1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-26 03:52:03 +02:00

691 lines
19 KiB
Go
Raw Normal View History

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package transform provides translations for opentelemetry-go concepts and
// structures to otlp structures.
package metrictransform
import (
"context"
"errors"
"fmt"
"strings"
"sync"
"time"
"go.opentelemetry.io/otel/attribute"
commonpb "go.opentelemetry.io/proto/otlp/common/v1"
metricpb "go.opentelemetry.io/proto/otlp/metrics/v1"
resourcepb "go.opentelemetry.io/proto/otlp/resource/v1"
"go.opentelemetry.io/otel/metric/number"
export "go.opentelemetry.io/otel/sdk/export/metric"
"go.opentelemetry.io/otel/sdk/export/metric/aggregation"
"go.opentelemetry.io/otel/sdk/instrumentation"
"go.opentelemetry.io/otel/sdk/resource"
)
var (
// ErrUnimplementedAgg is returned when a transformation of an unimplemented
// aggregator is attempted.
ErrUnimplementedAgg = errors.New("unimplemented aggregator")
// ErrIncompatibleAgg is returned when
// aggregation.Kind implies an interface conversion that has
// failed
ErrIncompatibleAgg = errors.New("incompatible aggregation type")
// ErrUnknownValueType is returned when a transformation of an unknown value
// is attempted.
ErrUnknownValueType = errors.New("invalid value type")
// ErrContextCanceled is returned when a context cancellation halts a
// transformation.
ErrContextCanceled = errors.New("context canceled")
// ErrTransforming is returned when an unexected error is encoutered transforming.
ErrTransforming = errors.New("transforming failed")
)
// result is the product of transforming Records into OTLP Metrics.
type result struct {
Resource *resource.Resource
InstrumentationLibrary instrumentation.Library
Metric *metricpb.Metric
Err error
}
// toNanos returns the number of nanoseconds since the UNIX epoch.
func toNanos(t time.Time) uint64 {
if t.IsZero() {
return 0
}
return uint64(t.UnixNano())
}
// CheckpointSet transforms all records contained in a checkpoint into
// batched OTLP ResourceMetrics.
func CheckpointSet(ctx context.Context, exportSelector export.ExportKindSelector, cps export.CheckpointSet, numWorkers uint) ([]*metricpb.ResourceMetrics, error) {
records, errc := source(ctx, exportSelector, cps)
// Start a fixed number of goroutines to transform records.
transformed := make(chan result)
var wg sync.WaitGroup
wg.Add(int(numWorkers))
for i := uint(0); i < numWorkers; i++ {
go func() {
defer wg.Done()
transformer(ctx, exportSelector, records, transformed)
}()
}
go func() {
wg.Wait()
close(transformed)
}()
// Synchronously collect the transformed records and transmit.
rms, err := sink(ctx, transformed)
if err != nil {
return nil, err
}
// source is complete, check for any errors.
if err := <-errc; err != nil {
return nil, err
}
return rms, nil
}
// source starts a goroutine that sends each one of the Records yielded by
// the CheckpointSet on the returned chan. Any error encoutered will be sent
// on the returned error chan after seeding is complete.
func source(ctx context.Context, exportSelector export.ExportKindSelector, cps export.CheckpointSet) (<-chan export.Record, <-chan error) {
errc := make(chan error, 1)
out := make(chan export.Record)
// Seed records into process.
go func() {
defer close(out)
// No select is needed since errc is buffered.
errc <- cps.ForEach(exportSelector, func(r export.Record) error {
select {
case <-ctx.Done():
return ErrContextCanceled
case out <- r:
}
return nil
})
}()
return out, errc
}
// transformer transforms records read from the passed in chan into
// OTLP Metrics which are sent on the out chan.
func transformer(ctx context.Context, exportSelector export.ExportKindSelector, in <-chan export.Record, out chan<- result) {
for r := range in {
m, err := Record(exportSelector, r)
// Propagate errors, but do not send empty results.
if err == nil && m == nil {
continue
}
res := result{
Resource: r.Resource(),
InstrumentationLibrary: instrumentation.Library{
Name: r.Descriptor().InstrumentationName(),
Version: r.Descriptor().InstrumentationVersion(),
},
Metric: m,
Err: err,
}
select {
case <-ctx.Done():
return
case out <- res:
}
}
}
// sink collects transformed Records and batches them.
