1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-30 04:40:41 +02:00

Calculate delta sums for delta async counter/up-down-counter types (#3398)

* Update API docs

Update the async instrument docs for the counters types to explain that
the value recorded is assumed by implementations to be the cumulative
sum.

* Refactor precomputed delta sum aggregation

Report the delta Aggregation while supporting cumulative Aggregate
values.

* Add changes to changelog
This commit is contained in:
Tyler Yahn 2022-10-27 08:47:27 -07:00 committed by GitHub
parent ccbc38e66e
commit 40f19009b0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 95 additions and 26 deletions

View File

@ -11,6 +11,7 @@ This project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.htm
### Fixed
- The `go.opentelemetry.io/otel/exporters/prometheus` exporter fixes duplicated `_total` suffixes. (#3369)
- Asynchronous counters (`Counter` and `UpDownCounter`) from the metric SDK now produce delta sums when configured with delta temporality. (#3398)
## [1.11.1/0.33.0] 2022-10-19

View File

@ -35,8 +35,8 @@ type InstrumentProvider interface {
// Counter is an instrument that records increasing values.
type Counter interface {
// Observe records the state of the instrument to be x. The value of x is
// assumed to be the exact Counter value to record.
// Observe records the state of the instrument to be x. Implementations
// will assume x to be the cumulative sum of the count.
//
// It is only valid to call this within a callback. If called outside of the
// registered callback it should have no effect on the instrument, and an
@ -48,8 +48,8 @@ type Counter interface {
// UpDownCounter is an instrument that records increasing or decreasing values.
type UpDownCounter interface {
// Observe records the state of the instrument to be x. The value of x is
// assumed to be the exact UpDownCounter value to record.
// Observe records the state of the instrument to be x. Implementations
// will assume x to be the cumulative sum of the count.
//
// It is only valid to call this within a callback. If called outside of the
// registered callback it should have no effect on the instrument, and an

View File

@ -35,8 +35,8 @@ type InstrumentProvider interface {
// Counter is an instrument that records increasing values.
type Counter interface {
// Observe records the state of the instrument to be x. The value of x is
// assumed to be the exact Counter value to record.
// Observe records the state of the instrument to be x. Implementations
// will assume x to be the cumulative sum of the count.
//
// It is only valid to call this within a callback. If called outside of the
// registered callback it should have no effect on the instrument, and an
@ -48,8 +48,8 @@ type Counter interface {
// UpDownCounter is an instrument that records increasing or decreasing values.
type UpDownCounter interface {
// Observe records the state of the instrument to be x. The value of x is
// assumed to be the exact UpDownCounter value to record.
// Observe records the state of the instrument to be x. Implementations
// will assume x to be the cumulative sum of the count.
//
// It is only valid to call this within a callback. If called outside of the
// registered callback it should have no effect on the instrument, and an

