1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-30 04:40:41 +02:00
Tyler Yahn 91091b44eb Add comments and test for 64-bit field alignment (#418)
* Add comments on needed filed alignment

Add comment about alignment requirements to all struct fields who's
values are passed to 64-bit atomic operations.

Update any struct's field ordering if one or more of those fields has
alignment requirements to support 64-bit atomic operations.

* Add 64-bit alignment tests

Most `struct` that have field alignment requirements are now statically
validated prior to testing. The only `struct`s not validated that have
these requirements are ones defined in tests themselves where multiple
`TestMain` functions would be needed to test them. Given the fields are
already identified with comments specifying the alignment requirements
and they are in the test themselves, this seems like an OK omission.

Co-authored-by: Liz Fong-Jones <elizabeth@ctyalcove.org>
2020-01-06 13:08:40 -05:00

197 lines
5.3 KiB
Go

// Copyright 2019, OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package array // import "go.opentelemetry.io/otel/sdk/metric/aggregator/array"
import (
"context"
"math"
"sort"
"sync"
"unsafe"
"go.opentelemetry.io/otel/api/core"
export "go.opentelemetry.io/otel/sdk/export/metric"
"go.opentelemetry.io/otel/sdk/export/metric/aggregator"
)
type (
Aggregator struct {
// ckptSum needs to be aligned for 64-bit atomic operations.
ckptSum core.Number
lock sync.Mutex
current points
checkpoint points
}
points []core.Number
)
var _ export.Aggregator = &Aggregator{}
var _ aggregator.MinMaxSumCount = &Aggregator{}
var _ aggregator.Distribution = &Aggregator{}
var _ aggregator.Points = &Aggregator{}
// New returns a new array aggregator, which aggregates recorded
// measurements by storing them in an array. This type uses a mutex
// for Update() and Checkpoint() concurrency.
func New() *Aggregator {
return &Aggregator{}
}
// Sum returns the sum of values in the checkpoint.
func (c *Aggregator) Sum() (core.Number, error) {
return c.ckptSum, nil
}
// Count returns the number of values in the checkpoint.
func (c *Aggregator) Count() (int64, error) {
return int64(len(c.checkpoint)), nil
}
// Max returns the maximum value in the checkpoint.
func (c *Aggregator) Max() (core.Number, error) {
return c.checkpoint.Quantile(1)
}
// Min returns the mininum value in the checkpoint.
func (c *Aggregator) Min() (core.Number, error) {
return c.checkpoint.Quantile(0)
}
// Quantile returns the estimated quantile of data in the checkpoint.
// It is an error if `q` is less than 0 or greated than 1.
func (c *Aggregator) Quantile(q float64) (core.Number, error) {
return c.checkpoint.Quantile(q)
}
// Points returns access to the raw data set.
func (c *Aggregator) Points() ([]core.Number, error) {
return c.checkpoint, nil
}
// Checkpoint saves the current state and resets the current state to
// the empty set, taking a lock to prevent concurrent Update() calls.
func (c *Aggregator) Checkpoint(ctx context.Context, desc *export.Descriptor) {
c.lock.Lock()
c.checkpoint, c.current = c.current, nil
c.lock.Unlock()
kind := desc.NumberKind()
// TODO: This sort should be done lazily, only when quantiles
// are requested. The SDK specification says you can use this
// aggregator to simply list values in the order they were
// received as an alternative to requesting quantile information.
c.sort(kind)
c.ckptSum = core.Number(0)
for _, v := range c.checkpoint {
c.ckptSum.AddNumber(kind, v)
}
}
// Update adds the recorded measurement to the current data set.
// Update takes a lock to prevent concurrent Update() and Checkpoint()
// calls.
func (c *Aggregator) Update(_ context.Context, number core.Number, desc *export.Descriptor) error {
c.lock.Lock()
c.current = append(c.current, number)
c.lock.Unlock()
return nil
}
// Merge combines two data sets into one.
func (c *Aggregator) Merge(oa export.Aggregator, desc *export.Descriptor) error {
o, _ := oa.(*Aggregator)
if o == nil {
return aggregator.NewInconsistentMergeError(c, oa)
}
c.ckptSum.AddNumber(desc.NumberKind(), o.ckptSum)
c.checkpoint = combine(c.checkpoint, o.checkpoint, desc.NumberKind())
return nil
}
func (c *Aggregator) sort(kind core.NumberKind) {
switch kind {
case core.Float64NumberKind:
sort.Float64s(*(*[]float64)(unsafe.Pointer(&c.checkpoint)))
case core.Int64NumberKind:
sort.Sort(&c.checkpoint)
default:
// NOTE: This can't happen because the SDK doesn't
// support uint64-kind metric instruments.
panic("Impossible case")
}
}
func combine(a, b points, kind core.NumberKind) points {
result := make(points, 0, len(a)+len(b))
for len(a) != 0 && len(b) != 0 {
if a[0].CompareNumber(kind, b[0]) < 0 {
result = append(result, a[0])
a = a[1:]
} else {
result = append(result, b[0])
b = b[1:]
}
}
result = append(result, a...)
result = append(result, b...)
return result
}
func (p *points) Len() int {
return len(*p)
}
func (p *points) Less(i, j int) bool {
// Note this is specialized for int64, because float64 is
// handled by `sort.Float64s` and uint64 numbers never appear
// in this data.
return int64((*p)[i]) < int64((*p)[j])
}
func (p *points) Swap(i, j int) {
(*p)[i], (*p)[j] = (*p)[j], (*p)[i]
}
// Quantile returns the least X such that Pr(x<X)>=q, where X is an
// element of the data set. This uses the "Nearest-Rank" definition
// of a quantile.
func (p *points) Quantile(q float64) (core.Number, error) {
if len(*p) == 0 {
return core.Number(0), aggregator.ErrEmptyDataSet
}
if q < 0 || q > 1 {
return core.Number(0), aggregator.ErrInvalidQuantile
}
if q == 0 || len(*p) == 1 {
return (*p)[0], nil
} else if q == 1 {
return (*p)[len(*p)-1], nil
}
position := float64(len(*p)-1) * q
ceil := int(math.Ceil(position))
return (*p)[ceil], nil
}