//
// Any errors encoutered transforming input will be reported with an
// ErrTransforming as well as the completed ResourceMetrics. It is up to the
// caller to handle any incorrect data in these ResourceMetrics.
func sink(ctx context.Context, in <-chan result) ([]*metricpb.ResourceMetrics, error) {
var errStrings []string
type resourceBatch struct {
Resource *resourcepb.Resource
// Group by instrumentation library name and then the MetricDescriptor.
InstrumentationLibraryBatches map[instrumentation.Library]map[string]*metricpb.Metric
SchemaURL string
}
// group by unique Resource string.
grouped := make(map[attribute.Distinct]resourceBatch)
for res := range in {
if res.Err != nil {
errStrings = append(errStrings, res.Err.Error())
continue
}
rID := res.Resource.Equivalent()
rb, ok := grouped[rID]
if !ok {
rb = resourceBatch{
Resource: Resource(res.Resource),
InstrumentationLibraryBatches: make(map[instrumentation.Library]map[string]*metricpb.Metric),
}
if res.Resource != nil {
rb.SchemaURL = res.Resource.SchemaURL()
}
grouped[rID] = rb
}
mb, ok := rb.InstrumentationLibraryBatches[res.InstrumentationLibrary]
if !ok {
mb = make(map[string]*metricpb.Metric)
rb.InstrumentationLibraryBatches[res.InstrumentationLibrary] = mb
}
mID := res.Metric.GetName()
m, ok := mb[mID]
if !ok {
mb[mID] = res.Metric
continue
}
switch res.Metric.Data.(type) {
case *metricpb.Metric_Gauge:
m.GetGauge().DataPoints = append(m.GetGauge().DataPoints, res.Metric.GetGauge().DataPoints...)
case *metricpb.Metric_Sum:
m.GetSum().DataPoints = append(m.GetSum().DataPoints, res.Metric.GetSum().DataPoints...)
case *metricpb.Metric_Histogram:
m.GetHistogram().DataPoints = append(m.GetHistogram().DataPoints, res.Metric.GetHistogram().DataPoints...)
case *metricpb.Metric_Summary:
m.GetSummary().DataPoints = append(m.GetSummary().DataPoints, res.Metric.GetSummary().DataPoints...)
default:
err := fmt.Sprintf("unsupported metric type: %T", res.Metric.Data)
errStrings = append(errStrings, err)
}
}
if len(grouped) == 0 {
return nil, nil
}
var rms []*metricpb.ResourceMetrics
for _, rb := range grouped {
// TODO: populate ResourceMetrics.SchemaURL when the field is added to the Protobuf message.
rm := &metricpb.ResourceMetrics{Resource: rb.Resource}
for il, mb := range rb.InstrumentationLibraryBatches {
ilm := &metricpb.InstrumentationLibraryMetrics{
Metrics: make([]*metricpb.Metric, 0, len(mb)),
}
if il != (instrumentation.Library{}) {
ilm.InstrumentationLibrary = &commonpb.InstrumentationLibrary{
Name: il.Name,
Version: il.Version,
}
}
for _, m := range mb {
ilm.Metrics = append(ilm.Metrics, m)
}
rm.InstrumentationLibraryMetrics = append(rm.InstrumentationLibraryMetrics, ilm)
}
rms = append(rms, rm)
}
// Report any transform errors.
