// Copyright The OpenTelemetry Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package opencensus import ( "context" "errors" "fmt" "testing" "time" "go.opentelemetry.io/otel" "go.opencensus.io/metric/metricdata" ocresource "go.opencensus.io/resource" "go.opentelemetry.io/otel/attribute" "go.opentelemetry.io/otel/metric" "go.opentelemetry.io/otel/metric/number" "go.opentelemetry.io/otel/metric/sdkapi" "go.opentelemetry.io/otel/metric/unit" export "go.opentelemetry.io/otel/sdk/export/metric" exportmetric "go.opentelemetry.io/otel/sdk/export/metric" "go.opentelemetry.io/otel/sdk/export/metric/aggregation" "go.opentelemetry.io/otel/sdk/resource" ) type fakeExporter struct { export.Exporter records []export.Record err error } func (f *fakeExporter) Export(ctx context.Context, cps exportmetric.CheckpointSet) error { return cps.ForEach(f, func(record exportmetric.Record) error { f.records = append(f.records, record) return f.err }) } type fakeErrorHandler struct { err error } func (f *fakeErrorHandler) Handle(err error) { f.err = err } func (f *fakeErrorHandler) matches(err error) error { // make sure err is cleared for the next test defer func() { f.err = nil }() if !errors.Is(f.err, err) { return fmt.Errorf("err(%v), want err(%v)", f.err, err) } return nil } func TestExportMetrics(t *testing.T) { now := time.Now() basicDesc := metric.NewDescriptor( "", sdkapi.ValueObserverInstrumentKind, number.Int64Kind, metric.WithInstrumentationName("OpenCensus Bridge"), ) fakeErrorHandler := &fakeErrorHandler{} otel.SetErrorHandler(fakeErrorHandler) for _, tc := range []struct { desc string input []*metricdata.Metric exportErr error expected []export.Record expectedHandledError error }{ { desc: "no metrics", }, { desc: "metric without points is dropped", input: []*metricdata.Metric{ { TimeSeries: []*metricdata.TimeSeries{ {}, }, }, }, }, { desc: "descriptor conversion error", input: []*metricdata.Metric{ // TypeGaugeDistribution isn't supported {Descriptor: metricdata.Descriptor{Type: metricdata.TypeGaugeDistribution}}, }, expectedHandledError: errConversion, }, { desc: "labels conversion error", input: []*metricdata.Metric{ { // No descriptor with label keys. TimeSeries: []*metricdata.TimeSeries{ // 1 label value, which doens't exist in keys. { LabelValues: []metricdata.LabelValue{{Value: "foo", Present: true}}, Points: []metricdata.Point{ {}, }, }, }, }, }, expectedHandledError: errConversion, }, { desc: "unsupported summary point type", input: []*metricdata.Metric{ { TimeSeries: []*metricdata.TimeSeries{ { Points: []metricdata.Point{ {Value: &metricdata.Summary{}}, }, }, }, }, }, expectedHandledError: errIncompatibleType, }, { desc: "success", input: []*metricdata.Metric{ { TimeSeries: []*metricdata.TimeSeries{ { StartTime: now, Points: []metricdata.Point{ {Value: int64(123), Time: now}, }, }, }, }, }, expected: []export.Record{ export.NewRecord( &basicDesc, attribute.EmptySet(), resource.NewSchemaless(), &ocExactAggregator{ points: []aggregation.Point{ { Number: number.NewInt64Number(123), Time: now, }, }, }, now, now, ), }, }, { desc: "export error after success", input: []*metricdata.Metric{ { TimeSeries: []*metricdata.TimeSeries{ { StartTime: now, Points: []metricdata.Point{ {Value: int64(123), Time: now}, }, }, }, }, }, expected: []export.Record{ export.NewRecord( &basicDesc, attribute.EmptySet(), resource.NewSchemaless(), &ocExactAggregator{ points: []aggregation.Point{ { Number: number.NewInt64Number(123), Time: now, }, }, }, now, now, ), }, exportErr: errors.New("failed to export"), }, { desc: "partial success sends correct metrics and drops incorrect metrics with handled err", input: []*metricdata.Metric{ { TimeSeries: []*metricdata.TimeSeries{ { StartTime: now, Points: []metricdata.Point{ {Value: int64(123), Time: now}, }, }, }, }, // TypeGaugeDistribution isn't supported {Descriptor: metricdata.Descriptor{Type: metricdata.TypeGaugeDistribution}}, }, expected: []export.Record{ export.NewRecord( &basicDesc, attribute.EmptySet(), resource.NewSchemaless(), &ocExactAggregator{ points: []aggregation.Point{ { Number: number.NewInt64Number(123), Time: now, }, }, }, now, now, ), }, expectedHandledError: errConversion, }, } { t.Run(tc.desc, func(t *testing.T) { fakeExporter := &fakeExporter{err: tc.exportErr} err := NewMetricExporter(fakeExporter).ExportMetrics(context.Background(), tc.input) if !errors.Is(err, tc.exportErr) { t.Errorf("NewMetricExporter(%+v) = err(%v), want err(%v)", tc.input, err, tc.exportErr) } // Check the global error handler, since we don't return errors // which occur during conversion. err = fakeErrorHandler.matches(tc.expectedHandledError) if err != nil { t.Fatalf("ExportMetrics(%+v) = %v", tc.input, err) } output := fakeExporter.records if len(tc.expected) != len(output) { t.Fatalf("ExportMetrics(%+v) = %d records, want %d records", tc.input, len(output), len(tc.expected)) } for i, expected := range tc.expected { if output[i].StartTime() != expected.StartTime() { t.Errorf("ExportMetrics(%+v)[i].StartTime() = %+v, want %+v", tc.input, output[i].StartTime(), expected.StartTime()) } if output[i].EndTime() != expected.EndTime() { t.Errorf("ExportMetrics(%+v)[i].EndTime() = %+v, want %+v", tc.input, output[i].EndTime(), expected.EndTime()) } if output[i].Resource().String() != expected.Resource().String() { t.Errorf("ExportMetrics(%+v)[i].Resource() = %+v, want %+v", tc.input, output[i].Resource().String(), expected.Resource().String()) } if output[i].Descriptor().Name() != expected.Descriptor().Name() { t.Errorf("ExportMetrics(%+v)[i].Descriptor() = %+v, want %+v", tc.input, output[i].Descriptor().Name(), expected.Descriptor().Name()) } // Don't bother with a complete check of the descriptor. // That is checked as part of descriptor conversion tests below. if !output[i].Labels().Equals(expected.Labels()) { t.Errorf("ExportMetrics(%+v)[i].Labels() = %+v, want %+v", tc.input, output[i].Labels(), expected.Labels()) } if output[i].Aggregation().Kind() != expected.Aggregation().Kind() { t.Errorf("ExportMetrics(%+v)[i].Aggregation() = %+v, want %+v", tc.input, output[i].Aggregation().Kind(), expected.Aggregation().Kind()) } // Don't bother checking the contents of the points aggregation. // Those tests are done with the aggregations themselves } }) } } func TestConvertLabels(t *testing.T) { setWithMultipleKeys := attribute.NewSet( attribute.KeyValue{Key: attribute.Key("first"), Value: attribute.StringValue("1")}, attribute.KeyValue{Key: attribute.Key("second"), Value: attribute.StringValue("2")}, ) for _, tc := range []struct { desc string inputKeys []metricdata.LabelKey inputValues []metricdata.LabelValue expected *attribute.Set expectedErr error }{ { desc: "no labels", expected: attribute.EmptySet(), }, { desc: "different numbers of keys and values", inputKeys: []metricdata.LabelKey{{Key: "foo"}}, expected: attribute.EmptySet(), expectedErr: errConversion, }, { desc: "multiple keys and values", inputKeys: []metricdata.LabelKey{{Key: "first"}, {Key: "second"}}, inputValues: []metricdata.LabelValue{ {Value: "1", Present: true}, {Value: "2", Present: true}, }, expected: &setWithMultipleKeys, }, { desc: "multiple keys and values with some not present", inputKeys: []metricdata.LabelKey{{Key: "first"}, {Key: "second"}, {Key: "third"}}, inputValues: []metricdata.LabelValue{ {Value: "1", Present: true}, {Value: "2", Present: true}, {Present: false}, }, expected: &setWithMultipleKeys, }, } { t.Run(tc.desc, func(t *testing.T) { output, err := convertLabels(tc.inputKeys, tc.inputValues) if !errors.Is(err, tc.expectedErr) { t.Errorf("convertLabels(keys: %v, values: %v) = err(%v), want err(%v)", tc.inputKeys, tc.inputValues, err, tc.expectedErr) } if !output.Equals(tc.expected) { t.Errorf("convertLabels(keys: %v, values: %v) = %+v, want %+v", tc.inputKeys, tc.inputValues, output.ToSlice(), tc.expected.ToSlice()) } }) } } func TestConvertResource(t *testing.T) { for _, tc := range []struct { desc string input *ocresource.Resource expected *resource.Resource }{ { desc: "nil resource", }, { desc: "empty resource", input: &ocresource.Resource{ Labels: map[string]string{}, }, expected: resource.NewSchemaless(), }, { desc: "resource with labels", input: &ocresource.Resource{ Labels: map[string]string{ "foo": "bar", "tick": "tock", }, }, expected: resource.NewSchemaless( attribute.KeyValue{Key: attribute.Key("foo"), Value: attribute.StringValue("bar")}, attribute.KeyValue{Key: attribute.Key("tick"), Value: attribute.StringValue("tock")}, ), }, } { t.Run(tc.desc, func(t *testing.T) { output := convertResource(tc.input) if !output.Equal(tc.expected) { t.Errorf("convertResource(%v) = %+v, want %+v", tc.input, output, tc.expected) } }) } } func TestConvertDescriptor(t *testing.T) { for _, tc := range []struct { desc string input metricdata.Descriptor expected metric.Descriptor expectedErr error }{ { desc: "empty descriptor", expected: metric.NewDescriptor( "", sdkapi.ValueObserverInstrumentKind, number.Int64Kind, metric.WithInstrumentationName("OpenCensus Bridge"), ), }, { desc: "gauge int64 bytes", input: metricdata.Descriptor{ Name: "foo", Description: "bar", Unit: metricdata.UnitBytes, Type: metricdata.TypeGaugeInt64, }, expected: metric.NewDescriptor( "foo", sdkapi.ValueObserverInstrumentKind, number.Int64Kind, metric.WithInstrumentationName("OpenCensus Bridge"), metric.WithDescription("bar"), metric.WithUnit(unit.Bytes), ), }, { desc: "gauge float64 ms", input: metricdata.Descriptor{ Name: "foo", Description: "bar", Unit: metricdata.UnitMilliseconds, Type: metricdata.TypeGaugeFloat64, }, expected: metric.NewDescriptor( "foo", sdkapi.ValueObserverInstrumentKind, number.Float64Kind, metric.WithInstrumentationName("OpenCensus Bridge"), metric.WithDescription("bar"), metric.WithUnit(unit.Milliseconds), ), }, { desc: "cumulative int64 dimensionless", input: metricdata.Descriptor{ Name: "foo", Description: "bar", Unit: metricdata.UnitDimensionless, Type: metricdata.TypeCumulativeInt64, }, expected: metric.NewDescriptor( "foo", sdkapi.SumObserverInstrumentKind, number.Int64Kind, metric.WithInstrumentationName("OpenCensus Bridge"), metric.WithDescription("bar"), metric.WithUnit(unit.Dimensionless), ), }, { desc: "cumulative float64 dimensionless", input: metricdata.Descriptor{ Name: "foo", Description: "bar", Unit: metricdata.UnitDimensionless, Type: metricdata.TypeCumulativeFloat64, }, expected: metric.NewDescriptor( "foo", sdkapi.SumObserverInstrumentKind, number.Float64Kind, metric.WithInstrumentationName("OpenCensus Bridge"), metric.WithDescription("bar"), metric.WithUnit(unit.Dimensionless), ), }, { desc: "incompatible TypeCumulativeDistribution", input: metricdata.Descriptor{ Name: "foo", Description: "bar", Type: metricdata.TypeCumulativeDistribution, }, expectedErr: errConversion, }, } { t.Run(tc.desc, func(t *testing.T) { output, err := convertDescriptor(tc.input) if !errors.Is(err, tc.expectedErr) { t.Errorf("convertDescriptor(%v) = err(%v), want err(%v)", tc.input, err, tc.expectedErr) } if output != tc.expected { t.Errorf("convertDescriptor(%v) = %+v, want %+v", tc.input, output, tc.expected) } }) } }