# lo [![tag](https://img.shields.io/github/tag/samber/lo.svg)](https://github.com/samber/lo/releases) [![GoDoc](https://godoc.org/github.com/samber/lo?status.svg)](https://pkg.go.dev/github.com/samber/lo) ![Build Status](https://github.com/samber/lo/actions/workflows/go.yml/badge.svg) [![Go report](https://goreportcard.com/badge/github.com/samber/lo)](https://goreportcard.com/report/github.com/samber/lo) [![codecov](https://codecov.io/gh/samber/lo/branch/master/graph/badge.svg)](https://codecov.io/gh/samber/lo) ✨ **`samber/lo` is a Lodash-style Go library based on Go 1.18+ Generics.** This project started as an experiment with the new generics implementation. It may look like [Lodash](https://github.com/lodash/lodash) in some aspects. I used to code with the fantastic ["go-funk"](https://github.com/thoas/go-funk) package, but "go-funk" uses reflection and therefore is not typesafe. As expected, benchmarks demonstrate that generics will be much faster than implementations based on the "reflect" package. Benchmarks also show similar performance gains compared to pure `for` loops. [See below](#-benchmark). In the future, 5 to 10 helpers will overlap with those coming into the Go standard library (under package names `slices` and `maps`). I feel this library is legitimate and offers many more valuable abstractions. **See also:** - [samber/do](https://github.com/samber/do): A dependency injection toolkit based on Go 1.18+ Generics - [samber/mo](https://github.com/samber/mo): Monads based on Go 1.18+ Generics (Option, Result, Either...) **Why this name?** I wanted a **short name**, similar to "Lodash" and no Go package currently uses this name. ## πŸš€ Install ```sh go get github.com/samber/lo@v1 ``` This library is v1 and follows SemVer strictly. No breaking changes will be made to exported APIs before v2.0.0. ## πŸ’‘ Usage You can import `lo` using: ```go import ( "github.com/samber/lo" lop "github.com/samber/lo/parallel" ) ``` Then use one of the helpers below: ```go names := lo.Uniq[string]([]string{"Samuel", "Marc", "Samuel"}) // []string{"Samuel", "Marc"} ``` Most of the time, the compiler will be able to infer the type so that you can call: `lo.Uniq([]string{...})`. ## 🀠 Spec GoDoc: [https://godoc.org/github.com/samber/lo](https://godoc.org/github.com/samber/lo) Supported helpers for slices: - [Filter](#filter) - [Map](#map) - [FilterMap](#filtermap) - [FlatMap](#flatmap) - [Reduce](#reduce) - [ReduceRight](#reduceright) - [ForEach](#foreach) - [Times](#times) - [Uniq](#uniq) - [UniqBy](#uniqby) - [GroupBy](#groupby) - [Chunk](#chunk) - [PartitionBy](#partitionby) - [Flatten](#flatten) - [Shuffle](#shuffle) - [Reverse](#reverse) - [Fill](#fill) - [Repeat](#repeat) - [RepeatBy](#repeatby) - [KeyBy](#keyby) - [Associate / SliceToMap](#associate-alias-slicetomap) - [Drop](#drop) - [DropRight](#dropright) - [DropWhile](#dropwhile) - [DropRightWhile](#droprightwhile) - [Reject](#reject) - [Count](#count) - [CountBy](#countby) - [Subset](#subset) - [Slice](#slice) - [Replace](#replace) - [ReplaceAll](#replaceall) - [Compact](#compact) - [IsSorted](#issorted) - [IsSortedByKey](#issortedbykey) Supported helpers for maps: - [Keys](#keys) - [Values](#values) - [PickBy](#pickby) - [PickByKeys](#pickbykeys) - [PickByValues](#pickbyvalues) - [OmitBy](#omitby) - [OmitByKeys](#omitbykeys) - [OmitByValues](#omitbyvalues) - [Entries / ToPairs](#entries-alias-topairs) - [FromEntries / FromPairs](#fromentries-alias-frompairs) - [Invert](#invert) - [Assign (merge of maps)](#assign) - [MapKeys](#mapkeys) - [MapValues](#mapvalues) - [MapToSlice](#maptoslice) Supported math helpers: - [Range / RangeFrom / RangeWithSteps](#range--rangefrom--rangewithsteps) - [Clamp](#clamp) - [SumBy](#sumby) Supported helpers for strings: - [Substring](#substring) - [ChunkString](#chunkstring) - [RuneLength](#runelength) Supported helpers for tuples: - [T2 -> T9](#t2---t9) - [Unpack2 -> Unpack9](#unpack2---unpack9) - [Zip2 -> Zip9](#zip2---zip9) - [Unzip2 -> Unzip9](#unzip2---unzip9) Supported helpers for channels: - [ChannelDispatcher](#channeldispatcher) - [SliceToChannel](#slicetochannel) - [Generator](#generator) - [Batch](#batch) - [BatchWithTimeout](#batchwithtimeout) Supported intersection helpers: - [Contains](#contains) - [ContainsBy](#containsby) - [Every](#every) - [EveryBy](#everyby) - [Some](#some) - [SomeBy](#someby) - [None](#none) - [NoneBy](#noneby) - [Intersect](#intersect) - [Difference](#difference) - [Union](#union) - [Without](#without) - [WithoutEmpty](#withoutempty) Supported search helpers: - [IndexOf](#indexof) - [LastIndexOf](#lastindexof) - [Find](#find) - [FindIndexOf](#findindexof) - [FindLastIndexOf](#findlastindexof) - [FindKey](#findkey) - [FindKeyBy](#findkeyby) - [FindUniques](#finduniques) - [FindUniquesBy](#finduniquesby) - [FindDuplicates](#findduplicates) - [FindDuplicatesBy](#findduplicatesby) - [Min](#min) - [MinBy](#minby) - [Max](#max) - [MaxBy](#maxby) - [Last](#last) - [Nth](#nth) - [Sample](#sample) - [Samples](#samples) Conditional helpers: - [Ternary](#ternary) - [TernaryF](#ternaryf) - [If / ElseIf / Else](#if--elseif--else) - [Switch / Case / Default](#switch--case--default) Type manipulation helpers: - [ToPtr](#toptr) - [FromPtr](#fromptr) - [FromPtrOr](#fromptror) - [ToSlicePtr](#tosliceptr) - [ToAnySlice](#toanyslice) - [FromAnySlice](#fromanyslice) - [Empty](#empty) - [IsEmpty](#isempty) - [IsNotEmpty](#isnotempty) - [Coalesce](#coalesce) Function helpers: - [Partial](#partial) Concurrency helpers: - [Attempt](#attempt) - [AttemptWithDelay](#attemptwithdelay) - [Debounce](#debounce) - [Synchronize](#synchronize) - [Async](#async) Error handling: - [Validate](#validate) - [Must](#must) - [Try](#try) - [Try1 -> Try6](#try0-6) - [TryOr](#tryor) - [TryOr1 -> TryOr6](#tryor0-6) - [TryCatch](#trycatch) - [TryWithErrorValue](#trywitherrorvalue) - [TryCatchWithErrorValue](#trycatchwitherrorvalue) - [ErrorsAs](#errorsas) Constraints: - Clonable ### Filter Iterates over a collection and returns an array of all the elements the predicate function returns `true` for. ```go even := lo.Filter[int]([]int{1, 2, 3, 4}, func(x int, index int) bool { return x%2 == 0 }) // []int{2, 4} ``` [[play](https://go.dev/play/p/Apjg3WeSi7K)] ### Map Manipulates a slice of one type and transforms it into a slice of another type: ```go import "github.com/samber/lo" lo.Map[int64, string]([]int64{1, 2, 3, 4}, func(x int64, index int) string { return strconv.FormatInt(x, 10) }) // []string{"1", "2", "3", "4"} ``` [[play](https://go.dev/play/p/OkPcYAhBo0D)] Parallel processing: like `lo.Map()`, but the mapper function is called in a goroutine. Results