append(*s.value, val)
}
return nil
}
func (s *stringArrayValue) Append(val string) error {
*s.value = append(*s.value, val)
return nil
}
func (s *stringArrayValue) Replace(val []string) error {
out := make([]string, len(val))
for i, d := range val {
var err error
out[i] = d
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *stringArrayValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = d
}
return out
}
func (s *stringArrayValue) Type() string {
return "stringArray"
}
func (s *stringArrayValue) String() string {
str, _ := writeAsCSV(*s.value)
return "[" + str + "]"
}
func stringArrayConv(sval string) (interface{}, error) {
sval = sval[1 : len(sval)-1]
// An empty string would cause a array with one (empty) string
if len(sval) == 0 {
return []string{}, nil
}
return readAsCSV(sval)
}
// GetStringArray return the []string value of a flag with the given name
func (f *FlagSet) GetStringArray(name string) ([]string, error) {
val, err := f.getFlagType(name, "stringArray", stringArrayConv)
if err != nil {
return []string{}, err
}
return val.([]string), nil
}
// StringArrayVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the values of the multiple flags.
// The value of each argument will not try to be separated by comma. Use a StringSlice for that.
func (f *FlagSet) StringArrayVar(p *[]string, name string, value []string, usage string) {
f.VarP(newStringArrayValue(value, p), name, "", usage)
}
// StringArrayVarP is like StringArrayVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringArrayVarP(p *[]string, name, shorthand string, value []string, usage string) {
f.VarP(newStringArrayValue(value, p), name, shorthand, usage)
}
// StringArrayVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the value of the flag.
// The value of each argument will not try to be separated by comma. Use a StringSlice for that.
func StringArrayVar(p *[]string, name string, value []string, usage string) {
CommandLine.VarP(newStringArrayValue(value, p), name, "", usage)
}
// StringArrayVarP is like StringArrayVar, but accepts a shorthand letter that can be used after a single dash.
func StringArrayVarP(p *[]string, name, shorthand string, value []string, usage string) {
CommandLine.VarP(newStringArrayValue(value, p), name, shorthand, usage)
}
// StringArray defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma. Use a StringSlice for that.
func (f *FlagSet) StringArray(name string, value []string, usage string) *[]string {
p := []string{}
f.StringArrayVarP(&p, name, "", value, usage)
return &p
}
// StringArrayP is like StringArray, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringArrayP(name, shorthand string, value []string, usage string) *[]string {
p := []string{}
f.StringArrayVarP(&p, name, shorthand, value, usage)
return &p
}
// StringArray defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma. Use a StringSlice for that.
func StringArray(name string, value []string, usage string) *[]string {
return CommandLine.StringArrayP(name, "", value, usage)
}
// StringArrayP is like StringArray, but accepts a shorthand letter that can be used after a single dash.
func StringArrayP(name, shorthand string, value []string, usage string) *[]string {
return CommandLine.StringArrayP(name, shorthand, value, usage)
}

163
vendor/github.com/spf13/pflag/string_slice.go generated vendored Normal file
View File

