1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-12-03 23:21:27 +02:00
Files
opentelemetry-go/sdk/metric/benchmark_test.go

450 lines
13 KiB
Go
Raw Normal View History

// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package metric // import "go.opentelemetry.io/otel/sdk/metric"
import (
"context"
"fmt"
"runtime"
"strconv"
"testing"
"github.com/stretchr/testify/assert"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/metric"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
"go.opentelemetry.io/otel/trace"
)
var viewBenchmarks = []struct {
Name string
Views []View
}{
{"NoView", []View{}},
{
"DropView",
[]View{NewView(
Instrument{Name: "*"},
Stream{Aggregation: AggregationDrop{}},
)},
},
{
"AttrFilterView",
[]View{NewView(
Instrument{Name: "*"},
Stream{AttributeFilter: attribute.NewAllowKeysFilter("K")},
)},
},
}
func BenchmarkSyncMeasure(b *testing.B) {
for _, bc := range viewBenchmarks {
b.Run(bc.Name, benchSyncViews(bc.Views...))
}
}
func benchSyncViews(views ...View) func(*testing.B) {
ctx := context.Background()
rdr := NewManualReader()
provider := NewMeterProvider(WithReader(rdr), WithView(views...))
meter := provider.Meter("benchSyncViews")
return func(b *testing.B) {
iCtr, err := meter.Int64Counter("int64-counter")
assert.NoError(b, err)
b.Run("Int64Counter", benchMeasAttrs(func() measF {
return func(s attribute.Set) func() {
o := []metric.AddOption{metric.WithAttributeSet(s)}
return func() { iCtr.Add(ctx, 1, o...) }
}
}()))
fCtr, err := meter.Float64Counter("float64-counter")
assert.NoError(b, err)
b.Run("Float64Counter", benchMeasAttrs(func() measF {
return func(s attribute.Set) func() {
o := []metric.AddOption{metric.WithAttributeSet(s)}
return func() { fCtr.Add(ctx, 1, o...) }
}
}()))
iUDCtr, err := meter.Int64UpDownCounter("int64-up-down-counter")
assert.NoError(b, err)
b.Run("Int64UpDownCounter", benchMeasAttrs(func() measF {
return func(s attribute.Set) func() {
o := []metric.AddOption{metric.WithAttributeSet(s)}
return func() { iUDCtr.Add(ctx, 1, o...) }
}
}()))
fUDCtr, err := meter.Float64UpDownCounter("float64-up-down-counter")
assert.NoError(b, err)
b.Run("Float64UpDownCounter", benchMeasAttrs(func() measF {
return func(s attribute.Set) func() {
o := []metric.AddOption{metric.WithAttributeSet(s)}
return func() { fUDCtr.Add(ctx, 1, o...) }
}
}()))
iHist, err := meter.Int64Histogram("int64-histogram")
assert.NoError(b, err)
b.Run("Int64Histogram", benchMeasAttrs(func() measF {
return func(s attribute.Set) func() {
o := []metric.RecordOption{metric.WithAttributeSet(s)}
return func() { iHist.Record(ctx, 1, o...) }
}
}()))
fHist, err := meter.Float64Histogram("float64-histogram")
assert.NoError(b, err)
b.Run("Float64Histogram", benchMeasAttrs(func() measF {
return func(s attribute.Set) func() {
o := []metric.RecordOption{metric.WithAttributeSet(s)}
return func() { fHist.Record(ctx, 1, o...) }
}
}()))
}
}
type measF func(s attribute.Set) func()
func benchMeasAttrs(meas measF) func(*testing.B) {
return func(b *testing.B) {
b.Run("Attributes/0", func(b *testing.B) {
f := meas(*attribute.EmptySet())
Testing: Run sync measure benchmarks in parallel (#7113) I am looking into https://promlabs.com/blog/2025/07/17/why-i-recommend-native-prometheus-instrumentation-over-opentelemetry/#comparing-counter-increment-performance, which seems to suggest the OTel metrics SDK performs poorly when a counter is incremented concurrently. It is potentially a bit of an artificial benchmark, but does suggest there is some contention beyond just the fact that they are incrementing an atomic integer... Original benchmarks from the blog post: https://github.com/promlabs/prometheus-otel-benchmarks/blob/main/otel_test.go ``` $ go test -run=xxxxxMatchNothingxxxxx -cpu=24 -test.benchtime=1s -bench=BenchmarkSyncMeasure/NoView/ goos: linux goarch: amd64 pkg: go.opentelemetry.io/otel/sdk/metric cpu: Intel(R) Xeon(R) CPU @ 2.20GHz BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/0-24 3946789 313.2 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/1-24 3420992 374.4 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/10-24 574608 1745 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/0-24 3996166 281.1 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/1-24 3091573 367.1 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/10-24 705693 1660 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/0-24 4098727 296.4 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/1-24 3029276 355.4 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/10-24 605174 1803 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/0-24 4057765 298.6 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/1-24 3384812 366.9 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/10-24 714900 1742 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/0-24 3274644 364.3 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/1-24 3780115 316.1 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/10-24 1294364 993.5 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/0-24 3543817 343.2 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/1-24 3523102 335.8 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/10-24 1329352 956.3 ns/op PASS ok go.opentelemetry.io/otel/sdk/metric 27.504s ``` ``` $ go test -run=xxxxxMatchNothingxxxxx -cpu=1 -test.benchtime=1s -bench=BenchmarkSyncMeasure/NoView/ goos: linux goarch: amd64 pkg: go.opentelemetry.io/otel/sdk/metric cpu: Intel(R) Xeon(R) CPU @ 2.20GHz BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/0 9905773 121.3 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/1 4079145 296.5 