are returned in the same order. ```go import lop "github.com/samber/lo/parallel" lop.Map[int64, string]([]int64{1, 2, 3, 4}, func(x int64, _ int) string { return strconv.FormatInt(x, 10) }) // []string{"1", "2", "3", "4"} ``` ### FilterMap Returns a slice which obtained after both filtering and mapping using the given callback function. The callback function should return two values: the result of the mapping operation and whether the result element should be included or not. ```go matching := lo.FilterMap[string, string]([]string{"cpu", "gpu", "mouse", "keyboard"}, func(x string, _ int) (string, bool) { if strings.HasSuffix(x, "pu") { return "xpu", true } return "", false }) // []string{"xpu", "xpu"} ``` [[play](https://go.dev/play/p/-AuYXfy7opz)] ### FlatMap Manipulates a slice and transforms and flattens it to a slice of another type. ```go lo.FlatMap[int, string]([]int{0, 1, 2}, func(x int, _ int) []string { return []string{ strconv.FormatInt(x, 10), strconv.FormatInt(x, 10), } }) // []string{"0", "0", "1", "1", "2", "2"} ``` [[play](https://go.dev/play/p/YSoYmQTA8-U)] ### Reduce Reduces a collection to a single value. The value is calculated by accumulating the result of running each element in the collection through an accumulator function. Each successive invocation is supplied with the return value returned by the previous call. ```go sum := lo.Reduce[int, int]([]int{1, 2, 3, 4}, func(agg int, item int, _ int) int { return agg + item }, 0) // 10 ``` [[play](https://go.dev/play/p/R4UHXZNaaUG)] ### ReduceRight Like `lo.Reduce` except that it iterates over elements of collection from right to left. ```go result := lo.ReduceRight[[]int, []int]([][]int{{0, 1}, {2, 3}, {4, 5}}, func(agg []int, item []int, _ int) []int { return append(agg, item...) }, []int{}) // []int{4, 5, 2, 3, 0, 1} ``` [[play](https://go.dev/play/p/Fq3W70l7wXF)] ### ForEach Iterates over elements of a collection and invokes the function over each element. ```go import "github.com/samber/lo" lo.ForEach[string]([]string{"hello", "world"}, func(x string, _ int) { println(x) }) // prints "hello\nworld\n" ``` [[play](https://go.dev/play/p/oofyiUPRf8t)] Parallel processing: like `lo.ForEach()`, but the callback is called as a goroutine. ```go import lop "github.com/samber/lo/parallel" lop.ForEach[string]([]string{"hello", "world"}, func(x string, _ int) { println(x) }) // prints "hello\nworld\n" or "world\nhello\n" ``` ### Times Times invokes the iteratee n times, returning an array of the results of each invocation. The iteratee is invoked with index as argument. ```go import "github.com/samber/lo" lo.Times[string](3, func(i int) string { return strconv.FormatInt(int64(i), 10) }) // []string{"0", "1", "2"} ``` [[play](https://go.dev/play/p/vgQj3Glr6lT)] Parallel processing: like `lo.Times()`, but callback is called in goroutine. ```go import lop "github.com/samber/lo/parallel" lop.Times[string](3, func(i int) string { return strconv.FormatInt(int64(i), 10) }) // []string{"0", "1", "2"} ``` ### Uniq Returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array. ```go uniqValues := lo.Uniq[int]([]int{1, 2, 2, 1}) // []int{1, 2} ``` [[play](https://go.dev/play/p/DTzbeXZ6iEN)] ### UniqBy Returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array. It accepts `iteratee` which is invoked for each element in array to generate the criterion by which uniqueness is computed. ```go uniqValues := lo.UniqBy[int, int]([]int{0, 1, 2, 3, 4, 5}, func(i int) int { return i%3 }) // []int{0, 1, 2} ``` [[play](https://go.dev/play/p/g42Z3QSb53u)] ### GroupBy Returns an object composed of keys generated from the results of running each element of collection through iteratee. ```go import lo "github.com/samber/lo" groups := lo.GroupBy[int, int]([]int{0, 1, 2, 3, 4, 5}, func(i int) int { return i%3 }) // map[int][]int{0: []int{0, 3}, 1: []int{1, 4}, 2: []int{2, 5}} ``` [[play](https://go.dev/play/p/XnQBd_v6brd)] Parallel processing: like `lo.GroupBy()`, but callback is called in goroutine. ```go import lop "github.com/samber/lo/parallel" lop.GroupBy[int, int]([]int{0, 1, 2, 3, 4, 5}, func(i int) int { return i%3 }) // map[int][]int{0: []int{0, 3}, 1: []int{1, 4}, 2: []int{2, 5}} ``` ### Chunk Returns an array of elements split into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements. ```go lo.Chunk[int]([]int{0, 1, 2, 3, 4, 5}, 2) // [][]int{{0, 1}, {2, 3}, {4, 5}} lo.Chunk[int]([]int{0, 1, 2, 3, 4, 5, 6}, 2) // [][]int{{0, 1}, {2, 3}, {4, 5}, {6}} lo.Chunk[int]([]int{}, 2) // [][]int{} lo.Chunk[int]([]int{0}, 2) // [][]int{{0}} ``` [[play](https://go.dev/play/p/EeKl0AuTehH)] ### PartitionBy Returns an array of elements split into groups. The order of grouped values is determined by the order they occur in collection. The grouping is generated from the results of running each element of collection through iteratee. ```go import lo "github.com/samber/lo" partitions := lo.PartitionBy[int, string]([]int{-2, -1, 0, 1, 2, 3, 4, 5}, func(x int) string { if x < 0 { return "negative" } else if x%2 == 0 { return "even" } return "odd" }) // [][]int{{-2, -1}, {0, 2, 4}, {1, 3, 5}} ``` [[play](https://go.dev/play/p/NfQ_nGjkgXW)] Parallel processing: like `lo.PartitionBy()`, but callback is called in goroutine. Results are returned in the same order. ```go import lop "github.com/samber/lo/parallel" partitions := lop.PartitionBy[int, string]([]int{-2, -1, 0, 1, 2, 3, 4, 5}, func(x int) string { if x < 0 { return "negative" } else if x%2 == 0 { return "even" } return "odd" }) // [][]int{{-2, -1}, {0, 2, 4}, {1, 3, 5}} ``` ### Flatten Returns an array a single level deep. ```go flat := lo.Flatten[int]([][]int{{0, 1}, {2, 3, 4, 5}}) // []int{0, 1, 2, 3, 4, 5} ``` [[play](https://go.dev/play/p/rbp9ORaMpjw)] ### Shuffle Returns an array of shuffled values. Uses the Fisher-Yates shuffle algorithm. ```go randomOrder := lo.Shuffle[int]([]int{0, 1, 2, 3, 4, 5}) // []int{1, 4, 0, 3, 5, 2} ``` [[play](https://go.dev/play/p/Qp73bnTDnc7)] ### Reverse Reverses array so that the first element becomes the last, the second element becomes the second to last, and so on. ```go reverseOrder := lo.Reverse[int]([]int{0, 1, 2, 3, 4, 5}) // []int{5, 4, 3, 2, 1, 0} ``` [[play](https://go.dev/play/p/fhUMLvZ7vS6)] ### Fill Fills elements of array with `initial` value. ```go type foo struct { bar string } func (f foo) Clone() foo { return foo{f.bar} } initializedSlice := lo.Fill[foo]([]foo{foo{"a"}, foo{"a"}}, foo{"b"}) // []foo{foo{"b"}, foo{"b"}} ``` [[play](https://go.dev/play/p/VwR34GzqEub)] ### Repeat Builds a slice with N copies of initial value. ```go type foo struct { bar string } func (f foo) Clone() foo { return foo{f.bar} } slice := lo.Repeat[foo](2, foo{"a"}) // []foo{foo{"a"}, foo{"a"}} ``` [[play](https://go.dev/play/p/g3uHXbmc3b6)] ### RepeatBy Builds a slice with values returned by N calls of callback. ```go slice := lo.RepeatBy[string](0, func (i int) string { return strconv.FormatInt(int64(math.Pow(float64(i), 2)), 10) }) // []int{} slice := lo.RepeatBy[string](5, func(i int) string { return strconv.FormatInt(int64(math.Pow(float64(i), 2)), 10) }) // []int{0, 1, 4, 9, 16} ``` [[play](https://go.dev/play/p/ozZLCtX_hNU)] ### KeyBy Transforms a slice or an array of structs to a map based on a pivot callback. ```go m := lo.KeyBy[int, string]([]string{"a", "aa", "aaa"}, func(str string) int { return len(str) }) // map[int]string{1: "a", 2: "aa", 3: "aaa"} type Character struct { dir string code int } characters := []Character{ {dir: "left", code: 97}, {dir: "right", code: 100}, } result := lo.KeyBy[string, Character](characters, func(char Character) string { return string(rune(char.code)) }) //map[a:{dir:left code:97} d:{dir:right code:100}] ``` [[play](https://go.dev/play/p/mdaClUAT-zZ)] ### Associate (alias: SliceToMap) Returns a map containing key-value pairs provided by transform function applied to elements of the given slice. If any of two pairs would have the same key the last one gets added to the map. The order of keys in returned map is not specified and is not guaranteed to be the same from the original array. ```go in := []*foo{{baz: "apple", bar: 1}, {baz: "banana", bar: 2}} aMap := lo.Associate[*foo, string, int](in, func (f *foo) (string, int) { return f.baz, f.bar }) // map[string][int]{ "apple":1, "banana":2 } ``` [[play](https://go.dev/play/p/WHa2CfMO3Lr)] ### Drop Drops n elements from the beginning of a slice or array. ```go l := lo.Drop[int]([]int{0, 1, 2, 3, 4, 5}, 2) // []int{2, 3, 4, 5} ``` [[play](https://go.dev/play/p/JswS7vXRJP2)] ### DropRight Drops n elements from the end of a slice or array. ```go l := lo.DropRight[int]([]int{0, 1, 2, 3, 4, 5}, 2) // []int{0, 1, 2, 3} ``` [[play](https://go.dev/play/p/GG0nXkSJJa3)] ### DropWhile Drop elements from the beginning of a slice or array while the predicate returns true. ```go l := lo.DropWhile[string]([]string{"a", "aa", "aaa", "aa", "aa"}, func(val string) bool { return len(val) <= 2 }) // []string{"aaa", "aa", "aa"} ``` [[play](https://go.dev/play/p/7gBPYw2IK16)] ### DropRightWhile Drop elements from the end of a slice or array while the predicate returns true. ```go l := lo.DropRightWhile[string]([]string{"a", "aa", "aaa", "aa", "aa"}, func(val string) bool { return len(val) <= 2 }) // []string{"a", "aa", "aaa"} ``` [[play](https://go.dev/play/p/3-n71oEC0Hz)] ### Reject The opposite of Filter, this method returns the elements of collection that predicate does not return truthy for. ```go odd := lo.Reject[int]([]int{1, 2, 3, 4}, func(x int, _ int) bool { return x%2 == 0 }) // []int{1, 3} ``` [[play](https://go.dev/play/p/YkLMODy1WEL)] ### Count Counts the number of elements in the collection that compare equal to value. ```go count := lo.Count[int]([]int{1, 5, 1}, 1) // 2 ``` [[play](https://go.dev/play/p/Y3FlK54yveC)] ### CountBy Counts the number of elements in the collection for which predicate is true. ```go count := lo.CountBy[int]([]int{1, 5, 1}, func(i int) bool { return i < 4 }) // 2 ``` [[play](https://go.dev/play/p/ByQbNYQQi4X)] ### Subset Returns a copy of a slice from `offset` up to `length` elements. Like `slice[start:start+length]`, but does not panic on overflow. ```go in := []int{0, 1, 2, 3, 4} sub := lo.Subset(in, 2, 3) // []int{2, 3, 4} sub := lo.Subset(in, -4, 3) // []int{1, 2, 3} sub := lo.Subset(in, -2, math.MaxUint) // []int{3, 4} ``` [[play](https://go.dev/play/p/tOQu1GhFcog)] ### Slice Returns a copy of a slice from `start` up to, but not including `end`. Like `slice[start:end]`, but does not panic on overflow. ```go in := []int{0, 1, 2, 3, 4} slice := lo.Slice(in, 0, 5) // []int{0, 1, 2, 3, 4} slice := lo.Slice(in, 2, 3) // []int{2} slice := lo.Slice(in, 2, 6) // []int{2, 3, 4} slice := lo.Slice(in, 4, 3) // []int{} ``` [[play](https://go.dev/play/p/8XWYhfMMA1h)] ### Replace Returns a copy of the slice with the first n non-overlapping instances of old replaced by new. ```go in := []int{0, 1, 0, 1, 2, 3, 0} slice := lo.Replace(in, 0, 42, 1) // []int{42, 1, 0, 1, 2, 3, 0} slice := lo.Replace(in, -1, 42, 1) // []int{0, 1, 0, 1, 2, 3, 0} slice := lo.Replace(in, 0, 42, 2) // []int{42, 1, 42, 1, 2, 3, 0} slice := lo.Replace(in, 0, 42, -1) // []int{42, 1, 42, 1, 2, 3, 42} ``` [[play](https://go.dev/play/p/XfPzmf9gql6)] ### ReplaceAll Returns a copy of the slice with all non-overlapping instances of old replaced by new. ```go in := []int{0, 1, 0, 1, 2, 3, 0} slice := lo.ReplaceAll(in, 0, 42) // []int{42, 1, 42, 1, 2, 3, 42} slice := lo.ReplaceAll(in, -1, 42) // []int{0, 1, 0, 1, 2, 3, 0} ``` [[play](https://go.dev/play/p/a9xZFUHfYcV)] ### Compact Returns a slice of all non-zero elements. ```go in := []string{"", "foo", "", "bar", ""} slice := lo.Compact[string](in) // []string{"foo", "bar"} ``` [[play](https://go.dev/play/p/tXiy-iK6PAc)] ### IsSorted Checks if a slice is sorted. ```go slice := lo.IsSorted([]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) // true ``` [[play](https://go.dev/play/p/mc3qR-t4mcx)] ### IsSortedByKey Checks if a slice is sorted by iteratee. ```go slice := lo.IsSortedByKey([]string{"a", "bb", "ccc"}, func(s string) int { return len(s) }) // true ``` [[play](https://go.dev/play/p/wiG6XyBBu49)] ### Keys Creates an array of the map keys. ```go keys := lo.Keys[string, int](map[string]int{"foo": 1, "bar": 2}) // []string{"foo", "bar"} ``` [[play](https://go.dev/play/p/Uu11fHASqrU)] ### Values Creates an array of the map values. ```go values := lo.Values[string, int](map[string]int{"foo": 1, "bar": 2}) // []int{1, 2} ``` [[play](https://go.dev/play/p/nnRTQkzQfF6)] ### PickBy Returns same map type filtered by given predicate. ```go m := lo.PickBy[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(key string, value int) bool { return value%2 == 1 }) // map[string]int{"foo": 1, "baz": 3} ``` [[play](https://go.dev/play/p/kdg8GR_QMmf)] ### PickByKeys Returns same map type filtered by given keys. ```go m := lo.PickByKeys[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, []string{"foo", "baz"}) // map[string]int{"foo": 1, "baz": 3} ``` [[play](https://go.dev/play/p/R1imbuci9qU)] ### PickByValues Returns same map type filtered by given values. ```go m := lo.PickByValues[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, []int{1, 3}) // map[string]int{"foo": 1, "baz": 3} ``` [[play](https://go.dev/play/p/1zdzSvbfsJc)] ### OmitBy