@ -0,0 +1,163 @@
package pflag
import (
"bytes"
"encoding/csv"
"strings"
)
// -- stringSlice Value
type stringSliceValue struct {
value *[]string
changed bool
}
func newStringSliceValue(val []string, p *[]string) *stringSliceValue {
ssv := new(stringSliceValue)
ssv.value = p
*ssv.value = val
return ssv
}
func readAsCSV(val string) ([]string, error) {
if val == "" {
return []string{}, nil
}
stringReader := strings.NewReader(val)
csvReader := csv.NewReader(stringReader)
return csvReader.Read()
}
func writeAsCSV(vals []string) (string, error) {
b := &bytes.Buffer{}
w := csv.NewWriter(b)
err := w.Write(vals)
if err != nil {
return "", err
}
w.Flush()
return strings.TrimSuffix(b.String(), "\n"), nil
}
func (s *stringSliceValue) Set(val string) error {
v, err := readAsCSV(val)
if err != nil {
return err
}
if !s.changed {
*s.value = v
} else {
*s.value = append(*s.value, v...)
}
s.changed = true
return nil
}
func (s *stringSliceValue) Type() string {
return "stringSlice"
}
func (s *stringSliceValue) String() string {
str, _ := writeAsCSV(*s.value)
return "[" + str + "]"
}
func (s *stringSliceValue) Append(val string) error {
*s.value = append(*s.value, val)
return nil
}
func (s *stringSliceValue) Replace(val []string) error {
*s.value = val
return nil
}
func (s *stringSliceValue) GetSlice() []string {
return *s.value
}
func stringSliceConv(sval string) (interface{}, error) {
sval = sval[1 : len(sval)-1]
// An empty string would cause a slice with one (empty) string
if len(sval) == 0 {
return []string{}, nil
}
return readAsCSV(sval)
}
// GetStringSlice return the []string value of a flag with the given name
func (f *FlagSet) GetStringSlice(name string) ([]string, error) {
val, err := f.getFlagType(name, "stringSlice", stringSliceConv)
if err != nil {
return []string{}, err
}
return val.([]string), nil
}
// StringSliceVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the value of the flag.
// Compared to StringArray flags, StringSlice flags take comma-separated value as arguments and split them accordingly.
// For example:
// --ss="v1,v2" --ss="v3"
// will result in
// []string{"v1", "v2", "v3"}
func (f *FlagSet) StringSliceVar(p *[]string, name string, value []string, usage string) {
f.VarP(newStringSliceValue(value, p), name, "", usage)
}
// StringSliceVarP is like StringSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringSliceVarP(p *[]string, name, shorthand string, value []string, usage string) {
f.VarP(newStringSliceValue(value, p), name, shorthand, usage)
}
// StringSliceVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the value of the flag.
// Compared to StringArray flags, StringSlice flags take comma-separated value as arguments and split them accordingly.
// For example:
// --ss="v1,v2" --ss="v3"
// will result in
// []string{"v1", "v2", "v3"}
func StringSliceVar(p *[]string, name string, value []string, usage string) {
CommandLine.VarP(newStringSliceValue(value, p), name, "", usage)
}
// StringSliceVarP is like StringSliceVar, but accepts a shorthand letter that can be used after a single dash.
func StringSliceVarP(p *[]string, name, shorthand string, value []string, usage string) {
CommandLine.VarP(newStringSliceValue(value, p), name, shorthand, usage)
}
// StringSlice defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
// Compared to StringArray flags, StringSlice flags take comma-separated value as arguments and split them accordingly.
// For example:
// --ss="v1,v2" --ss="v3"
// will result in
// []string{"v1", "v2", "v3"}
func (f *FlagSet) StringSlice(name string, value []string, usage string) *[]string {
p := []string{}
f.StringSliceVarP(&p, name, "", value, usage)
return &p
}
// StringSliceP is like StringSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringSliceP(name, shorthand string, value []string, usage string) *[]string {
p := []string{}
f.StringSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// StringSlice defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
// Compared to StringArray flags, StringSlice flags take comma-separated value as arguments and split them accordingly.
// For example:
// --ss="v1,v2" --ss="v3"
// will result in
// []string{"v1", "v2", "v3"}
func StringSlice(name string, value []string, usage string) *[]string {
return CommandLine.StringSliceP(name, "", value, usage)
}
// StringSliceP is like StringSlice, but accepts a shorthand letter that can be used after a single dash.
func StringSliceP(name, shorthand string, value []string, usage string) *[]string {
return CommandLine.StringSliceP(name, shorthand, value, usage)
}

149
vendor/github.com/spf13/pflag/string_to_int.go generated vendored Normal file
View File

@ -0,0 +1,149 @@
package pflag
import (
"bytes"
"fmt"
"strconv"
"strings"
)
// -- stringToInt Value
type stringToIntValue struct {
value *map[string]int
changed bool
}
func newStringToIntValue(val map[string]int, p *map[string]int) *stringToIntValue {
ssv := new(stringToIntValue)
ssv.value = p
*ssv.value = val
return ssv
}
// Format: a=1,b=2
func (s *stringToIntValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make(map[string]int, len(ss))
for _, pair := range ss {
kv := strings.SplitN(pair, "=", 2)
if len(kv) != 2 {
return fmt.Errorf("%s must be formatted as key=value", pair)
}
var err error
out[kv[0]], err = strconv.Atoi(kv[1])
if err != nil {
return err
}
}
if !s.changed {
*s.value = out
} else {
for k, v := range out {
(*s.value)[k] = v
}
}
s.changed = true
return nil
}
func (s *stringToIntValue) Type() string {
return "stringToInt"
}
func (s *stringToIntValue) String() string {
var buf bytes.Buffer
i := 0
for k, v := range *s.value {
if i > 0 {
buf.WriteRune(',')
}
buf.WriteString(k)
buf.WriteRune('=')
buf.WriteString(strconv.Itoa(v))
i++
}
return "[" + buf.String() + "]"
}
func stringToIntConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// An empty string would cause an empty map
if len(val) == 0 {
return map[string]int{}, nil
}
ss := strings.Split(val, ",")
out := make(map[string]int, len(ss))
for _, pair := range ss {
kv := strings.SplitN(pair, "=", 2)
if len(kv) != 2 {
return nil, fmt.Errorf("%s must be formatted as key=value", pair)
}
var err error
out[kv[0]], err = strconv.Atoi(kv[1])
if err != nil {
return nil, err
}
}
return out, nil
}
// GetStringToInt return the map[string]int value of a flag with the given name
func (f *FlagSet) GetStringToInt(name string) (map[string]int, error) {
val, err := f.getFlagType(name, "stringToInt", stringToIntConv)
if err != nil {
return map[string]int{}, err
}
return val.(map[string]int), nil
}
// StringToIntVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a map[string]int variable in which to store the values of the multiple flags.
// The value of each argument will not try to be separated by comma
func (f *FlagSet) StringToIntVar(p *map[string]int, name string, value map[string]int, usage string) {
f.VarP(newStringToIntValue(value, p), name, "", usage)
}
// StringToIntVarP is like StringToIntVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringToIntVarP(p *map[string]int, name, shorthand string, value map[string]int, usage string) {
f.VarP(newStringToIntValue(value, p), name, shorthand, usage)
}
// StringToIntVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a map[string]int variable in which to store the value of the flag.
// The value of each argument will not try to be separated by comma
func StringToIntVar(p *map[string]int, name string, value map[string]int, usage string) {
CommandLine.VarP(newStringToIntValue(value, p), name, "", usage)
}
// StringToIntVarP is like StringToIntVar, but accepts a shorthand letter that can be used after a single dash.
func StringToIntVarP(p *map[string]int, name, shorthand string, value map[string]int, usage string) {
CommandLine.VarP(newStringToIntValue(value, p), name, shorthand, usage)
}
// StringToInt defines a string flag with specified name, default value, and usage string.
// The return value is the address of a map[string]int variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma
func (f *FlagSet) StringToInt(name string, value map[string]int, usage string) *map[string]int {
p := map[string]int{}
f.StringToIntVarP(&p, name, "", value, usage)
return &p
}
// StringToIntP is like StringToInt, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringToIntP(name, shorthand string, value map[string]int, usage string) *map[string]int {
p := map[string]int{}
f.StringToIntVarP(&p, name, shorthand, value, usage)
return &p
}
// StringToInt defines a string flag with specified name, default value, and usage string.
// The return value is the address of a map[string]int variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma
func StringToInt(name string, value map[string]int, usage string) *map[string]int {
return CommandLine.StringToIntP(name, "", value, usage)
}
// StringToIntP is like StringToInt, but accepts a shorthand letter that can be used after a single dash.
func StringToIntP(name, shorthand string, value map[string]int, usage string) *map[string]int {
return CommandLine.StringToIntP(name, shorthand, value, usage)
}