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/10 781627 1531 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/0 10017988 120.2 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/1 4055418 296.4 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/10 761139 1540 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/0 10017126 121.1 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/1 4037232 295.3 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/10 757010 1539 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/0 10122925 119.0 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/1 4070942 293.8 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/10 788176 1542 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/0 10794142 110.8 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/1 5929494 201.0 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/10 1449292 825.4 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/0 10875385 110.1 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/1 5903116 202.4 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/10 1459578 827.4 ns/op PASS ok go.opentelemetry.io/otel/sdk/metric 25.688s ``` Results are significantly worse (almost > 2x in some cases) with parallelism, but don't initially seem as bad as the blog post suggests. I only have 24 cores, so I can't test higher numbers. Do we want to have parallel benchmarks in addition to our current non-parallel ones?
2025-08-06 08:50:18 -04:00
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
f()
}
})
})
b.Run("Attributes/1", func(b *testing.B) {
f := meas(attribute.NewSet(attribute.Bool("K", true)))
Testing: Run sync measure benchmarks in parallel (#7113) I am looking into https://promlabs.com/blog/2025/07/17/why-i-recommend-native-prometheus-instrumentation-over-opentelemetry/#comparing-counter-increment-performance, which seems to suggest the OTel metrics SDK performs poorly when a counter is incremented concurrently. It is potentially a bit of an artificial benchmark, but does suggest there is some contention beyond just the fact that they are incrementing an atomic integer... Original benchmarks from the blog post: https://github.com/promlabs/prometheus-otel-benchmarks/blob/main/otel_test.go ``` $ go test -run=xxxxxMatchNothingxxxxx -cpu=24 -test.benchtime=1s -bench=BenchmarkSyncMeasure/NoView/ goos: linux goarch: amd64 pkg: go.opentelemetry.io/otel/sdk/metric cpu: Intel(R) Xeon(R) CPU @ 2.20GHz BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/0-24 3946789 313.2 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/1-24 3420992 374.4 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/10-24 574608 1745 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/0-24 3996166 281.1 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/1-24 3091573 367.1 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/10-24 705693 1660 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/0-24 4098727 296.4 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/1-24 3029276 355.4 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/10-24 605174 1803 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/0-24 4057765 298.6 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/1-24 3384812 366.9 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/10-24 714900 1742 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/0-24 3274644 364.3 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/1-24 3780115 316.1 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/10-24 1294364 993.5 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/0-24 3543817 343.2 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/1-24 3523102 335.8 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/10-24 1329352 956.3 ns/op PASS ok go.opentelemetry.io/otel/sdk/metric 27.504s ``` ``` $ go test -run=xxxxxMatchNothingxxxxx -cpu=1 -test.benchtime=1s -bench=BenchmarkSyncMeasure/NoView/ goos: linux goarch: amd64 pkg: go.opentelemetry.io/otel/sdk/metric cpu: Intel(R) Xeon(R) CPU @ 2.20GHz BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/0 9905773 121.3 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/1 4079145 296.5 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/10 781627 1531 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/0 10017988 120.2 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/1 4055418 296.4 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/10 761139 1540 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/0 10017126 121.1 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/1 4037232 295.3 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/10 757010 1539 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/0 10122925 119.0 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/1 4070942 293.8 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/10 788176 1542 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/0 10794142 110.8 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/1 5929494 201.0 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/10 1449292 825.4 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/0 10875385 110.1 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/1 5903116 202.4 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/10 1459578 827.4 ns/op PASS ok go.opentelemetry.io/otel/sdk/metric 25.688s ``` Results are significantly worse (almost > 2x in some cases) with parallelism, but don't initially seem as bad as the blog post suggests. I only have 24 cores, so I can't test higher numbers. Do we want to have parallel benchmarks in addition to our current non-parallel ones?