if len(errStrings) > 0 {
return rms, fmt.Errorf("%w:\n -%s", ErrTransforming, strings.Join(errStrings, "\n -"))
}
return rms, nil
}
// Record transforms a Record into an OTLP Metric. An ErrIncompatibleAgg
// error is returned if the Record Aggregator is not supported.
func Record(exportSelector export.ExportKindSelector, r export.Record) (*metricpb.Metric, error) {
agg := r.Aggregation()
switch agg.Kind() {
case aggregation.MinMaxSumCountKind:
mmsc, ok := agg.(aggregation.MinMaxSumCount)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
return minMaxSumCount(r, mmsc)
case aggregation.HistogramKind:
h, ok := agg.(aggregation.Histogram)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
return histogramPoint(r, exportSelector.ExportKindFor(r.Descriptor(), aggregation.HistogramKind), h)
case aggregation.SumKind:
s, ok := agg.(aggregation.Sum)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
sum, err := s.Sum()
if err != nil {
return nil, err
}
return sumPoint(r, sum, r.StartTime(), r.EndTime(), exportSelector.ExportKindFor(r.Descriptor(), aggregation.SumKind), r.Descriptor().InstrumentKind().Monotonic())
case aggregation.LastValueKind:
lv, ok := agg.(aggregation.LastValue)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
value, tm, err := lv.LastValue()
if err != nil {
return nil, err
}
return gaugePoint(r, value, time.Time{}, tm)
case aggregation.ExactKind:
e, ok := agg.(aggregation.Points)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
pts, err := e.Points()
if err != nil {
return nil, err
}
return gaugeArray(r, pts)
default:
return nil, fmt.Errorf("%w: %T", ErrUnimplementedAgg, agg)
}
}
func gaugeArray(record export.Record, points []aggregation.Point) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
}
pbAttrs := keyValues(labels.Iter())
ndp := make([]*metricpb.NumberDataPoint, 0, len(points))
switch nk := desc.NumberKind(); nk {
case number.Int64Kind:
for _, p := range points {
ndp = append(ndp, &metricpb.NumberDataPoint{
Attributes: pbAttrs,
StartTimeUnixNano: toNanos(record.StartTime()),
TimeUnixNano: toNanos(record.EndTime()),
Value: &metricpb.NumberDataPoint_AsInt{
AsInt: p.Number.CoerceToInt64(nk),
},
})
}
case number.Float64Kind:
for _, p := range points {
ndp = append(ndp, &metricpb.NumberDataPoint{
Attributes: pbAttrs,
StartTimeUnixNano: toNanos(record.StartTime()),
TimeUnixNano: toNanos(record.EndTime()),
Value: &metricpb.NumberDataPoint_AsDouble{
AsDouble: p.Number.CoerceToFloat64(nk),
},
})
}
default:
return nil, fmt.Errorf("%w: %v", ErrUnknownValueType, nk)
}
m.Data = &metricpb.Metric_Gauge{
Gauge: &metricpb.Gauge{
DataPoints: ndp,
},
}
return m, nil
}
func gaugePoint(record export.Record, num number.Number, start, end time.Time) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
}
switch n := desc.NumberKind(); n {
case number.Int64Kind:
m.Data = &metricpb.Metric_Gauge{
Gauge: &metricpb.Gauge{
DataPoints: []*metricpb.NumberDataPoint{
{
Value: &metricpb.NumberDataPoint_AsInt{
AsInt: num.CoerceToInt64(n),
},
Attributes: keyValues(labels.Iter()),
StartTimeUnixNano: toNanos(start),
TimeUnixNano: toNanos(end),
},
},
},
}
case number.Float64Kind:
m.Data = &metricpb.Metric_Gauge{
Gauge: &metricpb.Gauge{
DataPoints: []*metricpb.NumberDataPoint{
{
Value: &metricpb.NumberDataPoint_AsDouble{
AsDouble: num.CoerceToFloat64(n),