149
vendor/github.com/spf13/pflag/string_to_int64.go generated vendored Normal file
View File

@ -0,0 +1,149 @@
package pflag
import (
"bytes"
"fmt"
"strconv"
"strings"
)
// -- stringToInt64 Value
type stringToInt64Value struct {
value *map[string]int64
changed bool
}
func newStringToInt64Value(val map[string]int64, p *map[string]int64) *stringToInt64Value {
ssv := new(stringToInt64Value)
ssv.value = p
*ssv.value = val
return ssv
}
// Format: a=1,b=2
func (s *stringToInt64Value) Set(val string) error {
ss := strings.Split(val, ",")
out := make(map[string]int64, len(ss))
for _, pair := range ss {
kv := strings.SplitN(pair, "=", 2)
if len(kv) != 2 {
return fmt.Errorf("%s must be formatted as key=value", pair)
}
var err error
out[kv[0]], err = strconv.ParseInt(kv[1], 10, 64)
if err != nil {
return err
}
}
if !s.changed {
*s.value = out
} else {
for k, v := range out {
(*s.value)[k] = v
}
}
s.changed = true
return nil
}
func (s *stringToInt64Value) Type() string {
return "stringToInt64"
}
func (s *stringToInt64Value) String() string {
var buf bytes.Buffer
i := 0
for k, v := range *s.value {
if i > 0 {
buf.WriteRune(',')
}
buf.WriteString(k)
buf.WriteRune('=')
buf.WriteString(strconv.FormatInt(v, 10))
i++
}
return "[" + buf.String() + "]"
}
func stringToInt64Conv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// An empty string would cause an empty map
if len(val) == 0 {
return map[string]int64{}, nil
}
ss := strings.Split(val, ",")
out := make(map[string]int64, len(ss))
for _, pair := range ss {
kv := strings.SplitN(pair, "=", 2)
if len(kv) != 2 {
return nil, fmt.Errorf("%s must be formatted as key=value", pair)
}
var err error
out[kv[0]], err = strconv.ParseInt(kv[1], 10, 64)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetStringToInt64 return the map[string]int64 value of a flag with the given name
func (f *FlagSet) GetStringToInt64(name string) (map[string]int64, error) {
val, err := f.getFlagType(name, "stringToInt64", stringToInt64Conv)
if err != nil {
return map[string]int64{}, err
}
return val.(map[string]int64), nil
}
// StringToInt64Var defines a string flag with specified name, default value, and usage string.
// The argument p point64s to a map[string]int64 variable in which to store the values of the multiple flags.
// The value of each argument will not try to be separated by comma
func (f *FlagSet) StringToInt64Var(p *map[string]int64, name string, value map[string]int64, usage string) {
f.VarP(newStringToInt64Value(value, p), name, "", usage)
}
// StringToInt64VarP is like StringToInt64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringToInt64VarP(p *map[string]int64, name, shorthand string, value map[string]int64, usage string) {
f.VarP(newStringToInt64Value(value, p), name, shorthand, usage)
}
// StringToInt64Var defines a string flag with specified name, default value, and usage string.
// The argument p point64s to a map[string]int64 variable in which to store the value of the flag.
// The value of each argument will not try to be separated by comma
func StringToInt64Var(p *map[string]int64, name string, value map[string]int64, usage string) {
CommandLine.VarP(newStringToInt64Value(value, p), name, "", usage)
}
// StringToInt64VarP is like StringToInt64Var, but accepts a shorthand letter that can be used after a single dash.
func StringToInt64VarP(p *map[string]int64, name, shorthand string, value map[string]int64, usage string) {
CommandLine.VarP(newStringToInt64Value(value, p), name, shorthand, usage)
}
// StringToInt64 defines a string flag with specified name, default value, and usage string.
// The return value is the address of a map[string]int64 variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma
func (f *FlagSet) StringToInt64(name string, value map[string]int64, usage string) *map[string]int64 {
p := map[string]int64{}
f.StringToInt64VarP(&p, name, "", value, usage)
return &p
}
// StringToInt64P is like StringToInt64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringToInt64P(name, shorthand string, value map[string]int64, usage string) *map[string]int64 {
p := map[string]int64{}
f.StringToInt64VarP(&p, name, shorthand, value, usage)
return &p
}
// StringToInt64 defines a string flag with specified name, default value, and usage string.
// The return value is the address of a map[string]int64 variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma
func StringToInt64(name string, value map[string]int64, usage string) *map[string]int64 {
return CommandLine.StringToInt64P(name, "", value, usage)
}
// StringToInt64P is like StringToInt64, but accepts a shorthand letter that can be used after a single dash.
func StringToInt64P(name, shorthand string, value map[string]int64, usage string) *map[string]int64 {
return CommandLine.StringToInt64P(name, shorthand, value, usage)
}

