1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-26 03:52:03 +02:00
Tyler Yahn b4264c53bc
Simplify the sum aggregators (#4357)
* Simplify the sum aggregators

* Comment how memory reuse misses are handled
2023-07-26 13:32:45 -07:00

440 lines
10 KiB
Go

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"testing"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
func TestSum(t *testing.T) {
t.Cleanup(mockTime(now))
t.Run("Int64/DeltaSum", testDeltaSum[int64]())
t.Run("Float64/DeltaSum", testDeltaSum[float64]())
t.Run("Int64/CumulativeSum", testCumulativeSum[int64]())
t.Run("Float64/CumulativeSum", testCumulativeSum[float64]())
t.Run("Int64/DeltaPrecomputedSum", testDeltaPrecomputedSum[int64]())
t.Run("Float64/DeltaPrecomputedSum", testDeltaPrecomputedSum[float64]())
t.Run("Int64/CumulativePrecomputedSum", testCumulativePrecomputedSum[int64]())
t.Run("Float64/CumulativePrecomputedSum", testCumulativePrecomputedSum[float64]())
}
func testDeltaSum[N int64 | float64]() func(t *testing.T) {
mono := false
in, out := Builder[N]{
Temporality: metricdata.DeltaTemporality,
Filter: attrFltr,
}.Sum(mono)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, -1, bob},
{ctx, 1, alice},
{ctx, 2, alice},
{ctx, -10, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Value: 4,
},
{
Attributes: fltrBob,
StartTime: staticTime,
Time: staticTime,
Value: -11,
},
},
},
},
},
{
input: []arg[N]{
{ctx, 10, alice},
{ctx, 3, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Value: 10,
},
{
Attributes: fltrBob,
StartTime: staticTime,
Time: staticTime,
Value: 3,
},
},
},
},
},
{
input: []arg[N]{},
// Delta sums are expected to reset.
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
})
}
func testCumulativeSum[N int64 | float64]() func(t *testing.T) {
mono := false
in, out := Builder[N]{
Temporality: metricdata.CumulativeTemporality,
Filter: attrFltr,
}.Sum(mono)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, -1, bob},
{ctx, 1, alice},
{ctx, 2, alice},
{ctx, -10, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Value: 4,
},
{
Attributes: fltrBob,
StartTime: staticTime,
Time: staticTime,
Value: -11,
},
},
},
},
},
{
input: []arg[N]{
{ctx, 10, alice},
{ctx, 3, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Value: 14,
},
{
Attributes: fltrBob,
StartTime: staticTime,
Time: staticTime,
Value: -8,
},
},
},
},
},
})
}
func testDeltaPrecomputedSum[N int64 | float64]() func(t *testing.T) {
mono := false
in, out := Builder[N]{
Temporality: metricdata.DeltaTemporality,
Filter: attrFltr,
}.PrecomputedSum(mono)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, -1, bob},
{ctx, 1, fltrAlice},
{ctx, 2, alice},
{ctx, -10, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Value: 4,
},
{
Attributes: fltrBob,
StartTime: staticTime,
Time: staticTime,
Value: -11,
},
},
},
},
},
{
input: []arg[N]{
{ctx, 1, fltrAlice},
{ctx, 10, alice},
{ctx, 3, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Value: 7,
},
{
Attributes: fltrBob,
StartTime: staticTime,
Time: staticTime,
Value: 14,
},
},
},
},
},
{
input: []arg[N]{},
// Precomputed sums are expected to reset.
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
})
}
func testCumulativePrecomputedSum[N int64 | float64]() func(t *testing.T) {
mono := false
in, out := Builder[N]{
Temporality: metricdata.CumulativeTemporality,
Filter: attrFltr,
}.PrecomputedSum(mono)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, -1, bob},
{ctx, 1, fltrAlice},
{ctx, 2, alice},
{ctx, -10, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Value: 4,
},
{
Attributes: fltrBob,
StartTime: staticTime,
Time: staticTime,
Value: -11,
},
},
},
},
},
{
input: []arg[N]{
{ctx, 1, fltrAlice},
{ctx, 10, alice},
{ctx, 3, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Value: 11,
},
{
Attributes: fltrBob,
StartTime: staticTime,
Time: staticTime,
Value: 3,
},
},
},
},
},
{
input: []arg[N]{},
// Precomputed sums are expected to reset.
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
})
}
func BenchmarkSum(b *testing.B) {
// The monotonic argument is only used to annotate the Sum returned from
// the Aggregation method. It should not have an effect on operational
// performance, therefore, only monotonic=false is benchmarked here.
b.Run("Int64/Cumulative", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
return Builder[int64]{
Temporality: metricdata.CumulativeTemporality,
}.Sum(false)
}))
b.Run("Int64/Delta", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
return Builder[int64]{
Temporality: metricdata.DeltaTemporality,
}.Sum(false)
}))
b.Run("Float64/Cumulative", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
return Builder[float64]{
Temporality: metricdata.CumulativeTemporality,
}.Sum(false)
}))
b.Run("Float64/Delta", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
return Builder[float64]{
Temporality: metricdata.DeltaTemporality,
}.Sum(false)
}))
b.Run("Precomputed/Int64/Cumulative", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
return Builder[int64]{
Temporality: metricdata.CumulativeTemporality,
}.PrecomputedSum(false)
}))
b.Run("Precomputed/Int64/Delta", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
return Builder[int64]{
Temporality: metricdata.DeltaTemporality,
}.PrecomputedSum(false)
}))
b.Run("Precomputed/Float64/Cumulative", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
return Builder[float64]{
Temporality: metricdata.CumulativeTemporality,
}.PrecomputedSum(false)
}))
b.Run("Precomputed/Float64/Delta", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
return Builder[float64]{
Temporality: metricdata.DeltaTemporality,
}.PrecomputedSum(false)
}))
}