},
Attributes: keyValues(labels.Iter()),
StartTimeUnixNano: toNanos(start),
TimeUnixNano: toNanos(end),
},
},
},
}
default:
return nil, fmt.Errorf("%w: %v", ErrUnknownValueType, n)
}
return m, nil
}
func exportKindToTemporality(ek export.ExportKind) metricpb.AggregationTemporality {
switch ek {
case export.DeltaExportKind:
return metricpb.AggregationTemporality_AGGREGATION_TEMPORALITY_DELTA
case export.CumulativeExportKind:
return metricpb.AggregationTemporality_AGGREGATION_TEMPORALITY_CUMULATIVE
}
return metricpb.AggregationTemporality_AGGREGATION_TEMPORALITY_UNSPECIFIED
}
func sumPoint(record export.Record, num number.Number, start, end time.Time, ek export.ExportKind, monotonic bool) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
}
switch n := desc.NumberKind(); n {
case number.Int64Kind:
m.Data = &metricpb.Metric_Sum{
Sum: &metricpb.Sum{
IsMonotonic: monotonic,
AggregationTemporality: exportKindToTemporality(ek),
DataPoints: []*metricpb.NumberDataPoint{
{
Value: &metricpb.NumberDataPoint_AsInt{
AsInt: num.CoerceToInt64(n),
},
Attributes: keyValues(labels.Iter()),
StartTimeUnixNano: toNanos(start),
TimeUnixNano: toNanos(end),
},
},
},
}
case number.Float64Kind:
m.Data = &metricpb.Metric_Sum{
Sum: &metricpb.Sum{
IsMonotonic: monotonic,
AggregationTemporality: exportKindToTemporality(ek),
DataPoints: []*metricpb.NumberDataPoint{
{
Value: &metricpb.NumberDataPoint_AsDouble{
AsDouble: num.CoerceToFloat64(n),
},
Attributes: keyValues(labels.Iter()),
StartTimeUnixNano: toNanos(start),
TimeUnixNano: toNanos(end),
},
},
},
}
default:
return nil, fmt.Errorf("%w: %v", ErrUnknownValueType, n)
}
return m, nil
}
// minMaxSumCountValue returns the values of the MinMaxSumCount Aggregator
// as discrete values.
func minMaxSumCountValues(a aggregation.MinMaxSumCount) (min, max, sum number.Number, count uint64, err error) {
if min, err = a.Min(); err != nil {
return
}
if max, err = a.Max(); err != nil {
return
}
if sum, err = a.Sum(); err != nil {
return
}
if count, err = a.Count(); err != nil {
return
}
return
}
// minMaxSumCount transforms a MinMaxSumCount Aggregator into an OTLP Metric.
func minMaxSumCount(record export.Record, a aggregation.MinMaxSumCount) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
min, max, sum, count, err := minMaxSumCountValues(a)
if err != nil {
return nil, err
}
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
Data: &metricpb.Metric_Summary{
Summary: &metricpb.Summary{
DataPoints: []*metricpb.SummaryDataPoint{
{
Sum: sum.CoerceToFloat64(desc.NumberKind()),
Attributes: keyValues(labels.Iter()),
StartTimeUnixNano: toNanos(record.StartTime()),
TimeUnixNano: toNanos(record.EndTime()),
Count: uint64(count),
QuantileValues: []*metricpb.SummaryDataPoint_ValueAtQuantile{
{
Quantile: 0.0,
Value: min.CoerceToFloat64(desc.NumberKind()),
},
{
Quantile: 1.0,
Value: max.CoerceToFloat64(desc.NumberKind()),
},
},
},
},
},
},
}
return m, nil
}
func histogramValues(a aggregation.Histogram) (boundaries []float64, counts []uint64, err error) {
var buckets aggregation.Buckets
if buckets, err = a.Histogram(); err != nil {
return
}
boundaries, counts = buckets.Boundaries, buckets.Counts
if len(counts) != len(boundaries)+1 {
err = ErrTransforming
return
}
return
}
// histogram transforms a Histogram Aggregator into an OTLP Metric.