160
vendor/github.com/spf13/pflag/string_to_string.go generated vendored Normal file
View File

@ -0,0 +1,160 @@
package pflag
import (
"bytes"
"encoding/csv"
"fmt"
"strings"
)
// -- stringToString Value
type stringToStringValue struct {
value *map[string]string
changed bool
}
func newStringToStringValue(val map[string]string, p *map[string]string) *stringToStringValue {
ssv := new(stringToStringValue)
ssv.value = p
*ssv.value = val
return ssv
}
// Format: a=1,b=2
func (s *stringToStringValue) Set(val string) error {
var ss []string
n := strings.Count(val, "=")
switch n {
case 0:
return fmt.Errorf("%s must be formatted as key=value", val)
case 1:
ss = append(ss, strings.Trim(val, `"`))
default:
r := csv.NewReader(strings.NewReader(val))
var err error
ss, err = r.Read()
if err != nil {
return err
}
}
out := make(map[string]string, len(ss))
for _, pair := range ss {
kv := strings.SplitN(pair, "=", 2)
if len(kv) != 2 {
return fmt.Errorf("%s must be formatted as key=value", pair)
}
out[kv[0]] = kv[1]
}
if !s.changed {
*s.value = out
} else {
for k, v := range out {
(*s.value)[k] = v
}
}
s.changed = true
return nil
}
func (s *stringToStringValue) Type() string {
return "stringToString"
}
func (s *stringToStringValue) String() string {
records := make([]string, 0, len(*s.value)>>1)
for k, v := range *s.value {
records = append(records, k+"="+v)
}
var buf bytes.Buffer
w := csv.NewWriter(&buf)
if err := w.Write(records); err != nil {
panic(err)
}
w.Flush()
return "[" + strings.TrimSpace(buf.String()) + "]"
}
func stringToStringConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// An empty string would cause an empty map
if len(val) == 0 {
return map[string]string{}, nil
}
r := csv.NewReader(strings.NewReader(val))
ss, err := r.Read()
if err != nil {
return nil, err
}
out := make(map[string]string, len(ss))
for _, pair := range ss {
kv := strings.SplitN(pair, "=", 2)
if len(kv) != 2 {
return nil, fmt.Errorf("%s must be formatted as key=value", pair)
}
out[kv[0]] = kv[1]
}
return out, nil
}
// GetStringToString return the map[string]string value of a flag with the given name
func (f *FlagSet) GetStringToString(name string) (map[string]string, error) {
val, err := f.getFlagType(name, "stringToString", stringToStringConv)
if err != nil {
return map[string]string{}, err
}
return val.(map[string]string), nil
}
// StringToStringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a map[string]string variable in which to store the values of the multiple flags.
// The value of each argument will not try to be separated by comma
func (f *FlagSet) StringToStringVar(p *map[string]string, name string, value map[string]string, usage string) {
f.VarP(newStringToStringValue(value, p), name, "", usage)
}
// StringToStringVarP is like StringToStringVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringToStringVarP(p *map[string]string, name, shorthand string, value map[string]string, usage string) {
f.VarP(newStringToStringValue(value, p), name, shorthand, usage)
}
// StringToStringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a map[string]string variable in which to store the value of the flag.
// The value of each argument will not try to be separated by comma
func StringToStringVar(p *map[string]string, name string, value map[string]string, usage string) {
CommandLine.VarP(newStringToStringValue(value, p), name, "", usage)
}
// StringToStringVarP is like StringToStringVar, but accepts a shorthand letter that can be used after a single dash.
func StringToStringVarP(p *map[string]string, name, shorthand string, value map[string]string, usage string) {
CommandLine.VarP(newStringToStringValue(value, p), name, shorthand, usage)
}
// StringToString defines a string flag with specified name, default value, and usage string.
// The return value is the address of a map[string]string variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma
func (f *FlagSet) StringToString(name string, value map[string]string, usage string) *map[string]string {
p := map[string]string{}
f.StringToStringVarP(&p, name, "", value, usage)
return &p
}
// StringToStringP is like StringToString, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringToStringP(name, shorthand string, value map[string]string, usage string) *map[string]string {
p := map[string]string{}
f.StringToStringVarP(&p, name, shorthand, value, usage)
return &p
}
// StringToString defines a string flag with specified name, default value, and usage string.
// The return value is the address of a map[string]string variable that stores the value of the flag.
// The value of each argument will not try to be separated by comma
func StringToString(name string, value map[string]string, usage string) *map[string]string {
return CommandLine.StringToStringP(name, "", value, usage)
}
// StringToStringP is like StringToString, but accepts a shorthand letter that can be used after a single dash.
func StringToStringP(name, shorthand string, value map[string]string, usage string) *map[string]string {
return CommandLine.StringToStringP(name, shorthand, value, usage)
}