2025-08-06 08:50:18 -04:00
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
f()
}
})
})
b.Run("Attributes/10", func(b *testing.B) {
n := 10
attrs := make([]attribute.KeyValue, 0)
attrs = append(attrs, attribute.Bool("K", true))
for i := 2; i < n; i++ {
attrs = append(attrs, attribute.Int(strconv.Itoa(i), i))
}
f := meas(attribute.NewSet(attrs...))
Testing: Run sync measure benchmarks in parallel (#7113) I am looking into https://promlabs.com/blog/2025/07/17/why-i-recommend-native-prometheus-instrumentation-over-opentelemetry/#comparing-counter-increment-performance, which seems to suggest the OTel metrics SDK performs poorly when a counter is incremented concurrently. It is potentially a bit of an artificial benchmark, but does suggest there is some contention beyond just the fact that they are incrementing an atomic integer... Original benchmarks from the blog post: https://github.com/promlabs/prometheus-otel-benchmarks/blob/main/otel_test.go ``` $ go test -run=xxxxxMatchNothingxxxxx -cpu=24 -test.benchtime=1s -bench=BenchmarkSyncMeasure/NoView/ goos: linux goarch: amd64 pkg: go.opentelemetry.io/otel/sdk/metric cpu: Intel(R) Xeon(R) CPU @ 2.20GHz BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/0-24 3946789 313.2 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/1-24 3420992 374.4 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/10-24 574608 1745 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/0-24 3996166 281.1 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/1-24 3091573 367.1 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/10-24 705693 1660 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/0-24 4098727 296.4 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/1-24 3029276 355.4 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/10-24 605174 1803 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/0-24 4057765 298.6 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/1-24 3384812 366.9 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/10-24 714900 1742 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/0-24 3274644 364.3 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/1-24 3780115 316.1 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/10-24 1294364 993.5 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/0-24 3543817 343.2 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/1-24 3523102 335.8 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/10-24 1329352 956.3 ns/op PASS ok go.opentelemetry.io/otel/sdk/metric 27.504s ``` ``` $ go test -run=xxxxxMatchNothingxxxxx -cpu=1 -test.benchtime=1s -bench=BenchmarkSyncMeasure/NoView/ goos: linux goarch: amd64 pkg: go.opentelemetry.io/otel/sdk/metric cpu: Intel(R) Xeon(R) CPU @ 2.20GHz BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/0 9905773 121.3 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/1 4079145 296.5 ns/op BenchmarkSyncMeasure/NoView/Int64Counter/Attributes/10 781627 1531 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/0 10017988 120.2 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/1 4055418 296.4 ns/op BenchmarkSyncMeasure/NoView/Float64Counter/Attributes/10 761139 1540 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/0 10017126 121.1 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/1 4037232 295.3 ns/op BenchmarkSyncMeasure/NoView/Int64UpDownCounter/Attributes/10 757010 1539 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/0 10122925 119.0 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/1 4070942 293.8 ns/op BenchmarkSyncMeasure/NoView/Float64UpDownCounter/Attributes/10 788176 1542 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/0 10794142 110.8 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/1 5929494 201.0 ns/op BenchmarkSyncMeasure/NoView/Int64Histogram/Attributes/10 1449292 825.4 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/0 10875385 110.1 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/1 5903116 202.4 ns/op BenchmarkSyncMeasure/NoView/Float64Histogram/Attributes/10 1459578 827.4 ns/op PASS ok go.opentelemetry.io/otel/sdk/metric 25.688s ``` Results are significantly worse (almost > 2x in some cases) with parallelism, but don't initially seem as bad as the blog post suggests. I only have 24 cores, so I can't test higher numbers. Do we want to have parallel benchmarks in addition to our current non-parallel ones?
2025-08-06 08:50:18 -04:00
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
f()
}
})
})
}
}
func BenchmarkCollect(b *testing.B) {
for _, bc := range viewBenchmarks {
b.Run(bc.Name, benchCollectViews(bc.Views...))