func histogramPoint(record export.Record, ek export.ExportKind, a aggregation.Histogram) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
boundaries, counts, err := histogramValues(a)
if err != nil {
return nil, err
}
count, err := a.Count()
if err != nil {
return nil, err
}
sum, err := a.Sum()
if err != nil {
return nil, err
}
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
Data: &metricpb.Metric_Histogram{
Histogram: &metricpb.Histogram{
AggregationTemporality: exportKindToTemporality(ek),
DataPoints: []*metricpb.HistogramDataPoint{
{
Sum: sum.CoerceToFloat64(desc.NumberKind()),
Attributes: keyValues(labels.Iter()),
StartTimeUnixNano: toNanos(record.StartTime()),
TimeUnixNano: toNanos(record.EndTime()),
Count: uint64(count),
BucketCounts: counts,
ExplicitBounds: boundaries,
},
},
},
},
}
return m, nil
}
// keyValues transforms an attribute iterator into an OTLP KeyValues.
func keyValues(iter attribute.Iterator) []*commonpb.KeyValue {
l := iter.Len()
if l == 0 {
return nil
}
result := make([]*commonpb.KeyValue, 0, l)
for iter.Next() {
kv := iter.Label()
result = append(result, &commonpb.KeyValue{
Key: string(kv.Key),
Value: value(kv.Value),
})
}
return result
}
// value transforms an attribute Value into an OTLP AnyValue.
func value(v attribute.Value) *commonpb.AnyValue {
switch v.Type() {
case attribute.BOOL:
return &commonpb.AnyValue{
Value: &commonpb.AnyValue_BoolValue{
BoolValue: v.AsBool(),
},
}
case attribute.INT64:
return &commonpb.AnyValue{
Value: &commonpb.AnyValue_IntValue{
IntValue: v.AsInt64(),
},
}
case attribute.FLOAT64:
return &commonpb.AnyValue{
Value: &commonpb.AnyValue_DoubleValue{
DoubleValue: v.AsFloat64(),
},
}
case attribute.ARRAY:
return &commonpb.AnyValue{
Value: &commonpb.AnyValue_ArrayValue{
ArrayValue: &commonpb.ArrayValue{
Values: arrayValue(v.AsArray()),
},
},
}
default:
return &commonpb.AnyValue{
Value: &commonpb.AnyValue_StringValue{
StringValue: v.Emit(),
},
}
}
}
// arrayValue transforms an attribute Value of ARRAY type into an slice of
// OTLP AnyValue.
func arrayValue(arr interface{}) []*commonpb.AnyValue {
var av []*commonpb.AnyValue
switch val := arr.(type) {
case []bool:
av = make([]*commonpb.AnyValue, len(val))
for i, v := range val {
av[i] = &commonpb.AnyValue{
Value: &commonpb.AnyValue_BoolValue{
BoolValue: v,
},
}
}
case []int:
av = make([]*commonpb.AnyValue, len(val))
for i, v := range val {
av[i] = &commonpb.AnyValue{
Value: &commonpb.AnyValue_IntValue{
IntValue: int64(v),
},
}
}
case []int64:
av = make([]*commonpb.AnyValue, len(val))
for i, v := range val {
av[i] = &commonpb.AnyValue{
Value: &commonpb.AnyValue_IntValue{
IntValue: v,
},
}
}
case []float64:
av = make([]*commonpb.AnyValue, len(val))
for i, v := range val {
av[i] = &commonpb.AnyValue{
Value: &commonpb.AnyValue_DoubleValue{
DoubleValue: v,
},
}
}
case []string:
av = make([]*commonpb.AnyValue, len(val))
for i, v := range val {
av[i] = &commonpb.AnyValue{
Value: &commonpb.AnyValue_StringValue{
StringValue: v,
},
}
}
}
return av
}