88
vendor/github.com/spf13/pflag/uint.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint Value
type uintValue uint
func newUintValue(val uint, p *uint) *uintValue {
*p = val
return (*uintValue)(p)
}
func (i *uintValue) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 64)
*i = uintValue(v)
return err
}
func (i *uintValue) Type() string {
return "uint"
}
func (i *uintValue) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uintConv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 0)
if err != nil {
return 0, err
}
return uint(v), nil
}
// GetUint return the uint value of a flag with the given name
func (f *FlagSet) GetUint(name string) (uint, error) {
val, err := f.getFlagType(name, "uint", uintConv)
if err != nil {
return 0, err
}
return val.(uint), nil
}
// UintVar defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func (f *FlagSet) UintVar(p *uint, name string, value uint, usage string) {
f.VarP(newUintValue(value, p), name, "", usage)
}
// UintVarP is like UintVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintVarP(p *uint, name, shorthand string, value uint, usage string) {
f.VarP(newUintValue(value, p), name, shorthand, usage)
}
// UintVar defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func UintVar(p *uint, name string, value uint, usage string) {
CommandLine.VarP(newUintValue(value, p), name, "", usage)
}
// UintVarP is like UintVar, but accepts a shorthand letter that can be used after a single dash.
func UintVarP(p *uint, name, shorthand string, value uint, usage string) {
CommandLine.VarP(newUintValue(value, p), name, shorthand, usage)
}
// Uint defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func (f *FlagSet) Uint(name string, value uint, usage string) *uint {
p := new(uint)
f.UintVarP(p, name, "", value, usage)
return p
}
// UintP is like Uint, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintP(name, shorthand string, value uint, usage string) *uint {
p := new(uint)
f.UintVarP(p, name, shorthand, value, usage)
return p
}
// Uint defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func Uint(name string, value uint, usage string) *uint {
return CommandLine.UintP(name, "", value, usage)
}
// UintP is like Uint, but accepts a shorthand letter that can be used after a single dash.
func UintP(name, shorthand string, value uint, usage string) *uint {
return CommandLine.UintP(name, shorthand, value, usage)
}

88
vendor/github.com/spf13/pflag/uint16.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint16 value
type uint16Value uint16
func newUint16Value(val uint16, p *uint16) *uint16Value {
*p = val
return (*uint16Value)(p)
}
func (i *uint16Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 16)
*i = uint16Value(v)
return err
}
func (i *uint16Value) Type() string {
return "uint16"
}
func (i *uint16Value) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uint16Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 16)
if err != nil {
return 0, err
}
return uint16(v), nil
}
// GetUint16 return the uint16 value of a flag with the given name
func (f *FlagSet) GetUint16(name string) (uint16, error) {
val, err := f.getFlagType(name, "uint16", uint16Conv)
if err != nil {
return 0, err
}
return val.(uint16), nil
}
// Uint16Var defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func (f *FlagSet) Uint16Var(p *uint16, name string, value uint16, usage string) {
f.VarP(newUint16Value(value, p), name, "", usage)
}
// Uint16VarP is like Uint16Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint16VarP(p *uint16, name, shorthand string, value uint16, usage string) {
f.VarP(newUint16Value(value, p), name, shorthand, usage)
}
// Uint16Var defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func Uint16Var(p *uint16, name string, value uint16, usage string) {
CommandLine.VarP(newUint16Value(value, p), name, "", usage)
}
// Uint16VarP is like Uint16Var, but accepts a shorthand letter that can be used after a single dash.
func Uint16VarP(p *uint16, name, shorthand string, value uint16, usage string) {
CommandLine.VarP(newUint16Value(value, p), name, shorthand, usage)
}
// Uint16 defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func (f *FlagSet) Uint16(name string, value uint16, usage string) *uint16 {
p := new(uint16)
f.Uint16VarP(p, name, "", value, usage)
return p
}
// Uint16P is like Uint16, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint16P(name, shorthand string, value uint16, usage string) *uint16 {
p := new(uint16)
f.Uint16VarP(p, name, shorthand, value, usage)
return p
}
// Uint16 defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func Uint16(name string, value uint16, usage string) *uint16 {
return CommandLine.Uint16P(name, "", value, usage)
}
// Uint16P is like Uint16, but accepts a shorthand letter that can be used after a single dash.
func Uint16P(name, shorthand string, value uint16, usage string) *uint16 {
return CommandLine.Uint16P(name, shorthand, value, usage)
}