}
}
func benchCollectViews(views ...View) func(*testing.B) {
setup := func(name string) (metric.Meter, Reader) {
r := NewManualReader()
mp := NewMeterProvider(WithReader(r), WithView(views...))
return mp.Meter(name), r
}
ctx := context.Background()
return func(b *testing.B) {
b.Run("Int64Counter/1", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64Counter")
i, err := m.Int64Counter("int64-counter")
assert.NoError(b, err)
i.Add(ctx, 1, metric.WithAttributeSet(s))
return r
}))
b.Run("Int64Counter/10", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64Counter")
i, err := m.Int64Counter("int64-counter")
assert.NoError(b, err)
for range 10 {
i.Add(ctx, 1, metric.WithAttributeSet(s))
}
return r
}))
b.Run("Float64Counter/1", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64Counter")
i, err := m.Float64Counter("float64-counter")
assert.NoError(b, err)
i.Add(ctx, 1, metric.WithAttributeSet(s))
return r
}))
b.Run("Float64Counter/10", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64Counter")
i, err := m.Float64Counter("float64-counter")
assert.NoError(b, err)
for range 10 {
i.Add(ctx, 1, metric.WithAttributeSet(s))
}
return r
}))
b.Run("Int64UpDownCounter/1", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64UpDownCounter")
i, err := m.Int64UpDownCounter("int64-up-down-counter")
assert.NoError(b, err)
i.Add(ctx, 1, metric.WithAttributeSet(s))
return r
}))
b.Run("Int64UpDownCounter/10", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64UpDownCounter")
i, err := m.Int64UpDownCounter("int64-up-down-counter")
assert.NoError(b, err)
for range 10 {
i.Add(ctx, 1, metric.WithAttributeSet(s))
}
return r
}))
b.Run("Float64UpDownCounter/1", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64UpDownCounter")
i, err := m.Float64UpDownCounter("float64-up-down-counter")
assert.NoError(b, err)
i.Add(ctx, 1, metric.WithAttributeSet(s))
return r
}))
b.Run("Float64UpDownCounter/10", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64UpDownCounter")
i, err := m.Float64UpDownCounter("float64-up-down-counter")
assert.NoError(b, err)
for range 10 {
i.Add(ctx, 1, metric.WithAttributeSet(s))
}
return r
}))
b.Run("Int64Histogram/1", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64Histogram")
i, err := m.Int64Histogram("int64-histogram")
assert.NoError(b, err)
i.Record(ctx, 1, metric.WithAttributeSet(s))
return r
}))
b.Run("Int64Histogram/10", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64Histogram")
i, err := m.Int64Histogram("int64-histogram")
assert.NoError(b, err)
for range 10 {
i.Record(ctx, 1, metric.WithAttributeSet(s))
}
return r
}))
b.Run("Float64Histogram/1", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64Histogram")
i, err := m.Float64Histogram("float64-histogram")
assert.NoError(b, err)
i.Record(ctx, 1, metric.WithAttributeSet(s))
return r
}))
b.Run("Float64Histogram/10", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64Histogram")
i, err := m.Float64Histogram("float64-histogram")
assert.NoError(b, err)
for range 10 {
i.Record(ctx, 1, metric.WithAttributeSet(s))
}
return r
}))
b.Run("Int64ObservableCounter", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64ObservableCounter")
_, err := m.Int64ObservableCounter(
"int64-observable-counter",
metric.WithInt64Callback(int64Cback(s)),
)
assert.NoError(b, err)
return r
}))
b.Run("Float64ObservableCounter", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64ObservableCounter")
_, err := m.Float64ObservableCounter(
"float64-observable-counter",
metric.WithFloat64Callback(float64Cback(s)),
)
assert.NoError(b, err)
return r
}))
b.Run("Int64ObservableUpDownCounter", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64ObservableUpDownCounter")
_, err := m.Int64ObservableUpDownCounter(
"int64-observable-up-down-counter",
metric.WithInt64Callback(int64Cback(s)),
)
assert.NoError(b, err)
return r
}))
b.Run("Float64ObservableUpDownCounter", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64ObservableUpDownCounter")
_, err := m.Float64ObservableUpDownCounter(
"float64-observable-up-down-counter",
metric.WithFloat64Callback(float64Cback(s)),
)
assert.NoError(b, err)
return r
}))
b.Run("Int64ObservableGauge", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Int64ObservableGauge")
_, err := m.Int64ObservableGauge(
"int64-observable-gauge",
metric.WithInt64Callback(int64Cback(s)),
)
assert.NoError(b, err)
return r
}))
b.Run("Float64ObservableGauge", benchCollectAttrs(func(s attribute.Set) Reader {
m, r := setup("benchCollectViews/Float64ObservableGauge")
_, err := m.Float64ObservableGauge(
"float64-observable-gauge",
metric.WithFloat64Callback(float64Cback(s)),
)
assert.NoError(b, err)
return r
}))
}
}
func int64Cback(s attribute.Set) metric.Int64Callback {
opt := []metric.ObserveOption{metric.WithAttributeSet(s)}
return func(_ context.Context, o metric.Int64Observer) error {
o.Observe(1, opt...)