Returns same map type filtered by given predicate. ```go m := lo.OmitBy[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(key string, value int) bool { return value%2 == 1 }) // map[string]int{"bar": 2} ``` [[play](https://go.dev/play/p/EtBsR43bdsd)] ### OmitByKeys Returns same map type filtered by given keys. ```go m := lo.OmitByKeys[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, []string{"foo", "baz"}) // map[string]int{"bar": 2} ``` [[play](https://go.dev/play/p/t1QjCrs-ysk)] ### OmitByValues Returns same map type filtered by given values. ```go m := lo.OmitByValues[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, []int{1, 3}) // map[string]int{"bar": 2} ``` [[play](https://go.dev/play/p/9UYZi-hrs8j)] ### Entries (alias: ToPairs) Transforms a map into array of key/value pairs. ```go entries := lo.Entries[string, int](map[string]int{"foo": 1, "bar": 2}) // []lo.Entry[string, int]{ // { // Key: "foo", // Value: 1, // }, // { // Key: "bar", // Value: 2, // }, // } ``` [[play](https://go.dev/play/p/3Dhgx46gawJ)] ### FromEntries (alias: FromPairs) Transforms an array of key/value pairs into a map. ```go m := lo.FromEntries[string, int]([]lo.Entry[string, int]{ { Key: "foo", Value: 1, }, { Key: "bar", Value: 2, }, }) // map[string]int{"foo": 1, "bar": 2} ``` [[play](https://go.dev/play/p/oIr5KHFGCEN)] ### Invert Creates a map composed of the inverted keys and values. If map contains duplicate values, subsequent values overwrite property assignments of previous values. ```go m1 := lo.Invert[string, int](map[string]int{"a": 1, "b": 2}) // map[int]string{1: "a", 2: "b"} m2 := lo.Invert[string, int](map[string]int{"a": 1, "b": 2, "c": 1}) // map[int]string{1: "c", 2: "b"} ``` [[play](https://go.dev/play/p/rFQ4rak6iA1)] ### Assign Merges multiple maps from left to right. ```go mergedMaps := lo.Assign[string, int]( map[string]int{"a": 1, "b": 2}, map[string]int{"b": 3, "c": 4}, ) // map[string]int{"a": 1, "b": 3, "c": 4} ``` [[play](https://go.dev/play/p/VhwfJOyxf5o)] ### MapKeys Manipulates a map keys and transforms it to a map of another type. ```go m2 := lo.MapKeys[int, int, string](map[int]int{1: 1, 2: 2, 3: 3, 4: 4}, func(_ int, v int) string { return strconv.FormatInt(int64(v), 10) }) // map[string]int{"1": 1, "2": 2, "3": 3, "4": 4} ``` [[play](https://go.dev/play/p/9_4WPIqOetJ)] ### MapValues Manipulates a map values and transforms it to a map of another type. ```go m1 := map[int]int64{1: 1, 2: 2, 3: 3} m2 := lo.MapValues[int, int64, string](m1, func(x int64, _ int) string { return strconv.FormatInt(x, 10) }) // map[int]string{1: "1", 2: "2", 3: "3"} ``` [[play](https://go.dev/play/p/T_8xAfvcf0W)] ### MapToSlice Transforms a map into a slice based on specific iteratee. ```go m := map[int]int64{1: 4, 2: 5, 3: 6} s := lo.MapToSlice(m, func(k int, v int64) string { return fmt.Sprintf("%d_%d", k, v) }) // []string{"1_4", "2_5", "3_6"} ``` [[play](https://go.dev/play/p/ZuiCZpDt6LD)] ### Range / RangeFrom / RangeWithSteps Creates an array of numbers (positive and/or negative) progressing from start up to, but not including end. ```go result := Range(4) // [0, 1, 2, 3] result := Range(-4) // [0, -1, -2, -3] result := RangeFrom(1, 5) // [1, 2, 3, 4, 5] result := RangeFrom[float64](1.0, 5) // [1.0, 2.0, 3.0, 4.0, 5.0] result := RangeWithSteps(0, 20, 5) // [0, 5, 10, 15] result := RangeWithSteps[float32](-1.0, -4.0, -1.0) // [-1.0, -2.0, -3.0] result := RangeWithSteps(1, 4, -1) // [] result := Range(0) // [] ``` [[play](https://go.dev/play/p/0r6VimXAi9H)] ### Clamp Clamps number within the inclusive lower and upper bounds. ```go r1 := lo.Clamp(0, -10, 10) // 0 r2 := lo.Clamp(-42, -10, 10) // -10 r3 := lo.Clamp(42, -10, 10) // 10 ``` [[play](https://go.dev/play/p/RU4lJNC2hlI)] ### SumBy Summarizes the values in a collection using the given return value from the iteration function. If collection is empty 0 is returned. ```go strings := []string{"foo", "bar"} sum := lo.SumBy(strings, func(item string) int { return len(item) }) // 6 ``` [[play](https://go.dev/play/p/Dz_a_7jN_ca)] ### Substring Return part of a string. ```go sub := lo.Substring("hello", 2, 3) // "llo" sub := lo.Substring("hello", -4, 3) // "ell" sub := lo.Substring("hello", -2, math.MaxUint) // "lo" ``` [[play](https://go.dev/play/p/TQlxQi82Lu1)] ### ChunkString Returns an array of strings split into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements. ```go lo.ChunkString("123456", 2) // []string{"12", "34", "56"} lo.ChunkString("1234567", 2) // []string{"12", "34", "56", "7"} lo.ChunkString("", 2) // []string{""} lo.ChunkString("1", 2) // []string{"1"} ``` [[play](https://go.dev/play/p/__FLTuJVz54)] ### RuneLength An alias to utf8.RuneCountInString which returns the number of runes in string. ```go sub := lo.RuneLength("hellΓ΄") // 5 sub := len("hellΓ΄") // 6 ``` [[play](https://go.dev/play/p/tuhgW_lWY8l)] ### T2 -> T9 Creates a tuple from a list of values. ```go tuple1 := lo.T2("x", 1) // Tuple2[string, int]{A: "x", B: 1} func example() (string, int) { return "y", 2 } tuple2 := lo.T2(example()) // Tuple2[string, int]{A: "y", B: 2} ``` [[play](https://go.dev/play/p/IllL3ZO4BQm)] ### Unpack2 -> Unpack9 Returns values contained in tuple. ```go r1, r2 := lo.Unpack2[string, int](lo.Tuple2[string, int]{"a", 1}) // "a", 1 ``` [[play](https://go.dev/play/p/xVP_k0kJ96W)] ### Zip2 -> Zip9 Zip creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on. When collections have different size, the Tuple attributes are filled with zero value. ```go tuples := lo.Zip2[string, int]([]string{"a", "b"}, []int{1, 2}) // []Tuple2[string, int]{{A: "a", B: 1}, {A: "b", B: 2}} ``` [[play](https://go.dev/play/p/jujaA6GaJTp)] ### Unzip2 -> Unzip9 Unzip accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration. ```go a, b := lo.Unzip2[string, int]([]Tuple2[string, int]{{A: "a", B: 1}, {A: "b", B: 2}}) // []string{"a", "b"} // []int{1, 2} ``` [[play](https://go.dev/play/p/ciHugugvaAW)] ### ChannelDispatcher Distributes messages from input channels into N child channels. Close events are propagated to children. Underlying channels can have a fixed buffer capacity or be unbuffered when cap is 0. ```go ch := make(chan int, 42) for i := 0; i <= 10; i++ { ch <- i } children := lo.ChannelDispatcher(ch, 5, 10, DispatchingStrategyRoundRobin[int]) // []<-chan int{...