88
vendor/github.com/spf13/pflag/uint32.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint32 value
type uint32Value uint32
func newUint32Value(val uint32, p *uint32) *uint32Value {
*p = val
return (*uint32Value)(p)
}
func (i *uint32Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 32)
*i = uint32Value(v)
return err
}
func (i *uint32Value) Type() string {
return "uint32"
}
func (i *uint32Value) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uint32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 32)
if err != nil {
return 0, err
}
return uint32(v), nil
}
// GetUint32 return the uint32 value of a flag with the given name
func (f *FlagSet) GetUint32(name string) (uint32, error) {
val, err := f.getFlagType(name, "uint32", uint32Conv)
if err != nil {
return 0, err
}
return val.(uint32), nil
}
// Uint32Var defines a uint32 flag with specified name, default value, and usage string.
// The argument p points to a uint32 variable in which to store the value of the flag.
func (f *FlagSet) Uint32Var(p *uint32, name string, value uint32, usage string) {
f.VarP(newUint32Value(value, p), name, "", usage)
}
// Uint32VarP is like Uint32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint32VarP(p *uint32, name, shorthand string, value uint32, usage string) {
f.VarP(newUint32Value(value, p), name, shorthand, usage)
}
// Uint32Var defines a uint32 flag with specified name, default value, and usage string.
// The argument p points to a uint32 variable in which to store the value of the flag.
func Uint32Var(p *uint32, name string, value uint32, usage string) {
CommandLine.VarP(newUint32Value(value, p), name, "", usage)
}
// Uint32VarP is like Uint32Var, but accepts a shorthand letter that can be used after a single dash.
func Uint32VarP(p *uint32, name, shorthand string, value uint32, usage string) {
CommandLine.VarP(newUint32Value(value, p), name, shorthand, usage)
}
// Uint32 defines a uint32 flag with specified name, default value, and usage string.
// The return value is the address of a uint32 variable that stores the value of the flag.
func (f *FlagSet) Uint32(name string, value uint32, usage string) *uint32 {
p := new(uint32)
f.Uint32VarP(p, name, "", value, usage)
return p
}
// Uint32P is like Uint32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint32P(name, shorthand string, value uint32, usage string) *uint32 {
p := new(uint32)
f.Uint32VarP(p, name, shorthand, value, usage)
return p
}
// Uint32 defines a uint32 flag with specified name, default value, and usage string.
// The return value is the address of a uint32 variable that stores the value of the flag.
func Uint32(name string, value uint32, usage string) *uint32 {
return CommandLine.Uint32P(name, "", value, usage)
}
// Uint32P is like Uint32, but accepts a shorthand letter that can be used after a single dash.
func Uint32P(name, shorthand string, value uint32, usage string) *uint32 {
return CommandLine.Uint32P(name, shorthand, value, usage)
}

88
vendor/github.com/spf13/pflag/uint64.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint64 Value
type uint64Value uint64
func newUint64Value(val uint64, p *uint64) *uint64Value {
*p = val
return (*uint64Value)(p)
}
func (i *uint64Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 64)
*i = uint64Value(v)
return err
}
func (i *uint64Value) Type() string {
return "uint64"
}
func (i *uint64Value) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uint64Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 64)
if err != nil {
return 0, err
}
return uint64(v), nil
}
// GetUint64 return the uint64 value of a flag with the given name
func (f *FlagSet) GetUint64(name string) (uint64, error) {
val, err := f.getFlagType(name, "uint64", uint64Conv)
if err != nil {
return 0, err
}
return val.(uint64), nil
}
// Uint64Var defines a uint64 flag with specified name, default value, and usage string.
// The argument p points to a uint64 variable in which to store the value of the flag.
func (f *FlagSet) Uint64Var(p *uint64, name string, value uint64, usage string) {
f.VarP(newUint64Value(value, p), name, "", usage)
}
// Uint64VarP is like Uint64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint64VarP(p *uint64, name, shorthand string, value uint64, usage string) {
f.VarP(newUint64Value(value, p), name, shorthand, usage)
}
// Uint64Var defines a uint64 flag with specified name, default value, and usage string.
// The argument p points to a uint64 variable in which to store the value of the flag.
func Uint64Var(p *uint64, name string, value uint64, usage string) {
CommandLine.VarP(newUint64Value(value, p), name, "", usage)
}
// Uint64VarP is like Uint64Var, but accepts a shorthand letter that can be used after a single dash.
func Uint64VarP(p *uint64, name, shorthand string, value uint64, usage string) {
CommandLine.VarP(newUint64Value(value, p), name, shorthand, usage)
}
// Uint64 defines a uint64 flag with specified name, default value, and usage string.
// The return value is the address of a uint64 variable that stores the value of the flag.
func (f *FlagSet) Uint64(name string, value uint64, usage string) *uint64 {
p := new(uint64)
f.Uint64VarP(p, name, "", value, usage)
return p
}
// Uint64P is like Uint64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint64P(name, shorthand string, value uint64, usage string) *uint64 {
p := new(uint64)
f.Uint64VarP(p, name, shorthand, value, usage)
return p
}
// Uint64 defines a uint64 flag with specified name, default value, and usage string.
// The return value is the address of a uint64 variable that stores the value of the flag.
func Uint64(name string, value uint64, usage string) *uint64 {
return CommandLine.Uint64P(name, "", value, usage)
}
// Uint64P is like Uint64, but accepts a shorthand letter that can be used after a single dash.
func Uint64P(name, shorthand string, value uint64, usage string) *uint64 {
return CommandLine.Uint64P(name, shorthand, value, usage)
}