return nil
}
}
func float64Cback(s attribute.Set) metric.Float64Callback {
opt := []metric.ObserveOption{metric.WithAttributeSet(s)}
return func(_ context.Context, o metric.Float64Observer) error {
o.Observe(1, opt...)
return nil
}
}
func benchCollectAttrs(setup func(attribute.Set) Reader) func(*testing.B) {
ctx := context.Background()
out := new(metricdata.ResourceMetrics)
run := func(reader Reader) func(b *testing.B) {
return func(b *testing.B) {
b.ReportAllocs()
for n := 0; n < b.N; n++ {
_ = reader.Collect(ctx, out)
}
}
}
return func(b *testing.B) {
b.Run("Attributes/0", run(setup(*attribute.EmptySet())))
attrs := []attribute.KeyValue{attribute.Bool("K", true)}
b.Run("Attributes/1", run(setup(attribute.NewSet(attrs...))))
for i := 2; i < 10; i++ {
attrs = append(attrs, attribute.Int(strconv.Itoa(i), i))
}
b.Run("Attributes/10", run(setup(attribute.NewSet(attrs...))))
}
}
func BenchmarkExemplars(b *testing.B) {
sc := trace.NewSpanContext(trace.SpanContextConfig{
SpanID: trace.SpanID{0o1},
TraceID: trace.TraceID{0o1},
TraceFlags: trace.FlagsSampled,
})
ctx := trace.ContextWithSpanContext(context.Background(), sc)
attr := attribute.NewSet(
attribute.String("user", "Alice"),
attribute.Bool("admin", true),
)
setup := func(name string) (metric.Meter, Reader) {
r := NewManualReader()
v := NewView(Instrument{Name: "*"}, Stream{
AttributeFilter: func(kv attribute.KeyValue) bool {
return kv.Key == attribute.Key("user")
},
})
mp := NewMeterProvider(WithReader(r), WithView(v))
return mp.Meter(name), r
}
nCPU := runtime.NumCPU() // Size of the fixed reservoir used.
b.Setenv("OTEL_GO_X_EXEMPLAR", "true")
name := fmt.Sprintf("Int64Counter/%d", nCPU)
b.Run(name, func(b *testing.B) {
m, r := setup("Int64Counter")
i, err := m.Int64Counter("int64-counter")
assert.NoError(b, err)
rm := newRM(metricdata.Sum[int64]{
DataPoints: []metricdata.DataPoint[int64]{
{Exemplars: make([]metricdata.Exemplar[int64], 0, nCPU)},
},
})
e := &(rm.ScopeMetrics[0].Metrics[0].Data.(metricdata.Sum[int64]).DataPoints[0].Exemplars)
b.ReportAllocs()
b.ResetTimer()
for n := 0; n < b.N; n++ {
for j := 0; j < 2*nCPU; j++ {
i.Add(ctx, 1, metric.WithAttributeSet(attr))
}
_ = r.Collect(ctx, rm)
assert.Len(b, *e, nCPU)
}
})
name = fmt.Sprintf("Int64Histogram/%d", nCPU)
b.Run(name, func(b *testing.B) {
m, r := setup("Int64Counter")
i, err := m.Int64Histogram("int64-histogram")
assert.NoError(b, err)
rm := newRM(metricdata.Histogram[int64]{
DataPoints: []metricdata.HistogramDataPoint[int64]{
{Exemplars: make([]metricdata.Exemplar[int64], 0, 1)},
},
})
e := &(rm.ScopeMetrics[0].Metrics[0].Data.(metricdata.Histogram[int64]).DataPoints[0].Exemplars)
b.ReportAllocs()
b.ResetTimer()
for n := 0; n < b.N; n++ {
for j := 0; j < 2*nCPU; j++ {
i.Record(ctx, 1, metric.WithAttributeSet(attr))
}
_ = r.Collect(ctx, rm)
assert.Len(b, *e, 1)
}
})
}
func newRM(a metricdata.Aggregation) *metricdata.ResourceMetrics {
return &metricdata.ResourceMetrics{
ScopeMetrics: []metricdata.ScopeMetrics{
{Metrics: []metricdata.Metrics{{Data: a}}},
},
}
}