} consumer := func(c <-chan int) { for { msg, ok := <-c if !ok { println("closed") break } println(msg) } } for i := range children { go consumer(children[i]) } ``` Many distributions strategies are available: - [lo.DispatchingStrategyRoundRobin](./channel.go): Distributes messages in a rotating sequential manner. - [lo.DispatchingStrategyRandom](./channel.go): Distributes messages in a random manner. - [lo.DispatchingStrategyWeightedRandom](./channel.go): Distributes messages in a weighted manner. - [lo.DispatchingStrategyFirst](./channel.go): Distributes messages in the first non-full channel. - [lo.DispatchingStrategyLeast](./channel.go): Distributes messages in the emptiest channel. - [lo.DispatchingStrategyMost](./channel.go): Distributes to the fulliest channel. Some strategies bring fallback, in order to favor non-blocking behaviors. See implementations. For custom strategies, just implement the `lo.DispatchingStrategy` prototype: ```go type DispatchingStrategy[T any] func(message T, messageIndex uint64, channels []<-chan T) int ``` Eg: ```go type Message struct { TenantID uuid.UUID } func hash(id uuid.UUID) int { h := fnv.New32a() h.Write([]byte(id.String())) return int(h.Sum32()) } // Routes messages per TenantID. customStrategy := func(message pubsub.AMQPSubMessage, messageIndex uint64, channels []<-chan pubsub.AMQPSubMessage) int { destination := hash(message.TenantID) % len(channels) // check if channel is full if len(channels[destination]) < cap(channels[destination]) { return destination } // fallback when child channel is full return utils.DispatchingStrategyRoundRobin(message, uint64(destination), channels) } children := lo.ChannelDispatcher(ch, 5, 10, customStrategy) ... ``` ### SliceToChannel Returns a read-only channels of collection elements. Channel is closed after last element. Channel capacity can be customized. ```go list := []int{1, 2, 3, 4, 5} for v := range lo.SliceToChannel(2, list) { println(v) } // prints 1, then 2, then 3, then 4, then 5 ``` ### Generator Implements the generator design pattern. Channel is closed after last element. Channel capacity can be customized. ```go generator := func(yield func(int)) { yield(1) yield(2) yield(3) } for v := range lo.Generator(2, generator) { println(v) } // prints 1, then 2, then 3 ``` ### Batch Creates a slice of n elements from a channel. Returns the slice, the slice length, the read time and the channel status (opened/closed). ```go ch := lo.SliceToChannel(2, []int{1, 2, 3, 4, 5}) items1, length1, duration1, ok1 := lo.Batch(ch, 3) // []int{1, 2, 3}, 3, 0s, true items2, length2, duration2, ok2 := lo.Batch(ch, 3) // []int{4, 5}, 2, 0s, false ``` Example: RabbitMQ consumer πŸ‘‡ ```go ch := readFromQueue() for { // read 1k items items, length, _, ok := lo.Batch(ch, 1000) // do batching stuff if !ok { break } } ``` ### BatchWithTimeout Creates a slice of n elements from a channel, with timeout. Returns the slice, the slice length, the read time and the channel status (opened/closed). ```go generator := func(yield func(int)) { for i := 0; i < 5; i++ { yield(i) time.Sleep(35*time.Millisecond) } } ch := lo.Generator(0, generator) items1, length1, duration1, ok1 := lo.BatchWithTimeout(ch, 3, 100*time.Millisecond) // []int{1, 2}, 2, 100ms, true items2, length2, duration2, ok2 := lo.BatchWithTimeout(ch, 3, 100*time.Millisecond) // []int{3, 4, 5}, 3, 75ms, true items3, length3, duration2, ok3 := lo.BatchWithTimeout(ch, 3, 100*time.Millisecond) // []int{}, 0, 10ms, false ``` Example: RabbitMQ consumer πŸ‘‡ ```go ch := readFromQueue() for { // read 1k items // wait up to 1 second items, length, _, ok := lo.BatchWithTimeout(ch, 1000, 1*time.Second) // do batching stuff if !ok { break } } ``` Example: Multithreaded RabbitMQ consumer πŸ‘‡ ```go ch := readFromQueue() // 5 workers // prefetch 1k messages per worker children := lo.ChannelDispatcher(ch, 5, 1000, DispatchingStrategyFirst[int]) consumer := func(c <-chan int) { for { // read 1k items // wait up to 1 second items, length, _, ok := lo.BatchWithTimeout(ch, 1000, 1*time.Second) // do batching stuff if !ok { break } } } for i := range children { go consumer(children[i]) } ``` ### Contains Returns true if an element is present in a collection. ```go present := lo.Contains[int]([]int{0, 1, 2, 3, 4, 5}, 5) // true ``` ### ContainsBy Returns true if the predicate function returns `true`. ```go present := lo.ContainsBy[int]([]int{0, 1, 2, 3, 4, 5}, func(x int) bool { return x == 3 }) // true ``` ### Every Returns true if all elements of a subset are contained into a collection or if the subset is empty. ```go ok := lo.Every[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2}) // true ok := lo.Every[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 6}) // false ``` ### EveryBy Returns true if the predicate returns true for all of the elements in the collection or if the collection is empty. ```go b := EveryBy[int]([]int{1, 2, 3, 4}, func(x int) bool { return x < 5 }) // true ``` ### Some Returns true if at least 1 element of a subset is contained into a collection. If the subset is empty Some returns false. ```go ok := lo.Some[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2}) // true ok := lo.Some[int]([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6}) // false ``` ### SomeBy Returns true if the predicate returns true for any of the elements in the collection. If the collection is empty SomeBy returns false. ```go b := SomeBy[int]([]int{1, 2, 3, 4}, func(x int) bool { return x < 3 }) // true ``` ### None Returns true if no element of a subset are contained into a collection or if the subset is empty. ```go b := None[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2}) // false b := None[int]([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6}) // true ``` ### NoneBy Returns true if the predicate returns true for none of the elements in the collection or if the collection is empty. ```go b := NoneBy[int]([]int{1, 2, 3, 4}, func(x int) bool { return x < 0 }) // true ``` ### Intersect Returns the intersection between two collections. ```go result1 := lo.Intersect[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2}) // []int{0, 2} result2 := lo.Intersect[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 6} // []int{0} result3 := lo.Intersect[int]([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6}) // []int{} ``` ### Difference Returns the difference between two collections. - The first value is the collection of element absent of list2. - The second value is the collection of element absent of list1. ```go left, right := lo.Difference[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2, 6}) // []int{1, 3, 4, 5}, []int{6} left, right := lo.Difference[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 1, 2, 3, 4, 5}) // []int{}, []int{} ``` ### Union Returns all distinct elements from both collections. Result will not change the order of elements relatively. ```go union := lo.Union[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2, 10}) // []int{0, 1, 2, 3, 4, 5, 10} ``` ### Without Returns slice excluding all given values. ```go subset := lo.Without[int]([]int{0, 2, 10}, 2) // []int{0, 10} subset := lo.Without[int]([]int{0, 2, 10}, 0, 1, 2, 3, 4, 5) // []int{10} ``` ### WithoutEmpty Returns slice excluding empty values. ```go subset := lo.WithoutEmpty[int]([]int{0, 2, 10}) // []int{2, 10} ``` ### IndexOf Returns the index at which the first occurrence of a value is found in an array or return -1 if the value cannot be found. ```go found := lo.IndexOf[int]([]int{0, 1, 2, 1, 2, 3}, 2) // 2 notFound := lo.IndexOf[int]([]int{0, 1, 2, 1, 2, 3}, 6) // -1 ``` ### LastIndexOf Returns the index at which the last occurrence of a value is found in an array or return -1 if the value cannot be found. ```go found := lo.LastIndexOf[int]([]int{0, 1, 2, 1, 2, 3}, 2) // 4 notFound := lo.LastIndexOf[int]([]int{0, 1, 2, 1, 2, 3}, 6) // -1 ``` ### Find Search an element in a slice based on a predicate. It returns element and true if element was found. ```go str, ok := lo.Find[string]([]string{"a", "b", "c", "d"}, func(i string) bool { return i == "b" }) // "b", true str, ok := lo.Find[string]([]string{"foobar"}, func(i string) bool { return i == "b" }) // "", false ``` ### FindIndexOf FindIndexOf searches an element in a slice based on a predicate and returns the index and true. It returns -1 and false if the element is not found. ```go str, index, ok := lo.FindIndexOf[string]([]string{"a", "b", "a", "b"}, func(i string) bool { return i == "b" }) // "b", 1, true str, index, ok := lo.FindIndexOf[string]([]string{"foobar"}, func(i string) bool { return i == "b" }) // "", -1, false ``` ### FindLastIndexOf FindLastIndexOf searches an element in a slice based on a predicate and returns the index and true. It returns -1 and false if the element is not found. ```go str, index, ok := lo.FindLastIndexOf[string]([]string{"a", "b", "a", "b"}, func(i string) bool { return i == "b" }) // "b", 4, true str, index, ok := lo.FindLastIndexOf[string]([]string{"foobar"}, func(i string) bool { return i == "b" }) // "", -1, false ``` ### FindKey Returns the key of the first value matching. ```go result1, ok1 := lo.FindKey(map[string]int{"foo": 1, "bar": 2, "baz": 3}, 2) // "bar", true result2, ok2 := lo.FindKey(map[string]int{"foo": 1, "bar": 2, "baz": 3}, 42) // "", false type test struct { foobar string } result3, ok3 := lo.FindKey(map[string]test{"foo": test{"foo"}, "bar": test{"bar"}, "baz": test{"baz"}}, test{"foo"}) // "foo", true ``` ### FindKeyBy Returns the key of the first element predicate returns truthy for. ```go result1, ok1 := lo.FindKeyBy(map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(k string, v int) bool { return k == "foo" }) // "foo", true result2, ok2 := lo.FindKeyBy(map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(k string, v int) bool { return false }) // "", false ``` ### FindUniques Returns a slice with all the unique elements of the collection. The order of result values is determined by the order they occur in the array. ```go uniqueValues := lo.FindUniques[int]([]int{1, 2, 2, 1, 2, 3}) // []int{3} ``` ### FindUniquesBy Returns a slice with all the unique elements of the collection. The order of result values is determined by the order they occur in the array. It accepts `iteratee` which is invoked for each element in array to generate the criterion by which uniqueness is computed. ```go uniqueValues := lo.FindUniquesBy[int, int]([]int{3, 4, 5, 6, 7}, func(i int) int { return i%3 }) // []int{5} ``` ### FindDuplicates Returns a slice with the first occurence of each duplicated elements of the collection. The order of result values is determined by the order they occur in the array. ```go duplicatedValues := lo.FindDuplicates[int]([]int{1, 2, 2, 1, 2, 3}) // []int{1, 2} ``` ### FindDuplicatesBy Returns a slice with the first occurence of each duplicated elements of the collection. The order of result values is determined by the order they occur in the array. It accepts `iteratee` which is invoked for each element in array to generate the criterion by which uniqueness is computed. ```go duplicatedValues := lo.FindDuplicatesBy[int, int]([]int{3, 4, 5, 6, 7}, func(i int) int { return i%3 }) // []int{3, 4} ``` ### Min Search the minimum value of a collection. ```go min := lo.Min[int]([]int{1, 2, 3}) // 1 min := lo.Min[int]([]int{}) // 0 ``` ### MinBy Search the minimum value of a collection using the given comparison function. If several values of the collection are equal to the smallest value, returns the first such value. ```go min := lo.MinBy[string]([]string{"s1", "string2", "s3"}, func(item string, min string) bool { return len(item) < len(min) }) // "s1" min := lo.MinBy[string]([]string{}, func(item string, min string) bool { return len(item) < len(min) }) // "" ``` ### Max Search the maximum value of a collection. ```go max := lo.Max[int]([]int{1, 2, 3}) // 3 max := lo.Max[int]([]int{}) // 0 ``` ### MaxBy Search the maximum value of a collection using the given comparison function. If several values of the collection are equal to the greatest value, returns the first such value. ```go max := lo.MaxBy[string]([]string{"string1", "s2", "string3"}, func(item string, max string) bool { return len(item) > len(max) }) // "string1" max := lo.MaxBy[string]([]string{}, func(item string, max string) bool { return len(item) > len(max) }) // "" ``` ### Last Returns the last element of a collection or error if empty. ```go last, err := lo.Last[int]([]int{1, 2, 3}) // 3 ``` ### Nth Returns the element at index `nth` of collection. If `nth` is negative, the nth element from the end is returned. An error is returned when nth is out of slice bounds. ```go nth, err := lo.Nth[int]([]int{0, 1, 2, 3}, 2) // 2 nth, err := lo.Nth[int]([]int{0, 1, 2, 3}, -2) // 2 ``` ### Sample Returns a random item from collection. ```go lo.Sample[string]([]string{"a", "b", "c"}) // a random string from []string{"a", "b", "c"} lo.Sample[string]([]string{}) // "" ``` ### Samples Returns N random unique items from collection. ```go lo.Samples[string]([]string{"a", "b", "c"}, 3) // []string{"a", "b", "c"} in random order ``` ### Ternary A 1 line if/else statement. ```go result := lo.Ternary[string](true, "a", "b") // "a" result := lo.Ternary[string](false, "a", "b") // "b" ``` [[play](https://go.dev/play/p/t-D7WBL44h2)] ### TernaryF A 1 line if/else statement whose options are functions. ```go result := lo.TernaryF[string](true, func() string { return "a" }, func() string { return "b" }) // "a" result := lo.TernaryF[string](false, func() string { return "a" }, func() string { return "b" }) // "b" ``` Useful to avoid nil-pointer dereferencing in intializations, or avoid running unnecessary code ```go var s *string someStr := TernaryF[string](s == nil, func() string { return uuid.New().String() }, func() string { return *s }) // ef782193-c30c-4e2e-a7ae-f8ab5e125e02 ``` [[play](https://go.dev/play/p/AO4VW20JoqM)] ### If / ElseIf / Else ```go result := lo.If[int](true, 1). ElseIf(false, 2). Else(3) // 1 result := lo.If[int](false, 1). ElseIf(true, 2). Else(3) // 2 result := lo.If[int](false, 1). ElseIf(false, 2). Else(3) // 3 ``` Using callbacks: ```go result := lo.IfF[int](true, func () int { return 1 }). ElseIfF(false, func () int { return 2 }). ElseF(func () int { return 3 }) // 1 ``` Mixed: ```go result := lo.IfF[int](true, func () int { return 1 }). Else(42) // 1 ``` [[play](https://go.dev/play/p/WSw3ApMxhyW)] ### Switch / Case / Default ```go result := lo.Switch[int, string](1). Case(1, "1"). Case(2, "2"). Default("3") // "1" result := lo.Switch[int, string](2). Case(1, "1"). Case(2, "2"). Default("3") // "2" result := lo.Switch[int, string](42). Case(1, "1"). Case(2, "2"). Default("3") // "3" ``` Using callbacks: ```go result := lo.Switch[int, string](1). CaseF(1, func() string { return "1" }). CaseF(2, func() string { return "2" }). DefaultF(func() string { return "3" }) // "1" ``` Mixed: ```go result := lo.Switch[int, string](1). CaseF(1, func() string { return "1" }). Default("42") // "1" ``` [[play](https://go.dev/play/p/TGbKUMAeRUd)] ### ToPtr Returns a pointer copy of value. ```go ptr := lo.ToPtr[string]("hello world") // *string{"hello world"} ``` ### FromPtr Returns the pointer value or empty. ```go str := "hello world" value := lo.FromPtr[string](&str) // "hello world" value := lo.FromPtr[string](nil) // "" ``` ### FromPtrOr Returns the pointer value or the fallback value. ```go str := "hello world" value := lo.FromPtrOr[string](&str, "empty") // "hello world" value := lo.FromPtrOr[string](nil, "empty") // "empty" ``` ### ToSlicePtr Returns a slice of pointer copy of value. ```go ptr := lo.ToSlicePtr[string]([]string{"hello", "world"}) // []*string{"hello", "world"} ``` ### ToAnySlice Returns a slice with all elements mapped to `any` type. ```go elements := lo.ToAnySlice[int]([]int{1, 5, 1}) // []any{1, 5, 1} ``` ### FromAnySlice Returns an `any` slice with all elements mapped to a type. Returns false in case of type conversion failure. ```go elements, ok := lo.FromAnySlice[string]([]any{"foobar", 42}) // []string{}, false elements, ok := lo.FromAnySlice[string]([]any{"foobar", "42"}) // []string{"foobar", "42"}, true ``` ### Empty Returns an empty value. ```go lo.Empty[int]() // 0 lo.Empty[string]() // "" lo.Empty[bool]() // false ``` ### IsEmpty Returns true if argument is a zero value. ```go lo.IsEmpty[int](0) // true lo.IsEmpty[int](42) // false lo.IsEmpty[string]("") // true lo.IsEmpty[bool]("foobar") // false type test struct { foobar string } lo.IsEmpty[test](test{foobar: ""}) // true lo.IsEmpty[test](test{foobar: "foobar"}) // false ``` ### IsNotEmpty Returns true if argument is a zero value. ```go lo.IsNotEmpty[int](0) // false lo.IsNotEmpty[int](42) // true lo.IsNotEmpty[string]("") // false lo.IsNotEmpty[bool]("foobar") // true type test struct { foobar string } lo.IsNotEmpty[test](test{foobar: ""}) // false lo.IsNotEmpty[test](test{foobar: "foobar"}) // true ``` ### Coalesce Returns the first non-empty arguments. Arguments must be comparable. ```go result, ok := lo.Coalesce(0, 1, 2, 3) // 1 true result, ok := lo.Coalesce("") // "" false var nilStr *string str := "foobar" result, ok := lo.Coalesce[*string](nil, nilStr, &str) // &"foobar" true ``` ### Partial Returns new function that, when called, has its first argument set to the provided value. ```go add := func(x, y int) int { return x + y } f := lo.Partial(add, 5) f(10) // 15 f(42) // 47 ``` ### Attempt Invokes a function N times until it returns valid output. Returning either the caught error or nil. When first argument is less than `1`, the function runs until a successful response is returned. ```go iter, err := lo.Attempt(42, func(i int) error { if i == 5 { return nil } return fmt.Errorf("failed") }) // 6 // nil iter, err := lo.Attempt(2, func(i int) error { if i == 5 { return nil } return fmt.Errorf("failed") }) // 2 // error "failed" iter, err := lo.Attempt(0, func(i int) error { if i < 42 { return fmt.Errorf("failed") } return nil }) // 43 // nil ``` For more advanced retry strategies (delay, exponential backoff...), please take a look on [cenkalti/backoff](https://github.com/cenkalti/backoff). [[play](https://go.dev/play/p/3ggJZ2ZKcMj)] ### AttemptWithDelay Invokes a function N times until it returns valid output, with a pause between each call. Returning either the caught error or nil. When first argument is less than `1`, the function runs until a successful response is returned. ```go iter, duration, err := lo.AttemptWithDelay(5, 2*time.Second, func(i int, duration time.Duration) error { if i == 2 { return nil } return fmt.Errorf("failed") }) // 3 // ~ 4 seconds // nil ``` For more advanced retry strategies (delay, exponential backoff...), please take a look on [cenkalti/backoff](https://github.com/cenkalti/backoff). [[play](https://go.dev/play/p/tVs6CygC7m1)] ### Debounce `NewDebounce` creates a debounced instance that delays invoking functions given until after wait milliseconds have elapsed, until `cancel` is called. ```go f := func() { println("Called once after 100ms when debounce stopped invoking!") } debounce, cancel := lo.NewDebounce(100 * time.Millisecond, f) for j := 0; j < 10; j++ { debounce() } time.Sleep(1 * time.Second) cancel() ``` [[play](https://go.dev/play/p/mz32VMK2nqe)] ### Synchronize Wraps the underlying callback in a mutex. It receives an optional mutex. ```go s := lo.Synchronize() for i := 0; i < 10; i++ { go s.Do(func () { println("will be called sequentially") }) } ``` It is equivalent to: ```go mu := sync.Mutex{} func foobar() { mu.Lock() defer mu.Unlock() // ... } ``` ### Async Executes a function in a goroutine and returns the result in a channel. ```go ch := lo.Async(func() error { time.Sleep(10 * time.Second); return nil }) // chan error (nil) ``` ### Async{0->6} Executes a function in a goroutine and returns the result in a channel. For function with multiple return values, the results will be returned as a tuple inside the channel. For function without return, struct{} will be returned in the channel. ```go ch := lo.Async0(func() { time.Sleep(10 * time.Second) }) // chan struct{} ch := lo.Async1(func() int { time.Sleep(10 * time.Second); return 