88
vendor/github.com/spf13/pflag/uint8.go generated vendored Normal file
View File

@ -0,0 +1,88 @@
package pflag
import "strconv"
// -- uint8 Value
type uint8Value uint8
func newUint8Value(val uint8, p *uint8) *uint8Value {
*p = val
return (*uint8Value)(p)
}
func (i *uint8Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 8)
*i = uint8Value(v)
return err
}
func (i *uint8Value) Type() string {
return "uint8"
}
func (i *uint8Value) String() string { return strconv.FormatUint(uint64(*i), 10) }
func uint8Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 8)
if err != nil {
return 0, err
}
return uint8(v), nil
}
// GetUint8 return the uint8 value of a flag with the given name
func (f *FlagSet) GetUint8(name string) (uint8, error) {
val, err := f.getFlagType(name, "uint8", uint8Conv)
if err != nil {
return 0, err
}
return val.(uint8), nil
}
// Uint8Var defines a uint8 flag with specified name, default value, and usage string.
// The argument p points to a uint8 variable in which to store the value of the flag.
func (f *FlagSet) Uint8Var(p *uint8, name string, value uint8, usage string) {
f.VarP(newUint8Value(value, p), name, "", usage)
}
// Uint8VarP is like Uint8Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint8VarP(p *uint8, name, shorthand string, value uint8, usage string) {
f.VarP(newUint8Value(value, p), name, shorthand, usage)
}
// Uint8Var defines a uint8 flag with specified name, default value, and usage string.
// The argument p points to a uint8 variable in which to store the value of the flag.
func Uint8Var(p *uint8, name string, value uint8, usage string) {
CommandLine.VarP(newUint8Value(value, p), name, "", usage)
}
// Uint8VarP is like Uint8Var, but accepts a shorthand letter that can be used after a single dash.
func Uint8VarP(p *uint8, name, shorthand string, value uint8, usage string) {
CommandLine.VarP(newUint8Value(value, p), name, shorthand, usage)
}
// Uint8 defines a uint8 flag with specified name, default value, and usage string.
// The return value is the address of a uint8 variable that stores the value of the flag.
func (f *FlagSet) Uint8(name string, value uint8, usage string) *uint8 {
p := new(uint8)
f.Uint8VarP(p, name, "", value, usage)
return p
}
// Uint8P is like Uint8, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint8P(name, shorthand string, value uint8, usage string) *uint8 {
p := new(uint8)
f.Uint8VarP(p, name, shorthand, value, usage)
return p
}
// Uint8 defines a uint8 flag with specified name, default value, and usage string.
// The return value is the address of a uint8 variable that stores the value of the flag.
func Uint8(name string, value uint8, usage string) *uint8 {
return CommandLine.Uint8P(name, "", value, usage)
}
// Uint8P is like Uint8, but accepts a shorthand letter that can be used after a single dash.
func Uint8P(name, shorthand string, value uint8, usage string) *uint8 {
return CommandLine.Uint8P(name, shorthand, value, usage)
}

168
vendor/github.com/spf13/pflag/uint_slice.go generated vendored Normal file
View File