View File

@ -177,7 +177,66 @@ func (s *cumulativeSum[N]) Aggregation() metricdata.Aggregation {
// The output Aggregation will report recorded values as delta temporality. It
// is up to the caller to ensure this is accurate.
func NewPrecomputedDeltaSum[N int64 | float64](monotonic bool) Aggregator[N] {
return &precomputedSum[N]{settableSum: newDeltaSum[N](monotonic)}
return &precomputedDeltaSum[N]{
recorded: make(map[attribute.Set]N),
reported: make(map[attribute.Set]N),
monotonic: monotonic,
start: now(),
}
}
// precomputedDeltaSum summarizes a set of measurements recorded over all
// aggregation cycles as the delta arithmetic sum.
type precomputedDeltaSum[N int64 | float64] struct {
sync.Mutex
recorded map[attribute.Set]N
reported map[attribute.Set]N
monotonic bool
start time.Time
}
// Aggregate records value as a cumulative sum for attr.
func (s *precomputedDeltaSum[N]) Aggregate(value N, attr attribute.Set) {
s.Lock()
s.recorded[attr] = value
s.Unlock()
}
func (s *precomputedDeltaSum[N]) Aggregation() metricdata.Aggregation {
out := metricdata.Sum[N]{
Temporality: metricdata.DeltaTemporality,
IsMonotonic: s.monotonic,
}
s.Lock()
defer s.Unlock()
if len(s.recorded) == 0 {
return out
}
t := now()
out.DataPoints = make([]metricdata.DataPoint[N], 0, len(s.recorded))
for attr, recorded := range s.recorded {
value := recorded - s.reported[attr]
out.DataPoints = append(out.DataPoints, metricdata.DataPoint[N]{
Attributes: attr,
StartTime: s.start,
Time: t,
Value: value,
})
if value != 0 {
s.reported[attr] = recorded
}
// TODO (#3006): This will use an unbounded amount of memory if there
// are unbounded number of attribute sets being aggregated. Attribute
// sets that become "stale" need to be forgotten so this will not
// overload the system.
}
// The delta collection cycle resets.
s.start = t
return out
}
// NewPrecomputedCumulativeSum returns an Aggregator that summarizes a set of
@ -191,21 +250,16 @@ func NewPrecomputedDeltaSum[N int64 | float64](monotonic bool) Aggregator[N] {
// The output Aggregation will report recorded values as cumulative
// temporality. It is up to the caller to ensure this is accurate.
func NewPrecomputedCumulativeSum[N int64 | float64](monotonic bool) Aggregator[N] {
return &precomputedSum[N]{settableSum: newCumulativeSum[N](monotonic)}
}
type settableSum[N int64 | float64] interface {
set(value N, attr attribute.Set)
Aggregation() metricdata.Aggregation
return &precomputedSum[N]{newCumulativeSum[N](monotonic)}
}
// precomputedSum summarizes a set of measurements recorded over all
// aggregation cycles directly as an arithmetic sum.
// aggregation cycles directly as the cumulative arithmetic sum.
type precomputedSum[N int64 | float64] struct {
settableSum[N]
*cumulativeSum[N]
}
// Aggregate records value directly as a sum for attr.
// Aggregate records value as a cumulative sum for attr.
func (s *precomputedSum[N]) Aggregate(value N, attr attribute.Set) {
s.set(value, attr)
}

View File

@ -56,22 +56,22 @@ func testSum[N int64 | float64](t *testing.T) {
})
t.Run("PreComputedDelta", func(t *testing.T) {
incr, mono, temp := monoIncr, true, metricdata.DeltaTemporality
eFunc := preExpecter[N](incr, mono, temp)
incr, mono := monoIncr, true
eFunc := preDeltaExpecter[N](incr, mono)
t.Run("Monotonic", tester.Run(NewPrecomputedDeltaSum[N](mono), incr, eFunc))
incr, mono = nonMonoIncr, false
eFunc = preExpecter[N](incr, mono, temp)
eFunc = preDeltaExpecter[N](incr, mono)
t.Run("NonMonotonic", tester.Run(NewPrecomputedDeltaSum[N](mono), incr, eFunc))
})
t.Run("PreComputedCumulative", func(t *testing.T) {
incr, mono, temp := monoIncr, true, metricdata.CumulativeTemporality
eFunc := preExpecter[N](incr, mono, temp)
incr, mono := monoIncr, true
eFunc := preCumuExpecter[N](incr, mono)
t.Run("Monotonic", tester.Run(NewPrecomputedCumulativeSum[N](mono), incr, eFunc))
incr, mono = nonMonoIncr, false
eFunc = preExpecter[N](incr, mono, temp)
eFunc = preCumuExpecter[N](incr, mono)
t.Run("NonMonotonic", tester.Run(NewPrecomputedCumulativeSum[N](mono), incr, eFunc))
})
}
@ -100,8 +100,22 @@ func cumuExpecter[N int64 | float64](incr setMap, mono bool) expectFunc {
}
}
func preExpecter[N int64 | float64](incr setMap, mono bool, temp metricdata.Temporality) expectFunc {
sum := metricdata.Sum[N]{Temporality: temp, IsMonotonic: mono}
func preDeltaExpecter[N int64 | float64](incr setMap, mono bool) expectFunc {
sum := metricdata.Sum[N]{Temporality: metricdata.DeltaTemporality, IsMonotonic: mono}
last := make(map[attribute.Set]N)
return func(int) metricdata.Aggregation {
sum.DataPoints = make([]metricdata.DataPoint[N], 0, len(incr))
for a, v := range incr {
l := last[a]
sum.DataPoints = append(sum.DataPoints, point(a, N(v)-l))
last[a] = N(v)
}
return sum
}
}
func preCumuExpecter[N int64 | float64](incr setMap, mono bool) expectFunc {
sum := metricdata.Sum[N]{Temporality: metricdata.CumulativeTemporality, IsMonotonic: mono}
return func(int) metricdata.Aggregation {
sum.DataPoints = make([]metricdata.DataPoint[N], 0, len(incr))
for a, v := range incr {