42 }) // chan int (42) ch := lo.Async2(func() (int, string) { time.Sleep(10 * time.Second); return 42, "Hello" }) // chan lo.Tuple2[int, string] ({42, "Hello"}) ``` ### Validate Helper function that creates an error when a condition is not met. ```go slice := []string{"a"} val := lo.Validate(len(slice) == 0, "Slice should be empty but contains %v", slice) // error("Slice should be empty but contains [a]") slice := []string{} val := lo.Validate(len(slice) == 0, "Slice should be empty but contains %v", slice) // nil ``` [[play](https://go.dev/play/p/vPyh51XpCBt)] ### Must Wraps a function call to panics if second argument is `error` or `false`, returns the value otherwise. ```go val := lo.Must(time.Parse("2006-01-02", "2022-01-15")) // 2022-01-15 val := lo.Must(time.Parse("2006-01-02", "bad-value")) // panics ``` [[play](https://go.dev/play/p/TMoWrRp3DyC)] ### Must{0->6} Must\* has the same behavior than Must, but returns multiple values. ```go func example0() (error) func example1() (int, error) func example2() (int, string, error) func example3() (int, string, time.Date, error) func example4() (int, string, time.Date, bool, error) func example5() (int, string, time.Date, bool, float64, error) func example6() (int, string, time.Date, bool, float64, byte, error) lo.Must0(example0()) val1 := lo.Must1(example1()) // alias to Must val1, val2 := lo.Must2(example2()) val1, val2, val3 := lo.Must3(example3()) val1, val2, val3, val4 := lo.Must4(example4()) val1, val2, val3, val4, val5 := lo.Must5(example5()) val1, val2, val3, val4, val5, val6 := lo.Must6(example6()) ``` You can wrap functions like `func (...) (..., ok bool)`. ```go // math.Signbit(float64) bool lo.Must0(math.Signbit(v)) // bytes.Cut([]byte,[]byte) ([]byte, []byte, bool) before, after := lo.Must2(bytes.Cut(s, sep)) ``` You can give context to the panic message by adding some printf-like arguments. ```go val, ok := lo.Find(myString, func(i string) bool { return i == requiredChar }) lo.Must0(ok, "'%s' must always contain '%s'", myString, requiredChar) list := []int{0, 1, 2} item := 5 lo.Must0(lo.Contains[int](list, item), "'%s' must always contain '%s'", list, item) ... ``` [[play](https://go.dev/play/p/TMoWrRp3DyC)] ### Try Calls the function and return false in case of error and on panic. ```go ok := lo.Try(func() error { panic("error") return nil }) // false ok := lo.Try(func() error { return nil }) // true ok := lo.Try(func() error { return fmt.Errorf("error") }) // false ``` [[play](https://go.dev/play/p/mTyyWUvn9u4)] ### Try{0->6} The same behavior than `Try`, but callback returns 2 variables. ```go ok := lo.Try2(func() (string, error) { panic("error") return "", nil }) // false ``` [[play](https://go.dev/play/p/mTyyWUvn9u4)] ### TryOr Calls the function and return a default value in case of error and on panic. ```go str, ok := lo.TryOr(func() (string, error) { panic("error") return "hello", nil }, "world") // world // false ok := lo.TryOr(func() error { return "hello", nil }, "world") // hello // true ok := lo.TryOr(func() error { return "hello", fmt.Errorf("error") }, "world") // world // false ``` [[play](https://go.dev/play/p/B4F7Wg2Zh9X)] ### TryOr{0->6} The same behavior than `TryOr`, but callback returns 2 variables. ```go str, nbr, ok := lo.TryOr2(func() (string, int, error) { panic("error") return "hello", 42, nil }, "world", 21) // world // 21 // false ``` [[play](https://go.dev/play/p/B4F7Wg2Zh9X)] ### TryWithErrorValue The same behavior than `Try`, but also returns value passed to panic. ```go err, ok := lo.TryWithErrorValue(func() error { panic("error") return nil }) // "error", false ``` [[play](https://go.dev/play/p/Kc7afQIT2Fs)] ### TryCatch The same behavior than `Try`, but calls the catch function in case of error. ```go caught := false ok := lo.TryCatch(func() error { panic("error") return nil }, func() { caught = true }) // false // caught == true ``` [[play](https://go.dev/play/p/PnOON-EqBiU)] ### TryCatchWithErrorValue The same behavior than `TryWithErrorValue`, but calls the catch function in case of error. ```go caught := false ok := lo.TryCatchWithErrorValue(func() error { panic("error") return nil }, func(val any) { caught = val == "error" }) // false // caught == true ``` [[play](https://go.dev/play/p/8Pc9gwX_GZO)] ### ErrorsAs A shortcut for: ```go err := doSomething() var rateLimitErr *RateLimitError if ok := errors.As(err, &rateLimitErr); ok { // retry later } ``` 1 line `lo` helper: ```go err := doSomething() if rateLimitErr, ok := lo.ErrorsAs[*RateLimitError](err); ok { // retry later } ``` [[play](https://go.dev/play/p/8wk5rH8UfrE)] ## πŸ›© Benchmark We executed a simple benchmark with the a dead-simple `lo.Map` loop: See the full implementation [here](./benchmark_test.go). ```go _ = lo.Map[int64](arr, func(x int64, i int) string { return strconv.FormatInt(x, 10) }) ``` **Result:** Here is a comparison between `lo.Map`, `lop.Map`, `go-funk` library and a simple Go `for` loop. ``` $ go test -benchmem -bench ./... goos: linux goarch: amd64 pkg: github.com/samber/lo cpu: Intel(R) Core(TM) i5-7267U CPU @ 3.10GHz cpu: Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz BenchmarkMap/lo.Map-8 8 132728237 ns/op 39998945 B/op 1000002 allocs/op BenchmarkMap/lop.Map-8 2 503947830 ns/op 119999956 B/op 3000007 allocs/op BenchmarkMap/reflect-8 2 826400560 ns/op 170326512 B/op 4000042 allocs/op BenchmarkMap/for-8 9 126252954 ns/op 39998674 B/op 1000001 allocs/op PASS ok github.com/samber/lo 6.657s ``` - `lo.Map` is way faster (x7) than `go-funk`, a reflection-based Map implementation. - `lo.Map` have the same allocation profile than `for`. - `lo.Map` is 4% slower than `for`. - `lop.Map` is slower than `lo.Map` because it implies more memory allocation and locks. `lop.Map` will be useful for long-running callbacks, such as i/o bound processing. - `for` beats other implementations for memory and CPU. ## 🀝 Contributing - Ping me on twitter [@samuelberthe](https://twitter.com/samuelberthe) (DMs, mentions, whatever :)) - Fork the [project](https://github.com/samber/lo) - Fix [open issues](https://github.com/samber/lo/issues) or request new features Don't hesitate ;) ### With Docker ```bash docker-compose run --rm dev ``` ### Without Docker ```bash # Install some dev dependencies make tools # Run tests make test # or make watch-test ``` ## πŸ‘€ Authors - Samuel Berthe ## πŸ’« Show your support Give a ⭐️ if this project helped you! [![support us](https://c5.patreon.com/external/logo/become_a_patron_button.png)](https://www.patreon.com/samber) ## πŸ“ License Copyright Β© 2022 [Samuel Berthe](https://github.com/samber). This project is [MIT](./LICENSE) licensed.