@ -0,0 +1,168 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- uintSlice Value
type uintSliceValue struct {
value *[]uint
changed bool
}
func newUintSliceValue(val []uint, p *[]uint) *uintSliceValue {
uisv := new(uintSliceValue)
uisv.value = p
*uisv.value = val
return uisv
}
func (s *uintSliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]uint, len(ss))
for i, d := range ss {
u, err := strconv.ParseUint(d, 10, 0)
if err != nil {
return err
}
out[i] = uint(u)
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *uintSliceValue) Type() string {
return "uintSlice"
}
func (s *uintSliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%d", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func (s *uintSliceValue) fromString(val string) (uint, error) {
t, err := strconv.ParseUint(val, 10, 0)
if err != nil {
return 0, err
}
return uint(t), nil
}
func (s *uintSliceValue) toString(val uint) string {
return fmt.Sprintf("%d", val)
}
func (s *uintSliceValue) Append(val string) error {
i, err := s.fromString(val)
if err != nil {
return err
}
*s.value = append(*s.value, i)
return nil
}
func (s *uintSliceValue) Replace(val []string) error {
out := make([]uint, len(val))
for i, d := range val {
var err error
out[i], err = s.fromString(d)
if err != nil {
return err
}
}
*s.value = out
return nil
}
func (s *uintSliceValue) GetSlice() []string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = s.toString(d)
}
return out
}
func uintSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []uint{}, nil
}
ss := strings.Split(val, ",")
out := make([]uint, len(ss))
for i, d := range ss {
u, err := strconv.ParseUint(d, 10, 0)
if err != nil {
return nil, err
}
out[i] = uint(u)
}
return out, nil
}
// GetUintSlice returns the []uint value of a flag with the given name.
func (f *FlagSet) GetUintSlice(name string) ([]uint, error) {
val, err := f.getFlagType(name, "uintSlice", uintSliceConv)
if err != nil {
return []uint{}, err
}
return val.([]uint), nil
}
// UintSliceVar defines a uintSlice flag with specified name, default value, and usage string.
// The argument p points to a []uint variable in which to store the value of the flag.
func (f *FlagSet) UintSliceVar(p *[]uint, name string, value []uint, usage string) {
f.VarP(newUintSliceValue(value, p), name, "", usage)
}
// UintSliceVarP is like UintSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintSliceVarP(p *[]uint, name, shorthand string, value []uint, usage string) {
f.VarP(newUintSliceValue(value, p), name, shorthand, usage)
}
// UintSliceVar defines a uint[] flag with specified name, default value, and usage string.
// The argument p points to a uint[] variable in which to store the value of the flag.
func UintSliceVar(p *[]uint, name string, value []uint, usage string) {
CommandLine.VarP(newUintSliceValue(value, p), name, "", usage)
}
// UintSliceVarP is like the UintSliceVar, but accepts a shorthand letter that can be used after a single dash.
func UintSliceVarP(p *[]uint, name, shorthand string, value []uint, usage string) {
CommandLine.VarP(newUintSliceValue(value, p), name, shorthand, usage)
}
// UintSlice defines a []uint flag with specified name, default value, and usage string.
// The return value is the address of a []uint variable that stores the value of the flag.
func (f *FlagSet) UintSlice(name string, value []uint, usage string) *[]uint {
p := []uint{}
f.UintSliceVarP(&p, name, "", value, usage)
return &p
}
// UintSliceP is like UintSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintSliceP(name, shorthand string, value []uint, usage string) *[]uint {
p := []uint{}
f.UintSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// UintSlice defines a []uint flag with specified name, default value, and usage string.
// The return value is the address of a []uint variable that stores the value of the flag.
func UintSlice(name string, value []uint, usage string) *[]uint {
return CommandLine.UintSliceP(name, "", value, usage)
}
// UintSliceP is like UintSlice, but accepts a shorthand letter that can be used after a single dash.
func UintSliceP(name, shorthand string, value []uint, usage string) *[]uint {
return CommandLine.UintSliceP(name, shorthand, value, usage)
}

6
vendor/modules.txt vendored
View File

@ -1,6 +1,8 @@
# github.com/go-ole/go-ole v1.2.6 # github.com/go-ole/go-ole v1.2.6
github.com/go-ole/go-ole github.com/go-ole/go-ole
github.com/go-ole/go-ole/oleutil github.com/go-ole/go-ole/oleutil
# github.com/inconshreveable/mousetrap v1.0.0
github.com/inconshreveable/mousetrap
# github.com/keybase/go-ps v0.0.0-20190827175125-91aafc93ba19 # github.com/keybase/go-ps v0.0.0-20190827175125-91aafc93ba19
github.com/keybase/go-ps github.com/keybase/go-ps
github.com/keybase/go-ps/darwincgo github.com/keybase/go-ps/darwincgo
@ -14,6 +16,10 @@ github.com/shirou/gopsutil/v3/internal/common
github.com/shirou/gopsutil/v3/mem github.com/shirou/gopsutil/v3/mem
github.com/shirou/gopsutil/v3/net github.com/shirou/gopsutil/v3/net
github.com/shirou/gopsutil/v3/process github.com/shirou/gopsutil/v3/process
# github.com/spf13/cobra v1.4.0
github.com/spf13/cobra
# github.com/spf13/pflag v1.0.5
github.com/spf13/pflag
# github.com/tklauser/go-sysconf v0.3.10 # github.com/tklauser/go-sysconf v0.3.10
github.com/tklauser/go-sysconf github.com/tklauser/go-sysconf
# github.com/tklauser/numcpus v0.4.0 # github.com/tklauser/numcpus v0.4.0