2024-01-29 07:26:30 -08:00
|
|
|
// Copyright The OpenTelemetry Authors
|
2024-02-29 07:05:28 +01:00
|
|
|
// SPDX-License-Identifier: Apache-2.0
|
2024-01-29 07:26:30 -08:00
|
|
|
|
|
|
|
package exemplar
|
|
|
|
|
|
|
|
import (
|
|
|
|
"context"
|
|
|
|
"math"
|
2024-02-26 23:00:29 -08:00
|
|
|
"slices"
|
2024-01-29 07:26:30 -08:00
|
|
|
"testing"
|
|
|
|
|
|
|
|
"github.com/stretchr/testify/assert"
|
|
|
|
)
|
|
|
|
|
|
|
|
func TestFixedSize(t *testing.T) {
|
|
|
|
t.Run("Int64", ReservoirTest[int64](func(n int) (Reservoir[int64], int) {
|
|
|
|
return FixedSize[int64](n), n
|
|
|
|
}))
|
|
|
|
|
|
|
|
t.Run("Float64", ReservoirTest[float64](func(n int) (Reservoir[float64], int) {
|
|
|
|
return FixedSize[float64](n), n
|
|
|
|
}))
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestFixedSizeSamplingCorrectness(t *testing.T) {
|
|
|
|
intensity := 0.1
|
|
|
|
sampleSize := 1000
|
|
|
|
|
|
|
|
data := make([]float64, sampleSize*1000)
|
|
|
|
for i := range data {
|
|
|
|
// Generate exponentially distributed data.
|
|
|
|
data[i] = (-1.0 / intensity) * math.Log(random())
|
|
|
|
}
|
|
|
|
// Sort to test position bias.
|
2024-02-26 23:00:29 -08:00
|
|
|
slices.Sort(data)
|
2024-01-29 07:26:30 -08:00
|
|
|
|
|
|
|
r := FixedSize[float64](sampleSize)
|
|
|
|
for _, value := range data {
|
|
|
|
r.Offer(context.Background(), staticTime, value, nil)
|
|
|
|
}
|
|
|
|
|
|
|
|
var sum float64
|
|
|
|
for _, m := range r.(*randRes[float64]).store {
|
|
|
|
sum += m.Value
|
|
|
|
}
|
|
|
|
mean := sum / float64(sampleSize)
|
|
|
|
|
|
|
|
// Check the intensity/rate of the sampled distribution is preserved
|
|
|
|
// ensuring no bias in our random sampling algorithm.
|
|
|
|
assert.InDelta(t, 1/mean, intensity, 0.02) // Within 5σ.
|
|
|
|
}
|